1
|
Swart IC, Van Gelder W, De Haan CAM, Bosch BJ, Oliveira S. Next generation single-domain antibodies against respiratory zoonotic RNA viruses. Front Mol Biosci 2024; 11:1389548. [PMID: 38784667 PMCID: PMC11111979 DOI: 10.3389/fmolb.2024.1389548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The global impact of zoonotic viral outbreaks underscores the pressing need for innovative antiviral strategies, particularly against respiratory zoonotic RNA viruses. These viruses possess a high potential to trigger future epidemics and pandemics due to their high mutation rate, broad host range and efficient spread through airborne transmission. Recent pandemics caused by coronaviruses and influenza A viruses underscore the importance of developing targeted antiviral strategies. Single-domain antibodies (sdAbs), originating from camelids, also known as nanobodies or VHHs (Variable Heavy domain of Heavy chain antibodies), have emerged as promising tools to combat current and impending zoonotic viral threats. Their unique structure, coupled with attributes like robustness, compact size, and cost-effectiveness, positions them as strong alternatives to traditional monoclonal antibodies. This review describes the pivotal role of sdAbs in combating respiratory zoonotic viruses, with a primary focus on enhancing sdAb antiviral potency through optimization techniques and diverse administration strategies. We discuss both the promises and challenges within this dynamically growing field.
Collapse
Affiliation(s)
- Iris C. Swart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Virology Section, Infectious Diseases and Immunology Division, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Willem Van Gelder
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Cornelis A. M. De Haan
- Virology Section, Infectious Diseases and Immunology Division, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
2
|
Silva PV, Nobre CN. Computational methods in the analysis of SARS-CoV-2 in mammals: A systematic review of the literature. Comput Biol Med 2024; 173:108264. [PMID: 38564853 DOI: 10.1016/j.compbiomed.2024.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
SARS-CoV-2 is an enveloped RNA virus that causes severe respiratory illness in humans and animals. It infects cells by binding the Spike protein to the host's angiotensin-converting enzyme 2 (ACE2). The bat is considered the natural host of the virus, and zoonotic transmission is a significant risk and can happen when humans come into close contact with infected animals. Therefore, understanding the interconnection between human, animal, and environmental health is important to prevent and control future coronavirus outbreaks. This work aimed to systematically review the literature to identify characteristics that make mammals suitable virus transmitters and raise the main computational methods used to evaluate SARS-CoV-2 in mammals. Based on this review, it was possible to identify the main factors related to transmissions mentioned in the literature, such as the expression of ACE2 and proximity to humans, in addition to identifying the computational methods used for its study, such as Machine Learning, Molecular Modeling, Computational Simulation, between others. The findings of the work contribute to the prevention and control of future outbreaks, provide information on transmission factors, and highlight the importance of advanced computational methods in the study of infectious diseases that allow a deeper understanding of transmission patterns and can help in the development of more effective control and intervention strategies.
Collapse
Affiliation(s)
- Paula Vitória Silva
- Pontifical Catholic University of Minas Gerais - PUC Minas, 500 Dom José Gaspar Street, Building 41, Coração Eucarístico, Belo Horizonte, MG 30535-901, Brazil.
| | - Cristiane N Nobre
- Pontifical Catholic University of Minas Gerais - PUC Minas, 500 Dom José Gaspar Street, Building 41, Coração Eucarístico, Belo Horizonte, MG 30535-901, Brazil.
| |
Collapse
|
3
|
Chakraborty C, Bhattacharya M, Islam MA, Zayed H, Ohimain EI, Lee SS, Bhattacharya P, Dhama K. Reverse Zoonotic Transmission of SARS-CoV-2 and Monkeypox Virus: A Comprehensive Review. J Microbiol 2024; 62:337-354. [PMID: 38777985 DOI: 10.1007/s12275-024-00138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Reverse zoonosis reveals the process of transmission of a pathogen through the human-animal interface and the spillback of the zoonotic pathogen. In this article, we methodically demonstrate various aspects of reverse zoonosis, with a comprehensive discussion of SARS-CoV-2 and MPXV reverse zoonosis. First, different components of reverse zoonosis, such as humans, different pathogens, and numerous animals (poultry, livestock, pets, wild animals, and zoo animals), have been demonstrated. Second, it explains the present status of reverse zoonosis with different pathogens during previous occurrences of various outbreaks, epidemics, and pandemics. Here, we present 25 examples from literature. Third, using several examples, we comprehensively illustrate the present status of the reverse zoonosis of SARS-CoV-2 and MPXV. Here, we have provided 17 examples of SARS-CoV-2 reverse zoonosis and two examples of MPXV reverse zoonosis. Fourth, we have described two significant aspects of reverse zoonosis: understanding the fundamental aspects of spillback and awareness. These two aspects are required to prevent reverse zoonosis from the current infection with two significant viruses. Finally, the One Health approach was discussed vividly, where we urge scientists from different areas to work collaboratively to solve the issue of reverse zoonosis.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, 756020, Odisha, India
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Elijah Ige Ohimain
- Microbiology Department, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
4
|
Su Z, McDonnell D, Cheshmehzangi A, Bentley BL, Šegalo S, da Veiga CP, Xiang YT. Where should "Humans" be in "One Health"? Lessons from COVID-19 for One Health. Global Health 2024; 20:24. [PMID: 38528528 PMCID: PMC10964596 DOI: 10.1186/s12992-024-01026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
The culling of animals that are infected, or suspected to be infected, with COVID-19 has fuelled outcry. What might have contributed to the ongoing debates and discussions about animal rights protection amid global health crises is the lack of a unified understanding and internationally agreed-upon definition of "One Health". The term One Health is often utilised to describe the imperative to protect the health of humans, animals, and plants, along with the overarching ecosystem in an increasingly connected and globalized world. However, to date, there is a dearth of research on how to balance public health decisions that could impact all key stakeholders under the umbrella of One Health, particularly in contexts where human suffering has been immense. To shed light on the issue, this paper discusses whether One Health means "human-centred connected health" in a largely human-dominated planet, particularly amid crises like COVID-19. The insights of this study could help policymakers make more informed decisions that could effectively and efficiently protect human health while balancing the health and well-being of the rest of the inhabitants of our shared planet Earth.
Collapse
Affiliation(s)
- Zhaohui Su
- School of Public Health, Institute for Human Rights, Southeast University, Nanjing, 210009, China.
| | - Dean McDonnell
- Department of Humanities, South East Technological University, Carlow, R93 V960, Ireland
| | - Ali Cheshmehzangi
- Center of Innovation for Education and Research (CIER), Qingdao City University, Qingdao, China
- Network for Education and Research On Peace and Sustainability, Hiroshima University, Hiroshima, 739-8530, Japan
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
- Collaboration for the Advancement of Sustainable Medical Innovation, University College London, London, UK
| | - Sabina Šegalo
- Faculty of Health Studies, University of Sarajevo, 71000, Sarajevo, Bosnia and Herzegovina
| | - Claudimar Pereira da Veiga
- Fundação Dom Cabral - FDC, Av. Princesa Diana, 760 Alphaville, Lagoa Dos Ingleses, Nova Lima, MG, 34018-006, Brazil.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration; Institute of Translational Medicine, Faculty of Health Sciences; Centre for Cognitive and Brain Sciences; Institute of Advanced Studies in Humanities and Social Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
5
|
Jahid MJ, Bowman AS, Nolting JM. SARS-CoV-2 Outbreaks on Mink Farms-A Review of Current Knowledge on Virus Infection, Spread, Spillover, and Containment. Viruses 2024; 16:81. [PMID: 38257781 PMCID: PMC10819236 DOI: 10.3390/v16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Many studies have been conducted to explore outbreaks of SARS-CoV-2 in farmed mink and their intra-/inter-species spread and spillover to provide data to the scientific community, protecting human and animal health. Studies report anthropozoonotic introduction, which was initially documented in April 2020 in the Netherlands, and subsequent inter-/intra-species spread of SARS-CoV-2 in farmed mink, likely due to SARS-CoV-2 host tropism capable of establishing efficient interactions with host ACE2 and the mink hosts' ability to enhance swift viral transmission due to their density, housing status, and occupational contacts. Despite the rigorous prevention and control measures adopted, transmission of the virus within and between animal species was efficient, resulting in the development of mink-associated strains able to jump back and forth among the mink hosts and other animal/human contacts. Current knowledge recognizes the mink as a highly susceptible animal host harboring the virus with or without clinical manifestations, furthering infection transmission as a hidden animal reservoir. A One Health approach is, thus, recommended in SARS-CoV-2 surveillance and monitoring on mink farms and of their susceptible contact animals to identify and better understand these potential animal hosts.
