1
|
Dittrich SP, Adithya S, Ajith Y, Athira N, Athira KS, Safeer MS, Preena P, Aishwarya A, Athira K, Nisha AR, Devi G, Mäder M, Beena V, Jacob SS. Parasite diversity among domestic goats of tropical monsoon climatic zone in India. Parasitol Res 2024; 123:342. [PMID: 39373887 DOI: 10.1007/s00436-024-08366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Among different climatic zones in India, the tropical monsoon region comprises a diverse ecosystem characterized by the endemic nature of several parasites including certain emerging and re-emerging vector-borne pathogens of humans, whereas a systematic investigation of the occurrence of different parasites among domestic goats in this area is not yet explored. The goal of the present study is to explore the parasite diversity focusing on molecular identification of vector-borne hemoparasites and its health impacts on domestic goats reared in the tropical monsoon climate zone of Kerala, India. Among 227 goats presented to the Teaching Veterinary Clinical Complex (TVCC) in the monsoon months of 2023, thirty animals were recruited for the study. The animals were screened for the presence of different hemoparasites (Anaplasma spp., Theileria spp., and Babesia spp.), ectoparasites (ticks, lice, and fleas), and gastrointestinal (GI) parasites (hookworms, threadworms, tapeworms, whipworms, and coccidia). The isolated hemoparasites were further characterized by sequencing and phylogenetic analysis. The correlation studies to elucidate the association between the occurrence of different parasites and clinical manifestations (hyperthermia, pallor of mucous membrane, circulatory failure, respiratory signs, neurological instability, and GI signs), blood picture (anemia, leukopenia, thrombocytopenia), demographics (sex and age), and treatment history (hemoparasitic therapy, ectoparasiticidal application, and prophylactic deworming) were conducted. The co-infection status of these parasites was also evaluated. A substantial portion of the goats in the study group was found to be affected by vector-borne hemoparasitic diseases and their arthropod vectors or GI parasites or both. This can be attributed to the constantly warm and humid climate of the region, which is favorable for the survival and growth of different life cycle stages of these parasites and vectors. A strategic parasitic disease surveillance-cum-control program is the need of the hour for ensuring climate resilience and profitable goat farming in the region.
Collapse
Affiliation(s)
| | - Sasi Adithya
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences (CVAS), Kerala Veterinary and Animal Sciences University (KVASU), MannuthyThrissur, 680651, Kerala, India
| | - Y Ajith
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, CVAS, KVASU, Thrissur, 680651, Kerala, India.
| | - N Athira
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences (CVAS), Kerala Veterinary and Animal Sciences University (KVASU), MannuthyThrissur, 680651, Kerala, India
| | - K S Athira
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences (CVAS), Kerala Veterinary and Animal Sciences University (KVASU), MannuthyThrissur, 680651, Kerala, India
| | - M Saifudeen Safeer
- Department of Crop Management (Animal Husbandry/Biostatistics), Vanavarayar Institute of Agriculture, Pollachi, 642103, Tamil Nadu, India
| | - P Preena
- Department of Epidemiology and Preventive Medicine, CVAS, KVASU, Mannuthy, Thrissur, 680651, Kerala, India
| | - A Aishwarya
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, CVAS, KVASU, Thrissur, 680651, Kerala, India
| | - K Athira
- Department of Epidemiology and Preventive Medicine, CVAS, KVASU, Mannuthy, Thrissur, 680651, Kerala, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, CVAS, KVASU, Mannuthy, Thrissur, 680651, Kerala, India
| | - Gopinath Devi
- Regional Station, ICAR-Indian Veterinary Research Institute, Palampur, 176061, Himachal Pradesh, India
| | - Mia Mäder
- Ludwig Maximilian University of Munich, Munich, Germany
| | - V Beena
- Centre for Animal Adaptation to Environment and Climate Change Studies (CAADECCS), KVASU, Mannuthy, Thrissur, 680651, Kerala, India
| | - Siju Susan Jacob
- ICAR - National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, 560064, Karnataka, India
| |
Collapse
|
2
|
Nian Y, Zhang S, Wang J, Li X, Wang Y, Liu J, Liu Z, Ye Y, You C, Yin H, Guan G. A novel and low-cost cross-priming amplification assay for rapid detection of Babesia duncani infection. Exp Parasitol 2024; 265:108813. [PMID: 39117169 DOI: 10.1016/j.exppara.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Babesia duncani, responsible for human babesiosis, is one of the most important tick-borne intraerythrocytic pathogens. Traditionally, babesiosis is definitively diagnosed by detecting parasite DNA in blood samples and examining Babesia parasites in Giemsa-stained peripheral blood smears. Although these techniques are valuable for determining Babesia duncani, they are often time-consuming and laborious. Therefore, developing rapid and reliable B. duncani identification assays is essential for subsequent epidemiological investigations and prevention and control. In this study, a cross-priming amplification (CPA) assay was developed, combined with a vertical flow visualization strip, to rapidly and accurately detect B. duncani infection. The detection limit of this method was as low as 0.98 pg/μl of genomic DNA from B. duncani merozoites per reaction at 59 °C for 60 min. There were no cross-reactions between B. duncani and other piroplasms infective to humans and mammals. A total of 592 blood samples from patients bitten by ticks and experimental infected hamsters were accurately assessed using CPA assay. The average cost of the CPA assay is as low as approximately $ 0.2 per person. These findings indicate that the CPA assay may therefore be a rapid screening tool for detection B. duncani infection, based on its accuracy, speed, and cost-effectiveness, particularly in resource-limited regions with a high prevalence of human babesiosis.
Collapse
Affiliation(s)
- Yueli Nian
- Laboratory Medicine Center, Lanzhou University Second Hospital, Cuiyingmen 82, Lanzhou, Gansu, 730030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Shangdi Zhang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Cuiyingmen 82, Lanzhou, Gansu, 730030, PR China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yanbo Wang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Cuiyingmen 82, Lanzhou, Gansu, 730030, PR China
| | - Junlong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Zeen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Yuxin Ye
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Cuiyingmen 82, Lanzhou, Gansu, 730030, PR China.
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| |
Collapse
|
3
|
Alsaadawy RM, Sayed ASM, Ali MM, Abd-Elghaffar SK. Detection of Bartonella henselae in feline erythrocytes in Egypt by using Giemsa staining, transmission electron microscopy, and polymerase chain reaction. Microsc Res Tech 2024. [PMID: 39319444 DOI: 10.1002/jemt.24685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024]
Abstract
Bartonella species (Bartonella spp.) have gained recognition as a significant human pathogen, implicated in a wide range of diseases. Among these, Bartonella henselae infection has been extensively studied for its primary occurrence in cats and its role in the development of cat-scratch disease in humans. While light microscopy and transmission electron microscopy (TEM) have traditionally played crucial roles in identifying causative agents of infectious diseases, including Bartonella spp., the accuracy of these methods in identifying Bartonella spp. remains undefined. Therefore, this study aims to bridge this gap by employing both light microscopy and TEM to detect Bartonella in feline blood samples and to confirm B. henselae with polymerase chain reaction (PCR). Examination of blood smears stained with Giemsa and toluidine blue semithin sections by using light microscopy revealed the presence of intraerythrocytic corpuscles, suggesting Bartonella infection in six out of 33 examined cat blood samples. TEM findings corroborated these observations, showcasing the engulfment of bacteria by the erythrocyte membrane, along with the presence of some Bartonella spp., adhering to the erythrocyte wall. PCR-based molecular detection confirmed the presence of B. henselae in these six samples. It is concluded that light microscopy and TEM are considered valuable in the screening of cats' blood for the potential presence of Bartonella. However, further molecular techniques are essential for precise identification and confirmation of specific Bartonella spp. RESEARCH HIGHLIGHTS: Giemsa-stained blood smear and semithin section showed potential intraerythrocytic Bartonella spp. corpuscles. TEM demonstrated the engulfment of Bartonella spp. by the erythrocyte membrane, along with the presence of some Bartonella spp. adhering to the erythrocyte wall. Molecular analysis of blood samples from cats by PCR unveiled that six out of 33 (18.18%) samples tested positive for B. henselae infection.
