1
|
Rothen DA, Dutta SK, Krenger PS, Pardini A, Vogt ACS, Josi R, Lieknina I, Osterhaus ADME, Mohsen MO, Vogel M, Martina B, Tars K, Bachmann MF. Preclinical Development of a Novel Zika Virus-like Particle Vaccine in Combination with Tetravalent Dengue Virus-like Particle Vaccines. Vaccines (Basel) 2024; 12:1053. [PMID: 39340083 PMCID: PMC11435730 DOI: 10.3390/vaccines12091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Declared as a Public Health Emergency in 2016 by the World Health Organization (WHO), the Zika virus (ZIKV) continues to cause outbreaks that are linked to increased neurological complications. Transmitted mainly by Aedes mosquitoes, the virus is spread mostly amongst several tropical regions with the potential of territorial expansion due to environmental and ecological changes. The ZIKV envelope protein's domain III, crucial for vaccine development due to its role in receptor binding and neutralizing antibody targeting, was integrated into sterically optimized AP205 VLPs to create an EDIII-based VLP vaccine. To increase the potential size of domains that can be accommodated by AP205, two AP205 monomers were fused into a dimer, resulting in 90 rather than 180 N-/C- termini amenable for fusion. EDIII displayed on AP205 VLPs has several immunological advantages, like a repetitive surface, a size of 20-200 nm (another PASP), and packaged bacterial RNA as adjuvants (a natural toll-like receptor 7/8 ligand). In this study, we evaluated a novel vaccine candidate for safety and immunogenicity in mice, demonstrating its ability to induce high-affinity, ZIKV-neutralizing antibodies without significant disease-enhancing properties. Due to the close genetical and structural characteristics, the same mosquito vectors, and the same ecological niche of the dengue virus and Zika virus, a vaccine covering all four Dengue viruses (DENV) serotypes as well as ZIKV would be of significant interest. We co-formulated the ZIKV vaccine with recently developed DENV vaccines based on the same AP205 VLP platform and tested the vaccine mix in a murine model. This combinatory vaccine effectively induced a strong humoral immune response and neutralized all five targeted viruses after two doses, with no significant antibody-dependent enhancement (ADE) observed. Overall, these findings highlight the potential of the AP205 VLP-based combinatory vaccine as a promising approach for providing broad protection against DENV and ZIKV infections. Further investigations and preclinical studies are required to advance this vaccine candidate toward potential use in human populations.
Collapse
Affiliation(s)
- Dominik A. Rothen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Pascal S. Krenger
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Alessandro Pardini
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anne-Cathrine S. Vogt
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Romano Josi
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ilva Lieknina
- Latvian Biomedical Research & Study Centre, Ratsupites iela 1, 1067 Riga, Latvia
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Mona O. Mohsen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
| | - Monique Vogel
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
| | - Byron Martina
- Artemis Bio-Services, 2629 JD Delft, The Netherlands
| | - Kaspars Tars
- Latvian Biomedical Research & Study Centre, Ratsupites iela 1, 1067 Riga, Latvia
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, 3010 Bern, Switzerland
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
2
|
Henrio Marcellin DF, Huang J. Exploring Zika Virus Impact on Endothelial Permeability: Insights into Transcytosis Mechanisms and Vascular Leakage. Viruses 2024; 16:629. [PMID: 38675970 PMCID: PMC11054372 DOI: 10.3390/v16040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Treating brain disease is challenging, and the Zika virus (ZIKV) presents a unique obstacle due to its neuroinvasive nature. In this review, we discuss the immunopathogenesis of ZIKV and explore how the virus interacts with the body's immune responses and the role of the protein Mfsd2a in maintaining the integrity of the blood-brain barrier (BBB) during ZIKV neuroinvasion. ZIKV has emerged as a significant public health concern due to its association with severe neurological problems, including microcephaly and Gillain-Barré Syndrome (GBS). Understanding its journey through the brain-particularly its interaction with the placenta and BBB-is crucial. The placenta, which is designed to protect the fetus, becomes a pathway for ZIKV when infected. The BBB is composed of brain endothelial cells, acts as a second barrier, and protects the fetal brain. However, ZIKV finds ways to disrupt these barriers, leading to potential damage. This study explores the mechanisms by which ZIKV enters the CNS and highlights the role of transcytosis, which allows the virus to move through the cells without significantly disrupting the BBB. Although the exact mechanisms of transcytosis are unclear, research suggests that ZIKV may utilize this pathway.