Collapse
Affiliation(s)
| | | | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.J.J.); (A.S.B.)
| |
Collapse
|
6
|
Voidarou C, Rozos G, Stavropoulou E, Giorgi E, Stefanis C, Vakadaris G, Vaou N, Tsigalou C, Kourkoutas Y, Bezirtzoglou E. COVID-19 on the spectrum: a scoping review of hygienic standards. Front Public Health 2023; 11:1202216. [PMID: 38026326 PMCID: PMC10646607 DOI: 10.3389/fpubh.2023.1202216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of COVID-19 in Wuhan, China, rapidly escalated into a worldwide public health crisis. Despite numerous clinical treatment endeavors, initial defenses against the virus primarily relied on hygiene practices like mask-wearing, meticulous hand hygiene (using soap or antiseptic solutions), and maintaining social distancing. Even with the subsequent advent of vaccines and the commencement of mass vaccination campaigns, these hygiene measures persistently remain in effect, aiming to curb virus transmission until the achievement of herd immunity. In this scoping review, we delve into the effectiveness of these measures and the diverse transmission pathways, focusing on the intricate interplay within the food network. Furthermore, we explore the virus's pathophysiology, considering its survival on droplets of varying sizes, each endowed with distinct aerodynamic attributes that influence disease dispersion dynamics. While respiratory transmission remains the predominant route, the potential for oral-fecal transmission should not be disregarded, given the protracted presence of viral RNA in patients' feces after the infection period. Addressing concerns about food as a potential viral vector, uncertainties shroud the virus's survivability and potential to contaminate consumers indirectly. Hence, a meticulous and comprehensive hygienic strategy remains paramount in our collective efforts to combat this pandemic.
Collapse
Affiliation(s)
| | - Georgios Rozos
- Veterinary Directorate, South Aegean Region, Ermoupolis, Greece
| | - Elisavet Stavropoulou
- Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Elpida Giorgi
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Stefanis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Vakadaris
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
7
|
Poblacion A, Ettinger de Cuba S, Frank DA, Esteves G, Rateau LJ, Heeren TC, Coleman S, Black MM, Cutts DB, Lê-Scherban F, Ochoa ER, Sandel M, Sheward R, Cook J. Development and Validation of an Abbreviated Child and Adult Food Security Scale for Use in Clinical and Research Settings in the United States. J Acad Nutr Diet 2023; 123:S89-S102.e4. [PMID: 37730309 DOI: 10.1016/j.jand.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Food insecurity (FI) prevalence was consistently >10% over the past 20 years, indicating chronic economic hardship. Recession periods exacerbate already high prevalence of FI, reflecting acute economic hardship. To monitor FI and respond quickly to changes in prevalence, an abbreviated food security scale measuring presence and severity of household FI in adults and children is needed. OBJECTIVE Our aim was to develop an abbreviated, sensitive, specific, and valid food security scale to identify severity levels of FI in households with children. DESIGN Cross-sectional and longitudinal survey data were analyzed for years 1998 to 2022. PARTICIPANTS/SETTING Participants were racially diverse primary caregivers of 69,040 index children younger than 4 years accessing health care in 5 US cities. STATISTICAL ANALYSES PERFORMED Sensitivity, specificity, positive and negative predictive values, accuracy, and area under the receiver operator curve were used to test combinations of questions for the most effective abbreviated scale to assess levels of severity of adult and child FI compared with the Household Food Security Survey Module. Adjusted logistic regression models assessed convergent validity between the Abbreviated Child and Adult Food Security Scale (ACAFSS) and health measures. McNemar tests examined the ACAFSS performance in times of acute economic hardship. RESULTS The ACAFSS exhibited 91.2% sensitivity; 99.6% specificity; 98.3% and 97.6% positive and negative predictive values, respectively; 97.7% accuracy; and a 99.6% area under the receiver operator curve, while showing high convergent validity. CONCLUSIONS The ACAFSS is highly sensitive, specific, and valid for detecting severity levels of FI among racially diverse households with children. The ACAFSS is recommended as a stand-alone scale or a follow-up scale after households with children screen positive for FI risk. The ACAFSS is also recommended for planning interventions and evaluating their effects not only on the binary categories of food security and FI, but also on changes in levels of severity, especially when rapid decision making is crucial.
Collapse
Affiliation(s)
- Ana Poblacion
- Department of Pediatrics, Children's HealthWatch, Boston Medical Center, Boston, Massachusetts.
| | - Stephanie Ettinger de Cuba
- Department of Pediatrics, Children's HealthWatch, Boston Medical Center, Boston, Massachusetts; Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts
| | - Deborah A Frank
- Department of Pediatrics, Children's HealthWatch, Boston Medical Center, Boston, Massachusetts; Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts
| | | | - Lindsey J Rateau
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Timothy C Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Sharon Coleman
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Maureen M Black
- Department of Pediatrics, Growth and Nutrition Division, University of Maryland School of Medicine, Baltimore, Maryland; RTI International, Research Triangle Park, North Carolina
| | - Diana B Cutts
- Department of Pediatrics, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Félice Lê-Scherban
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, Pennsylvania
| | - Eduardo R Ochoa
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Megan Sandel
- Children's HealthWatch, Boston Medical Center, Boston, Massachusetts; Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts
| | - Richard Sheward
- Children's HealthWatch, Boston Medical Center, Boston, Massachusetts
| | - John Cook
- Department of Pediatrics, Children's HealthWatch, Boston Medical Center, Boston, Massachusetts; Department of Pediatrics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
8
|
Pekarek MJ, Weaver EA. Existing Evidence for Influenza B Virus Adaptations to Drive Replication in Humans as the Primary Host. Viruses 2023; 15:2032. [PMID: 37896807 PMCID: PMC10612074 DOI: 10.3390/v15102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza B virus (IBV) is one of the two major types of influenza viruses that circulate each year. Unlike influenza A viruses, IBV does not harbor pandemic potential due to its lack of historical circulation in non-human hosts. Many studies and reviews have highlighted important factors for host determination of influenza A viruses. However, much less is known about the factors driving IBV replication in humans. We hypothesize that similar factors influence the host restriction of IBV. Here, we compile and review the current understanding of host factors crucial for the various stages of the IBV viral replication cycle. While we discovered the research in this area of IBV is limited, we review known host factors that may indicate possible host restriction of IBV to humans. These factors include the IBV hemagglutinin (HA) protein, host nuclear factors, and viral immune evasion proteins. Our review frames the current understanding of IBV adaptations to replication in humans. However, this review is limited by the amount of research previously completed on IBV host determinants and would benefit from additional future research in this area.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
9
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Jeon GT, Kim HR, Kim JM, Baek JS, Shin YK, Kwon OK, Kang HE, Cho HS, Cheon DS, Park CK. Tailored Multiplex Real-Time RT-PCR with Species-Specific Internal Positive Controls for Detecting SARS-CoV-2 in Canine and Feline Clinical Samples. Animals (Basel) 2023; 13:ani13040602. [PMID: 36830388 PMCID: PMC9951688 DOI: 10.3390/ani13040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been frequently reported in companion dogs and cats worldwide during the ongoing coronavirus disease. However, RT-qPCR methods developed for humans have been used for the diagnosis of SARS-CoV-2 infections in suspected companion dogs and cats owing to the lack of the companion animal-tailored methods. Therefore, we developed a multiplex RT-qPCR (mRT-qPCR) using newly designed primers and probes targeting RdRp and N genes of all currently circulating SARS-CoV-2 variants as well as the canine or feline 16S rRNA gene as an endogenous internal positive control (EIPC) for reliable diagnosis of SARS-CoV-2 infection from suspected dogs and cats. The developed mRT-qPCR assay specifically detected the target genes of SARS-CoV-2 but no other canine or feline pathogens. Furthermore, canine and feline EIPCs were stably amplified by mRT-qPCR in samples containing canine- or feline-origin cellular materials. This assay has high repeatability and reproducibility, with an optimal limit of detection (<10 RNA copies per reaction) and coefficients of variation (<1.0%). The detection rate of SARS-CoV-2 of the developed mRT-qPCR was 6.6% for canine and feline nasopharyngeal samples, which was consistent with that of a commercial mRT-qPCR kit for humans. Collectively, the newly developed mRT-qPCR with canine and feline EIPC can efficiently diagnose and evaluate the viral load in field specimens and will be a valuable tool for etiological diagnosis, epidemiological study, and controlling SARS-CoV-2 infections in canine and feline populations.