Collapse
Affiliation(s)
- Reem M Alsaadawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Amal S M Sayed
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Magda M Ali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Sary Kh Abd-Elghaffar
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| |
Collapse
|
4
|
Liang Q, Zhang S, Liu Z, Wang J, Yin H, Guan G, You C. Comparative genome-wide identification and characterization of SET domain-containing and JmjC domain-containing proteins in piroplasms. BMC Genomics 2024; 25:804. [PMID: 39187768 PMCID: PMC11346185 DOI: 10.1186/s12864-024-10731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND SET domain-containing histone lysine methyltransferases (HKMTs) and JmjC domain-containing histone demethylases (JHDMs) are essential for maintaining dynamic changes in histone methylation across parasite development and infection. However, information on the HKMTs and JHDMs in human pathogenic piroplasms, such as Babesia duncani and Babesia microti, and in veterinary important pathogens, including Babesia bigemina, Babesia bovis, Theileria annulata and Theileria parva, is limited. RESULTS A total of 38 putative KMTs and eight JHDMs were identified using a comparative genomics approach. Phylogenetic analysis revealed that the putative KMTs can be divided into eight subgroups, while the JHDMs belong to the JARID subfamily, except for BdJmjC1 (BdWA1_000016) and TpJmjC1 (Tp Muguga_02g00471) which cluster with JmjC domain only subfamily members. The motifs of SET and JmjC domains are highly conserved among piroplasm species. Interspecies collinearity analysis provided insight into the evolutionary duplication events of some SET domain and JmjC domain gene families. Moreover, relative gene expression analysis by RT‒qPCR demonstrated that the putative KMT and JHDM gene families were differentially expressed in different intraerythrocytic developmental stages of B. duncani, suggesting their role in Apicomplexa parasite development. CONCLUSIONS Our study provides a theoretical foundation and guidance for understanding the basic characteristics of several important piroplasm KMT and JHDM families and their biological roles in parasite differentiation.
Collapse
Affiliation(s)
- Qindong Liang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Shangdi Zhang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
| | - Zeen Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China.
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China.
| |
Collapse
|
5
|
Li D, Liu L, Liu ZL, Tian Y, Gao X, Cheng TY. What are the main proteins in the hemolymph of Haemaphysalis flava ticks? Front Vet Sci 2024; 11:1387719. [PMID: 39086760 PMCID: PMC11289883 DOI: 10.3389/fvets.2024.1387719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Background Haemaphysalis flava is a notorious parasite for humans and animals worldwide. The organs of H. flava are bathed in hemolymph, which is a freely circulating fluid. Nutrients, immune factors, and waste can be transported to any part of the body via hemolymph. The main soluble components in hemolymph are proteins. However, knowledge of the H. flava proteome is limited. Methods The hemolymph was collected from fully engorged H. flava ticks by leg amputation. Hemolymph proteins were examined by both blue native polyacrylamide gel electrophoresis (BN-PAGE) and sodium dodecyl sulfate PAGE (SDS-PAGE). Proteins extracted from the gels were further identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results Two bands (380 and 520 kDa) were separated from tick hemolymph by BN-PAGE and were further separated into four bands (105, 120, 130, and 360 kDa) by SDS-PAGE. LC-MS/MS revealed that seven tick proteins and 13 host proteins were present in the four bands. These tick proteins mainly belonged to the vitellogenin (Vg) family and the α-macroglobulin family members. In silico structural analysis showed that these Vg family members all had common conserved domains, including the N-terminus lipid binding domain (LPD-N), the C-terminus von Willebrand type D domain (vWD), and the domain of unknown function (DUF). Additionally, two of the Vg family proteins were determined to belong to the carrier protein (CP) by analyzing the unique N-terminal amino acid sequences and the cleaving sites. Conclusion These findings suggest that the Vg family proteins and α-macroglobulin are the primary constituents of the hemolymph in the form of protein complexes. Our results provide a valuable resource for further functional investigations of H. flava hemolymph effectors and may be useful in tick management.
Collapse
Affiliation(s)
| | | | | | | | | | - Tian-yin Cheng
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
6
|
Maggi RG, Calchi AC, Moore CO, Kingston E, Breitschwerdt EB. Human Babesia odocoilei and Bartonella spp. co-infections in the Americas. Parasit Vectors 2024; 17:302. [PMID: 38992682 PMCID: PMC11241936 DOI: 10.1186/s13071-024-06385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND In recent years, Babesia and Bartonella species co-infections in patients with chronic, nonspecific illnesses have continued to challenge and change the collective medical understanding of "individual pathogen" vector-borne infectious disease dynamics, pathogenesis and epidemiology. The objective of this case series is to provide additional molecular documentation of Babesia odocoilei infection in humans in the Americas and to emphasize the potential for co-infection with a Bartonella species. METHODS The development of improved and more sensitive molecular diagnostic techniques, as confirmatory methods to assess active infection, has provided increasing clarity to the healthcare community. RESULTS Using a combination of different molecular diagnostic approaches, infection with Babesia odocoilei was confirmed in seven people suffering chronic non-specific symptoms, of whom six were co-infected with one or more Bartonella species. CONCLUSIONS We conclude that infection with Babesia odocoilei is more frequent than previously documented and can occur in association with co-infection with Bartonella spp.
Collapse
Affiliation(s)
- Ricardo G Maggi
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Ana Cláudia Calchi
- Department of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), School of Agricultural and Veterinarian Sciences (FCAV) - São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Charlotte O Moore
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Emily Kingston
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA
| | - Edward B Breitschwerdt
- College of Veterinary Medicine, North Carolina State University, Intracellular Pathogens Research Laboratory Comparative Medicine Institute, Raleigh, NC, USA.
| |
Collapse
|
7
|
Kim HJ, Han B, Lee HI, Ju JW, Shin HI. Current Status of Trypanosoma grosi and Babesia microti in Small Mammals in the Republic of Korea. Animals (Basel) 2024; 14:989. [PMID: 38612228 PMCID: PMC11010837 DOI: 10.3390/ani14070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Small mammals, such as rodents and shrews, are natural reservoir hosts of zoonotic diseases, including parasitic protozoa. To assess the risk of rodent-borne parasitic protozoa in the Republic of Korea (ROK), this study investigated the status of parasitic protozoa, namely Trypanosoma, Babesia, and Theileria, in small mammals. In total, 331 blood samples from small mammals were analyzed for parasites using PCR and sequenced. Samples were positive for Trypanosoma grosi (23.9%; n = 79) and Babesia microti (10%; n = 33) but not Theileria. Small mammals from Seogwipo-si showed the highest infection rate of T. grosi (48.4%), while the highest B. microti infection rate was observed in those from Gangneung-si (25.6%). Sequence data revealed T. grosi to be of the AKHA strain. Phylogenetic analysis of B. microti revealed the US and Kobe genotypes. B. microti US-type-infected small mammals were detected throughout the country, but the Kobe type was only detected in Seogwipo-si. To our knowledge, this is the first nationwide survey that confirmed T. grosi and B. microti infections at the species level in small mammals in the ROK and identified the Kobe type of B. microti. These results provide valuable information for further molecular epidemiological studies on these parasites.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Il Shin
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea; (H.J.K.); (B.H.); (H.-I.L.); (J.-W.J.)
| |
Collapse
|
8
|
Drews SJ, Kjemtrup AM, Krause PJ, Lambert G, Leiby DA, Lewin A, O'Brien SF, Renaud C, Tonnetti L, Bloch EM. Transfusion-transmitted Babesia spp.: a changing landscape of epidemiology, regulation, and risk mitigation. J Clin Microbiol 2023; 61:e0126822. [PMID: 37750699 PMCID: PMC10595070 DOI: 10.1128/jcm.01268-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Babesia spp. are tick-borne parasites with a global distribution and diversity of vertebrate hosts. Over the next several decades, climate change is expected to impact humans, vectors, and vertebrate hosts and change the epidemiology of Babesia. Although humans are dead-end hosts for tick-transmitted Babesia, human-to-human transmission of Babesia spp. from transfusion of red blood cells and whole blood-derived platelet concentrates has been reported. In most patients, transfusion-transmitted Babesia (TTB) results in a moderate-to-severe illness. Currently, in North America, most cases of TTB have been described in the United States. TTB cases outside North America are rare, but case numbers may change over time with increased recognition of babesiosis and as the epidemiology of Babesia is impacted by climate change. Therefore, TTB is a concern of microbiologists working in blood operator settings, as well as in clinical settings where transfusion occurs. Microbiologists play an important role in deploying blood donor screening assays in Babesia endemic regions, identifying changing risks for Babesia in non-endemic areas, investigating recipients of blood products for TTB, and drafting TTB policies and guidelines. In this review, we provide an overview of the clinical presentation and epidemiology of TTB. We identify approaches and technologies to reduce the risk of collecting blood products from Babesia-infected donors and describe how investigations of TTB are undertaken. We also describe how microbiologists in Babesia non-endemic regions can assess for changing risks of TTB and decide when to focus on laboratory-test-based approaches or pathogen reduction to reduce TTB risk.