Collapse
Affiliation(s)
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| |
Collapse
|
3
|
Mironov AA, Savin MA, Zaitseva AV, Dimov ID, Sesorova IS. Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body. Int J Mol Sci 2023; 24:15044. [PMID: 37894724 PMCID: PMC10606600 DOI: 10.3390/ijms242015044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia;
| | - Anna V. Zaitseva
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia
| | - Ivan D. Dimov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Irina S. Sesorova
- Department of Anatomy, Ivanovo State Medical Academy, 153012 Ivanovo, Russia
| |
Collapse
|
4
|
Recaioglu H, Kolk SM. Developing brain under renewed attack: viral infection during pregnancy. Front Neurosci 2023; 17:1119943. [PMID: 37700750 PMCID: PMC10493316 DOI: 10.3389/fnins.2023.1119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 09/14/2023] Open
Abstract
Living in a globalized world, viral infections such as CHIKV, SARS-COV-2, and ZIKV have become inevitable to also infect the most vulnerable groups in our society. That poses a danger to these populations including pregnant women since the developing brain is sensitive to maternal stressors including viral infections. Upon maternal infection, the viruses can gain access to the fetus via the maternofetal barrier and even to the fetal brain during which factors such as viral receptor expression, time of infection, and the balance between antiviral immune responses and pro-viral mechanisms contribute to mother-to-fetus transmission and fetal infection. Both the direct pro-viral mechanisms and the resulting dysregulated immune response can cause multi-level impairment in the maternofetal and brain barriers and the developing brain itself leading to dysfunction or even loss of several cell populations. Thus, maternal viral infections can disturb brain development and even predispose to neurodevelopmental disorders. In this review, we discuss the potential contribution of maternal viral infections of three relevant relative recent players in the field: Zika, Chikungunya, and Severe Acute Respiratory Syndrome Coronavirus-2, to the impairment of brain development throughout the entire route.
Collapse
Affiliation(s)
| | - Sharon M. Kolk
- Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
5
|
Salomão N, Rabelo K, Avvad-Portari E, Basílio-de-Oliveira C, Basílio-de-Oliveira R, Ferreira F, Ferreira L, de Souza TM, Nunes P, Lima M, Sales AP, Fernandes R, de Souza LJ, Dias L, Brasil P, dos Santos F, Paes M. Histopathological and immunological characteristics of placentas infected with chikungunya virus. Front Microbiol 2022; 13:1055536. [PMID: 36466642 PMCID: PMC9714605 DOI: 10.3389/fmicb.2022.1055536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 09/29/2023] Open
Abstract
Although vertical transmission of CHIKV has been reported, little is known about the role of placenta in the transmission of this virus and the effects of infection on the maternal-fetal interface. In this work we investigated five placentas from pregnant women who became infected during the gestational period. Four formalin-fixed paraffin-embedded samples of placenta (cases 1-4) were positive for CHIKV by RT-PCR. One (case 5) had no positive test of placenta, but had positive RT-PCR for CHIKV in the serum of the mother and the baby, confirming vertical transmission. The placentas were analyzed regarding histopathological and immunological aspects. The main histopathological changes were: deciduitis, villous edema, deposits, villous necrosis, dystrophic calcification, thrombosis and stem vessel obliteration. In infected placentas we noted increase of cells (CD8+ and CD163+) and pro- (IFN-γ and TNF-α) and anti-inflammatory (TGF-β and IL-10) cytokines compared to control placentas. Moreover, CHIKV antigen was detected in decidual cell, trophoblastic cells, stroma villi, Hofbauer cells, and endothelial cells. In conclusion, CHIKV infection seems to disrupt placental homeostasis leading to histopathological alterations in addition to increase in cellularity and cytokines overproduction, evidencing an altered and harmful environment to the pregnant woman and fetus.
Collapse
Affiliation(s)
- Natália Salomão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elyzabeth Avvad-Portari
- Departamento de Anatomia Patológica, Instituto da Mulher e da Criança Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos Basílio-de-Oliveira
- Departamento de Anatomia Patológica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Basílio-de-Oliveira
- Departamento de Anatomia Patológica, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fátima Ferreira
- Departamento de Neonatologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Ferreira
- Departamento de Anatomia Patológica, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Thiara Manuele de Souza
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Priscila Nunes
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monique Lima
- Laboratório Estratégico de Diagnóstico Molecular, Instituto Butantan, São Paulo, Brazil
| | - Anna Paula Sales
- Centro de Referência de Doenças Imuno-infecciosas (CRDI), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Regina Fernandes
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luiz José de Souza
- Centro de Referência de Doenças Imuno-infecciosas (CRDI), Campos dos Goytacazes, Rio de Janeiro, Brazil
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Laura Dias
- Hospital Geral Dr. Beda, CEPLIN – Uti Neonatal Nicola Albano, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Patrícia Brasil
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Flavia dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marciano Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Vaziri S, Pour SH, Akrami-Mohajeri F. Zika virus as an emerging arbovirus of international public health concern. Osong Public Health Res Perspect 2022; 13:341-351. [DOI: 10.24171/j.phrp.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in a rhesus monkey during an investigation of the yellow fever virus in the Zika Forest of Uganda; it was also isolated later from humans in Nigeria. The main distribution areas of ZIKV were the African mainland and South-East Asia in the 1980s, Micronesia in 2007, and more recently the Americas in 2014. ZIKV belongs to the Flaviviridae family and Flavivirus genus. ZIKV infection, which is transmitted by Aedes mosquitoes, is an emerging arbovirus disease. The clinical symptoms of ZIKV infection are fever, headache, rashes, arthralgia, and conjunctivitis, which clinically resemble dengue fever syndrome. Sometimes, ZIKV infection has been associated with Guillain-Barré syndrome and microcephaly. At the end of 2015, following an increase in cases of ZIKV infection associated with Guillain-Barré syndrome and microcephaly in newborns in Brazil, the World Health Organization declared a global emergency. Therefore, considering the global distribution and pathogenic nature of this virus, the current study aimed at reviewing the virologic features, transmission patterns, clinical manifestations, diagnosis, treatment, and prevention of ZIKV infection.
