1
|
Woolsey C, Cross RW, Prasad AN, Agans KN, Borisevich V, Deer DJ, Dobias NS, Fears AC, Harrison MB, Heinrich ML, Fenton KA, Garry RF, Branco LM, Geisbert TW. Monoclonal antibody therapy demonstrates increased virulence of a lineage VII strain of Lassa virus in nonhuman primates. Emerg Microbes Infect 2024; 13:2301061. [PMID: 38164768 PMCID: PMC10810630 DOI: 10.1080/22221751.2023.2301061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Lassa virus (LASV) is a World Health Organization (WHO) priority pathogen that causes high morbidity and mortality. Recently, we showed that a combination of three broadly neutralizing human monoclonal antibodies known as Arevirumab-3 (8.9F, 12.1F, 37.2D) based on the lineage IV Josiah strain protected 100% of cynomolgus macaques against heterologous challenge with lineage II and III strains of LASV when therapy was initiated beginning at day 8 after challenge. LASV strains from Benin and Togo represent a new lineage VII that are more genetically diverse from lineage IV than strains from lineages II and III. Here, we tested the ability of Arevirumab-3 to protect macaques against a LASV lineage VII Togo isolate when treatment was administered beginning 8 days after exposure. Unexpectedly, only 40% of treated animals survived challenge. In a subsequent study we showed that Arevirumab-3 protected 100% of macaques from lethal challenge when treatment was initiated 7 days after LASV Togo exposure. Based on our transcriptomics data, successful Arevirumab-3 treatment correlated with diminished neutrophil signatures and the predicted development of T cell responses. As the in vitro antiviral activity of Arevirumab-3 against LASV Togo was equivalent to lineage II and III strains, the reduced protection in macaques against Togo likely reflects the faster disease course of LASV Togo in macaques than other strains. This data causes concern regarding the ability of heterologous vaccines and treatments to provide cross protection against lineage VII LASV isolates.
Collapse
Affiliation(s)
- Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N. Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J. Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S. Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alyssa C. Fears
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B. Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Karla A. Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert F. Garry
- Zalgen Labs, LLC, Frederick, MD, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Bangura U, Davis C, Lamin J, Bangura J, Soropogui B, Davison AJ, Nichols J, Vucak M, Dawson M, Ansumana R, Sondufu D, Cadar D, Rieger T, Thomson E, Sahr F, Magassouba N, Ghersi B, Bird BH, Fichet-Calvet E. Spatio-temporal spread of Lassa virus and a new rodent host in the Mano River Union area, West Africa. Emerg Microbes Infect 2024; 13:2290834. [PMID: 38047354 PMCID: PMC10919312 DOI: 10.1080/22221751.2023.2290834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
The spread of Lassa virus (LASV) in Guinea, Liberia and Sierra Leone, which together are named the Mano River Union (MRU) area, was examined phylogeographically. To provide a reliable evolutionary scenario, new rodent-derived, whole LASV sequences were included. These were generated by metatranscriptomic next-generation sequencing from rodents sampled between 2003 and 2020 in 21 localities of Guinea and Sierra Leone. An analysis was performed using BEAST to perform continuous phylogeographic inference and EvoLaps v36 to visualize spatio-temporal spread. LASV was identified as expected in its primary host reservoir, the Natal multimammate mouse (Mastomys natalensis), and also in two Guinean multimammate mice (Mastomys erythroleucus) in northern Sierra Leone and two rusty-bellied brush-furred mice (Lophuromys sikapusi) in southern Sierra Leone. This finding is consistent with the latter two species being secondary host reservoirs. The strains in these three species were very closely related in LASV lineage IV. Phylogenetic analysis indicated that the most recent common ancestor of lineage IV existed 316-374 years ago and revealed distinct, well-supported clades from Sierra Leone (Bo, Kabala and Kenema), Guinea (Faranah, Kissidougou-Guekedou and Macenta) and Liberia (Phebe-Ganta). The phylogeographic scenario suggests southern Guinea as the point of origin of LASV in the MRU area, with subsequent spread to towards Mali, Liberia and Sierra Leone at a mean speed of 1.6 to 1.1 km/year.
Collapse
Affiliation(s)
- Umaru Bangura
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | | | - Joyce Lamin
- Mercy Hospital Research Laboratory, Bo, Sierra Leone
| | - James Bangura
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Barré Soropogui
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea
| | | | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Matej Vucak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | | | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Toni Rieger
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Emma Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Foday Sahr
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | | | - Bruno Ghersi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Elisabeth Fichet-Calvet
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| |
Collapse
|
3
|
Smith DRM, Turner J, Fahr P, Attfield LA, Bessell PR, Donnelly CA, Gibb R, Jones KE, Redding DW, Asogun D, Ayodeji OO, Azuogu BN, Fischer WA, Jan K, Olayinka AT, Wohl DA, Torkelson AA, Dinkel KA, Nixon EJ, Pouwels KB, Hollingsworth TD. Health and economic impacts of Lassa vaccination campaigns in West Africa. Nat Med 2024:10.1038/s41591-024-03232-y. [PMID: 39198710 DOI: 10.1038/s41591-024-03232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of 'Lassa-X'-a hypothetical pandemic Lassa virus variant-and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7 million (95% uncertainty interval: 2.1-3.4 million) Lassa virus infections annually, resulting over 10 years in 2.0 million (793,800-3.9 million) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified 'endemic' districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1 million ($8.2-$39.0 million) in lost DALY value and $128.2 million ($67.2-$231.9 million) in societal costs (2021 international dollars ($)). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2 million DALYs within 2 years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.