Collapse
Affiliation(s)
- Gyu-Tae Jeon
- Animal Disease Intervention Center, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ryung Kim
- Animal Disease Intervention Center, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Min Kim
- Animal Disease Intervention Center, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Su Baek
- Animal Disease Intervention Center, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeun-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Oh-Kyu Kwon
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Ho-Seong Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - Choi-Kyu Park
- Animal Disease Intervention Center, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-53-950-5973
| |
Collapse
|
11
|
Zhao LP, Cohen S, Zhao M, Madeleine M, Payne TH, Lybrand TP, Geraghty DE, Jerome KR, Corey L. Using Haplotype-Based Artificial Intelligence to Evaluate SARS-CoV-2 Novel Variants and Mutations. JAMA Netw Open 2023; 6:e230191. [PMID: 36809468 PMCID: PMC9945077 DOI: 10.1001/jamanetworkopen.2023.0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Importance Earlier detection of emerging novel SARS-COV-2 variants is important for public health surveillance of potential viral threats and for earlier prevention research. Artificial intelligence may facilitate early detection of SARS-CoV2 emerging novel variants based on variant-specific mutation haplotypes and, in turn, be associated with enhanced implementation of risk-stratified public health prevention strategies. Objective To develop a haplotype-based artificial intelligence (HAI) model for identifying novel variants, including mixture variants (MVs) of known variants and new variants with novel mutations. Design, Setting, and Participants This cross-sectional study used serially observed viral genomic sequences globally (prior to March 14, 2022) to train and validate the HAI model and used it to identify variants arising from a prospective set of viruses from March 15 to May 18, 2022. Main Outcomes and Measures Viral sequences, collection dates, and locations were subjected to statistical learning analysis to estimate variant-specific core mutations and haplotype frequencies, which were then used to construct an HAI model to identify novel variants. Results Through training on more than 5 million viral sequences, an HAI model was built, and its identification performance was validated on an independent validation set of more than 5 million viruses. Its identification performance was assessed on a prospective set of 344 901 viruses. In addition to achieving an accuracy of 92.8% (95% CI within 0.1%), the HAI model identified 4 Omicron MVs (Omicron-Alpha, Omicron-Delta, Omicron-Epsilon, and Omicron-Zeta), 2 Delta MVs (Delta-Kappa and Delta-Zeta), and 1 Alpha-Epsilon MV, among which Omicron-Epsilon MVs were most frequent (609/657 MVs [92.7%]). Furthermore, the HAI model found that 1699 Omicron viruses had unidentifiable variants given that these variants acquired novel mutations. Lastly, 524 variant-unassigned and variant-unidentifiable viruses carried 16 novel mutations, 8 of which were increasing in prevalence percentages as of May 2022. Conclusions and Relevance In this cross-sectional study, an HAI model found SARS-COV-2 viruses with MV or novel mutations in the global population, which may require closer examination and monitoring. These results suggest that HAI may complement phylogenic variant assignment, providing additional insights into emerging novel variants in the population.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Seth Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle
| | | | - Margaret Madeleine
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Thomas H. Payne
- Department of Medicine, University of Washington School of Medicine, Seattle
| | - Terry P. Lybrand
- Quintepa Computing LLC, Nashville, Tennessee
- Department of Chemistry, Vanderbilt University; Nashville, Tennessee
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington School of Medicine, Seattle
| |
Collapse
|
12
|
Pegg CL, Schulz BL, Neely BA, Albery GF, Carlson CJ. Glycosylation and the global virome. Mol Ecol 2023; 32:37-44. [PMID: 36217579 PMCID: PMC10947461 DOI: 10.1111/mec.16731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
The sugars that coat the outsides of viruses and host cells are key to successful disease transmission, but they remain understudied compared to other molecular features. Understanding the comparative zoology of glycosylation - and harnessing it for predictive science - could help close the molecular gap in zoonotic risk assessment.
Collapse
Affiliation(s)
- Cassandra L. Pegg
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Benjamin A. Neely
- National Institute of Standards and TechnologyCharlestonSouth CarolinaUSA
| | - Gregory F. Albery
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Colin J. Carlson
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Global Health Science and SecurityGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
13
|
Panei CJ, Bravi ME, Moré G, De Felice L, Unzaga JM, Salina M, Rivero FD, Di Lullo D, Pecoraro M, Alvarez D, Castro E, Fuentealba NA. Serological evidence of SARS-CoV-2 infection in pets naturally exposed during the COVID-19 outbreak in Argentina. Vet Immunol Immunopathol 2022; 254:110519. [PMID: 36434944 PMCID: PMC9664835 DOI: 10.1016/j.vetimm.2022.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has rapidly spread worldwide. The monitoring of animals has shown that certain species may be susceptible to be infected with the virus. The present study aimed to evaluate the presence of SARS-CoV-2 antibodies by ELISA and virus neutralization (VN) in pets from owners previously confirmed as COVID-19-positive in Argentina. Serum samples of 38 pets (seven cats and 31 dogs) were obtained for SARS-CoV-2 antibody detection. Three out of the seven cats and 14 out of the 31 dogs were positive for SARS-CoV-2 by ELISA, and one cat and six dogs showed the presence of neutralizing antibodies in which the cat and two of the six dogs showed high titers. Another dog from which three serum samples had been obtained within eight months from the diagnosis of its owner showed the presence of antibodies at different times by both ELISA and VN. However, the results showed that the antibodies decreased slightly from the first to the third sample. Our results provide evidence that SARS-CoV-2 infection in pets living with COVID-19-positive humans from Argentina during the outbreak of SARS-CoV-2 can be detected by serology assay.
Collapse
Affiliation(s)
- Carlos Javier Panei
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - María Emilia Bravi
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Gastón Moré
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina
| | - Lorena De Felice
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina
| | - Juan Manuel Unzaga
- Laboratorio de Inmunoparasitología, FCV-UNLP, 60 & 118, La Plata, Buenos Aires, Argentina
| | - Marcos Salina
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| | - Fernando David Rivero
- Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Villa El Zanjón, Ruta Nacional Nº 9, Km 1125, 4206, Santiago del Estero, Argentina
| | - David Di Lullo
- Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Villa El Zanjón, Ruta Nacional Nº 9, Km 1125, 4206, Santiago del Estero, Argentina
| | - Marcelo Pecoraro
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina,Escuela de Bio y Nanotecnologías (EByN), UNSAM, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - CONICET, Av. 25 de Mayo y Francia (B1650HMR), Buenos Aires, Argentina,Instituto de Virología e Innovaciones Tecnológicas (IVIT), Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA) - CONICET, Argentina
| | - Nadia Analía Fuentealba
- Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina,Corresponding author at: Laboratorio de Virología, Facultad de Ciencias Veterinarias (FCV), Universidad Nacional de La Plata (UNLP), 60 & 118, La Plata, Buenos Aires, Argentina
| |
Collapse
|
14
|
Ly H. Assessing the Prevalence of SARS-CoV-2 in Free-Living and Captive Animals. Pathogens 2022; 11:pathogens11121405. [PMID: 36558740 PMCID: PMC9788107 DOI: 10.3390/pathogens11121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Several animal species, including cats, dogs, hamsters, mink, big cats, great apes and white-tailed deer, etc [...].
Collapse
Affiliation(s)
- Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
15
|
Mahajan S, Karikalan M, Chander V, Pawde AM, Saikumar G, Semmaran M, Lakshmi PS, Sharma M, Nandi S, Singh KP, Gupta VK, Singh RK, Sharma GK. Detection of SARS-CoV-2 in a free ranging leopard (Panthera pardus fusca) in India. EUR J WILDLIFE RES 2022; 68:59. [PMID: 35992994 PMCID: PMC9380657 DOI: 10.1007/s10344-022-01608-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
We report an incidence of natural infection of SARS-CoV-2 in free-ranging Indian leopard (Panthera pardus fusca). The case was detected during routine screening. Post-mortem and laboratory examination suggested virus-induced interstitial pneumonia. Viral genome could be detected in various organs including brain, lung, spleen, and lymph nodes by real-time PCR. Whole-genome sequence analysis confirmed infection of Pango lineage B.1.617.2 of SARS-CoV-2. Till now, only Asiatic lions have been reported to be infected by SARS-CoV-2 in India. Infections in animals were detected during peak phase of pandemic and all the cases were captive with close contacts with humans, whereas the present case was observed when human cases were significantly low. No tangible evidence linked to widespread infection in the wild population and the incidence seems to be isolated case. High nucleotide sequence homology with prevailing viruses in humans suggested spillover infection to the animal. This report underlines the need for intensive screening of wild animals for keeping track of the virus evolution and development of carrier status of SARS-CoV-2 among wildlife species.
Collapse
Affiliation(s)
- Sonalika Mahajan
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Mathesh Karikalan
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Vishal Chander
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Abhijit M. Pawde
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - G. Saikumar
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - M. Semmaran
- Divisional Director, Social Forestry, Bijnor, Uttar Pradesh 246701 India
| | - P Sree Lakshmi
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Megha Sharma
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Sukdeb Nandi
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Karam Pal Singh
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre On Pig, Rani, Guwahati, Assam 781131 India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Gaurav Kumar Sharma
- ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, Uttar Pradesh 243122 India
| |
Collapse
|
16
|
Amman BR, Cossaboom CM, Wendling NM, Harvey RR, Rettler H, Taylor D, Kainulainen MH, Ahmad A, Bunkley P, Godino C, Tong S, Li Y, Uehara A, Kelleher A, Zhang J, Lynch B, Behravesh CB, Towner JS. GPS Tracking of Free-Roaming Cats ( Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah. Viruses 2022; 14:2131. [PMID: 36298686 PMCID: PMC9611678 DOI: 10.3390/v14102131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
Zoonotic transmission of SARS-CoV-2 from infected humans to other animals has been documented around the world, most notably in mink farming operations in Europe and the United States. Outbreaks of SARS-CoV-2 on Utah mink farms began in late July 2020 and resulted in high mink mortality. An investigation of these outbreaks revealed active and past SARS-CoV-2 infections in free-roaming and in feral cats living on or near several mink farms. Cats were captured using live traps, were sampled, fitted with GPS collars, and released on the farms. GPS tracking of these cats show they made frequent visits to mink sheds, moved freely around the affected farms, and visited surrounding residential properties and neighborhoods on multiple occasions, making them potential low risk vectors of additional SARS-CoV-2 spread in local communities.