Collapse
|
7
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
de Araujo Dorneles ML, Cardoso-Lima R, Souza PFN, Santoro Rosa D, Magne TM, Santos-Oliveira R, Alencar LMR. Zika Virus (ZIKV): A New Perspective on the Nanomechanical and Structural Properties. Viruses 2022; 14:v14081727. [PMID: 36016349 PMCID: PMC9414353 DOI: 10.3390/v14081727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) from Flavivirus. In 2015, Brazil and other Latin American countries experienced an outbreak of ZIKV infections associated with severe neurological disorders such as Guillain–Barre syndrome (GBS), encephalopathy, and encephalitis. Here, a complete mechanical and structural analysis of the ZIKV has been performed using Atomic Force Microscopy (AFM). AFM analysis corroborated the virus mean size (~50 nm) and icosahedral geometry and revealed high mechanical resistance of both: the viral surface particle (~200 kPa) and its internal content (~800 kPa). The analysis demonstrated the detailed organization of the nucleocapsid structure (such as RNA strips). An interesting finding was the discovery that ZIKV has no surface self-assembling property. These results can contribute to the development of future treatment candidates and circumscribe the magnitude of viral transmission.
Collapse
Affiliation(s)
| | - Ruana Cardoso-Lima
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65020070, Brazil
| | - Pedro Filho Noronha Souza
- Department of Biochemistry, Federal University of Ceará, Fortaleza 60440900, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60440900, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo, São Paulo 04023062, Brazil
| | - Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Physics Department, Federal University of Maranhão, São Luís 65020070, Brazil
- Correspondence:
| |
Collapse
|
9
|
Martin H, Barthelemy J, Chin Y, Bergamelli M, Moinard N, Cartron G, Tanguy Le Gac Y, Malnou CE, Simonin Y. Usutu Virus Infects Human Placental Explants and Induces Congenital Defects in Mice. Viruses 2022; 14:v14081619. [PMID: 35893684 PMCID: PMC9330037 DOI: 10.3390/v14081619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Usutu virus (USUV) is a neurotropic mosquito-borne flavivirus that has dispersed quickly in Europe these past years. This arbovirus mainly follows an enzootic cycle involving mosquitoes and birds, but can also infect other mammals, causing notably sporadic cases in humans. Although it is mainly asymptomatic or responsible for mild clinical symptoms, USUV has been associated with neurological disorders, such as encephalitis and meningoencephalitis, highlighting the potential health threat of this virus. Among the different transmission routes described for other flaviviruses, the capacity for some of them to be transmitted vertically has been demonstrated, notably for Zika virus or West Nile virus, which are closely related to USUV. To evaluate the ability of USUV to replicate in the placenta and gain access to the fetus, we combined the use of several trophoblast model cell lines, ex vivo human placental explant cultures from first and third trimester of pregnancy, and in vivo USUV-infected pregnant mice. Our data demonstrate that human placental cells and tissues are permissive to USUV replication, and suggest that viral transmission can occur in mice during gestation. Hence, our observations suggest that USUV could be efficiently transmitted by the vertical route.
Collapse
Affiliation(s)
- Hélène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France;
| | - Yamileth Chin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - Mathilde Bergamelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
| | - Nathalie Moinard
- Développement Embryonnaire, Fertilité, Environnement (DEFE), INSERM UMR 1203, Université de Toulouse et Université de Montpellier, France;
- CECOS, Groupe d’Activité de Médecine de la Reproduction, CHU Toulouse, Hôpital Paule de Viguier, Toulouse, France
| | - Géraldine Cartron
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France; (G.C.); (Y.T.L.G.)
| | - Yann Tanguy Le Gac
- CHU Toulouse, Hôpital Paule de Viguier, Service de Gynécologie Obstétrique, Toulouse, France; (G.C.); (Y.T.L.G.)
| | - Cécile E. Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France; (H.M.); (Y.C.); (M.B.)
- Correspondence: (C.E.M.); (Y.S.)
