1
|
Rodrigues MIDS, Cruz GHRD, Lucini F, Almeida AMD, Pereira FF, Ramalho RT, Simionatto S, Rossato L. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host for the study of pathogenicity in Candida auris. Microb Pathog 2025; 198:107115. [PMID: 39536838 DOI: 10.1016/j.micpath.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Candida auris, a multidrug-resistant fungal pathogen, has emerged as a significant global health threat due to its high transmission and mortality rates, especially in healthcare settings. OBJECTIVE This study aimed to establish the larvae of the coleopteran Tenebrio molitor (mealworm) as an in vivo model to evaluate the virulence of different C. auris strains. METHODS T. molitor larvae were inoculated with varying doses and strains of C. auris. Mortality rates were monitored, melanization responses, and phenoloxidase activity were assessed. Histopathological analyses were conducted to observe tissue invasion by the yeast cells. Additionally, a biofilm formation test was included as a complementary analysis to determine if biofilm production would influence the virulence of the C. auris strains. RESULTS A dose-dependent increase in mortality was observed, with the highest fungal load leading to the highest mortality rates. The study also revealed significant differences in virulence among the strains, with those from Kuwait and the reference strain CBS 10913 showing the highest pathogenicity. Melanization rates were significantly higher in infected larvae, indicating an active immune response. The histopathological analysis revealed the presence of C. auris cells within the tissue of T. molitor larvae. However, the biofilm formation complementary test did not show a significant difference in virulence among the different clades of C. auris. CONCLUSION The T. molitor model effectively demonstrated the pathogenic potential and virulence differences of C. auris strains. Strains from Kuwait and the reference strain CBS 10913 exhibited the highest virulence, causing 100 % mortality within 24 h. The model also highlighted significant biofilm formation and melanization responses, correlating with fungal burden. This insect model provides a valuable and cost-effective tool for preliminary virulence screening of clinical yeast strains, offering insights into host-pathogen interactions and the potential for evaluating antifungal treatments in vivo.
Collapse
Affiliation(s)
| | | | - Fabíola Lucini
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Alexandre Moreira de Almeida
- Department of Biological and Environmental Science, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Fabricio Fagundes Pereira
- Department of Biological and Environmental Science, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Rondon Tosta Ramalho
- Health and Development in the Midwest Region, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Luana Rossato
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
2
|
Cancino-Muñoz I, Mulet-Bayona JV, Salvador-García C, Tormo-Palop N, Guna R, Gimeno-Cardona C, González-Candelas F. Short-term evolution and dispersal patterns of fluconazole-resistance in Candida auris clade III. mBio 2024:e0316424. [PMID: 39727422 DOI: 10.1128/mbio.03164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
The rapid increase in infections caused by the emerging fungal pathogen Candida auris is of global concern, and understanding its expansion is a priority. The phylogenetic diversity of the yeast is clustered in five major clades, among which clade III is particularly relevant, as most of its strains exhibit resistance to fluconazole, reducing the therapeutic alternatives and provoking outbreaks that are difficult to control. In this study, we have investigated the phylogenetic structure of clade III by analyzing a global collection of 566 genomes. We have identified three subgroups within clade III, among which two are genetically most closely related. Moreover, we have estimated the evolutionary rate of clade III to be 2.25e-7 s/s/y (2.87 changes per year). We found that one of these subgroups shows intrinsic resistance to fluconazole and is responsible for the majority of cases within this clade globally. We inferred that this subgroup may have originated around December 2010 (95% High Probability Density (HPD): April 2010-June 2011), and since then it has spread across continents, generating multiple large outbreaks, each with a unique pattern of transmission and dissemination. These results highlight the remarkable ability of the pathogen to adapt to its environment and its rapid global spread, underscoring the urgent need to address this epidemiological challenge effectively.IMPORTANCEThe number of cases affected by Candida auris has increased worryingly worldwide. Among the currently recognized clades, clade III has the highest proportion of fluconazole-resistant cases and is spreading very rapidly, causing large nosocomial outbreaks across the globe. By analyzing complete fungal genomes from around the world, we have confirmed the origin of this clade and unraveled its dispersal patterns in the early 2010s. This finding provides knowledge that may be helpful to the public health authorities for the control of the disease.