Collapse
Affiliation(s)
- Brian R. Amman
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Caitlin M. Cossaboom
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Natalie M. Wendling
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - R. Reid Harvey
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Hannah Rettler
- Utah Department of Health, 288 North 1460 West, Salt Lake City, UT 84114, USA
| | - Dean Taylor
- Utah Department of Agriculture and Food, 4315 South 2700 West #4, Taylorsville, UT 84129, USA
| | - Markus H. Kainulainen
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Ausaf Ahmad
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Paige Bunkley
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Claire Godino
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Suxiang Tong
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Yan Li
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Anna Uehara
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Anna Kelleher
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Jing Zhang
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Brian Lynch
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Casey Barton Behravesh
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| | - Jonathan S. Towner
- Centers for Disease Control and Prevention, 1600 Clifton Road Ne, Atlanta, GA 30329, USA
| |
Collapse
|
17
|
Nagy A, Stará M, Vodička R, Černíková L, Jiřincová H, Křivda V, Sedlák K. Reverse-zoonotic transmission of SARS-CoV-2 lineage alpha (B.1.1.7) to great apes and exotic felids in a zoo in the Czech Republic. Arch Virol 2022; 167:1681-1685. [PMID: 35616738 PMCID: PMC9133317 DOI: 10.1007/s00705-022-05469-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
We report an outbreak of SARS-CoV-2 lineage alpha in gorillas and felid species in a zoo in Prague, Czech Republic. The course of illness and clinical signs are described, as are the results of characterization of these particular SARS-CoV-2 variants by next-generation sequencing and phylogenetic analysis. The putative transmission routes are also discussed.
Collapse
Affiliation(s)
- Alexander Nagy
- State Veterinary Institute Prague, Prague, Czech Republic
- National Institute of Public Health, Prague, Czech Republic
| | - Martina Stará
- State Veterinary Institute Prague, Prague, Czech Republic
| | | | - Lenka Černíková
- State Veterinary Institute Prague, Prague, Czech Republic.
- State Veterinary Institute Prague, Sídlištní 136/24, 165 03, Prague 6, Czech Republic.
| | | | | | - Kamil Sedlák
- State Veterinary Institute Prague, Prague, Czech Republic
| |
Collapse
|
18
|
Runft S, Färber I, Krüger J, Krüger N, Armando F, Rocha C, Pöhlmann S, Burigk L, Leitzen E, Ciurkiewicz M, Braun A, Schneider D, Baumgärtner L, Freisleben B, Baumgärtner W. Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Vet Pathol 2022; 59:565-577. [PMID: 35130766 DOI: 10.1177/03009858211073678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inspired rapid research efforts targeting the host range, pathogenesis and transmission mechanisms, and the development of antiviral strategies. Genetically modified mice, rhesus macaques, ferrets, and Syrian golden hamsters have been frequently used in studies of pathogenesis and efficacy of antiviral compounds and vaccines. However, alternatives to in vivo experiments, such as immortalized cell lines, primary respiratory epithelial cells cultured at an air-liquid interface, stem/progenitor cell-derived organoids, or tissue explants, have also been used for isolation of SARS-CoV-2, investigation of cytopathic effects, and pathogen-host interactions. Moreover, initial proof-of-concept studies for testing therapeutic agents can be performed with these tools, showing that animal-sparing cell culture methods could significantly reduce the need for animal models in the future, following the 3R principles of replace, reduce, and refine. So far, only few studies using animal-derived primary cells or tissues have been conducted in SARS-CoV-2 research, although natural infection has been shown to occur in several animal species. Therefore, the need for in-depth investigations on possible interspecies transmission routes and differences in susceptibility to SARS-CoV-2 is urgent. This review gives an overview of studies employing alternative culture systems like primary cell cultures, tissue explants, or organoids for investigations of the pathophysiology and reverse zoonotic potential of SARS-CoV-2 in animals. In addition, future possibilities of SARS-CoV-2 research in animals, including previously neglected methods like the use of precision-cut lung slices, will be outlined.
Collapse
Affiliation(s)
- Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Iris Färber
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Johannes Krüger
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nadine Krüger
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Federico Armando
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Cheila Rocha
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Laura Burigk
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eva Leitzen
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
19
|
Lino A, Cardoso MA, Martins‐Lopes P, Gonçalves HMR. Omicron - The new SARS-CoV-2 challenge? Rev Med Virol 2022; 32:e2358. [PMID: 35445774 PMCID: PMC9111063 DOI: 10.1002/rmv.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 virus has infected nearly 300 M people worldwide and has been associated with over 6 M deaths by March 2022. Since the virus emergence in December 2019 in Wuhan, several new mutations have been described. The World Health Organization has developed a working name for these emerging variants according to their impact on the worldwide population. In this context a high alert has been paid to variants of concern (VOC) due to their high infectiousness and transmissibility patterns. The most recent VOC, Omicron (B.1.1.529), has become dominant in the shortest time ever and has placed Europe under an overwhelming and unprecedented number of new cases. This variant has numerous mutations in regions that are associated with higher transmissibility, stronger viral binding, affinity and antibody escape. Moreover, the mutations and deletions present in the spike protein suggest that the SARS-CoV-2 specific attachment inhibitors may not be the best option for Omicron therapy. Omicron is the dominant variant circulating worldwide and, at the end of February 2022, it was responsible for nearly all sequences reported to GISAID. Omicron is made up of several sublineages, where the most common are BA.1 and BA.2 (or Nextstrain clade 21K and 21L, respectively). At a global level, it is possible to say that the proportion of BA.2 has been increasing relative to BA.1 and in some countries it has been replacing it at high rates. In order to better assess the Omicron effectiveness on antibody escape, spread and infectious ability it is of the highest relevance to maintain a worldwide tight surveillance. Even though this variant has been associated with a lower death rate, it is important to highlight that the number of people becoming infected is concerning and that further unpredictable mutations may emerge as the number of infected people rises.
Collapse
Affiliation(s)
- A. Lino
- BioISI ‐ Biosystems & Integrative Sciences InstituteFaculty of SciencesUniversity of LisbonLisbonPortugal
| | - M. A. Cardoso
- REQUIMTEInstituto Superior de Engenharia do PortoPortoPortugal
| | - P. Martins‐Lopes
- BioISI ‐ Biosystems & Integrative Sciences InstituteFaculty of SciencesUniversity of LisbonLisbonPortugal
- Department of Genetics and Biotechnology (DGB)University of Trás‐os‐Montes e Alto Douro (UTAD)Vila RealPortugal
| | | |
Collapse
|
20
|
Asif Z, Chen Z, Stranges S, Zhao X, Sadiq R, Olea-Popelka F, Peng C, Haghighat F, Yu T. Dynamics of SARS-CoV-2 spreading under the influence of environmental factors and strategies to tackle the pandemic: A systematic review. SUSTAINABLE CITIES AND SOCIETY 2022; 81:103840. [PMID: 35317188 PMCID: PMC8925199 DOI: 10.1016/j.scs.2022.103840] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/05/2023]
Abstract
COVID-19 is deemed as the most critical world health calamity of the 21st century, leading to dramatic life loss. There is a pressing need to understand the multi-stage dynamics, including transmission routes of the virus and environmental conditions due to the possibility of multiple waves of COVID-19 in the future. In this paper, a systematic examination of the literature is conducted associating the virus-laden-aerosol and transmission of these microparticles into the multimedia environment, including built environments. Particularly, this paper provides a critical review of state-of-the-art modelling tools apt for COVID-19 spread and transmission pathways. GIS-based, risk-based, and artificial intelligence-based tools are discussed for their application in the surveillance and forecasting of COVID-19. Primary environmental factors that act as simulators for the spread of the virus include meteorological variation, low air quality, pollen abundance, and spatial-temporal variation. However, the influence of these environmental factors on COVID-19 spread is still equivocal because of other non-pharmaceutical factors. The limitations of different modelling methods suggest the need for a multidisciplinary approach, including the 'One-Health' concept. Extended One-Health-based decision tools would assist policymakers in making informed decisions such as social gatherings, indoor environment improvement, and COVID-19 risk mitigation by adapting the control measurements.