Collapse
Affiliation(s)
- David R M Smith
- Nuffield Department of Population Health, Health Economics Research Centre, University of Oxford, Oxford, UK.
| | - Joanne Turner
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Patrick Fahr
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Lauren A Attfield
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | - Christl A Donnelly
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Rory Gibb
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Kate E Jones
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| | | | - Danny Asogun
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Benedict N Azuogu
- Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Nigeria
| | - William A Fischer
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kamji Jan
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | | | - David A Wohl
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | | | - Emily J Nixon
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Koen B Pouwels
- Nuffield Department of Population Health, Health Economics Research Centre, University of Oxford, Oxford, UK
| | - T Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, NDM Centre for Global Health Research, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Aida-Ficken V, Kelly JA, Chatterjee P, Jenks MH, McMullan LK, Albariño CG, Montgomery JM, Seley-Radtke KL, Spiropoulou CF, Flint M. Identification of a macrocyclic compound targeting the lassa virus polymerase. Antiviral Res 2024; 228:105923. [PMID: 38844175 DOI: 10.1016/j.antiviral.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
There are no approved vaccines or therapeutics for Lassa virus (LASV) infections. To identify compounds with anti-LASV activity, we conducted a cell-based screening campaign at biosafety level 4 and tested almost 60,000 compounds for activity against an infectious reporter LASV. Hits from this screen included several structurally related macrocycles. The most potent, Mac128, had a sub-micromolar EC50 against the reporter virus, inhibited wild-type clade IV LASV, and reduced viral titers by 4 orders of magnitude. Mechanistic studies suggested that Mac128 inhibited viral replication at the level of the polymerase.
Collapse
Affiliation(s)
- Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Jamie A Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
5
|
Smith DRM, Turner J, Fahr P, Attfield LA, Bessell PR, Donnelly CA, Gibb R, Jones KE, Redding DW, Asogun D, Ayodeji OO, Azuogu BN, Fischer WA, Jan K, Olayinka AT, Wohl DA, Torkelson AA, Dinkel KA, Nixon EJ, Pouwels KB, Hollingsworth TD. Health and economic impacts of Lassa vaccination campaigns in West Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303394. [PMID: 38978680 PMCID: PMC11230338 DOI: 10.1101/2024.02.26.24303394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of "Lassa-X" - a hypothetical pandemic Lassa virus variant - and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7M (95% uncertainty interval: 2.1M-3.4M) Lassa virus infections annually, resulting over ten years in 2.0M (793.8K-3.9M) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified "endemic" districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1M ($8.2M-$39.0M) in lost DALY value and $128.2M ($67.2M-$231.9M) in societal costs (International dollars 2021). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2M DALYs within two years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease, and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.
Collapse
|
6
|
Shaffer M, Fischer RJ, Gallogly S, Ginn O, Munster V, Bibby K. Environmental Persistence and Disinfection of Lassa Virus. Emerg Infect Dis 2023; 29:2285-2291. [PMID: 37877545 PMCID: PMC10617325 DOI: 10.3201/eid2911.230678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Lassa fever, caused by Lassa virus (LASV), is endemic to West Africa, where ≈300,000 illnesses and ≈5,000 deaths occur annually. LASV is primarily spread by infected multimammate rats via urine and fomites, highlighting the need to understand the environmental fate of LASV. We evaluated persistence of LASV Josiah and Sauerwald strains on surfaces, in aqueous solutions, and with sodium hypochlorite disinfection. Tested strains were more stable in deionized water (first-order rate constant [k] for Josiah, 0.23 days; for Sauerwald, k = 0.34 days) than primary influent wastewater (Josiah, k = 1.3 days; Sauerwald, k = 1.9 days). Both strains had similar decay rates on high-density polyethylene (Josiah, k = 4.3 days; Sauerwald, k = 2.3 days) and stainless steel (Josiah, k = 5.3 days; Sauerwald, k = 2.7 days). Sodium hypochlorite was highly effective at inactivating both strains. Our findings can inform future risk assessment and management efforts for Lassa fever.