Collapse
Affiliation(s)
- Irving Cancino-Muñoz
- Unidad Mixta Infección y Salud Pública FISABIO-Universidad de Valencia, Valencia, Spain
- Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, Spain
| | - Juan Vicente Mulet-Bayona
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Carme Salvador-García
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Nuria Tormo-Palop
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Remedios Guna
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Concepción Gimeno-Cardona
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO-Universidad de Valencia, Valencia, Spain
- Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| |
Collapse
|
3
|
Verma RR, Kiegle E, Keyel AC, Chaturvedi S, Chaturvedi V. Simulating a travel-related origin of Candida auris in New York-New Jersey. Microbiol Spectr 2024:e0206524. [PMID: 39699207 DOI: 10.1128/spectrum.02065-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
Candida auris first appeared in the United States in 2013 in New York-New Jersey (NY-NJ) and led to an unprecedented outbreak since 2016. We hypothesized C. auris' introduction to NY-NJ was not a random event but related to travel patterns between South Asia and NY-NJ. New York City is a US hub for international passengers, including those from South Asia. We tested the hypothesis by simulating introductions to NY-NJ with a Monte Carlo simulation based on travel from South Asia, proportion of US population in NY-NJ, proportion of hospitals in NY-NJ, and finally, proportion of all travelers entering the United States through NY-NJ. The C. auris outbreak occurred during increasing travel and trade, and South Asia travel routes predict the distribution of early C. auris cases in NY-NJ. The local mobility network within hospitals and extended stay healthcare facilities were also relevant in the spread of C. auris. Our observations and simulations link travel patterns to C. auris origin and spread and warrant further investigations for understanding the continued spread of the pathogen. IMPORTANCE Candida auris is an emerging fungal pathogen, with resistance to several antifungal drugs. Serious C. auris infections affect hospitalized patients and residents of long-term care facilities, although the pathogen can also be present on a healthy individual's skin. Many studies have shown international introductions of C. auris to the United States. Here, we present a simulation that supports the hypothesis that the earlier introductions of C. auris in the New York-New Jersey area are not random but related to travel networks.
Collapse
Affiliation(s)
- Rita R Verma
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Edward Kiegle
- Wadsworth Center Mycology Laboratory, New York State Department of Health, Albany, New York, USA
| | - Alexander C Keyel
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, New York, USA
| | - Sudha Chaturvedi
- Wadsworth Center Mycology Laboratory, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Vishnu Chaturvedi
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Westchester Medical Center, Valhalla, New York, USA
| |
Collapse
|
4
|
Li J, Brandalise D, Coste AT, Sanglard D, Lamoth F. Exploration of novel mechanisms of azole resistance in Candida auris. Antimicrob Agents Chemother 2024; 68:e0126524. [PMID: 39480072 PMCID: PMC11619343 DOI: 10.1128/aac.01265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Candida auris is a pathogenic yeast of particular concern because of its ability to cause nosocomial outbreaks of invasive candidiasis (IC) and to develop resistance to all current antifungal drug classes. Most C. auris clinical isolates are resistant to fluconazole, an azole drug that is used for the treatment of IC. Azole resistance may arise from diverse mechanisms, such as mutations of the target gene (ERG11) or upregulation of efflux pumps via gain of function mutations of the transcription factors TAC1 and/or MRR1. To explore novel mechanisms of azole resistance in C. auris, we applied an in vitro evolutionary protocol to induce azole resistance in a TAC1A/TAC1B/MRR1 triple-deletion strain. Azole-resistant isolates without ERG11 mutations were further analyzed. In addition to a whole chromosome aneuploidy of chromosome 5, amino acid substitutions were recovered in the transcription factor Upc2 (N592S, L499F), the ubiquitin ligase complex consisting of Ubr2 (P708T, H1275P) and Mub1 (Y765*), and the mitochondrial protein Mrs7 (D293H). Genetic introduction of these mutations in an azole-susceptible wild-type C. auris isolate of clade IV resulted in significantly decreased azole susceptibility. Real-time reverse transcription PCR analyses were performed to assess the impact of these mutations on the expression of genes involved in azole resistance, such as ERG11, the efflux pumps CDR1 and MDR1 or the transcription factor RPN4. In conclusion, this work provides further insights in the complex and multiple pathways of azole resistance of C. auris. Further analyses would be warranted to assess their respective role in azole resistance of clinical isolates.