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France;
- Correspondence: (C.E.M.); (Y.S.)
| |
Collapse
|
10
|
Watts JL, Ralston A. The fetal lineage is susceptible to Zika virus infection within days of fertilization. Development 2022; 149:276104. [PMID: 35900100 PMCID: PMC9382896 DOI: 10.1242/dev.200501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
Abstract
Adults contracting Zika virus (ZIKV) typically exhibit mild symptoms, yet ZIKV infection of pregnant individuals can cause miscarriage or birth defects in their offspring. Many studies have focused on maternal-to-fetal ZIKV transmission via blood and placenta. Notably, however, ZIKV is also transmitted sexually, raising the possibility that ZIKV could infect the embryo shortly after fertilization, long before the placenta is established. Here, we evaluate the consequences of ZIKV infection in mouse embryos during the first few days of embryogenesis. We show that divergent strains of ZIKV can infect the fetal lineage and can cause developmental arrest, raising concern for the developmental consequences of sexual ZIKV transmission. This article has an associated ‘The people behind the papers’ interview. Summary: Mouse preimplantation embryos are vulnerable to Zika virus-induced lethality even in the presence of the zona pellucida, highlighting a potential risk of sexually transmitted infection in early pregnancy.
Collapse
Affiliation(s)
- Jennifer L. Watts
- Molecular, Cellular and Integrative Physiology Graduate Program, Michigan State University 1 , East Lansing , MI 48824 , USA
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| | - Amy Ralston
- Michigan State University 2 Reproductive and Developmental Biology Training Program , , East Lansing , MI 48824 , USA
- Michigan State University 3 Department of Biochemistry and Molecular Biology , , East Lansing , MI 48824 , USA
| |
Collapse
|
11
|
Villalobos-Sánchez E, Burciaga-Flores M, Zapata-Cuellar L, Camacho-Villegas TA, Elizondo-Quiroga DE. Possible Routes for Zika Virus Vertical Transmission in Human Placenta: A Comprehensive Review. Viral Immunol 2022; 35:392-403. [PMID: 35506896 DOI: 10.1089/vim.2021.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have gained notoriety due to congenital abnormalities. Pregnant women have a greater risk of ZIKV infection and consequent transmission to their progeny due to the immunological changes associated with pregnancy. ZIKV has been detected in amniotic fluid, as well as in fetal and neonatal tissues of infected pregnant women. However, the mechanism by which ZIKV reaches the fetus is not well understood. The four dengue virus serotypes have been the most widely used flaviviruses to elucidate the host-cell entry pathways. Nevertheless, it is of increasing interest to understand the specific interaction between ZIKV and the host cell, especially in the gestation period. Herein, the authors describe the mechanisms of prenatal vertical infection of ZIKV based on results from in vitro, in vivo, and ex vivo studies, including murine models and nonhuman primates. It also includes up-to-date knowledge from ex vivo and natural infections in pregnant women explaining the vertical transmission along four tracks: transplacental, paracellular, transcytosis mediated by extracellular vesicles, and paraplacental route and the antibody-dependent enhancement process. A global understanding of the diverse pathways used by ZIKV to cross the placental barrier and access the fetus, along with a better comprehension of the pathogenesis of ZIKV in pregnant females, may constitute a fundamental role in the design of antiviral drugs to reduce congenital disabilities associated with ZIKV.
Collapse
Affiliation(s)
- Erendira Villalobos-Sánchez
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Mirna Burciaga-Flores
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Lorena Zapata-Cuellar
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Tanya A Camacho-Villegas
- CONACYT-Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| | - Darwin E Elizondo-Quiroga
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ), Guadalajara, México
| |
Collapse
|
12
|
Schlafens Can Put Viruses to Sleep. Viruses 2022; 14:v14020442. [PMID: 35216035 PMCID: PMC8875196 DOI: 10.3390/v14020442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
The Schlafen gene family encodes for proteins involved in various biological tasks, including cell proliferation, differentiation, and T cell development. Schlafens were initially discovered in mice, and have been studied in the context of cancer biology, as well as their role in protecting cells during viral infection. This protein family provides antiviral barriers via direct and indirect effects on virus infection. Schlafens can inhibit the replication of viruses with both RNA and DNA genomes. In this review, we summarize the cellular functions and the emerging relationship between Schlafens and innate immunity. We also discuss the functions and distinctions of this emerging family of proteins as host restriction factors against viral infection. Further research into Schlafen protein function will provide insight into their mechanisms that contribute to intrinsic and innate host immunity.
Collapse
|
13
|
Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research? Pathogens 2021; 10:pathogens10101233. [PMID: 34684182 PMCID: PMC8537471 DOI: 10.3390/pathogens10101233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an in-scale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defects.