Collapse
|
7
|
Mateo M, Baize S. [Recent advances in the development of vaccines against hemorrhagic fevers caused by arenaviruses]. Med Sci (Paris) 2023; 39:855-861. [PMID: 38018929 DOI: 10.1051/medsci/2023162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Arenaviruses are a global threat, causing thousands of deaths each year in several countries around the world. Despite strong efforts in the development of vaccine candidates, vaccines against Lassa fever or Bolivian and Venezuelan hemorrhagic fevers are yet to be licensed for a use in humans. In this synthesis, we present the arenaviruses causing fatal diseases in humans and the main vaccine candidates that have been developed over the past decades with an emphasis on the measles-Lassa vaccine, the first Lassa vaccine ever tested in humans, and on the MOPEVAC platform that can potentially be used as a pan-arenavirus vaccine platform.
Collapse
Affiliation(s)
- Mathieu Mateo
- Institut Pasteur, Université Paris Cité, Unité de biologie des infections virales émergentes, Paris, France - Centre international de recherche en infectiologie (CIRI), université de Lyon, Inserm U1111, école normale supérieure de Lyon, université Lyon 1, CNRS UMR5308, 69-007, Lyon, France
| | - Sylvain Baize
- Institut Pasteur, Université Paris Cité, Unité de biologie des infections virales émergentes, Paris, France - Centre international de recherche en infectiologie (CIRI), université de Lyon, Inserm U1111, école normale supérieure de Lyon, université Lyon 1, CNRS UMR5308, 69-007, Lyon, France
| |
Collapse
|
8
|
Cross RW, Heinrich ML, Fenton KA, Borisevich V, Agans KN, Prasad AN, Woolsey C, Deer DJ, Dobias NS, Rowland MM, Lathigra R, Borrega R, Geisbert JB, Garry RF, Branco LM, Geisbert TW. A human monoclonal antibody combination rescues nonhuman primates from advanced disease caused by the major lineages of Lassa virus. Proc Natl Acad Sci U S A 2023; 120:e2304876120. [PMID: 37590417 PMCID: PMC10450431 DOI: 10.1073/pnas.2304876120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
There are no approved treatments for Lassa fever (LF), which is responsible for thousands of deaths each year in West Africa. A major challenge in developing effective medical countermeasures against LF is the high diversity of circulating Lassa virus (LASV) strains with four recognized lineages and four proposed lineages. The recent resurgence of LASV in Nigeria caused by genetically distinct strains underscores this concern. Two LASV lineages (II and III) are dominant in Nigeria. Here, we show that combinations of two or three pan-lineage neutralizing human monoclonal antibodies (8.9F, 12.1F, 37.D) known as Arevirumab-2 or Arevirumab-3 can protect up to 100% of cynomolgus macaques against challenge with both lineage II and III LASV isolates when treatment is initiated at advanced stages of disease on day 8 after LASV exposure. This work demonstrates that it may be possible to develop postexposure interventions that can broadly protect against most strains of LASV.
Collapse
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | | | - Karla A. Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Krystle N. Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Abhishek N. Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Daniel J. Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Natalie S. Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | | | - Raju Lathigra
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
| | | | - Joan B. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Robert F. Garry
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA70112
| | - Luis M. Branco
- Zalgen Labs, Limited Liability Company, Frederick, MD21703
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| |
Collapse
|
9
|
Bourner J, Salam AP, Jaspard M, Olayinka A, Fritzell C, Goncalves B, Vaillant M, Edwards T, Erameh C, Ajayi N, Ramharter M, Olliaro P. The West Africa Lassa fever Consortium pre-positioned protocol for a Phase II/III adaptive, randomised, controlled, platform trial to evaluate multiple Lassa fever therapeutics. Wellcome Open Res 2023; 8:122. [PMID: 39211525 PMCID: PMC11358687 DOI: 10.12688/wellcomeopenres.19041.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/04/2024] Open
Abstract
Background: This is a standardized, pre-positioned protocol for the coordinated evaluation of Lassa fever therapeutics. The protocol is the product of discussions that took place in 2021 and 2022 among international investigators from a wide range of scientific and medical disciplines working together within the West Africa Lassa fever Consortium (WALC). Methods: This is a clinical Phase II/III multicentre randomised controlled platform trial using a superiority framework with an equal allocation ratio and a composite primary endpoint of all-cause mortality OR new onset of i) acute kidney failure (AKF), OR ii) acute respiratory failure (ARF), OR iii) shock assessed from enrolment (D0) to D28. Discussion: This pre-positioned protocol was developed by the WALC and made available for adaptation and implementation by the wider Lassa fever research community in order to generate efficient, reliable, and comparable evidence for Lassa fever therapeutics.