Collapse
Affiliation(s)
- Jizhou Li
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Danielle Brandalise
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frederic Lamoth
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Peng Y, Liu Y, Yu X, Fang J, Guo Z, Liao K, Chen P, Guo P. First report of Candida auris in Guangdong, China: clinical and microbiological characteristics of 7 episodes of candidemia. Emerg Microbes Infect 2024; 13:2300525. [PMID: 38164742 PMCID: PMC10773663 DOI: 10.1080/22221751.2023.2300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen worldwide. To date, it has not been reported in Guangdong, China. For the first time, we reported 7 cases of C. auris candidemia from two hospitals in Guangdong. The clinical and microbiological characteristics of these cases were investigated carefully. Two geographic clades, i.e. III and I, were found popular in different hospitals by whole genome sequencing analyses. All C. auris isolates from bloodstream were resistant to fluconazole, 5 of which belonged to Clade III harbouring VF125AL mutation in the ERG11 gene. The isolates with Clade I presented Y132F mutation in the ERG11 gene as well as resistance to amphotericin B. All isolates exhibited strong biofilm-forming capacity and non-aggregative phenotype. The mean time from admission to onset of C. auris candidemia was 39.4 days (range: 12 - 80 days). Despite performing appropriate therapeutic regimen, 42.9% (3/7) of patients experienced occurrences of C. auris candidemia and colonization after the first positive bloodstream. C. auris colonization was still observed after the first C. auris candidemia for 81 days in some patient. Microbiologic eradication from bloodstream was achieved in 85.7% (6/7) of patients at discharge. In conclusion, this study offers a crucial insight into unravelling the multiple origins of C. auris in Guangdong, highlighting great challenges in clinical prevention and control.
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yue Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xuegao Yu
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jingchun Fang
- Department of Clinical Microbiology Laboratory, Nansha Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhaowang Guo
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Carolus H, Sofras D, Boccarella G, Sephton-Clark P, Biriukov V, Cauldron NC, Lobo Romero C, Vergauwen R, Yazdani S, Pierson S, Jacobs S, Vandecruys P, Wijnants S, Meis JF, Gabaldón T, van den Berg P, Rybak JM, Cuomo CA, Van Dijck P. Acquired amphotericin B resistance leads to fitness trade-offs that can be mitigated by compensatory evolution in Candida auris. Nat Microbiol 2024; 9:3304-3320. [PMID: 39567662 DOI: 10.1038/s41564-024-01854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Candida auris is a growing concern due to its resistance to antifungal drugs, particularly amphotericin B (AMB), detected in 30 to 60% of clinical isolates. However, the mechanisms of AMB resistance remain poorly understood. Here we investigated 441 in vitro- and in vivo-evolved C. auris lineages from 4 AMB-susceptible clinical strains of different clades. Genetic and sterol analyses revealed four major types of sterol alterations as a result of clinically rare variations in sterol biosynthesis genes ERG6, NCP1, ERG11, ERG3, HMG1, ERG10 and ERG12. In addition, aneuploidies in chromosomes 4 and 6 emerged during resistance evolution. Fitness trade-off phenotyping and mathematical modelling identified diverse strain- and mechanism-dependent fitness trade-offs. Variation in CDC25 rescued fitness trade-offs, thereby increasing the infection capacity. This possibly contributed to therapy-induced acquired AMB resistance in the clinic. Our findings highlight sterol-modulating mechanisms and fitness trade-off compensation as risks for AMB treatment failure in clinical settings.