Collapse
Affiliation(s)
- Zunaira Asif
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, Western University, Ontario, Canada
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Canada
| | - Rehan Sadiq
- School of Engineering (Okanagan Campus), University of British Columbia, Kelowna, BC, Canada
| | | | - Changhui Peng
- Department of Biological Sciences, University of Quebec in Montreal, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Canada
| |
Collapse
|
21
|
Zhu Q, Li B, Sun D. Advances in Bovine Coronavirus Epidemiology. Viruses 2022; 14:v14051109. [PMID: 35632850 PMCID: PMC9147158 DOI: 10.3390/v14051109] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| |
Collapse
|
22
|
Vilela J, Rohaim MA, Munir M. Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines (Basel) 2022; 10:259. [PMID: 35214716 PMCID: PMC8876055 DOI: 10.3390/vaccines10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine against respiratory pathogens. The unique features of AOaVs include over 50 years of safety profile, stable expression of foreign genes, high infectivity rates in avian and mammalian hosts, broad host spectrum, limited possibility of recombination and lack of pre-existing immunity in humans. Additionally, AOaVs vectors allow the production of economical and high quantities of vaccine antigen in chicken embryonated eggs and several GMP-grade mammalian cell lines. In this review, we describe the biology of AOaVs and define protocols to manipulate AOaVs genomes in effectively designing vaccine vectors. We highlighted the potential and established portfolio of AOaV-based vaccines for multiple respiratory and non-respiratory viruses of veterinary and medical importance. We comment on the limitations of AOaV-based vaccines and propose mitigations strategies. The exploitation of AOaVs vectors is expanding at an exciting pace; thus, we have limited the scope to their use as vaccines against viral pathogens in both animals and humans.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| |
Collapse
|
23
|
Cardillo L, de Martinis C, Brandi S, Levante M, Cozzolino L, Spadari L, Boccia F, Carbone C, Pompameo M, Fusco G. SARS-CoV-2 Serological and Biomolecular Analyses among Companion Animals in Campania Region (2020–2021). Microorganisms 2022; 10:microorganisms10020263. [PMID: 35208718 PMCID: PMC8879797 DOI: 10.3390/microorganisms10020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
The first reports of SARS-CoV-2 among domestic and wild animals, together with the rapid emergence of new variants, have created serious concerns regarding a possible spillback from animal hosts, which could accelerate the evolution of new viral strains. The present study aimed to investigate the prevalence and the transmission of SARS-CoV-2 among both owned and stray pets. A total of 182 dogs and 313 cats were tested for SARS-CoV-2. Specimens collected among owned and stray pets were subjected to RT-PCR and serological examinations. No viral RNA was detected, while anti-N antibodies were observed in six animals (1.3%), one dog (0.8%) and five cats (1.7%). Animals’ background revealed that owned cats, living with owners with COVID-19, showed significantly different prevalence compared to stray ones (p = 0.0067), while no difference was found among dogs. Among the seropositive pets, three owned cats also showed moderate neutralizing antibody titers. Pets and other species are susceptible to SARS-CoV-2 infection because of the spike affinity towards their ACE2 cellular receptor. Nevertheless, the risk of retransmission remains unclear since pet-to-human transmission has never been described. Due to the virus’ high mutation rate, new reservoirs cannot be excluded; thus, it is reasonable to test pets, mostly if living in households affected by COVID-19.
Collapse
Affiliation(s)
- Lorena Cardillo
- Unit of Exotic and Vector-Borne Diseases, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (L.C.); (M.L.); (L.C.)
| | - Claudio de Martinis
- Unit of Exotic and Vector-Borne Diseases, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (L.C.); (M.L.); (L.C.)
- Correspondence: ; Tel.: +39-0817865509
| | - Sergio Brandi
- Unit of Virology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (S.B.); (G.F.)
| | - Martina Levante
- Unit of Exotic and Vector-Borne Diseases, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (L.C.); (M.L.); (L.C.)
| | - Loredana Cozzolino
- Unit of Exotic and Vector-Borne Diseases, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (L.C.); (M.L.); (L.C.)
| | - Luisa Spadari
- Unit of Serology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Federica Boccia
- Unit of Animal Health, Department of Prevention, Azienda Sanitaria Locale (ASL), Napoli 3 Sud, 80100 Naples, Italy; (F.B.); (C.C.)
| | - Carmine Carbone
- Unit of Animal Health, Department of Prevention, Azienda Sanitaria Locale (ASL), Napoli 3 Sud, 80100 Naples, Italy; (F.B.); (C.C.)
| | - Marina Pompameo
- Unit of Animal Health “Presidio Ospedaliero Veterinario”, Department of Prevention, Azienda Sanitaria Locale (ASL), Napoli 1 Centro, 80100 Naples, Italy;
| | - Giovanna Fusco
- Unit of Virology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (S.B.); (G.F.)
| |
Collapse
|
24
|
SARS-CoV-2 Reverse Zoonoses to Pumas and Lions, South Africa. Viruses 2022; 14:v14010120. [PMID: 35062324 PMCID: PMC8778549 DOI: 10.3390/v14010120] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 01/05/2023] Open
Abstract
Reverse-zoonotic infections of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) from humans to wildlife species internationally raise concern over the emergence of new variants in animals. A better understanding of the transmission dynamics and pathogenesis in susceptible species will mitigate the risk to humans and wildlife occurring in Africa. Here we report infection of an exotic puma (July 2020) and three African lions (July 2021) in the same private zoo in Johannesburg, South Africa. One Health genomic surveillance identified transmission of a Delta variant from a zookeeper to the three lions, similar to those circulating in humans in South Africa. One lion developed pneumonia while the other cases had mild infection. Both the puma and lions remained positive for SARS-CoV-2 RNA for up to 7 weeks.
Collapse
|
25
|
Amoah ID, Abunama T, Awolusi OO, Pillay L, Pillay K, Kumari S, Bux F. Effect of selected wastewater characteristics on estimation of SARS-CoV-2 viral load in wastewater. ENVIRONMENTAL RESEARCH 2022; 203:111877. [PMID: 34390718 PMCID: PMC8356757 DOI: 10.1016/j.envres.2021.111877] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 05/18/2023]
Abstract
Wastewater-based epidemiology has been used as a tool for surveillance of COVID-19 infections. This approach is dependent on the detection and quantification of SARS-CoV-2 RNA in untreated/raw wastewater. However, the quantification of the viral RNA could be influenced by the physico-chemical properties of the wastewater. This study presents the first use of Adaptive Neuro-Fuzzy Inference System (ANFIS) to determine the potential impact of physico-chemical characteristics of wastewater on the detection and concentration of SARS-CoV-2 RNA in wastewater. Raw wastewater samples from four wastewater treatment plants were investigated over four months. The physico-chemical characteristics of the raw wastewater was recorded, and the SARS-CoV-2 RNA concentration determined via amplification with droplet digital polymerase chain reaction. The wastewater characteristics considered were chemical oxygen demand, flow rate, ammonia, pH, permanganate value, and total solids. The mean SARS-CoV-2 RNA concentrations ranged from 648.1(±514.6) copies/mL to 1441.0(±1977.8) copies/mL. Among the parameters assessed using the ANFIS model, ammonia and pH showed significant association with the concentration of SARS-CoV-2 RNA measured. Increasing ammonia concentration was associated with increasing viral RNA concentration and pH between 7.1 and 7.4 were associated with the highest SARS-CoV-2 concentration. Other parameters, such as total solids, were also observed to influence the viral RNA concentration, however, this observation was not consistent across all the wastewater treatment plants. The results from this study indicate the importance of incorporating wastewater characteristic assessment into wastewater-based epidemiology for a robust and accurate COVID-19 surveillance.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Taher Abunama
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oluyemi Olatunji Awolusi
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Leanne Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Kriveshin Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
26
|
Phyu S, Joseph T, Goulart M. Strengthening Biorisk Management in Research Laboratories with Security-Sensitive Biological Agents Like SARS-CoV-2. Methods Mol Biol 2022; 2452:395-439. [PMID: 35554919 DOI: 10.1007/978-1-0716-2111-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, we discuss potential incidents associated with SARS-CoV-2 experimental work in high containment research laboratories. The risk landscape in high containment laboratories is changing due to the strong innovation drive of the life sciences research. Thus, the WHO has recommended life sciences organizations to incorporate good research practices and ethical principles into a risk-based approach of the biorisk management (BRM). Currently, BRM systems in high containment laboratories are predominantly steered by operational personnel and laboratory professional. It is well known that without having a systematic approach and leadership support from the organization, the BRM system in the high containment laboratory will not be sustainable. Even though the roles of organizations and their leadership in establishing the BRM system are spelt out in many international standards, guidance documents and national legislations, operational aspects of these roles are rarely discussed.It is therefore important for everyone to understand about their roles in organizational processes (communication, decision, and performance evaluation) involved in implementation of BRM related operational activities. In this chapter, discussion is based on operational activities of four main organizational behaviors that are considered to have strengthened BRM systems in high containment laboratories: (1) displaying a visible commitment and support to the BRM system from different levels of management, (2) developing a competent and responsible workforce with BRM technical skills and problem identification/solving skills, (3) integrating learning and improvement principles into the BRM system, and (4) enhancing the continuous motivation of laboratory personnel to avoid complacency. The categorization of these organizational behaviors is based on the International Atomic Energy Agency's principles and guidance for strengthening the safety and security culture in nuclear facilities. Furthermore, we encourage the laboratory management to identify gaps in processes and activities related to those organizational behaviors so that one could rapidly address biosafety and biosecurity vulnerabilities in high containment laboratories.