Collapse
Affiliation(s)
- Steven J. Drews
- Microbiology, Donation Policy and Studies, Canadian Blood Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Division of Diagnostic and Applied Microbiology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne M. Kjemtrup
- California Department of Public Health, Vector-Borne Disease Section, Sacramento, California, USA
| | - Peter J. Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut, USA
| | - Grayson Lambert
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut, USA
| | - David A. Leiby
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, USA
| | - Antoine Lewin
- Epidemiology, Surveillance and Biological Risk Assessment, Medical Affairs and Innovation, Héma-Québec, Montréal, Quebec, Canada
- Département d'Obstétrique et de Gynécologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheila F. O'Brien
- Epidemiology and Surveillance, Canadian Blood Services, Donation Policy and Studies, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Christian Renaud
- Department of Microbiology, CHU Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Laura Tonnetti
- American Red Cross, Scientific Affairs, Holland Laboratories for the Biomedical Sciences, Rockville, Maryland, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Sang MK, Patnaik HH, Park JE, Song DK, Jeong JY, Hong CE, Kim YT, Shin HJ, Ziwei L, Hwang HJ, Park SY, Kang SW, Park SH, Cha SJ, Ko JH, Shin EH, Park HS, Jo YH, Han YS, Patnaik BB, Lee YS. Transcriptome analysis of Haemaphysalis flava female using Illumina HiSeq 4000 sequencing: de novo assembly, functional annotation and discovery of SSR markers. Parasit Vectors 2023; 16:367. [PMID: 37848984 PMCID: PMC10583488 DOI: 10.1186/s13071-023-05923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Ticks are ectoparasites capable of directly damaging their hosts and transmitting vector-borne diseases. The ixodid tick Haemaphysalis flava has a broad distribution that extends from East to South Asia. This tick is a reservoir of severe fever with thrombocytopenia syndrome virus (SFTSV) that causes severe hemorrhagic disease, with cases reported from China, Japan and South Korea. Recently, the distribution of H. flava in South Korea was found to overlap with the occurrence of SFTSV. METHODS This study was undertaken to discover the molecular resources of H. flava female ticks using the Illumina HiSeq 4000 system, the Trinity de novo sequence assembler and annotation against public databases. The locally curated Protostome database (PANM-DB) was used to screen the putative adaptation-related transcripts classified to gene families, such as angiotensin-converting enzyme, aquaporin, adenylate cyclase, AMP-activated protein kinase, glutamate receptors, heat shock proteins, molecular chaperones, insulin receptor, mitogen-activated protein kinase and solute carrier family proteins. Also, the repeats and simple sequence repeats (SSRs) were screened from the unigenes using RepeatMasker (v4.0.6) and MISA (v1.0) software tools, followed by the designing of SSRs flanking primers using BatchPrimer 3 (v1.0) software. RESULTS The transcriptome produced a total of 69,822 unigenes, of which 46,175 annotated to the homologous proteins in the PANM-DB. The unigenes were also mapped to the EuKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) specializations. Promiscuous presence of protein kinase, zinc finger (C2H2-type), reverse transcriptase, and RNA recognition motif domains was observed in the unigenes. A total of 3480 SSRs were screened, of which 1907 and 1274 were found as tri- and dinucleotide repeats, respectively. A list of primer sequences flanking the SSR motifs was detailed for validation of polymorphism in H. flava and the related tick species. CONCLUSIONS The reference transcriptome information on H. flava female ticks will be useful for an enriched understanding of tick biology, its competency to act as a vector and the study of species diversity related to disease transmission.
Collapse
Affiliation(s)
- Min Kyu Sang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Hyeon Jun Shin
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Liu Ziwei
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Hee Ju Hwang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Seung-Hwan Park
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Sung-Jae Cha
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jung Ho Ko
- Police Science Institute, Korean National Police University, Asan, Chungnam, 31539, South Korea
| | - E Hyun Shin
- Research Institute, Korea Pest Control Association, Seoul, 08501, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, South Korea
| | - Yong Hun Jo
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Nuapadhi, Balasore , Odisha, 756089, India
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea.
| |
Collapse
|
10
|
Herb H, González J, Ferreira FC, Fonseca DM. Multiple piroplasm parasites (Apicomplexa: Piroplasmida) in northeastern populations of the invasive Asian longhorned tick, Haemaphysalis longicornis Neumann (Ixodida: Ixodidae), in the United States. Parasitology 2023; 150:1063-1069. [PMID: 37791496 PMCID: PMC10801381 DOI: 10.1017/s0031182023000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Piroplasms, which include the agents of cattle fever and human and dog babesiosis, are a diverse group of blood parasites of significant veterinary and medical importance. The invasive Asian longhorned tick, Haemaphysalis longicornis, is a known vector of piroplasms in its native range in East Asia and invasive range in Australasia. In the USA, H. longicornis has been associated with Theileria orientalis Ikeda outbreaks that caused cattle mortality. To survey invasive populations of H. longicornis for a broad range of piroplasms, 667 questing H. longicornis collected in 2021 from 3 sites in New Jersey, USA, were tested with generalist piroplasm primers targeting the 18S small subunit rRNA (395–515 bp, depending on species) and the cytochrome b oxidase loci (1009 bp). Sequences matching Theileria cervi type F (1 adult, 5 nymphs), an unidentified Theileria species (in 1 nymph), an undescribed Babesia sensu stricto (‘true’ Babesia, 2 adults, 2 nymphs), a Babesia sp. Coco (also a ‘true Babesia’, 1 adult, 1 nymph), as well as Babesia microti S837 (1 adult, 4 nymphs) were recovered. Babesia microti S837 is closely related to the human pathogen B. microti US-type. Additionally, a 132 bp sequence matching the cytochrome b locus of deer, Odocoileus virginanus, was obtained from 2 partially engorged H. longicornis. The diverse assemblage of piroplasms now associated with H. longicornis in the USA spans 3 clades in the piroplasm phylogeny and raises concerns of transmission amplification of veterinary pathogens as well as spillover of pathogens from wildlife to humans.
Collapse
Affiliation(s)
- Heidi Herb
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA
| | - Julia González
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
11
|
Wang Y, Zhang S, Li X, Nian Y, Liu X, Liu J, Yin H, Guan G, Wang J. A high-resolution melting approach for the simultaneous differentiation of five human babesiosis-causing Babesia species. Parasit Vectors 2023; 16:299. [PMID: 37641091 PMCID: PMC10463647 DOI: 10.1186/s13071-023-05839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Six species of apicomplexan parasites of the genus Babesia, namely B. microti, B. divergens, B. duncani, B. motasi, B. crassa-like and B. venatorum, are considered to be the primary causal agents of human babesiosis in endemic areas. These six species possess variable degrees of virulence for their primary hosts. Therefore, the accurate identification of these species is critical for the adoption of appropriate therapeutic strategies. METHODS We developed a real-time PCR-high-resolution melting (qPCR-HRM) approach targeting 18S ribosomal RNA gene of five Babesia spp. based on melting temperature (Tm) and genotype confidence percentage values. This approach was then evaluated using 429 blood samples collected from patients with a history of tick bites, 120 DNA samples mixed with plasmids and 80 laboratory-infected animal samples. RESULTS The sensitivity and specificity of the proposed qPCR-HRM method were 95% and 100%, respectively, and the detection limit was 1-100 copies of the plasmid with the cloned target gene. The detection level depended on the species of Babesia analyzed. The primers designed in this study ensured not only the high interspecific specificity of our proposed method but also a high versatility for different isolates from the same species worldwide. Additionally, the Tm obtained from the prepared plasmid standard is theoretically suitable for identifying isolates of all known sequences of the five Babesia species. CONCLUSIONS The developed detection method provides a useful tool for the epidemiological investigation of human babesiosis and pre-transfusion screening.