Collapse
Affiliation(s)
- Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Giorgio Boccarella
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Vladislav Biriukov
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nicholas C Cauldron
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, USA
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Siebe Pierson
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jacques F Meis
- Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands
- Institute of Translational Research, CECAD, University of Cologne, Cologne, Germany
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Pieter van den Berg
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
- KU Leuven One Health Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
de Macedo AT, Santos DWDCL, Spruijtenburg B, de Souza DAC, Dos Santos Barbosa LFM, Marques SG, Dos Santos JRA, Meijer EFJ, de Groot T, de Azevedo CDMPES, Meis JF. Clonal outbreak of Candida vulturna in a paediatric oncology ward in Maranhão, Brazil. J Infect 2024; 89:106349. [PMID: 39537034 DOI: 10.1016/j.jinf.2024.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To describe an outbreak due to Candida vulturna, a newly emerging Candida species belonging to the Candida haemulonii species complex in the Metschnikowiaceae family. METHODS In this retrospective cohort study we genotyped 14 C. vulturna bloodstream isolates, occurring in a 4-month-period in paediatric cancer patients in a Brazilian hospital. To prove an outbreak, ITS sequence analysis and whole genome sequencing (WGS) was done. Antifungal susceptibility was performed with the reference CLSI method and the commercial Sensititre YeastOne (SYO) YO10 plates. A control C. vulturna isolate from another region in Brazil was included in all analyses. RESULTS MALDI-TOF-MS identified isolates as C. pseudohaemulonii and C. duobushaemulonii albeit with low scores and therefore molecular methods were required for accurate identification. ITS sequence analyses clearly differentiated C. vulturna from other species in the C. haemulonii species complex. WGS proved the presence of a clonal outbreak with C. vulturna involving 14 paediatric patients. Antifungal susceptibility testing (AFST) with two methods showed the isolates had low MICs of commonly available antifungals. CONCLUSION This study describes an outbreak due to the rare yeast C. vulturna, related to C. auris, during a four-month period in patients admitted to a paediatric oncology ward in a Brazilian hospital. In contrast to previous studies the yeast was susceptible to all antifungals and patient outcome was good.
Collapse
Affiliation(s)
| | - Daniel Wagner de Castro Lima Santos
- Instituto D'Or de Pesquisa e Ensino (IDOR), São Luís, MA, Brazil; Hospital Universitário, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital/Dicoon, Nijmegen, the Netherlands
| | - Dayse Azevedo Coelho de Souza
- Universidade Federal do Maranhão (UFMA)-Programa de Pós Graduação em Ciências da Saúde, São Luís, MA, Brazil; Hospital de Cancer Aldenora Bello (HCAB), São Luís, MA, Brazil
| | | | - Sirlei Garcia Marques
- Hospital Universitário, Universidade Federal do Maranhão, São Luís, MA, Brazil; Laboratório Cedro, São Luís, MA, Brazil
| | | | - Eelco F J Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital/Dicoon, Nijmegen, the Netherlands
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital/Dicoon, Nijmegen, the Netherlands
| | | | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Honorato L, Artunduaga Bonilla JJ, Ribeiro da Silva L, Kornetz J, Zamith-Miranda D, Valdez AF, Nosanchuk JD, Gonçalves Paterson Fox E, Nimrichter L. Alkaloids solenopsins from fire ants display in vitro and in vivo activity against the yeast Candida auris. Virulence 2024; 15:2413329. [PMID: 39370781 PMCID: PMC11469440 DOI: 10.1080/21505594.2024.2413329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 10/08/2024] Open
Abstract
The urgency surrounding Candida auris as a public health threat is highlighted by both the Center for Disease Control (CDC) and World Health Organization (WHO) that categorized this species as a priority fungal pathogen. Given the current limitations of antifungal therapy for C. auris, particularly due to its multiple resistance to the current antifungals, the identification of new drugs is of paramount importance. Some alkaloids abundant in the venom of the red invasive fire ant (Solenopsis invicta), known as solenopsins, have garnered attention as potent inhibitors of bacterial biofilms, and there are no studies demonstrating such effects against fungal pathogens. Thus, we herein investigated the antibiotic efficacy of solenopsin alkaloids against C. auris biofilms and planktonic cells. Both natural and synthetic solenopsins inhibited the growth of C. auris strains from different clades, including fluconazole and amphotericin B-resistant isolates. Such alkaloids also inhibited matrix deposition and altered cellular metabolic activity of C. auris in biofilm conditions. Mechanistically, the alkaloids compromised membrane integrity as measured by propidium iodide uptake in exposed planktonic cells. Additionally, combining the alkaloids with AMB yielded an additive antifungal effect, even against AMB-resistant strains. Finally, both extracted solenopsins and the synthetic analogues demonstrated protective effect in vivo against C. auris infection in the invertebrate model Galleria mellonella. These findings underscore the potent antifungal activities of solenopsins against C. auris and suggest their inclusion in future drug development. Furthermore, exploring derivatives of solenopsins could reveal novel compounds with therapeutic promise.