Collapse
Affiliation(s)
- Sabai Phyu
- Laboratory Biorisk Consultancy & Training Pte. Ltd., Singapore, Singapore.
- European Union Chemical, Biological, Radiological and Nuclear Risk Mitigation Centres of Excellence Regional Secretariat-South East Asia/B&S Europe, Manila, Philippines.
| | - Tessy Joseph
- BSL-3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
27
|
Frazzini S, Amadori M, Turin L, Riva F. SARS CoV-2 infections in animals, two years into the pandemic. Arch Virol 2022; 167:2503-2517. [PMID: 36207554 PMCID: PMC9543933 DOI: 10.1007/s00705-022-05609-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Abstract
In December 2019, several cases of pneumonia caused by a novel coronavirus, later identified as SARS-CoV-2, were detected in the Chinese city of Wuhan. Due to its rapid worldwide spread, on 11 March 2020 the World Health Organization declared a pandemic state. Since this new virus is genetically similar to the coronaviruses of bats, SARS-CoV-2 was hypothesized to have a zoonotic origin. Within a year of the appearance of SARS-CoV-2, several cases of infection were also reported in animals, suggesting human-to-animal and animal-to-animal transmission among mammals. Natural infection has been found in companion animals as well as captive animals such as lions, tigers, and gorillas. Among farm animals, so far, minks have been found to be susceptible to SARS-CoV-2 infection, whereas not all the relevant studies agree on the susceptibility of pigs. Experimental infections have documented the susceptibility to SARS-CoV-2 of further animal species, including mice, hamsters, cats, dogs, ferrets, raccoon dogs, cattle, and non-human primates. Experimental infections have proven crucial for clarifying the role of animals in transmission and developing models for viral pathogenesis and immunotherapy. On the whole, this review aims to update and critically revise the current information on natural and experimental SARS-CoV-2 infections in animals.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | | | - Lauretta Turin
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | - Federica Riva
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| |
Collapse
|
28
|
Dileepan M, Di D, Huang Q, Ahmed S, Heinrich D, Ly H, Liang Y. Seroprevalence of SARS-CoV-2 (COVID-19) exposure in pet cats and dogs in Minnesota, USA. Virulence 2021; 12:1597-1609. [PMID: 34125647 PMCID: PMC8205054 DOI: 10.1080/21505594.2021.1936433] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is continuing to spread globally. SARS-CoV-2 infections of feline and canine species have also been reported. However, it is not entirely clear to what extent natural SARS-CoV-2 infection of pet dogs and cats is in households. We have developed enzyme-linked immunosorbent assays (ELISAs) using recombinant SARS-CoV-2 nucleocapsid (N) protein and the receptor-binding-domain (RBD) of the spike protein, and the SARS-CoV-2 spike-pseudotyped vesicular stomatitis virus (VSV)-based neutralization assay to screen serum samples of 239 pet cats and 510 pet dogs in Minnesota in the early phase of the COVID-19 pandemic from mid-April to early June 2020 for evidence of SARS-CoV-2 exposures. A cutoff value was used to identify the seropositive samples in each experiment. The average seroprevalence of N- and RBD-specific antibodies in pet cats were 8% and 3%, respectively. Among nineteen (19) N-seropositive cat sera, fifteen (15) exhibited neutralizing activity and seven (7) were also RBD-seropositive. The N-based ELISA is also specific and does not cross react with antigens of common feline coronaviruses. In contrast, SARS-CoV-2 antibodies were detected at a very low percentage in pet dogs (~ 1%) and were limited to IgG antibodies against SARS-CoV-2 N protein with no neutralizing activities. Our results demonstrate that SARS-CoV-2 seropositive rates are higher in pet cats than in pet dogs in MN early in the pandemic and that SARS-CoV-2 N-specific IgG antibodies can detect SARS-CoV-2 infections in companion animals with higher levels of specificity and sensitivity than RBD-specific IgG antibodies in ELISA-based assays.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Da Di
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Qinfeng Huang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Shamim Ahmed
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Daniel Heinrich
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, USA
| |
Collapse
|
29
|
Murphy HL, Ly H. Understanding the prevalence of SARS-CoV-2 (COVID-19) exposure in companion, captive, wild, and farmed animals. Virulence 2021; 12:2777-2786. [PMID: 34696707 PMCID: PMC8667879 DOI: 10.1080/21505594.2021.1996519] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/25/2022] Open
Abstract
Several animal species, including ferrets, hamsters, monkeys, and raccoon dogs, have been shown to be susceptible to experimental infection by the human severe acute respiratory syndrome coronaviruses, such as SARS-CoV and SARS-CoV-2, which were responsible for the 2003 SARS outbreak and the 2019 coronavirus disease (COVID-19) pandemic, respectively. Emerging studies have shown that SARS-CoV-2 natural infection of pet dogs and cats is also possible, but its prevalence is not fully understood. Experimentally, it has been demonstrated that SARS-CoV-2 replicates more efficiently in cats than in dogs and that cats can transmit the virus through aerosols. With approximately 470 million pet dogs and 370 million pet cats cohabitating with their human owners worldwide, the finding of natural SARS-CoV-2 infection in these household pets has important implications for potential zoonotic transmission events during the COVID-19 pandemic as well as future SARS-related outbreaks. Here, we describe some of the ongoing worldwide surveillance efforts to assess the prevalence of SARS-CoV-2 exposure in companion, captive, wild, and farmed animals, as well as provide some perspectives on these efforts including the intra- and inter-species coronavirus transmissions, evolution, and their implications on the human-animal interface along with public health. Some ongoing efforts to develop and implement a new COVID-19 vaccine for animals are also discussed. Surveillance initiatives to track SARS-CoV-2 exposures in animals are necessary to accurately determine their impact on veterinary and human health, as well as define potential reservoir sources of the virus and its evolutionary and transmission dynamics.
Collapse
Affiliation(s)
- Hannah L. Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
30
|
Neira V, Brito B, Agüero B, Berrios F, Valdés V, Gutierrez A, Ariyama N, Espinoza P, Retamal P, Holmes EC, Gonzalez-Reiche AS, Khan Z, van de Guchte A, Dutta J, Miorin L, Kehrer T, Galarce N, Almonacid LI, Levican J, van Bakel H, García-Sastre A, Medina RA. A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners. Emerg Microbes Infect 2021; 10:376-383. [PMID: 33317424 PMCID: PMC7939552 DOI: 10.1080/22221751.2020.1863132] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in domestic and wild cats. However, little is known about natural viral infections of domestic cats, although their importance for modelling disease spread, informing strategies for managing positive human-animal relationships and disease prevention. Here, we describe the SARS-CoV-2 infection in a household of two human adults and sibling cats (one male and two females) using real-time RT-PCR, an ELISA test, viral sequencing, and virus isolation. On May 5th, 2020, the cat-owners tested positive for SARS-CoV-2. Two days later, the male cat showed mild respiratory symptoms and tested positive. Four days after the male cat, the two female cats became positive, asymptomatically. Also, one human and one cat showed antibodies against SARS-CoV-2. All cats excreted detectable SARS-CoV-2 RNA for a shorter duration than humans and viral sequences analysis confirmed human-to-cat transmission. We could not determine if cat-to-cat transmission also occurred.