Collapse
|
14
|
Ginige S, Flower R, Viennet E. Neonatal Outcomes From Arboviruses in the Perinatal Period: A State-of-the-Art Review. Pediatrics 2021; 147:peds.2020-009720. [PMID: 33737375 DOI: 10.1542/peds.2020-009720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
Since the 2016 Zika outbreak and the understanding of the teratogenic effect of this infection, there has been a newfound interest in arbovirus infections and their effects on pregnancy, resulting in numerous publications in the last 5 years. However, limited literature focuses on arbovirus infection in different stages of pregnancy and their effect on the neonate. There is currently no consensus management of perinatal acquisition of arboviruses, and current evidence is largely anecdotal observational reports. Teratogens can have different effects on the developing fetus depending on the time of infection, so infections during pregnancy should be analyzed by trimester. A better understanding of arbovirus infection in the perinatal period is required to assist obstetric, neonatal, and pediatric clinicians in making decisions about the management of mother and neonate. Our objective was to assess the evidence of adverse neonatal outcomes for several arboviral infections when contracted during the perinatal period to guide clinicians in managing these patients. There are 8 arboviruses for which neonatal outcomes from maternal acquisition in the perinatal period have been reported, with the most data for dengue and Chikungunya virus infections. The evidence reviewed in this article supports the adoption of preventive strategies to avoid ticks and mosquitoes close to the date of delivery. For the other arbovirus infections, further community-based cohort studies during outbreaks are required to evaluate whether these infections have a similar teratogenic impact.
Collapse
|
15
|
Guzeloglu-Kayisli O, Guo X, Tang Z, Semerci N, Ozmen A, Larsen K, Mutluay D, Guller S, Schatz F, Kayisli UA, Lockwood CJ. Zika Virus-Infected Decidual Cells Elicit a Gestational Age-Dependent Innate Immune Response and Exaggerate Trophoblast Zika Permissiveness: Implication for Vertical Transmission. THE JOURNAL OF IMMUNOLOGY 2020; 205:3083-3094. [PMID: 33139490 DOI: 10.4049/jimmunol.2000713] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Vertical transmission of the Zika virus (ZIKV) causes severe fetal defects, but the exact pathogenic mechanism is unclear. We identified up to a 10,480-fold higher expression of viral attachment factors AXL, GAS6, and PROS1 and a 3880-fold increase in ZIKV infectiousness/propagation in human term decidual stromal cells versus trophoblasts. Moreover, levels of viral attachment factors and ZIKV are significantly increased, whereas expression of innate immune response genes are significantly decreased, in human first trimester versus term decidual cells. ZIKV-infected decidual cell supernatants increased cytotrophoblasts infection up to 252-fold compared with directly infected cytotrophoblasts. Tizoxanide treatment efficiently inhibited Zika infection in both maternal and fetal cells. We conclude that ZIKV permissiveness, as well as innate immune responsiveness of human decidual cells, are gestational age dependent, and decidual cells augment ZIKV infection of primary human cytotrophoblast cultures, which are otherwise ZIKV resistant. Human decidual cells may act as reservoirs for trimester-dependent placental transmission of ZIKV, accounting for the higher Zika infection susceptibility and more severe fetal sequelae observed in early versus late pregnancy. Moreover, tizoxanide is a promising agent in preventing perinatal Zika transmission as well as other RNA viruses such as coronavirus.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Duygu Mutluay
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Umit Ali Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Charles Joseph Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| |
Collapse
|
16
|
Parker EL, Silverstein RB, Verma S, Mysorekar IU. Viral-Immune Cell Interactions at the Maternal-Fetal Interface in Human Pregnancy. Front Immunol 2020; 11:522047. [PMID: 33117336 PMCID: PMC7576479 DOI: 10.3389/fimmu.2020.522047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
The human decidua and placenta form a distinct environment distinguished for its promotion of immunotolerance to infiltrating semiallogeneic trophoblast cells to enable successful pregnancy. The maternal-fetal interface also successfully precludes transmission of most pathogens. This barrier function occurs in conjunction with a diverse influx of decidual immune cells including natural killer cells, macrophages and T cells. However, several viruses, among other microorganisms, manage to escape destruction by the host adaptive and innate immune system, leading to congenital infection and adverse pregnancy outcomes. In this review, we describe mechanisms of pathogenicity of two such viral pathogens, Human cytomegalovirus (HCMV) and Zika virus (ZIKV) at the maternal-fetal interface. Host decidual immune cell responses to these specific pathogens will be considered, along with their interactions with other cell types and the ways in which these immune cells may both facilitate and limit infection at different stages of pregnancy. Neither HCMV nor ZIKV naturally infect commonly used animal models [e.g., mice] which makes it challenging to understand disease pathogenesis. Here, we will highlight new approaches using placenta-on-a-chip and organoids models that are providing functional and physiologically relevant ways to study viral-host interaction at the maternal-fetal interface.