Collapse
Affiliation(s)
- Leandro Honorato
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Jhon Jhamilton Artunduaga Bonilla
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Larissa Ribeiro da Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Julio Kornetz
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alessandro F. Valdez
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Zheng Q, Bing J, Han S, Guan S, Hu T, Cai L, Chu H, Huang G. Biological and genomic analyses of Clavispora sputum sp. nov., a novel potential fungal pathogen closely related to Clavispora lusitaniae (syn. Candida lusitaniae) and Candida auris. New Microbes New Infect 2024; 62:101506. [PMID: 39483706 PMCID: PMC11525147 DOI: 10.1016/j.nmni.2024.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Several human fungal pathogens, including drug-resistant Candida auris and species of the Candida haemulonii complex, have emerged over the past two decades, posing new threats to human health. In this study, we report the isolation and identification of a novel species belonging to the genus Clavispora, herein named as Cl avispora sputum, from a clinical sputum sample of a COVID-19 patient. Cl . sputum is phylogenetically closely related to fungal pathogens Clavispora lusitaniae (syn. Candida lusitaniae) and C. auris. When grown on CHROMagar Candida Plus medium, Cl. sputum exhibited a similar coloration to C. auris strain CBS12372. Cl. sputum was able to develop weak filaments on CM medium. Although Cl. sputum and Cl. lusitaniae are phylogenetically closely related, comparative genomic and synteny analyses indicated significant chromosomal rearrangements between the two species. Although Cl. sputum could not grow at 37 °C under regular culture condition, an increased fungal burden in the lung tissue of a mouse systemic infection model implies that it could be a potential opportunistic pathogenic yeast in humans.
Collapse
Affiliation(s)
- Qiushi Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, PR China
| | - Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, PR China
| | - Shiling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Shuyun Guan
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, PR China
| | - Tianren Hu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, PR China
| |
Collapse
|
10
|
Jimenez A, Rosa R, Ayoub S, Guran R, Arenas S, Valencia N, Stabile JC, Estepa AT, Parekh DJ, Ferreira T, Gershengorn HB, Prabaker KK, Eckardt PA, Zahn M, Abbo LM, Shukla BS. Factors Associated With Poor Clinical and Microbiologic Outcomes in Candida auris Bloodstream Infection: A Multicenter Retrospective Cohort Study. Clin Infect Dis 2024; 79:1262-1268. [PMID: 39136254 DOI: 10.1093/cid/ciae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Candida auris has become a growing concern worldwide because of increases in incidence of colonization and reports of invasive infections. There are limited data on clinical factors associated with poor outcomes in patients with C. auris bloodstream infection (BSI). METHODS We assembled a multicenter retrospective cohort of patients with C. auris BSI from 2 geographics areas in US healthcare settings. We collected data on demographic, clinical, and microbiologic characteristics to describe the cohort and constructed multivariate logistic regression models to understand risk factors for 2 clinical outcomes, all-cause mortality during facility admission, and blood culture clearance. RESULTS Our cohort consisted of 187 patients with C. auris BSI (56.1% male, 55.6% age >65 years); 54.6% died by facility discharge and 66.9% (of 142 with available data) experienced blood culture clearance. Pitt bacteremia score at infection onset was associated with mortality (odds ratio [95% confidence interval]: 1.19 [1.01-1.40] per 1-point increase). Hemodialysis was associated with a reduced odds of microbiologic clearance (0.15 [0.05-0.43]) and with mortality (3.08 [1.27-7.50]). CONCLUSIONS The Pitt bacteremia score at the onset of C. auris BSI may be a useful tool in identifying patients at risk for mortality. Targeted infection prevention practices in patients receiving hemodialysis may be useful to limit poor outcomes.