Collapse
Affiliation(s)
- Yanbo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Shangdi Zhang
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Yueli Nian
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xinyue Liu
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Junlong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009 China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
12
|
Price KJ, Khalil N, Witmier BJ, Coder BL, Boyer CN, Foster E, Eisen RJ, Molaei G. EVIDENCE OF PROTOZOAN AND BACTERIAL INFECTION AND CO-INFECTION AND PARTIAL BLOOD FEEDING IN THE INVASIVE TICK HAEMAPHYSALIS LONGICORNIS IN PENNSYLVANIA. J Parasitol 2023; 109:265-273. [PMID: 37436911 PMCID: PMC10658867 DOI: 10.1645/22-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
The Asian longhorned tick, Haemaphysalis longicornis, an invasive tick species in the United States, has been found actively host-seeking while infected with several human pathogens. Recent work has recovered large numbers of partially engorged, host-seeking H. longicornis, which together with infection findings raises the question of whether such ticks can reattach to a host and transmit pathogens while taking additional bloodmeals. Here we conducted molecular blood meal analysis in tandem with pathogen screening of partially engorged, host-seeking H. longicornis to identify feeding sources and more inclusively characterize acarological risk. Active, statewide surveillance in Pennsylvania from 2020 to 2021 resulted in the recovery of 22/1,425 (1.5%) partially engorged, host-seeking nymphal and 5/163 (3.1%) female H. longicornis. Pathogen testing of engorged nymphs detected 2 specimens positive for Borrelia burgdorferi sensu lato, 2 for Babesia microti, and 1 co-infected with Bo. burgdorferi s.l. and Ba. microti. No female specimens tested positive for pathogens. Conventional PCR blood meal analysis of H. longicornis nymphs detected avian and mammalian hosts in 3 and 18 specimens, respectively. Mammalian blood was detected in all H. longicornis female specimens. Only 2 H. longicornis nymphs produced viable sequencing results and were determined to have fed on black-crowned night heron, Nycticorax nycticorax. These data are the first to molecularly confirm H. longicornis partial blood meals from vertebrate hosts and Ba. microti infection and co-infection with Bo. burgdorferi s.l. in host-seeking specimens in the United States, and the data help characterize important determinants indirectly affecting vectorial capacity. Repeated blood meals within a life stage by pathogen-infected ticks suggest that an understanding of the vector potential of invasive H. longicornis populations may be incomplete without data on their natural host-seeking behaviors and blood-feeding patterns in nature.
Collapse
Affiliation(s)
- Keith J Price
- Division of Vector Management, Pennsylvania Department of Environmental Protection, 2575 Interstate Drive, Harrisburg, Pennsylvania 17110
| | - Noelle Khalil
- Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
- Department of Entomology, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
| | - Bryn J Witmier
- Division of Vector Management, Pennsylvania Department of Environmental Protection, 2575 Interstate Drive, Harrisburg, Pennsylvania 17110
| | - Brooke L Coder
- Division of Vector Management, Pennsylvania Department of Environmental Protection, 2575 Interstate Drive, Harrisburg, Pennsylvania 17110
| | - Christian N Boyer
- Division of Vector Management, Pennsylvania Department of Environmental Protection, 2575 Interstate Drive, Harrisburg, Pennsylvania 17110
| | - Erik Foster
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, Colorado 80521
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, Colorado 80521
| | - Goudarz Molaei
- Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
- Department of Entomology, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06511
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510
| |
Collapse
|
13
|
Mathison BA, Bradbury RS, Pritt BS. Medical Parasitology Taxonomy Update, June 2020-June 2022. J Clin Microbiol 2023; 61:e0028622. [PMID: 36809084 PMCID: PMC10204622 DOI: 10.1128/jcm.00286-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The taxonomy of medically important parasites continues to evolve. This minireview provides an update of additions and updates in the field of human parasitology from June 2020 through June 2022. A list of previously reported nomenclatural changes that have not been broadly adapted by the medical community is also included.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | | | - Bobbi S. Pritt
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Wang J, Chen K, Ren Q, Zhang S, Yang J, Wang Y, Nian Y, Li X, Liu G, Luo J, Yin H, Guan G. Comparative genomics reveals unique features of two Babesia motasi subspecies: Babesia motasi lintanensis and Babesia motasi hebeiensis. Int J Parasitol 2023; 53:265-283. [PMID: 37004737 DOI: 10.1016/j.ijpara.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 04/03/2023]
Abstract
Parasites of the Babesia genus are prevalent worldwide and infect a wide diversity of domestic animals and humans. Herein, using Oxford Nanopore Technology and Illumina sequencing technologies, we sequenced two Babesia sub-species, Babesia motasi lintanensis and Babesia motasi hebeiensis. We identified 3,815 one-to-one ortholog genes that are specific to ovine Babesia spp. Phylogenetic analysis reveals that the two B. motasi subspecies form a distinct clade from other Piroplasma spp. Consistent with their phylogenetic position, comparative genomic analysis reveals that these two ovine Babesia spp. share higher colinearity with Babesia bovis than with Babesia microti. Concerning the speciation date, B. m. lintanensis split from B. m. hebeiensis approximately 17 million years ago. Genes correlated to transcription, translation, protein modification and degradation, as well as differential/specialized gene family expansions in these two subspecies may favor adaptation to vertebrate and tick hosts. The close relationship between B. m. lintanensis and B. m. hebeiensis is underlined by a high degree of genomic synteny. Compositions of most invasion, virulence, development, and gene transcript regulation-related multigene families, including spherical body protein, variant erythrocyte surface antigen, glycosylphosphatidylinositol anchored proteins, and transcription factor Apetala 2 genes, is largely conserved, but in contrast to this conserved situation, we observe major differences in species-specific genes that may be involved in multiple functions in parasite biology. For the first time in Babesia spp., we find abundant fragments of long terminal repeat-retrotransposons in these two species. We provide fundamental information to characterize the genomes of B. m. lintanensis and B. m. hebeiensis, providing insights into the evolution of B. motasi group parasites.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Shangdi Zhang
- Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Yanbo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Yueli Nian
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| |
Collapse
|
15
|
Fang LZ, Xiao X, Lei SC, Liu JW, Yu XJ. Haemaphysalis flava ticks as a competent vector of severe fever with thrombocytopenia syndrome virus. Ticks Tick Borne Dis 2023; 14:102100. [PMID: 36599203 DOI: 10.1016/j.ttbdis.2022.102100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), a tick-borne Bunyavirus, causes an emerging hemorrhagic fever in humans with a high fatality in Asia. The tick vectors and hosts of SFTSV are not well studied. We evaluated SFTSV transmission in laboratory reared Haemaphysalis flava ticks. RT-PCR demonstrated that after acquisition feeding in SFTSV-infected rabbits, 10 % (4/40) engorged larvae, 25% (5/20) engorged nymphs, and 50% (5/10) engorged females of H. flava became SFTSV RNA positive; after engorged larvae and nymphs molted into nymphs and adults, respectively, 12.5% (3/24) newly molted nymphs and 20% (2/10) newly molted adults were SFTSV RNA positive. Among 30 engorged females that oviposited, 10% (3/30) clutches of eggs and 3.3% (1/30) colonies of larvae were RNA positive for SFTSV. RT-PCR also showed that 6 days after being infested with SFTSV-infected ticks, 100% (3/3) rabbits infested with larvae, 100% (2/2) rabbits infested with nymphs, and 100% (2/2) rabbits infested with adult ticks became SFTSV RNA positive. In conclusion, H. flava can acquire SFTSV from infected rabbits by feeding; there is transstadial and transovarial transmission of the virus and all three stages of H. flava can transmit SFTSV to rabbits by feeding. Thus, H. flava tick is an effective vector of SFTSV and may play a role in the transmission of SFTSV in wild animals and humans.
Collapse
Affiliation(s)
- Li-Zhu Fang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China; Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Xiao Xiao
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China; Lab Animal Research Center, Hubei University of Chinese Medicine, Wuhan, China
| | - Si-Cong Lei
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Wei Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Lee SH, Chong ST, Kim HC, Klein TA, Park K, Lee J, Kim JA, Kim WK, Song JW. Surveillance and Molecular Identification of Borrelia Species in Ticks Collected at U.S. Army Garrison Humphreys, Republic of Korea, 2018-2019. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:363-371. [PMID: 34642760 DOI: 10.1093/jme/tjab170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Tick-borne pathogens are contributing factors for the increased incidence of vector-borne diseases throughout the world, including Lyme borreliosis, one of the most prevalent spirochetes belonging to the Borrelia burgdorferi sensu lato group. The present study focused on the detection of Borrelia species from hard ticks collected at U.S. Army Garrison Humphreys, Republic of Korea (ROK), using molecular and genotypic analyses. Tick-borne disease surveillance was conducted from January to December, 2018-2019. A total of 24,281 ticks (2 genera and 5 species) were collected from road-killed Korean Water deer (KWD) and by tick drag. Haemaphysalis longicornis (92.0%) was the most commonly collected species, followed by Haemaphysalis flava (4.9%), Ixodes nipponensis (3.1%), Haemaphysalis phasiana (0.07%), and Haemaphysalis japonica (<0.01%). The ospA gene sequences of Borrelia afzelii were detected in 12/529 pools of I. nipponensis. Three and one pools were positive for B. afzelii and Borrelia miyamotoi, respectively, using the 16s rRNA gene. None of the pools of Haemaphysalis ticks collected from KWD or by tick drag were positive for Borrelia species. I. nipponensis was collected throughout the year from KWD and from February to November by tick drag, suggesting that they were active throughout the year, and expanding the risk period for acquiring Lyme borreliosis and Borrelia relapsing fever in the ROK. This study assessed disease risk factors associated with the prevalence of Lyme disease in ticks collected from KWD and by tick drag using molecular analysis. These results provide an understanding and awareness into the prevalence and molecular characteristics of Borrelia species in the ROK.