Collapse
Affiliation(s)
| | | | - Marie Jaspard
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
| | | | - Camille Fritzell
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
| | | | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tansy Edwards
- The London School of Hygiene and Tropical Medicine, London, UK
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Nnennaya Ajayi
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Michael Ramharter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Dept of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piero Olliaro
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - The WALC Work Package 2 Working Group
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
- Nigeria Centre for Disease Control, Abuja, Nigeria
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Luxembourg, Luxembourg
- The London School of Hygiene and Tropical Medicine, London, UK
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Dept of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Perrett HR, Brouwer PJM, Hurtado J, Newby ML, Liu L, Müller-Kräuter H, Müller Aguirre S, Burger JA, Bouhuijs JH, Gibson G, Messmer T, Schieffelin JS, Antanasijevic A, Boons GJ, Strecker T, Crispin M, Sanders RW, Briney B, Ward AB. Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies. Cell Rep 2023; 42:112524. [PMID: 37209096 PMCID: PMC10242449 DOI: 10.1016/j.celrep.2023.112524] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.
Collapse
Affiliation(s)
- Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philip J M Brouwer
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Joey H Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Grace Gibson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - John S Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Schrauf S, Tomberger Y, Nambulli S, Duprex WP, Tschismarov R, Tauber E, Ramsauer K. Biodistribution and toxicology evaluation of a recombinant measles Schwarz-based Lassa vaccine in cynomolgus macaques. J Appl Toxicol 2023; 43:719-733. [PMID: 36480160 DOI: 10.1002/jat.4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
MV-LASV is an investigational measles Schwarz-based vaccine for the prevention of Lassa fever. A repeated-dose toxicity study in cynomolgus macaques was performed to assess the biodistribution and local and systemic toxicological effects. Monkeys received three immunizations of MV-LASV or saline intramuscularly with a 2-week interval. An increase in anti-measles antibodies confirmed the reaction of the immune system to the vaccine backbone. Clinical observations, body weight, body temperature, local tolerance, electrocardiogram parameters, various clinical pathology parameters (hematology, coagulation urinalysis, serum chemistry, and C-reactive protein) were monitored. Gross pathology and histopathology of various tissues were evaluated. MV-LASV induced a mild increase in fibrinogen and C-reactive protein concentrations. This coincided with microscopic inflammation at the injection sites which partially or fully resolved following a 3-week recovery period. Viral RNA was found in secondary lymphoid organs and injection sites and gall bladder. No viral shedding to the environment was observed. Overall, the vaccine was locally and systemically well tolerated, supporting a first-in-human study.
Collapse
Affiliation(s)
- Sabrina Schrauf
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Yvonne Tomberger
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Erich Tauber
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
12
|
Tschismarov R, Van Damme P, Germain C, De Coster I, Mateo M, Reynard S, Journeaux A, Tomberger Y, Withanage K, Haslwanter D, Terler K, Schrauf S, Müllner M, Tauber E, Ramsauer K, Baize S. Immunogenicity, safety, and tolerability of a recombinant measles-vectored Lassa fever vaccine: a randomised, placebo-controlled, first-in-human trial. Lancet 2023; 401:1267-1276. [PMID: 36934733 DOI: 10.1016/s0140-6736(23)00048-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Lassa fever is a substantial health burden in west Africa. We evaluated the safety, tolerability, and immunogenicity of a recombinant, live-attenuated, measles-vectored Lassa fever vaccine candidate (MV-LASV). METHODS This first-in-human phase 1 trial-consisting of an open-label dose-escalation stage and an observer-blinded, randomised, placebo-controlled treatment stage-was conducted at a single site at the University of Antwerp, Antwerp, Belgium, and involved healthy adults aged 18-55 years. Participants in the dose-escalation stage were sequentially assigned to a low-dose group (two intramuscular doses of MV-LASV at 2 × 104 times the median tissue culture infectious dose) or a high-dose group (two doses at 1 × 105 times the median tissue culture infectious dose). Participants in the double-blinded treatment stage were randomly assigned in a 2:2:1 ratio to receive low dose, high dose, or placebo. The primary endpoint was the rate of solicited and unsolicited adverse events up to study day 56 and was assessed in all participants who received at least one dose of investigational product. The trial is registered with ClinicalTrials.gov, NCT04055454, and the European Union Drug Regulating Authorities Clinical Trials Database, 2018-003647-40, and is complete. FINDINGS Between Sept 26, 2019, and Jan 20, 2020, 60 participants were enrolled and assigned to receive placebo (n=12) or MV-LASV (n=48). All 60 participants received at least one study treatment. Most adverse events occurred during the treatment phase, and frequencies of total solicited or unsolicited adverse events were similar between treatment groups, with 96% of participants in the low-dose group, 100% of those in the high-dose group, and 92% of those in the placebo group having any solicited adverse event (p=0·6751) and 76% of those in the low-dose group, 70% of those in the high-dose group, and 100% of those in the placebo group having any unsolicited adverse event (p=0·1047). The only significant difference related to local solicited adverse events, with higher frequencies observed in groups receiving MV-LASV (24 [96%] of 25 participants in the low-dose group; all 23 [100%] participants in the high-dose group) than in the placebo group (6 [50%] of 12 participants; p=0·0001, Fisher-Freeman-Halton test). Adverse events were mostly of mild or moderate severity, and no serious adverse events were observed. MV-LASV also induced substantial concentrations of LASV-specific IgG (geometric mean titre 62·9 EU/ml in the low-dose group and 145·9 EU/ml in the high-dose group on day 42). INTERPRETATION MV-LASV showed an acceptable safety and tolerability profile, and immunogenicity seemed to be unaffected by pre-existing immunity against the vector. MV-LASV is therefore a promising candidate for further development. FUNDING Coalition for Epidemic Preparedness Innovations.