Collapse
Affiliation(s)
- Elaine L. Parker
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Rachel B. Silverstein
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Sonam Verma
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Nazerai L, Schøller AS, Bassi MR, Buus S, Stryhn A, Christensen JP, Thomsen AR. Effector CD8 T Cell-Dependent Zika Virus Control in the CNS: A Matter of Time and Numbers. Front Immunol 2020; 11:1977. [PMID: 32973802 PMCID: PMC7461798 DOI: 10.3389/fimmu.2020.01977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, came into the spotlight in 2016 when it was found to be associated with an increased rate of microcephalic newborns in Brazil. The virus has further been recognized to cause neurologic complications in children and adults in the form of myelitis, encephalitis, acute disseminated encephalomyelitis (ADEM) and Guillain Barre Syndrome in a fraction of infected individuals. With the ultimate goal of identifying correlates of protection to guide the design of an effective vaccine, the study of the immune response to ZIKV infection has become the focus of research worldwide. Both innate and adaptive immune responses seem to be essential for controlling the infection. Induction of sufficient levels of neutralizing antibodies has been strongly correlated with protection against reinfection in various models, while the role of CD8 T cells as antiviral effectors in the CNS has been controversial. In an attempt to improve our understanding regarding the role of ZIKV-induced CD8 T cells in protective immunity inside the CNS, we have expanded on previous studies in intracranially infected mice. In a recent study, we have demonstrated that, peripheral ZIKV infection in adult C57BL/6 mice induces a robust CD8 T cell response that peaks within a week. In the present study, we used B cell deficient as well as wild-type mice to show that there is a race between CXCR3-dependent recruitment of the effector CD8 T cells and local ZIKV replication, and that CD8 T cells are capable of local viral control if they arrive in the brain early after viral invasion, in appropriate numbers and differentiation state. Our data highlight the benefits of considering this subset when designing vaccines against Zika virus.
Collapse
Affiliation(s)
- Loulieta Nazerai
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Amalie Skak Schøller
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Pattnaik A, Sahoo BR, Pattnaik AK. Current Status of Zika Virus Vaccines: Successes and Challenges. Vaccines (Basel) 2020; 8:vaccines8020266. [PMID: 32486368 PMCID: PMC7349928 DOI: 10.3390/vaccines8020266] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
The recently emerged Zika virus (ZIKV) spread to the Americas, causing a spectrum of congenital diseases including microcephaly in newborn and Guillain-Barré syndrome (GBS) in adults. The unprecedented nature of the epidemic and serious diseases associated with the viral infections prompted the global research community to understand the immunopathogenic mechanisms of the virus and rapidly develop safe and efficacious vaccines. This has led to a number of ZIKV vaccine candidates that have shown significant promise in human clinical trials. These candidates include nucleic acid vaccines, inactivated vaccines, viral-vectored vaccines, and attenuated vaccines. Additionally, a number of vaccine candidates have been shown to protect animals in preclinical studies. However, as the epidemic has waned in the last three years, further development of the most promising vaccine candidates faces challenges in clinical efficacy trials, which is needed before a vaccine is brought to licensure. It is important that a coalition of government funding agencies and private sector companies is established to move forward with a safe and effective vaccine ready for deployment when the next ZIKV epidemic occurs.
Collapse
Affiliation(s)
- Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bikash R. Sahoo
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (A.P.); (B.R.S.)
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-1067
| |
Collapse
|
19
|
Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Front Immunol 2020; 11:592. [PMID: 32373111 PMCID: PMC7179680 DOI: 10.3389/fimmu.2020.00592] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023] Open
Abstract
Arboviruses represent major challenges to public health, particularly in tropical, and subtropical regions, and a substantial risk to other parts of the world as respective vectors extend their habitats. In recent years, two viruses transmitted by Aedes mosquitoes, Chikungunya and Zika virus, have gathered increased interest. After decades of regionally constrained outbreaks, both viruses have recently caused explosive outbreaks on an unprecedented scale, causing immense suffering and massive economic burdens in affected regions. Chikungunya virus causes an acute febrile illness that often transitions into a chronic manifestation characterized by debilitating arthralgia and/or arthritis in a substantial subset of infected individuals. Zika infection frequently presents as a mild influenza-like illness, often subclinical, but can cause severe complications such as congenital malformations in pregnancy and neurological disorders, including Guillain-Barré syndrome. With no specific treatments or vaccines available, vector control remains the most effective measure to manage spread of these diseases. Given that both viruses cause antibody responses that confer long-term, possibly lifelong protection and that such responses are cross-protective against the various circulating genetic lineages, the development of Zika and Chikungunya vaccines represents a promising route for disease control. In this review we provide a brief overview on Zika and Chikungunya viruses, the etiology and epidemiology of the illnesses they cause and the host immune response against them, before summarizing past and current efforts to develop vaccines to alleviate the burden caused by these emerging diseases. The development of the urgently needed vaccines is hampered by several factors including the unpredictable epidemiology, feasibility of rapid clinical trial implementation during outbreaks and regulatory pathways. We will give an overview of the current developments.