Collapse
Affiliation(s)
- Seung-Ho Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sung-Tae Chong
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281 (Pyeongtaek, Republic of Korea), APO, AP, USA
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281 (Pyeongtaek, Republic of Korea), APO, AP, USA
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281 (Pyeongtaek, Republic of Korea), APO, AP, USA
| | - Kyungmin Park
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jingyeong Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jeong-Ah Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Detection of Borrelia and Babesia species in Haemaphysalis punctata ticks sampled in Southern England. Ticks Tick Borne Dis 2022; 13:101902. [PMID: 35042078 DOI: 10.1016/j.ttbdis.2022.101902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/13/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
The distribution and population size of the red sheep tick (Haemaphysalis punctata) are increasing in Northern Europe, and in the United Kingdom reports of human biting by this species have increased in recent years. To assess the risk of tick-borne disease (TBD) transmission to humans and livestock by H. punctata, ticks sampled from sites in Southern England were screened using PCR for either Borrelia species or piroplasms over a three year period, 2018-2020. A total of 302 H. punctata were collected from eight locations. From these, two Babesia species associated with TBD infections in livestock, Babesia major and Babesia motasi, and the human pathogen Borrelia miyamotoi were detected, predominantly from a single location in Sussex. Consequently, the range expansion of this tick across Southern England may impact public and livestock health.
Collapse
|
18
|
Hussain S, Hussain A, Aziz MU, Song B, Zeb J, George D, Li J, Sparagano O. A Review of Zoonotic Babesiosis as an Emerging Public Health Threat in Asia. Pathogens 2021; 11:pathogens11010023. [PMID: 35055971 PMCID: PMC8779675 DOI: 10.3390/pathogens11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Zoonotic babesiosis poses a serious health risk in many parts of the world. Its emergence in Asia is thus a cause for significant concern, demanding that appropriate control measures are implemented to suppress its spread in this region. This study focuses on zoonotic Babesia species reported in Asia, offering an extensive review of those species reported in animals and humans. We reported 11 studies finding zoonotic Babesia species in animals and 16 in humans. In China, the most prevalent species was found to be Babesia microti, reported in both humans (n = 10) and wild and domesticated animals (n = 4). In Korea, only two studies reported human babesiosis, with a further two studies reporting Babesia microti in wild animals. Babesia microti was also reported in wild animal populations in Thailand and Japan, with evidence of human case reports also found in Singapore, Mongolia and India. This is the first review to report zoonotic babesiosis in humans and animals in Asia, highlighting concerns for future public health in this region. Further investigations of zoonotic species of Babesia in animal populations are required to confirm the actual zoonotic threat of babesiosis in Asia, as well as its possible transmission routes.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
- Correspondence: (S.H.); (O.S.)
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan;
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
- Correspondence: (S.H.); (O.S.)
| |
Collapse
|
19
|
Mathison BA, Sapp SGH. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. Zookeys 2021; 1069:1-313. [PMID: 34819766 PMCID: PMC8595220 DOI: 10.3897/zookeys.1069.67403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The classification of "parasites" in the medical field is a challenging notion, a group which historically has included all eukaryotes exclusive of fungi that invade and derive resources from the human host. Since antiquity, humans have been identifying and documenting parasitic infections, and this collective catalog of parasitic agents has expanded considerably with technology. As our understanding of species boundaries and the use of molecular tools has evolved, so has our concept of the taxonomy of human parasites. Consequently, new species have been recognized while others have been relegated to synonyms. On the other hand, the decline of expertise in classical parasitology and limited curricula have led to a loss of awareness of many rarely encountered species. Here, we provide a comprehensive checklist of all reported eukaryotic organisms (excluding fungi and allied taxa) parasitizing humans resulting in 274 genus-group taxa and 848 species-group taxa. For each species, or genus where indicated, a concise summary of geographic distribution, natural hosts, route of transmission and site within human host, and vectored pathogens are presented. Ubiquitous, human-adapted species as well as very rare, incidental zoonotic organisms are discussed in this annotated checklist. We also provide a list of 79 excluded genera and species that have been previously reported as human parasites but are not believed to be true human parasites or represent misidentifications or taxonomic changes.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USAInstitute for Clinical and Experimental PathologySalt Lake CityUnited States of America
| | - Sarah G. H. Sapp
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USACenters for Disease Control and PreventionAtlantaUnited States of America
| |
Collapse
|
20
|
Karshima SN, Karshima MN, Ahmed MI. Infection rates, species diversity, and distribution of zoonotic Babesia parasites in ticks: a global systematic review and meta-analysis. Parasitol Res 2021; 121:311-334. [PMID: 34750651 DOI: 10.1007/s00436-021-07359-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/24/2021] [Indexed: 12/01/2022]
Abstract
Zoonotic Babesia species are emerging public health threats globally, and are the cause of a mild to severe malaria-like disease which may be life threatening in immunocompromised individuals. In this study, we determine the global infection rate, distribution, and the diversity of zoonotic Babesia species in tick vectors using a systematic review and meta-analysis. We used the random-effects model to pool data and determined quality of individual studies using the Joanna Briggs Institute critical appraisal instrument for prevalence studies, heterogeneity using Cochran's Q test, and across study bias using Egger's regression test. Herein, we reported a 2.16% (3915/175345, 95% CI: 1.76-2.66) global infection rate of zoonotic Babesia species (B. divergens, B. microti, and B. venatorum) in tick vectors across 36 countries and 4 continents. Sub-group infection rates ranged between 0.65% (95% CI: 0.09-4.49) and 3.70% (95% CI: 2.61-5.21). B. microti was the most prevalent (1.79%, 95% CI: 1.38-2.31) species reported in ticks, while Ixodes scapularis recorded the highest infection rate (3.92%, 95% CI: 2.55-5.99). Larvae 4.18% (95% CI: 2.15-7.97) and females 4.08% (95% CI: 2.56-6.43) were the tick stage and sex with the highest infection rates. The presence of B. divergens, B. microti, and B. venatorum in tick vectors as revealed by the present study suggests possible risk of transmission of these pathogens to humans, especially occupationally exposed population. The control of tick vectors through chemical and biological methods as well as the use of repellants and appropriate clothing by occupationally exposed population are suggested to curtail the epidemiologic, economic, and public health threats associated with this emerging public health crisis.
Collapse
Affiliation(s)
- Solomon Ngutor Karshima
- Department of Veterinary Public Health and Preventive Medicine, University of Jos, PMB 2084, Jos, Nigeria.
| | - Magdalene Nguvan Karshima
- Department of Parasitology and Entomology, Modibbo Adama University of Technology, Yola, PMB 2076, Yola, Adamawa State, Nigeria
| | - Musa Isiyaku Ahmed
- Department of Veterinary Parasitology and Entomology, Federal University of Agriculture, Zuru, PMB 28, Zuru, Kebbi State, Nigeria
| |
Collapse
|
21
|
The Global Emergence of Human Babesiosis. Pathogens 2021; 10:pathogens10111447. [PMID: 34832603 PMCID: PMC8623124 DOI: 10.3390/pathogens10111447] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/05/2022] Open
Abstract
Babesiosis is an emerging tick-borne disease caused by intraerythrocytic protozoa that are primarily transmitted by hard-bodied (ixodid) ticks and rarely through blood transfusion, perinatally, and organ transplantation. More than 100 Babesia species infect a wide spectrum of wild and domestic animals worldwide and six have been identified as human pathogens. Babesia microti is the predominant species that infects humans, is found throughout the world, and causes endemic disease in the United States and China. Babesia venatorum and Babesia crassa-like agent also cause endemic disease in China. Babesia divergens is the predominant species in Europe where fulminant cases have been reported sporadically. The number of B. microti infections has been increasing globally in recent decades. In the United States, more than 2000 cases are reported each year, although the actual number is thought to be much higher. In this review of the epidemiology of human babesiosis, we discuss epidemiologic tools used to monitor disease location and frequency; demographics and modes of transmission; the location of human babesiosis; the causative Babesia species in the Americas, Europe, Asia, Africa, and Australia; the primary clinical characteristics associated with each of these infections; and the increasing global health burden of this disease.