Collapse
Affiliation(s)
- Roland Tschismarov
- Themis Bioscience, Vienna, Austria, a subsidiary of Merck & Co, Rahway, NJ, USA.
| | - Pierre Van Damme
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France; Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Ilse De Coster
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France; Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Stephanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France; Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France
| | - Yvonne Tomberger
- Themis Bioscience, Vienna, Austria, a subsidiary of Merck & Co, Rahway, NJ, USA
| | - Kanchanamala Withanage
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Denise Haslwanter
- Themis Bioscience, Vienna, Austria, a subsidiary of Merck & Co, Rahway, NJ, USA
| | - Katherine Terler
- Themis Bioscience, Vienna, Austria, a subsidiary of Merck & Co, Rahway, NJ, USA
| | - Sabrina Schrauf
- Themis Bioscience, Vienna, Austria, a subsidiary of Merck & Co, Rahway, NJ, USA
| | - Matthias Müllner
- Themis Bioscience, Vienna, Austria, a subsidiary of Merck & Co, Rahway, NJ, USA
| | - Erich Tauber
- Themis Bioscience, Vienna, Austria, a subsidiary of Merck & Co, Rahway, NJ, USA
| | - Katrin Ramsauer
- Themis Bioscience, Vienna, Austria, a subsidiary of Merck & Co, Rahway, NJ, USA
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France; Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
13
|
Grant DS, Engel EJ, Roberts Yerkes N, Kanneh L, Koninga J, Gbakie MA, Alhasan F, Kanneh FB, Kanneh IM, Kamara FK, Momoh M, Yillah MS, Foday M, Okoli A, Zeoli A, Weldon C, Bishop CM, Zheng C, Hartnett J, Chao K, Shore K, Melnik LI, Mucci M, Bond NG, Doyle P, Yenni R, Podgorski R, Ficenec SC, Moses L, Shaffer JG, Garry RF, Schieffelin JS. Seroprevalence of anti-Lassa Virus IgG antibodies in three districts of Sierra Leone: A cross-sectional, population-based study. PLoS Negl Trop Dis 2023; 17:e0010938. [PMID: 36758101 PMCID: PMC9946222 DOI: 10.1371/journal.pntd.0010938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/22/2023] [Accepted: 11/09/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Lassa virus (LASV), the cause of the acute viral hemorrhagic illness Lassa fever (LF), is endemic in West Africa. Infections in humans occur mainly after exposure to infected excrement or urine of the rodent-host, Mastomys natalensis. The prevalence of exposure to LASV in Sierra Leone is crudely estimated and largely unknown. This cross-sectional study aimed to establish a baseline point seroprevalence of IgG antibodies to LASV in three administrative districts of Sierra Leone and identify potential risk factors for seropositivity and LASV exposure. METHODOLOGY AND PRINCIPAL FINDINGS Between 2015 and 2018, over 10,642 participants from Kenema, Tonkolili, and Port Loko Districts were enrolled in this cross-sectional study. Previous LASV and LF epidemiological studies support classification of these districts as "endemic," "emerging," and "non-endemic", respectively. Dried blood spot samples were tested for LASV antibodies by ELISA to determine the seropositivity of participants, indicating previous exposure to LASV. Surveys were administered to each participant to assess demographic and environmental factors associated with a higher risk of exposure to LASV. Overall seroprevalence for antibodies to LASV was 16.0%. In Kenema, Port Loko, and Tonkolili Districts, seroprevalences were 20.1%, 14.1%, and 10.6%, respectively. In a multivariate analysis, individuals were more likely to be LASV seropositive if they were living in Kenema District, regardless of sex, age, or occupation. Environmental factors contributed to an increased risk of LASV exposure, including poor housing construction and proximity to bushland, forested areas, and refuse. CONCLUSIONS AND SIGNIFICANCE In this study we determine a baseline LASV seroprevalence in three districts which will inform future epidemiological, ecological, and clinical studies on LF and the LASV in Sierra Leone. The heterogeneity of the distribution of LASV and LF over both space, and time, can make the design of efficacy trials and intervention programs difficult. Having more studies on the prevalence of LASV and identifying potential hyper-endemic areas will greatly increase the awareness of LF and improve targeted control programs related to LASV.