Collapse
Affiliation(s)
- Víctor Neira
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Bárbara Brito
- The three institute – University of Technology Sydney, Sydney, Australia
| | - Belén Agüero
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Felipe Berrios
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Valentina Valdés
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Alberto Gutierrez
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Naomi Ariyama
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Patricio Espinoza
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Patricio Retamal
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Edward C. Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Ana S. Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolás Galarce
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Leonardo I. Almonacid
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Levican
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafael A. Medina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Bonilla-Aldana DK, Rodriguez-Morales AJ. The threat of the spread of SARS-CoV-2 variants in animals. Vet Q 2021; 41:321-322. [PMID: 34789087 PMCID: PMC8635604 DOI: 10.1080/01652176.2021.2008046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- D Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación GISCA, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia
| | - Alfonso J Rodriguez-Morales
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación GISCA, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia.,Universidad Científica del Sur, Lima, Perú.,Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia.,School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia
| |
Collapse
|
32
|
Wang B, Svetlov D, Artsimovitch I. NMPylation and de-NMPylation of SARS-CoV-2 nsp9 by the NiRAN domain. Nucleic Acids Res 2021; 49:8822-8835. [PMID: 34352100 PMCID: PMC8385902 DOI: 10.1093/nar/gkab677] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Cerino P, Buonerba C, Brambilla G, Atripaldi L, Tafuro M, Concilio DD, Vassallo L, Conte GL, Cuomo MC, Maiello I, D'Auria J, Cardinale D, Viscardi M, Rofrano G, Gallo A, Brusco P, Pizzolante A, Cicalese V, Galdi P, Galdi L, Vita SD, Volzone P, Vuolo GD, Coppola A, Pierri B, Fusco G. No detection of SARS-CoV-2 in animals exposed to infected keepers: results of a COVID-19 surveillance program. Future Sci OA 2021; 7:FSO711. [PMID: 34254029 PMCID: PMC8056746 DOI: 10.2144/fsoa-2021-0038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/01/2022] Open
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, has rarely been associated with transmission from humans to animals (reverse zoonotic transmission). In this retrospective study, the authors reviewed data obtained from 236 animals, including buffaloes, goats/sheep, horses, carrier pigeons, rabbits, hens, snakes, pigs and cows that were screened for SARS-CoV-2 infection because they had been in contact with their SARS-CoV-2-positive breeder for at least 2 weeks. None of the tested animals were found to be positive. The authors' findings suggest that the risk of reverse zoonotic transmission among bred animals and SARS-CoV-2-positive breeders is very low or nonexistent. Additional studies are warranted.
Collapse
Affiliation(s)
- Pellegrino Cerino
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Carlo Buonerba
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Gianfranco Brambilla
- Istituto Superiore di Sanita, Food Safety, Nutrition, & Veterinary Public Health Department, Rome, 00161, Italy
| | - Luigi Atripaldi
- Cotugno Hospital, AORN Ospedali dei Colli, Naples, 80131, Italy
| | - Maria Tafuro
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Denise Di Concilio
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Lucia Vassallo
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Gabriella Lo Conte
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Maria Concetta Cuomo
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Ivana Maiello
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Jacopo D'Auria
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Davide Cardinale
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Maurizio Viscardi
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Giuseppe Rofrano
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Alfonso Gallo
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Pasquale Brusco
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Antonio Pizzolante
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Vittorio Cicalese
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Pio Galdi
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Lydia Galdi
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Sabato De Vita
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Palmiero Volzone
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Gabriele Di Vuolo
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| | - Annachiara Coppola
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
- Dipartimento di Medicina Sperimentale, Universita’ degli studi della Campania ‘L. Vanvitelli’, Naples, 80138, Italy
| | - Biancamaria Pierri
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
- Department of Medicine, Surgery & Dentistry (Scuola Medica Salernitana), University of Salerno, Baronissi, 84081, Italy
| | - Giovanna Fusco
- Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, 80055, Italy
| |
Collapse
|
34
|
Liu F, Lin J, Wang Q, Shan H. Rescue of recombinant canine distemper virus that expresses S1 subunit of SARS-CoV-2 spike protein in vitro. Microb Pathog 2021; 158:105108. [PMID: 34324997 PMCID: PMC8312057 DOI: 10.1016/j.micpath.2021.105108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19), as an unprecedented pandemic, has rapidly spread around the globe. Its etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belongs to the genus Betacoronavirus in the family Coronaviridae. The viral S1 subunit has been demonstrated to have a powerful potential in inducing protective immune responses in vivo. Since April 2020, farmed minks were frequently reported to be infected with the SARS-CoV-2 in different countries. Unfortunately, there has been no available veterinary vaccine as yet. In this study, we used reverse genetics to rescue a recombinant canine distemper virus (CDV) that could express the SARS-CoV-2 S1 subunit in vitro. The S1 subunit sequence was demonstrated to be relatively stable in the genome of recombinant CDV during twenty serial viral passages in cells. However, due to introduction of the S1 subunit sequence into CDV genome, this recombinant CDV grew more slowly than the wild-type strain did. The genomic backbone of recombinant CDV was derived from a virulence-attenuating strain (QN strain). Therefore, if able to induce immune protections in minks from canine distemper and COVID-19 infections, this recombinant would be a potential vaccine candidate for veterinary use.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jiahui Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
35
|
Chazal N. Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes? Front Microbiol 2021; 12:682603. [PMID: 34335504 PMCID: PMC8317507 DOI: 10.3389/fmicb.2021.682603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that emerged in late 2019, is the etiologic agent of the current "coronavirus disease 2019" (COVID-19) pandemic, which has serious health implications and a significant global economic impact. Of the seven human coronaviruses, all of which have a zoonotic origin, the pandemic SARS-CoV-2, is the third emerging coronavirus, in the 21st century, highly pathogenic to the human population. Previous human coronavirus outbreaks (SARS-CoV-1 and MERS-CoV) have already provided several valuable information on some of the common molecular and cellular mechanisms of coronavirus infections as well as their origin. However, to meet the new challenge caused by the SARS-CoV-2, a detailed understanding of the biological specificities, as well as knowledge of the origin are crucial to provide information on viral pathogenicity, transmission and epidemiology, and to enable strategies for therapeutic interventions and drug discovery. Therefore, in this review, we summarize the current advances in SARS-CoV-2 knowledges, in light of pre-existing information of other recently emerging coronaviruses. We depict the specificity of the immune response of wild bats and discuss current knowledge of the genetic diversity of bat-hosted coronaviruses that promotes viral genome expansion (accessory gene acquisition). In addition, we describe the basic virology of coronaviruses with a special focus SARS-CoV-2. Finally, we highlight, in detail, the current knowledge of genes and accessory proteins which we postulate to be the major keys to promote virus adaptation to specific hosts (bat and human), to contribute to the suppression of immune responses, as well as to pathogenicity.
Collapse
Affiliation(s)
- Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
36
|
Allosteric Activation of SARS-CoV-2 RNA-Dependent RNA Polymerase by Remdesivir Triphosphate and Other Phosphorylated Nucleotides. mBio 2021; 12:e0142321. [PMID: 34154407 PMCID: PMC8262916 DOI: 10.1128/mbio.01423-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The catalytic subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) Nsp12 has a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain that transfers nucleoside monophosphates to the Nsp9 protein and the nascent RNA. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites, and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation in bacterial cells) Nsp12 exists in an inactive state in which NiRAN-RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or nucleoside triphosphates (NTPs) partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote the synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN-RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and the design of its inhibitors.
Collapse
|
37
|
Goraichuk IV, Arefiev V, Stegniy BT, Gerilovych AP. Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Res 2021; 302:198473. [PMID: 34118360 PMCID: PMC8188804 DOI: 10.1016/j.virusres.2021.198473] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) is the first known pandemic caused by a coronavirus. Its causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appears to be capable of infecting different mammalian species. Recent detections of this virus in pet, zoo, wild, and farm animals have compelled inquiry regarding the zoonotic (animal-to-human) and reverse zoonotic (human-to-animal) transmissibility of SARS-CoV-2 with the potential of COVID-19 pandemic evolving into a panzootic. It is important to monitor the global spread of disease and to assess the significance of genomic changes to support prevention and control efforts during a pandemic. An understanding of the SARS-CoV-2 epidemiology provides opportunities to prevent the risk of repeated re-infection of humans and requires a robust One Health-based investigation. This review paper describes the known properties and the existing gaps in scientific knowledge about the zoonotic and reverse zoonotic transmissibility of the novel virus SARS-CoV-2 and the COVID-19 disease it causes.
Collapse
Affiliation(s)
- Iryna V Goraichuk
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Vasiliy Arefiev
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Borys T Stegniy
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| | - Anton P Gerilovych
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", 83 Pushkinska street, Kharkiv, 61023, Ukraine.