Collapse
|
22
|
Pérez-Sautu U, Wiley MR, Prieto K, Chitty JA, Haddow AD, Sánchez-Lockhart M, Klein TA, Kim HC, Chong ST, Kim YJ, Choi BS, Palacios GF. Novel viruses in hard ticks collected in the Republic of Korea unveiled by metagenomic high-throughput sequencing analysis. Ticks Tick Borne Dis 2021; 12:101820. [PMID: 34555711 DOI: 10.1016/j.ttbdis.2021.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.
Collapse
Affiliation(s)
- Unai Pérez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA.
| | - Michael R Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; College of Public Health, University of Nebraska Medical Center, Omaha, 68198, Nebraska, USA
| | - Karla Prieto
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; College of Public Health, University of Nebraska Medical Center, Omaha, 68198, Nebraska, USA
| | - Joseph A Chitty
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA
| | - Andrew D Haddow
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, 30144, Georgia, USA
| | - Mariano Sánchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; Department of Pathology & Microbiology, University of Nebraska Medical Centre, Omaha, 68198, Nebraska, USA
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Sung-Tae Chong
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Yu-Jin Kim
- Army Headquarters, Gyeryong-si, 32800, Republic of Korea
| | | | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA
| |
Collapse
|
23
|
Bloch EM, Krause PJ, Tonnetti L. Preventing Transfusion-Transmitted Babesiosis. Pathogens 2021; 10:pathogens10091176. [PMID: 34578209 PMCID: PMC8468711 DOI: 10.3390/pathogens10091176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Babesia are tick-borne intra-erythrocytic parasites and the causative agents of babesiosis. Babesia, which are readily transfusion transmissible, gained recognition as a major risk to the blood supply, particularly in the United States (US), where Babesia microti is endemic. Many of those infected with Babesia remain asymptomatic and parasitemia may persist for months or even years following infection, such that seemingly healthy blood donors are unaware of their infection. By contrast, transfusion recipients are at high risk of severe babesiosis, accounting for the high morbidity and mortality (~19%) observed in transfusion-transmitted babesiosis (TTB). An increase in cases of tick-borne babesiosis and TTB prompted over a decade-long investment in blood donor surveillance, research, and assay development to quantify and contend with TTB. This culminated in the adoption of regional blood donor testing in the US. We describe the evolution of the response to TTB in the US and offer some insight into the risk of TTB in other countries. Not only has this response advanced blood safety, it has accelerated the development of novel serological and molecular assays that may be applied broadly, affording insight into the global epidemiology and immunopathogenesis of human babesiosis.
Collapse
Affiliation(s)
- Evan M. Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-614-4246
| | - Peter J. Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA;
| | - Laura Tonnetti
- Scientific Affairs, American Red Cross, Holland Laboratories, Rockville, MD 21287, USA;
| |
Collapse
|
24
|
Kim TY, Kim SY, Kim TK, Lee HI, Cho SH, Lee WG, Kim H. Molecular evidence of zoonotic Babesia species, other than B. microti, in ixodid ticks collected from small mammals in the Republic of Korea. Vet Med Sci 2021; 7:2427-2433. [PMID: 34492740 PMCID: PMC8604135 DOI: 10.1002/vms3.581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The occurrence of tick‐borne infectious diseases, including zoonotic babesiosis, has become a serious concern in recent years. In this study, we detected Babesia spp. using polymerase chain reaction (PCR) amplification of the 18S rRNA of the parasites isolated from ixodid ticks collected from small mammals in the Republic of Korea (ROK). Sequence analysis of the PCR amplicon revealed the presence of B. duncani, B. venatorum, B. capreoli/divergens, and, the most prevalent, B. microti in the ticks. The molecular phylogenetic analysis showed that the four species‐specific18S rRNA sequences clustered in four distinct clades. This is the first study to provide molecular evidence for the presence of zoonotic Babesia spp. other than B. microti in ticks in the ROK.
Collapse
Affiliation(s)
- Tae Yun Kim
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Seong Yoon Kim
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Tae-Kyu Kim
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Hee Il Lee
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Shin-Hyeong Cho
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Wook-Gyo Lee
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| | - Hyunwoo Kim
- Division of Vectors and Parasitic Disease, Korea Disease Control and Prevention Agency, Cheongju-Si, Chungcheongbuk-Do, the Republic of Korea
| |
Collapse
|
25
|
Wang X, Wang J, Liu J, Yang J, Lv Z, Liu A, Li Y, Li Y, Lan H, Liu G, Luo J, Guan G, Yin H. Establishment of a transient transfection system for Babesia sp. Xinjiang using homologous promoters. Parasitol Res 2021; 120:3625-3630. [PMID: 34414508 DOI: 10.1007/s00436-021-07250-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023]
Abstract
Babesia species, the agentic pathogens of human and animal babesiosis, are spread worldwide. Over the last decade, genetic manipulation approaches have been applied with many protozoan parasites, including Plasmodium falciparum, Trypanosoma cruzi, Cryptosporidium parvum, Theileria annulata, Theileria parva, Babesia bovis, Babesia bigemina, Babesia ovata, Babesia gibsoni, and Babesia ovis. For Babesia sp. Xinjiang (BspXJ), which is the causative pathogen of ovine babesiosis mainly in China, the efficiency of these techniques remains unclear. Firstly, a plasmid bearing the elongation factor-1 alpha promoter and the firefly luciferase reporter gene and rap stop region were transfected into BspXJ by electroporation and nucleoporation to determine the most suitable transfection solution. Then, six program settings were evaluated to confirm the best for BspXJ transient transfection, and a series of different amounts of plasmid DNA were transfected to generate relatively high luminescence values. Finally, the activities of four promoters derived from BspXJ were evaluated using the developed transient transfection system. After evaluating of various transfection parameters, the human T cell nucleofector solution, program V-024 and 20 μg of plasmid DNA were selected as the most favorable conditions for BspXJ transient transfection. These findings provide critical information for BspXJ genetic manipulation, an essential tool to identify virulence factors and to further elucidate the basic biology of this parasite.
Collapse
Affiliation(s)
- Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Zhaoyong Lv
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Yubin Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Haiou Lan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
26
|
Thompson AT, White SA, Shaw D, Garrett KB, Wyckoff ST, Doub EE, Ruder MG, Yabsley MJ. A multi-seasonal study investigating the phenology, host and habitat associations, and pathogens of Haemaphysalis longicornis in Virginia, U.S.A. Ticks Tick Borne Dis 2021; 12:101773. [PMID: 34229999 DOI: 10.1016/j.ttbdis.2021.101773] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/30/2022]
Abstract
Understanding the abiotic and biotic variables affecting tick populations is essential for studying the biology and health risks associated with vector species. We conducted a study on the phenology of exotic Haemaphysalis longicornis (Asian longhorned tick) at a site in Albemarle County, Virginia, United States. We also assessed the importance of wildlife hosts, habitats, and microclimate variables such as temperature, relative humidity, and wind speed on this exotic tick's presence and abundance. In addition, we determined the prevalence of infection with selected tick-borne pathogens in host-seeking H. longicornis. We determined that the seasonal activity of H. longicornis in Virginia was slightly different from previous studies in the northeastern United States. We observed nymphal ticks persist year-round but were most active in the spring, followed by a peak in adult activity in the summer and larval activity in the fall. We also observed a lower probability of collecting host-seeking H. longicornis in field habitats and the summer months. In addition, we detected H. longicornis on several wildlife hosts, including coyote (Canis latrans), eastern cottontail (Sylvilagus floridanus), raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), white-tailed deer (Odocoileus virginianus), woodchuck (Marmota monax), and a Peromyscus sp. mouse. This latter record is the first detection of a larval H. longicornis on a North American rodent host important to the enzootic maintenance of tick-borne pathogens of humans and animals. Finally, we continued to detect the exotic piroplasm parasite, Theileria orientalis Ikeda, in H. longicornis as well as other pathogens, including Rickettsia felis, Anaplasma phagocytophilum (AP-1), and a Hepatozoon sp. previously characterized in Amblyomma americanum. These represent some of the first detections of arthropod-borne pathogens native to the United States in host-seeking H. longicornis. These data increase our understanding of H. longicornis biology in the United States and provide valuable information into the future health risks associated with this tick and pathogens.