Collapse
Affiliation(s)
- Donald S. Grant
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Emily J. Engel
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Nicole Roberts Yerkes
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lansana Kanneh
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - James Koninga
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Michael A. Gbakie
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Foday Alhasan
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Franklyn B. Kanneh
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Ibrahim Mustapha Kanneh
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Fatima K. Kamara
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Mambu Momoh
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
- Eastern Technical University of Sierra Leone, Kenema, Sierra Leone
| | - Mohamed S. Yillah
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Momoh Foday
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Adaora Okoli
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Ashley Zeoli
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Caroline Weldon
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Christopher M. Bishop
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Crystal Zheng
- Department of Internal Medicine, Section of Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jessica Hartnett
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Karissa Chao
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Kayla Shore
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Lilia I. Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Mallory Mucci
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Nell G. Bond
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Philip Doyle
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Rachael Yenni
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Rachel Podgorski
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Samuel C. Ficenec
- Department of Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lina Moses
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - John S. Schieffelin
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
14
|
Villalaín J. Interaction of Lassa virus fusion and membrane proximal peptides with late endosomal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184031. [PMID: 35964711 DOI: 10.1016/j.bbamem.2022.184031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Mammarenaviruses include many significant worldwide-widespread human pathogens, among them Lassa virus (LASV), having a dramatic morbidity and mortality rate. They are a potential high-risk menace to the worldwide public health since there are no treatments and there is a high possibility of animal-to-human and human-to-human viral transmission. These viruses enter into the cells by endocytosis fusing its membrane envelope with the late endosomal membrane thanks to the glycoprotein GP2, a membrane fusion protein of class I. This protein contains different domains, among them the N-terminal fusion peptide (NFP), the internal fusion loop (IFL), the membrane proximal external region (MPER) and the transmembrane domain (TMD). All these domains are implicated in the membrane fusion process. In this work, we have used an all-atom molecular dynamics study to know the binding of these protein domains with a complex membrane mimicking the late endosome one. We show that the NFP/IFL domain is capable of spontaneously inserting into the membrane without a significant change of secondary structure, the MPER domain locates at the bilayer interface with an orientation parallel to the membrane surface and tends to interact with other MPER domains, and the TMD domain tilts inside the bilayer. Moreover, they predominantly interact with negatively charged phospholipids. Overall, these membrane-interacting domains would characterise a target that would make possible to find effective antiviral molecules against LASV in particular and Mammarenaviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
15
|
Klitting R, Kafetzopoulou LE, Thiery W, Dudas G, Gryseels S, Kotamarthi A, Vrancken B, Gangavarapu K, Momoh M, Sandi JD, Goba A, Alhasan F, Grant DS, Okogbenin S, Ogbaini-Emovo E, Garry RF, Smither AR, Zeller M, Pauthner MG, McGraw M, Hughes LD, Duraffour S, Günther S, Suchard MA, Lemey P, Andersen KG, Dellicour S. Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades. Nat Commun 2022; 13:5596. [PMID: 36167835 PMCID: PMC9515147 DOI: 10.1038/s41467-022-33112-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/02/2022] [Indexed: 01/27/2023] Open
Abstract
Lassa fever is a severe viral hemorrhagic fever caused by a zoonotic virus that repeatedly spills over to humans from its rodent reservoirs. It is currently not known how climate and land use changes could affect the endemic area of this virus, currently limited to parts of West Africa. By exploring the environmental data associated with virus occurrence using ecological niche modelling, we show how temperature, precipitation and the presence of pastures determine ecological suitability for virus circulation. Based on projections of climate, land use, and population changes, we find that regions in Central and East Africa will likely become suitable for Lassa virus over the next decades and estimate that the total population living in ecological conditions that are suitable for Lassa virus circulation may drastically increase by 2070. By analysing geotagged viral genomes using spatially-explicit phylogeography and simulating virus dispersal, we find that in the event of Lassa virus being introduced into a new suitable region, its spread might remain spatially limited over the first decades.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Liana E. Kafetzopoulou
- grid.5596.f0000 0001 0668 7884Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium ,grid.424065.10000 0001 0701 3136Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Wim Thiery
- grid.8767.e0000 0001 2290 8069Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gytis Dudas
- grid.6441.70000 0001 2243 2806Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Sophie Gryseels
- grid.5284.b0000 0001 0790 3681Evolutionary Ecology group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium ,grid.20478.390000 0001 2171 9581Vertebrate group, Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Anjali Kotamarthi