| |
Collapse
|
38
|
Ferri M, Lloyd-Evans M. The contribution of veterinary public health to the management of the COVID-19 pandemic from a One Health perspective. One Health 2021; 12:100230. [PMID: 33681446 PMCID: PMC7912361 DOI: 10.1016/j.onehlt.2021.100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The human coronavirus disease 2019 (COVID-19) pandemic represents one of the greatest public health crises in recent history, which has caused unprecedented and massive disruptions of social and economic life globally, and the biggest communication challenges for public information-sharing. While there is strong evidence that bats are the animal source of SARS-CoV-2, the causative agent of COVID-19, there are many uncertainties around the epidemiology, the intermediate animal species, and potential animal routes of SARS-Cov-2 transmission to humans. While it has also long been known that coronaviruses circulate among different animal species, including SARS-CoV and MERS-CoV, responsible for the pandemics of severe acute respiratory syndrome and Middle East respiratory syndrome endemic in Middle Eastern countries in 2002-2003 and 2012 respectively, the way this pandemic is being managed tends to downplay or neglect the veterinary contribution, which is not in line with the One Health approach, if we consider that the genesis of the COVID-19 pandemic, likewise SARS and MERS lies on a close and interdependent links of humans, animals and the environment. To overcome this flaw, and to better operationalize the One Health approach, there are several lines of contributions the veterinary profession might provide to manage the COVID-19 pandemic in the framework of interventions jointly concerted in the veterinary and medical domains, notably: the experience in dealing with past animal epidemics, the skills in conducting wildlife surveillance targeting emerging pathogens at risky hot spots, and with the aim to predict and prevent future pandemics, the laboratory support for the diagnosis and molecular characterization of SARS-CoV-2 and human samples testing, and animal import risk assessment to define COVID-19 risk strategy for international air travel. The veterinary profession presents itself ontologically with a strong One Health accent and all the related valuable knowledge can be properly integrated within centralised multidisciplinary task-forces set up at the national and international level, with a renewed role in the management and monitoring structures required for managing the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maurizio Ferri
- Scientific Coordinator of the Italian Society of Preventive Veterinary Medicine (SIMeVeP), Italy
| | - Meredith Lloyd-Evans
- Representative for Association of Veterinary Consultants on the European Food Safety Agency's Stakeholder Advisory Group on Emerging Risks, Founder of BioBridge Ltd, Cambridge, UK
| |
Collapse
|
39
|
Abu Ali H, Yaniv K, Bar-Zeev E, Chaudhury S, Shagan M, Lakkakula S, Ronen Z, Kushmaro A, Nir O. Tracking SARS-CoV-2 RNA through the Wastewater Treatment Process. ACS ES&T WATER 2021; 1:1161-1167. [PMID: 37566373 PMCID: PMC8043203 DOI: 10.1021/acsestwater.0c00216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Municipal sewage carries degraded and intact viral particles and RNA (ribonucleic acid) of SARS-CoV-2 (severe acute respiratory coronavirus 2), shed by COVID-19 (coronavirus disease 2019) patients, to sewage and eventually to wastewater treatment plants. Proper wastewater treatment can prevent uncontrolled discharges of the virus into the environment. However, the role of different wastewater treatment stages in reducing viral RNA concentrations is, thus far, unknown. Here, we quantified SARS-CoV-2 RNA in raw sewage and during the main stages of the activated sludge process from two wastewater treatment plants in Israel, on three different days during the 2020 COVID-19 outbreak. To reduce the detection limit, samples were concentrated prior to quantification by real-time polymerase chain reaction by a factor of 2-43 using ultrafiltration. On average, ∼1 log RNA removal was attained by each of the primary and secondary treatment steps; however, >100 copies of SARS-CoV-2 RNA/mL remained in the secondary effluents. Following chlorination, SARS-CoV-2 RNA was detected only once, likely due to an insufficient chlorine dose. Our results emphasize the capabilities and limitations of the conventional wastewater treatment process in reducing the SARS-CoV-2 RNA concentration and present preliminary evidence for the importance of tertiary treatment and chlorination in reducing dissemination of the virus to the environment.
Collapse
Affiliation(s)
- Hala Abu Ali
- Blaustein Institutes for Desert Research, Zuckerberg
Institute for Water Research, Ben-Gurion University of the
Negev, Sede Boqer Campus, Beer Sheva 8499000,
Israel
| | - Karin Yaniv
- Avram and Stella Goldstein-Goren Department of
Biotechnology Engineering and The Ilse Katz Center for Meso and Nanoscale Science and
Technology, Ben-Gurion University of the Negev, Beer Sheva
84105, Israel
| | - Edo Bar-Zeev
- Blaustein Institutes for Desert Research, Zuckerberg
Institute for Water Research, Ben-Gurion University of the
Negev, Sede Boqer Campus, Beer Sheva 8499000,
Israel
| | - Sanhita Chaudhury
- Blaustein Institutes for Desert Research, Zuckerberg
Institute for Water Research, Ben-Gurion University of the
Negev, Sede Boqer Campus, Beer Sheva 8499000,
Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren Department of
Biotechnology Engineering and The Ilse Katz Center for Meso and Nanoscale Science and
Technology, Ben-Gurion University of the Negev, Beer Sheva
84105, Israel
| | - Satish Lakkakula
- Avram and Stella Goldstein-Goren Department of
Biotechnology Engineering and The Ilse Katz Center for Meso and Nanoscale Science and
Technology, Ben-Gurion University of the Negev, Beer Sheva
84105, Israel
| | - Zeev Ronen
- Blaustein Institutes for Desert Research, Zuckerberg
Institute for Water Research, Ben-Gurion University of the
Negev, Sede Boqer Campus, Beer Sheva 8499000,
Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of
Biotechnology Engineering and The Ilse Katz Center for Meso and Nanoscale Science and
Technology, Ben-Gurion University of the Negev, Beer Sheva
84105, Israel
| | - Oded Nir
- Blaustein Institutes for Desert Research, Zuckerberg
Institute for Water Research, Ben-Gurion University of the
Negev, Sede Boqer Campus, Beer Sheva 8499000,
Israel
| |
Collapse
|
40
|
Wang B, Svetlov V, Wolf YI, Koonin EV, Nudler E, Artsimovitch I. Allosteric activation of SARS-CoV-2 RdRp by remdesivir triphosphate and other phosphorylated nucleotides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.428004. [PMID: 33948598 PMCID: PMC8095223 DOI: 10.1101/2021.01.24.428004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), Nsp12, has a unique NiRAN domain that transfers nucleoside monophosphates to the Nsp9 protein. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation) Nsp12 exists in inactive state in which NiRAN/RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or NTPs partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN/RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically-linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and design of its inhibitors. HIGHLIGHTS Codon-optimization of Nsp12 triggers misfolding and activity lossSlow translation, accessory Nsp7 and Nsp8 subunits, and NTPs rescue Nsp12Non-substrate nucleotides activate RNA chain synthesis, likely via NiRAN domainCrosstalk between two Nsp12 active sites that bind the same ligands.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C. Host Diversity and Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. Pathogens 2021; 10:180. [PMID: 33567598 PMCID: PMC7915269 DOI: 10.3390/pathogens10020180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging infectious diseases present great risks to public health. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become an urgent public health issue of global concern. It is speculated that the virus first emerged through a zoonotic spillover. Basic research studies have suggested that bats are likely the ancestral reservoir host. Nonetheless, the evolutionary history and host susceptibility of SARS-CoV-2 remains unclear as a multitude of animals has been proposed as potential intermediate or dead-end hosts. SARS-CoV-2 has been isolated from domestic animals, both companion and livestock, as well as in captive wildlife that were in close contact with human COVID-19 cases. Currently, domestic mink is the only known animal that is susceptible to a natural infection, develop severe illness, and can also transmit SARS-CoV-2 to other minks and humans. To improve foundational knowledge of SARS-CoV-2, we are conducting a synthesis review of its host diversity and transmission pathways. To mitigate this COVID-19 pandemic, we strongly advocate for a systems-oriented scientific approach that comprehensively evaluates the transmission of SARS-CoV-2 at the human and animal interface.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Summit County Local Public Health Agency, Summit County, Frisco, CO 80443, USA;
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Yosra A. Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
42
|
Zhang M, Huang J, Wu X, Lv L, Huang A, Zhu S. Internal treatment in traditional Chinese medicine for patients with COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23739. [PMID: 33371129 PMCID: PMC7748210 DOI: 10.1097/md.0000000000023739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The safety and effectiveness of Internal Treatment in Traditional Chinese Medicine (TCM) on Corona Virus Disease 2019 (COVID-19) is the main subject of this protocol for systematic review and meta-analysis. METHODS The following online databases will be searched from inception to April 2020: Cochrane Central Register of Controlled Trials, PubMed, Web of Science, EMBASE, China National Knowledge Infrastructure, Traditional Chinese Medicine, Chinese Biomedical Literature Database, Wan-Fang Database, and Chinese Scientific Journal Database. All published randomized controlled trials in English or Chinese related to Internal Treatment in Traditional Chinese Medicine for COVID-19 will be included. Primary outcomes are time of disappearance of main symptoms and serum cytokine levels. Secondary outcomes is Accompanying symptoms disappear rate, negative COVID-19 results rate on 2 consecutive occasions CT image improvement, average hospitalization time, occurrence rate of common type to severe form, clinical cure rate, and mortality. Two reviewers will conduct the study selection, data extraction, and assessment independently. The assessment of risk of bias and data synthesis will be conducted with Review Manager Software V.5.2. RESULTS The results will provide a high-quality synthesis of current evidence for researchers in this subject area. CONCLUSION The conclusion of our study will provide evidence to judge whether the internal treatment in traditional Chinese medicine is an effective intervention for COVID-19 patients. PROSPERO REGISTRATION NUMBER CRD42020180178.
Collapse
Affiliation(s)
- Mingxu Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine
| | - Ju Huang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine
| | - Xinhui Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, PR
| | - Lizeyu Lv
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, PR
| | - Anming Huang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine
| | - Siquan Zhu
- Eye School of Chengdu University of Traditional Chinese Medicine
- Department of Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|