Collapse
Affiliation(s)
- Alec T Thompson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, USA; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens GA, USA.
| | - Seth A White
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens GA, USA
| | - David Shaw
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, USA
| | - Kayla B Garrett
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens GA, USA
| | - Seth T Wyckoff
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens GA, USA
| | - Emily E Doub
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA, USA; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens GA, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens GA, USA.
| |
Collapse
|
27
|
Fang LZ, Lei SC, Yan ZJ, Xiao X, Liu JW, Gong XQ, Yu H, Yu XJ. Detection of Multiple Intracellular Bacterial Pathogens in Haemaphysalis flava Ticks Collected from Hedgehogs in Central China. Pathogens 2021; 10:pathogens10020115. [PMID: 33498714 PMCID: PMC7911675 DOI: 10.3390/pathogens10020115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Tickborne intracellular bacterial pathogens including Anaplasma, Coxiella burnetti, Ehrlichia, and Rickettsia cause emerging infectious diseases worldwide. PCR was used to amplify the genes of these pathogens in Haemaphysalis flava ticks collected from hedgehogs in Central China. Among 125 samples including 20 egg batches, 24 engorged females, and 81 molted male and female adult ticks, the DNA sequences and phylogenetic analysis showed that the minimum infection rate of the ticks was 4% (5/125) for A. bovis, 3.2% (4/125) for C. burnetti, 9.6%, (12/125) for E. ewingii, and 5.6% for Rickettsia including R.japonica (3.2%, 4/125) and R. raoultii (2.4%, 3/125), respectively. The prevalence of these pathogens was significantly higher in dead engorged females (83.3%, 20/24) than in eggs (5%, 1/20) and molted ticks (8.6%, 7/81). Our study indicated that H. flava ticks could be infected with multiple species of tickborne pathogens including Anaplasma, C. burnetti, Ehrlichia, and Rickettsia in Central China, and the prevalence of these pathogens was reduced during transovarial and transstadial transmission in ticks, suggesting that ticks may not be real reservoirs but only vectors for these tickborne pathogens.
Collapse
Affiliation(s)
- Li-Zhu Fang
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
| | - Si-Cong Lei
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | | | - Xiao Xiao
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
- Lab Animal Research Center, Hubei University of Chinese Medicine, Wuhan 430000, China
| | - Jian-Wei Liu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
| | - Xiao-Qing Gong
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
| | - Hao Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; (L.-Z.F.); (S.-C.L.); (X.X.); (J.-W.L.); (X.-Q.G.); (H.Y.)
- Correspondence:
| |
Collapse
|
28
|
Challenges in Tick-Borne Pathogen Detection: The Case for Babesia spp. Identification in the Tick Vector. Pathogens 2021; 10:pathogens10020092. [PMID: 33498304 PMCID: PMC7909277 DOI: 10.3390/pathogens10020092] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 02/03/2023] Open
Abstract
The causative agents of Babesiosis are intraerythrocytic protozoa of the genus Babesia. Babesia parasites are present around the world, affecting several mammals including humans, pets and livestock, hence its medical and veterinary relevance. Babesia spp. detection in its invertebrate host is a main point in understanding the biology of the parasite to acquire more knowledge on the host–Babesia–vector interactions, as increasing knowledge of the Babesia lifecycle and babesiosis epidemiology can help prevent babesiosis outbreaks in susceptible mammals. The aim of the present review is to highlight the newest findings in this field, based on a bibliographic compilation of research studies recently carried out for the detection of the main Babesia species found in tick vectors affecting mammalian hosts, including the different tick stages such as adult ticks, larvae, nymphs and eggs, as well as the detection method implemented: microscopic tools for parasite identification and molecular tools for parasite DNA detection by conventional PCR, nested-PCR, PCR-RFLP, PCR-RLB hybridization, real time-PCR, LAMP and RAP assays. Although molecular identification of Babesia parasites has been achieved in several tick species and tissue samples, it is still necessary to carry out transmission experiments through biological models to confirm the vectorial capacity of various tick species.
Collapse
|
29
|
Wang X, Sun X, Sun Y, Chen K, Zhang K, Xu W, Fan K, Lin W, Chen T, Lin X, Lin K, Chiu HC, Huang C. Identification and molecular analysis of Ixodid ticks (Acari: Ixodidae) infesting wild boars (Sus scrofa) and tick-borne pathogens at the Meihua mountain of southwestern Fujian, China. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 22:100492. [PMID: 33308736 DOI: 10.1016/j.vprsr.2020.100492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 11/27/2022]
Abstract
Wildlife is essential to the biodiversity of the Meihua mountain, southwestern Fujian province, China. However, there have been few surveys of the distribution of ixodid ticks (Acari: Ixodidae) and tick-borne pathogens affecting wild animals at these locations. In this study, 1197 adult ixodid ticks infesting wild boars were collected from 10 sampling sites during 2019. Ticks were identified to species based on morphology, and the identification was confirmed based on mitochondrial 16S, ITS1 and ITS2 rRNA sequences. Eight tick species belonging to 2 genera were identified, including H. longicornis (n = 373, 31.1%), H. flava (n = 265, 22.1%), D. auratus (n = 153, 12.8%), H. hystricis (n = 119, 9.9%), D. silvarum (n = 116, 9.7%), H. bispinosa (n = 114, 9.5%), D. atrosignatus (n = 33, 2.8%), and D. taiwanensis (n = 24, 2.0%). DNA sequences of Rickettsia spp. (spotted fever group) and Babesia spp. were detected in these ticks. Phylogenetic analyses revealed the possible existence of Candidatus Rickettsia laoensis and Rickettsia raoultii. This study illustrates the potential threat to wild animals and humans from tick-borne pathogens.
Collapse
Affiliation(s)
- Xin Wang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China
| | - Xiaoshuang Sun
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China
| | - Yankuo Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong Province, People's Republic of China
| | - Kexin Chen
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China
| | - Kaiyao Zhang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China
| | - Weihua Xu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China
| | - Kewei Fan
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China
| | - Weiming Lin
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China
| | - Tengteng Chen
- Fujian Meihuashan Institute of South China Tigers Breeding, Shanghang County, 364201, Fujian Province, People's Republic of China
| | - Xipan Lin
- Fujian Meihuashan Institute of South China Tigers Breeding, Shanghang County, 364201, Fujian Province, People's Republic of China
| | - Kaixiong Lin
- Fujian Meihuashan Institute of South China Tigers Breeding, Shanghang County, 364201, Fujian Province, People's Republic of China
| | - Hung-Chuan Chiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China.
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, Fujian Province, People's Republic of China.
| |
Collapse
|
30
|
Yue C, Deng Z, Qi D, Li Y, Bi W, Ma R, Yang G, Luo X, Hou R, Liu S. First detection and molecular identification of Babesia sp. from the giant panda, Ailuropoda melanoleuca, in China. Parasit Vectors 2020; 13:537. [PMID: 33121531 PMCID: PMC7597363 DOI: 10.1186/s13071-020-04412-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parasitic infections are among the important causes of death of giant pandas (Ailuropoda melanoleuca) that hamper their survival in the wild. There are about 35 species of parasites which have been identified in giant pandas, but no information is currently available regarding the infection of Babesia in giant pandas. Babesia spp. are common intraerythrocytic parasite in wildlife, transmitted by ixodid ticks, which cause babesiosis. Clinical signs of babesiosis include fever, hemolysis, anemia, jaundice and death. METHODS A species of Babesia was detected in the blood of a giant panda based on morphology and PCR amplification of the 18S rRNA gene. The phylogenetic relationship of Babesia sp. infecting giant panda was assessed by gene sequence alignment and phylogenetic analysis. RESULTS Our analysis revealed that the Babesia isolate detected was most similar to an unidentified species of Babesia identified in black bears (Ursus thibetanus japonicus) from Japan (Babesia sp. Iwate, AB586027.1) with a 99.56% sequence similarity, followed by Babesia sp. EBB (AB566229.1, 99.50%) and Babesia sp. Akita (AB566229.1, 99.07%). CONCLUSIONS To our knowledge, this is the first report of Babesia detected in the giant panda. The results indicate that this Babesia sp. may be a novel species, currently named Babesia sp. strain EBP01.