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Bram Vrancken
- grid.5596.f0000 0001 0668 7884Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Karthik Gangavarapu
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Mambu Momoh
- grid.442296.f0000 0001 2290 9707Eastern Technical University of Sierra Leone, Kenema, Sierra Leone ,grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - John Demby Sandi
- grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Augustine Goba
- grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Foday Alhasan
- grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Donald S. Grant
- grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone ,grid.442296.f0000 0001 2290 9707College of Medicine and Allied Health Sciences, University of Sierra Leone, Kenema, Sierra Leone
| | - Sylvanus Okogbenin
- grid.508091.5Irrua Specialist Teaching Hospital, Irrua, Nigeria ,grid.411357.50000 0000 9018 355XFaculty of Clinical Sciences, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | | | - Robert F. Garry
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University, School of Medicine, New Orleans, LA 70112 USA ,grid.505518.c0000 0004 5901 1919Zalgen Labs, LCC, Frederick, MD 21703 USA ,grid.475149.aGlobal Virus Network (GVN), Baltimore, MD 21201 USA
| | - Allison R. Smither
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University, School of Medicine, New Orleans, LA 70112 USA
| | - Mark Zeller
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Matthias G. Pauthner
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Michelle McGraw
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Laura D. Hughes
- grid.214007.00000000122199231Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sophie Duraffour
- grid.424065.10000 0001 0701 3136Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany ,grid.452463.2German Center for Infection Research (DZIF), Partner site Hamburg–Lübeck–Borstel–Riems, Hamburg, Germany
| | - Stephan Günther
- grid.424065.10000 0001 0701 3136Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany ,grid.452463.2German Center for Infection Research (DZIF), Partner site Hamburg–Lübeck–Borstel–Riems, Hamburg, Germany
| | - Marc A. Suchard
- grid.19006.3e0000 0000 9632 6718Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Philippe Lemey
- grid.5596.f0000 0001 0668 7884Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kristian G. Andersen
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA ,grid.214007.00000000122199231Scripps Research Translational Institute, La Jolla, CA 92037 USA
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium. .,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12 50, av. FD Roosevelt, 1050, Bruxelles, Belgium.
| |
Collapse
|
16
|
A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against heterologous lethal Lassa fever. Cell Rep 2022; 40:111094. [PMID: 35858566 DOI: 10.1016/j.celrep.2022.111094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Lassa virus (LASV) is recognized by the World Health Organization as one of the top five pathogens likely to cause a severe outbreak. A recent unprecedented resurgence of LASV in Nigeria caused by genetically diverse strains underscores the need for licensed medical countermeasures. Single-injection vaccines that can rapidly control outbreaks and confer long-term immunity are needed. Vaccination of cynomolgus monkeys with a recombinant vesicular stomatitis virus vector expressing the glycoprotein precursor of LASV lineage IV strain Josiah (rVSVΔG-LASV-GPC) induces fast-acting protection in monkeys challenged 3 or 7 days later with a genetically heterologous lineage II isolate of LASV from Nigeria, while nonspecifically vaccinated control animals succumb to challenge. The rVSVΔG-LASV-GPC vaccine induces rapid activation of adaptive immunity and the transcription of natural killer (NK) cell-affiliated mRNAs. This study demonstrates that rVSVΔG-LASV-GPC may provide rapid protection in humans against LASV infections in cases where immediate public-health intervention is required.
Collapse
|
17
|
Mateo M, Hortion J, Perthame E, Picard C, Reynard S, Journeaux A, Germain C, Carnec X, Baillet N, Borges-Cardoso V, Pietrosemoli N, Vallve A, Barron S, Jourjon O, Lacroix O, Duthey A, Dirheimer M, Daniau M, Legras-Lachuer C, Jouvion G, Carbonnelle C, Raoul H, Baize S. Pathogenesis of recent Lassa virus isolates from lineages II and VII in cynomolgus monkeys. Virulence 2022; 13:654-669. [PMID: 35437094 PMCID: PMC9037461 DOI: 10.1080/21505594.2022.2060170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The area of Lassa virus (LASV) circulation is expanding, with the emergence of highly pathogenic new LASV lineages. Benin recently became an endemic country for LASV and has seen the emergence of a new LASV lineage (VII). The first two outbreaks in 2014 and 2016 showed a relatively high mortality rate compared to other outbreaks. We infected cynomolgus monkeys with two strains belonging to lineage II and lineage VII that were isolated from deceased patients during the 2016 outbreak in Benin. The lineage VII strain (L7) caused uniform mortality. Death was associated with uncontrolled viral replication, unbalanced inflammatory responses characterized by increased concentrations of pro- and anti-inflammatory mediators, and the absence of efficient immune responses, resembling the pathogenesis associated with the prototypic Josiah strain in monkeys. The lineage II strain (L2) showed apparently lower virulence than its counterpart, with a prolonged time to death and a lower mortality rate. Prolonged survival was associated with better control of viral replication, a moderate inflammatory response, and efficient T-cell responses. Transcriptomic analyses also highlighted important differences in the immune responses associated with the outcome. Both strains caused strong inflammation in several organs. Notably, meningitis and encephalitis were observed in the cerebral cortex and cerebellum in all monkeys, independently of the outcome. Due to their apparently high pathogenicity, emerging strains from lineage VII should be considered in preclinical vaccine testing. Lineage II would also be beneficial in pathogenesis studies to study the entire spectrum of Lassa fever severity.