Collapse
|
20
|
Groß R, Bauer R, Krüger F, Rücker-Braun E, Olari LR, Ständker L, Preising N, Rodríguez AA, Conzelmann C, Gerbl F, Sauter D, Kirchhoff F, Hagemann B, Gačanin J, Weil T, Ruiz-Blanco YB, Sanchez-Garcia E, Forssmann WG, Mankertz A, Santibanez S, Stenger S, Walther P, Wiese S, Spellerberg B, Münch J. A Placenta Derived C-Terminal Fragment of β-Hemoglobin With Combined Antibacterial and Antiviral Activity. Front Microbiol 2020; 11:508. [PMID: 32328038 PMCID: PMC7153485 DOI: 10.3389/fmicb.2020.00508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
The placenta acts as physical and immunological barrier against the transmission of viruses and bacteria from mother to fetus. However, the specific mechanisms by which the placenta protects the developing fetus from viral and bacterial pathogens are poorly understood. To identify placental peptides and small proteins protecting from viral and bacterial infections, we generated a peptide library from 10 kg placenta by chromatographic means. Screening the resulting 250 fractions against Herpes-Simplex-Virus 2 (HSV-2), which is rarely transmitted through the placenta, in a cell-based system identified two adjacent fractions with significant antiviral activity. Further rounds of chromatographic purification and anti-HSV-2 testing allowed to purify the bioactive peptide. Mass spectrometry revealed the presence of a 36-mer derived from the C-terminal region of the hemoglobin β subunit. The purified and corresponding chemically synthesized peptide, termed HBB(112–147), inhibited HSV-2 infection in a dose-dependent manner, with a mean IC50 in the median μg/ml range. Full-length hemoglobin tetramer had no antiviral activity. HBB(112–147) did not impair infectivity by direct targeting of the virions but prevented HSV-2 infection at the cell entry level. The peptide was inactive against Human Immunodeficiency Virus Type 1, Rubella and Zika virus infection, suggesting a specific anti-HSV-2 mechanism. Notably, HBB(112–147) has previously been identified as broad-spectrum antibacterial agent. It is abundant in placenta, reaching concentrations between 280 and 740 μg/ml, that are well sufficient to inhibit HSV-2 and prototype Gram-positive and -negative bacteria. We here additionally show, that HBB(112–147) also acts potently against Pseudomonas aeruginosa strains (including a multi-drug resistant strain) in a dose dependent manner, while full-length hemoglobin is inactive. Interestingly, the antibacterial activity of HBB(112–147) was increased under acidic conditions, a hallmark of infection and inflammatory conditions. Indeed, we found that HBB(112–147) is released from the hemoglobin precursor by Cathepsin D and Napsin A, acidic proteases highly expressed in placental and other tissues. We propose that upon viral or bacterial infection, the abundant hemoglobin precursor is proteolytically processed to release HBB(112–147), a broadly active antimicrobial innate immune defense peptide.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Franziska Krüger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Elke Rücker-Braun
- Department of Medicine I, University Hospital of Dresden, Dresden, Germany
| | - Lia-Raluca Olari
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Armando A Rodríguez
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany.,Core Unit of Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Benjamin Hagemann
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Jasmina Gačanin
- Max Planck Institute for Polymer Research, Mainz, Germany.,Institute of Inorganic Chemistry I, University of Ulm, Ulm, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Mainz, Germany.,Institute of Inorganic Chemistry I, University of Ulm, Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Annette Mankertz
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institute, Berlin, Germany
| | - Sabine Santibanez
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institute, Berlin, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
21
|
Oyarzún-Arrau A, Alonso-Palomares L, Valiente-Echeverría F, Osorio F, Soto-Rifo R. Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens 2020; 9:E158. [PMID: 32106582 PMCID: PMC7157488 DOI: 10.3390/pathogens9030158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus associated with neurological disorders such as Guillain-Barré syndrome and microcephaly. In humans, ZIKV is able to replicate in cell types from different tissues including placental cells, neurons, and microglia. This intricate virus-cell interaction is accompanied by virally induced changes in the infected cell aimed to promote viral replication as well as cellular responses aimed to counteract or tolerate the virus. Early in the infection, the 11-kb positive-sense RNA genome recruit ribosomes in the cytoplasm and the complex is translocated to the endoplasmic reticulum (ER) for viral protein synthesis. In this process, ZIKV replication is known to induce cellular stress, which triggers both the expression of innate immune genes and the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α), shutting-off host protein synthesis. Remodeling of the ER during ZIKV replication also triggers the unfolded protein response (UPR), which induces changes in the cellular transcriptional landscapes aimed to tolerate infection or trigger apoptosis. Alternatively, ZIKV replication induces changes in the adenosine methylation patterns of specific host mRNAs, which have different consequences in viral replication and cellular fate. In addition, the ZIKV RNA genome undergoes adenosine methylation by the host machinery, which results in the inhibition of viral replication. However, despite these relevant findings, the full scope of these processes to the outcome of infection remains poorly elucidated. This review summarizes relevant aspects of the complex crosstalk between RNA metabolism and cellular stress responses against ZIKV and discusses their possible impact on viral pathogenesis.