Collapse
Affiliation(s)
- Chanjuan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, 1375 Panda Road, Chenghua District, 610081, Sichuan, China
| | - Zeshuai Deng
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, 1375 Panda Road, Chenghua District, 610081, Sichuan, China
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, 1375 Panda Road, Chenghua District, 610081, Sichuan, China
| | - Yunli Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, 1375 Panda Road, Chenghua District, 610081, Sichuan, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, 1375 Panda Road, Chenghua District, 610081, Sichuan, China
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, 1375 Panda Road, Chenghua District, 610081, Sichuan, China
| | - Guangyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, 1375 Panda Road, Chenghua District, 610081, Sichuan, China.
| | - Songrui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, 1375 Panda Road, Chenghua District, 610081, Sichuan, China.
| |
Collapse
|
31
|
Wang J, Gao S, Zhang S, He X, Liu J, Liu A, Li Y, Liu G, Luo J, Guan G, Yin H. Rapid detection of Babesia motasi responsible for human babesiosis by cross-priming amplification combined with a vertical flow. Parasit Vectors 2020; 13:377. [PMID: 32727550 PMCID: PMC7391542 DOI: 10.1186/s13071-020-04246-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Babesia motasi is known as an etiological agent of human and ovine babesiosis. Diagnosis of babesiosis is traditionally performed by microscopy, examining Giemsa-stained thin peripheral blood smears. Rapid detection and accurate identification of species are desirable for clinical care and epidemiological studies. Methods An easy to operate molecular method, which requires less capital equipment and incorporates cross-priming amplification combined with a vertical flow (CPA-VF) visualization strip for rapid detection and identification of B. motasi. Results The CPA-VF targets the 18S rRNA gene and has a detection limit of 50 fg per reaction; no cross reaction was observed with other piroplasms infective to sheep or Babesia infective to humans. CPA-VF and real-time (RT)-PCR had sensitivities of 95.2% (95% confidence interval, CI 78.1–99.4%) and 90.5% (95% CI 72–97.6%) and specificities of 95.8 (95% CI 80.5–99.5%) and 97.9 (95% CI 83.5–99.9%), respectively, versus microscopy and nested (n) PCR combined with gene sequencing. The clinical performance of the CPA-VF assay was evaluated with field blood samples from sheep (n = 340) in Jintai county, Gansu Province, and clinical specimens (n = 492) obtained from patients bitten by ticks. Conclusions Our results indicate that the CPA-VF is a rapid, accurate, nearly instrument-free molecular diagnostic approach for identification of B. motasi. Therefore, it could be an alternative technique for epidemiological investigations and diagnoses of ovine and/or human babesiosis caused by B. motasi, especially in resource-limited regions. ![]()
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Shangdi Zhang
- Department of Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
| | - Xin He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China. .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
32
|
Wang X, Wang J, Liu J, Liu A, He X, Xiang Q, Li Y, Yin H, Luo J, Guan G. Insights into the phylogenetic relationships and drug targets of Babesia isolates infective to small ruminants from the mitochondrial genomes. Parasit Vectors 2020; 13:378. [PMID: 32727571 PMCID: PMC7391622 DOI: 10.1186/s13071-020-04250-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 01/22/2023] Open
Abstract
Background Babesiosis, a tick-borne disease caused by protozoans of the genus Babesia, is widespread in subtropical and tropical countries. Mitochondria are essential organelles that are responsible for energy transduction and metabolism, calcium homeostasis and cell signaling. Mitochondrial genomes could provide new insights to help elucidate and investigate the biological features, genetic evolution and classification of the protozoans. Nevertheless, there are limited data on the mitochondrial genomes of ovine Babesia spp. in China. Methods Herein, we sequenced, assembled and annotated the mitochondrial genomes of six ovine Babesia isolates; analyzed the genome size, gene content, genome structure and cytochrome b (cytb) amino acid sequences and performed comparative mitochondrial genomics and phylogenomic analyses among apicomplexan parasites. Results The mitochondrial genomes range from 5767 to 5946 bp in length with a linear form and contain three protein-encoding genes, cytochrome c oxidase subunit 1 (cox1), cytochrome c oxidase subunit 3 (cox3) and cytb, six large subunit rRNA genes (LSU) and two terminal inverted repeats (TIR) on both ends. The cytb gene sequence analysis indicated the binding site of anti-Babesia drugs that targeted the cytochrome bc1 complex. Babesia microti and Babesia rodhaini have a dual flip-flop inversion of 184–1082 bp, whereas other Babesia spp. and Theileria spp. have one pair of TIRs, 25–1563 bp. Phylogenetic analysis indicated that the six ovine Babesia isolates were divided into two clades, Babesia sp. and Babesia motasi. Babesia motasi isolates were further separated into two small clades (B. motasi Hebei/Ningxian and B. motasi Tianzhu/Lintan). Conclusions The data provided new insights into the taxonomic relationships and drug targets of apicomplexan parasites. ![]()
Collapse
Affiliation(s)
- Xiaoxing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xin He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Quanjia Xiang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
33
|
Thompson AT, White S, Shaw D, Egizi A, Lahmers K, Ruder MG, Yabsley MJ. Theileria orientalis Ikeda in host-seeking Haemaphysalis longicornis in Virginia, U.S.A. Ticks Tick Borne Dis 2020; 11:101450. [PMID: 32723633 DOI: 10.1016/j.ttbdis.2020.101450] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
The Asian longhorned tick, Haemaphysalis longicornis, has recently become established in the United States. In East Asia, Australia, and New Zealand, the native and previously introduced ranges, this tick is a vector of an important pathogen of cattle, Theileria orientalis. In 2017, the pathogenic Ikeda genotype of T. orientalis was associated with cattle mortalities in Virginia and in 2018 the exotic H. longicornis was detected at this same site. To investigate the possible role of this exotic tick in the epidemiology of theileriosis in Virginia, we tested host-seeking H. longicornis for piroplasm infections. We document the detection of exotic Theileria orientalis Ikeda genotype in 12.7 % (15/118) environmentally collected H. longicornis using both the 18S rRNA and major piroplasm surface protein (MPSP) gene targets. This is the first detection of a pathogen in H. longicornis in its introduced range in the United States and offers new insight into the animal health risks associated with the introduction of this exotic tick species to North America.
Collapse
Affiliation(s)
- Alec T Thompson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA.
| | - Seth White
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - David Shaw
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Andrea Egizi
- Monmouth County Mosquito Control Division, Tinton Falls, NJ, USA; Rutgers University, New Brunswick, NJ, USA
| | - Kevin Lahmers
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|
34
|
Thompson AT, Dominguez K, Cleveland CA, Dergousoff SJ, Doi K, Falco RC, Greay T, Irwin P, Lindsay LR, Liu J, Mather TN, Oskam CL, Rodriguez-Vivas RI, Ruder MG, Shaw D, Vigil SL, White S, Yabsley MJ. Molecular Characterization of Haemaphysalis Species and a Molecular Genetic Key for the Identification of Haemaphysalis of North America. Front Vet Sci 2020; 7:141. [PMID: 32232062 PMCID: PMC7082797 DOI: 10.3389/fvets.2020.00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
Haemaphysalis longicornis (Acari: Ixodidae), the Asian longhorned tick, is native to East Asia, but has become established in Australia and New Zealand, and more recently in the United States. In North America, there are other native Haemaphysalis species that share similar morphological characteristics and can be difficult to identify if the specimen is damaged. The goal of this study was to develop a cost-effective and rapid molecular diagnostic assay to differentiate between exotic and native Haemaphysalis species to aid in ongoing surveillance of H. longicornis within the United States and help prevent misidentification. We demonstrated that restriction fragment length polymorphisms (RFLPs) targeting the 16S ribosomal RNA and the cytochrome c oxidase subunit I (COI) can be used to differentiate H. longicornis from the other Haemaphysalis species found in North America. Furthermore, we show that this RFLP assay can be applied to Haemaphysalis species endemic to other regions of the world for the rapid identification of damaged specimens. The work presented in this study can serve as the foundation for region specific PCR-RFLP keys for Haemaphysalis and other tick species and can be further applied to other morphometrically challenging taxa.
Collapse
Affiliation(s)
- Alec T. Thompson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, United States
| | - Kristen Dominguez
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Shaun J. Dergousoff
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Kandai Doi
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Richard C. Falco
- New York State Department of Health, Louis Calder Center, Fordham University, Armonk, NY, United States
| | - Telleasha Greay
- Vector and Waterborne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Peter Irwin
- Vector and Waterborne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - L. Robbin Lindsay
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Jingze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Thomas N. Mather
- Center for Vector-Borne Diseases, University of Rhode Island, Kingston, RI, United States
| | - Charlotte L. Oskam
- Vector and Waterborne Pathogens Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Roger I. Rodriguez-Vivas
- Campus of Biology and Agricultural Sciences, Department of Veterinary Medicine and Animal Husbandry, National Autonomous University of Yucatan, Merida, Mexico
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - David Shaw
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Stacey L. Vigil
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Seth White
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, United States
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| |
Collapse
|