Collapse
Affiliation(s)
- Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, Paris, France
| | - Caroline Picard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Nicolas Baillet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, Paris, France
| | - Audrey Vallve
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Stéphane Barron
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Ophélie Jourjon
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Orianne Lacroix
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Aurélie Duthey
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Manon Dirheimer
- INSERM, Délégation Régionale Auvergne Rhône-Alpes, Bron, France
| | | | | | - Gregory Jouvion
- Ecole Nationale Vétérinaire d'Alfort, Unité d'Histologie et d'Anatomie Pathologique, Maisons-Alfort, France.,Dynamic Research Group, Ecole Nationale Vétérinaired'Alfort, USC ANSES, Université Paris Est Créteil, Maisons-Alfort, France
| | | | - Hervé Raoul
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon France
| |
Collapse
|
18
|
Abdu A, Ibrahim M, Muhammad L, Audi Y, Sabo U, Yusuf J. Factors affecting outcome in reverse transcriptase-polymerase chain reaction-positive lassa fever patients with acute kidney injury: A retrospective analysis. NIGERIAN JOURNAL OF MEDICINE 2022. [DOI: 10.4103/njm.njm_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
19
|
Mateo M, Reynard S, Journeaux A, Germain C, Hortion J, Carnec X, Picard C, Baillet N, Borges-Cardoso V, Merabet O, Vallve A, Barron S, Jourjon O, Lacroix O, Duthey A, Dirheimer M, Jouvion G, Moreau PH, Fellmann L, Carbonnelle C, Raoul H, Tangy F, Baize S. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci Transl Med 2021; 13:13/597/eabf6348. [PMID: 34108251 DOI: 10.1126/scitranslmed.abf6348] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
A safe and protective Lassa virus vaccine is crucially needed in Western Africa to stem the recurrent outbreaks of Lassa virus infections in Nigeria and the emergence of Lassa virus in previously unaffected countries, such as Benin and Togo. Major challenges in developing a Lassa virus vaccine include the high diversity of circulating strains and their reemergence from 1 year to another. To address each of these challenges, we immunized cynomolgus monkeys with a measles virus vector expressing the Lassa virus glycoprotein and nucleoprotein of the prototypic Lassa virus strain Josiah (MeV-NP). To evaluate vaccine efficacy against heterologous strains of Lassa virus, we challenged the monkeys a month later with heterologous strains from lineage II or lineage VII, finding that the vaccine was protective against these strains. A second cohort of monkeys was challenged 1 year later with the homologous Josiah strain, finding that a single dose of MeV-NP was sufficient to protect all vaccinated monkeys. These studies demonstrate that MeV-NP can generate both long-lasting immune responses and responses that are able to protect against diverse strains of Lassa virus.
Collapse
Affiliation(s)
- Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Caroline Picard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Nicolas Baillet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Othmann Merabet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Audrey Vallve
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Stéphane Barron
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Ophélie Jourjon
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Orianne Lacroix
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Aurélie Duthey
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Manon Dirheimer
- INSERM, Délégation Régionale Auvergne Rhône-Alpes, 69500 Bron, France
| | - Gregory Jouvion
- Ecole Nationale Vétérinaire d'Alfort, Unité d'Histologie et d'Anatomie Pathologique, 94700 Maisons-Alfort, France.,Dynamic Research Group, Université Paris Est Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, 94700 Maisons-Alfort, France
| | | | - Lyne Fellmann
- SILABE, Université de Strasbourg, Fort Foch, 67207 Niederhausbergen, France
| | | | - Hervé Raoul
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination, Institut Pasteur, CNRS UMR-3569, 75015 Paris, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France. .,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| |
Collapse
|
20
|
Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques. Commun Biol 2021; 4:27. [PMID: 33398113 PMCID: PMC7782745 DOI: 10.1038/s42003-020-01543-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lassa virus (LASV) is endemic in West Africa and induces a viral hemorrhagic fever (VHF) with up to 30% lethality among clinical cases. The mechanisms involved in control of Lassa fever or, in contrast, the ensuing catastrophic illness and death are poorly understood. We used the cynomolgus monkey model to reproduce the human disease with asymptomatic to mild or fatal disease. After initial replication at the inoculation site, LASV reached the secondary lymphoid organs. LASV did not spread further in nonfatal disease and was rapidly controlled by balanced innate and T-cell responses. Systemic viral dissemination occurred during severe disease. Massive replication, a cytokine/chemokine storm, defective T-cell responses, and multiorgan failure were observed. Clinical, biological, immunological, and transcriptomic parameters resembled those observed during septic-shock syndrome, suggesting that similar pathogenesis is induced during Lassa fever. The outcome appears to be determined early, as differentially expressed genes in PBMCs were associated with fatal and non-fatal Lassa fever outcome very early after infection. These results provide a full characterization and important insights into Lassa fever pathogenesis and could help to develop early diagnostic tools.
Collapse
|