Collapse
Affiliation(s)
- Aarón Oyarzún-Arrau
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
| | - Luis Alonso-Palomares
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
22
|
de Noronha L, Zanluca C, Burger M, Suzukawa AA, Azevedo M, Rebutini PZ, Novadzki IM, Tanabe LS, Presibella MM, Duarte Dos Santos CN. Zika Virus Infection at Different Pregnancy Stages: Anatomopathological Findings, Target Cells and Viral Persistence in Placental Tissues. Front Microbiol 2018; 9:2266. [PMID: 30337910 PMCID: PMC6180237 DOI: 10.3389/fmicb.2018.02266] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022] Open
Abstract
Zika virus (ZIKV) infection in humans has been associated with congenital malformations and other neurological disorders, such as Guillain-Barré syndrome. The mechanism(s) of ZIKV intrauterine transmission, the cell types involved, the most vulnerable period of pregnancy for severe outcomes from infection and other physiopathological aspects are not completely elucidated. In this study, we analyzed placental samples obtained at the time of delivery from a group of 24 women diagnosed with ZIKV infection during the first, second or third trimesters of pregnancy. Villous immaturity was the main histological finding in the placental tissues, although placentas without alterations were also frequently observed. Significant enhancement of the number of syncytial sprouts was observed in the placentas of women infected during the third trimester, indicating the development of placental abnormalities after ZIKV infection. Hyperplasia of Hofbauer cells (HCs) was also observed in these third-trimester placental tissues, and remarkably, HCs were the only ZIKV-positive fetal cells found in the placentas studied that persisted until birth, as revealed by immunohistochemical (IHC) analysis. Thirty-three percent of women infected during pregnancy delivered infants with congenital abnormalities, although no pattern correlating the gestational stage at infection, the IHC positivity of HCs in placental tissues and the presence of congenital malformations at birth was observed. Placental tissue analysis enabled us to confirm maternal ZIKV infection in cases where serum from the acute infection phase was not available, which reinforces the importance of this technique in identifying possible causal factors of birth defects. The results we observed in the samples from naturally infected pregnant women may contribute to the understanding of some aspects of the pathophysiology of ZIKV.
Collapse
Affiliation(s)
- Lucia de Noronha
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Marion Burger
- Secretaria da Saúde do Estado do Paraná, Curitiba, Brazil
| | - Andreia Akemi Suzukawa
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Marina Azevedo
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Patricia Z Rebutini
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | | | | | | |
Collapse
|
23
|
França TLBD, Medeiros WR, Souza NLD, Longo E, Pereira SA, França TBDO, Sousa KG. Growth and Development of Children with Microcephaly Associated with Congenital Zika Virus Syndrome in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091990. [PMID: 30216976 PMCID: PMC6164092 DOI: 10.3390/ijerph15091990] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
The outbreak of Zika virus in Latin America in the period 2015–2016 has caused a sudden increase in the number of severe manifestations and reports of congenital changes in newborns in Brazil. This is the first study that evaluated and compared the growth and cognitive and motor development of children with microcephaly due to Congenital Zika Virus Syndrome (CZS) in relation to typical children. It was an observational, analytical, cross-sectional study with 8 children with CZS and 16 typical children, with a mean age of 20.5 months (±2.1), in a region of northeastern Brazil. Considering the mean, children with CZS presented extremely low performance in the motor domain and in the cognitive development domain, whereas typical children presented average performance in the cognitive and motor development domains. Children with CZS presented a mean growth rate (head circumference and weight) lower than typical children. Therefore, children with CZS are at risk for growth retardation and development compared to typical children.
Collapse
Affiliation(s)
- Thaís Lorena Barbosa de França
- Collective Health PostGraduate Program, Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
- Ana Bezerra University Hospital , Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
| | - Wilton Rodrigues Medeiros
- Collective Health PostGraduate Program, Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
- Ana Bezerra University Hospital , Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
| | - Nilba Lima de Souza
- Nursing Graduate Program, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | - Egmar Longo
- Collective Health PostGraduate Program, Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
- Rehabilitation Sciences Postgraduate Program, Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
| | - Silvana Alves Pereira
- Collective Health PostGraduate Program, Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
- Rehabilitation Sciences Postgraduate Program, Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
- Department of Physical Therapy, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | | | - Klayton Galante Sousa
- Collective Health PostGraduate Program, Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz 59200-000, Brazil.
| |
Collapse
|
24
|
Lee I, Bos S, Li G, Wang S, Gadea G, Desprès P, Zhao RY. Probing Molecular Insights into Zika Virus⁻Host Interactions. Viruses 2018; 10:v10050233. [PMID: 29724036 PMCID: PMC5977226 DOI: 10.3390/v10050233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022] Open
Abstract
The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions.
Collapse
Affiliation(s)
- Ina Lee
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Sandra Bos
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Shusheng Wang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|