Collapse
Affiliation(s)
- Adriana Jimenez
- University of Miami Health System, Miami, Florida, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rossana Rosa
- Department of Infection Prevention, Jackson Health System, Miami, Florida, USA
| | - Samantha Ayoub
- Department of Preventive Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Rachel Guran
- Division of Infectious Diseases, Infection Control, Memorial Healthcare System, Hollywood, Florida, USA
| | | | - Nickolas Valencia
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Janna C Stabile
- Division of Infectious Diseases, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrian T Estepa
- Division of Infectious Diseases, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dipen J Parekh
- University of Miami Health System, Miami, Florida, USA
- Department of Urology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tanira Ferreira
- University of Miami Health System, Miami, Florida, USA
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hayley B Gershengorn
- University of Miami Health System, Miami, Florida, USA
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, Division of Critical Care, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kavitha K Prabaker
- Department of Clinical Epidemiology and Infection Prevention, University of California, Los Angeles, Los Angeles, California, USA
| | - Paula A Eckardt
- Division of Infectious Diseases, Infection Control, Memorial Healthcare System, Hollywood, Florida, USA
| | - Matthew Zahn
- Orange County Health Care Agency, Santa Ana, California, USA
| | - Lilian M Abbo
- Department of Infection Prevention, Jackson Health System, Miami, Florida, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Bhavarth S Shukla
- University of Miami Health System, Miami, Florida, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Hayes JF. Candida auris: Epidemiology Update and a Review of Strategies to Prevent Spread. J Clin Med 2024; 13:6675. [PMID: 39597821 PMCID: PMC11595167 DOI: 10.3390/jcm13226675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Candida auris (C. auris) has emerged as a fungal pathogen with great propensity to spread rapidly on a global scale. C. auris infections have also caused significant morbidity and mortality. Strategies to prevent spread and outbreaks are critical. In this review, an update on the epidemiology of C. auris and a discussion of strategies to combat the spread of C. auris are presented. Future directions are also discussed.
Collapse
Affiliation(s)
- Justin F. Hayes
- Division of Infectious Diseases, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; ; Tel.: +1-520-626-6887; Fax: +1-520-626-5183
- Antimicrobial Stewardship Program, Banner University Medical Center-Tucson and South, 1501 N. Campbell Avenue, P.O. Box 245039, Tucson, AZ 85724, USA
| |
Collapse
|
12
|
Meijer EF, Voss A. Should all hospitalised patients colonised with Candida auris be considered for isolation? Euro Surveill 2024; 29:2400729. [PMID: 39512165 PMCID: PMC11544720 DOI: 10.2807/1560-7917.es.2024.29.45.2400729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Eelco Fj Meijer
- Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital/Dicoon, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Control, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Kumari A, Sharma A, Kumari L, Pawar SV, Singh R. Antibiofilm activity of truncated Staphylococcus aureus phenol soluble modulin α2 (SaΔ1Δ2PSMα2) against Candida auris in vitro and in an animal model of catheter-associated infection. Microb Pathog 2024; 196:106943. [PMID: 39288824 DOI: 10.1016/j.micpath.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Candida auris has emerged as a major multidrug-resistant nosocomial pathogen. The organism exhibits a persistent colonising phenotype, and causes recalcitrant infections often strongly linked to biofilm formation. Alternate strategies are urgently needed to combat this yeast and its biofilm-associated phenotype. This work aimed to evaluate the efficacy of select staphylococcal phenol soluble modulins (PSMs), namely, a truncated version of Staphylococcus aureus PSMα2 shortened by two amino acids at the N-terminal (SaΔ1Δ2PSMα2) and Staphylococcus epidermidis PSMδ against C. auris in vitro and in vivo. The antifungal and antibiofilm activity was tested by broth microdilution and XTT dye reduction assay. Combination effect with antifungal drugs was determined by fractional inhibitory concentration test. The efficacy of combination therapy using SaΔ1Δ2PSMα2 with amphotericin B or caspofungin was evaluated in murine model of C. auris catheter-associated infection. Based on antifungal activity, antibiofilm activity and cytotoxicity data, SaΔ1Δ2PSMα2 exhibited promising activity against C. auris biofilms. Nearly 50 % inhibition in biofilm formation was noted with 0.5-2 μM of the peptide against multiple clinical and C. auris colonizing isolates. It was synergistic with amphotericin B (ΣFIC = 0.281) and caspofungin (ΣFIC = 0.047) in vitro, and improved the activity of voriconazole in voriconazole-resistant C. auris. Combination therapy using amphotericin B or caspofungin (1 μg/ml) with SaΔ1Δ2PSMα2 resulted in 99.5 % reduction in C. auris biofilm in murine model, even when the peptide was used at a concentration that was neither fungicidal nor antibiofilm (0.125 μM; ≈0.26 μg/ml). The study provides insight into the potential utility of SaΔ1Δ2PSMα2-antifungal drug combination against C. auris biofilm-associated infections.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anayata Sharma
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Magrì C, De Carolis E, Ivagnes V, Di Pilato V, Spruijtenburg B, Marchese A, Meijer EFJ, Chowdhary A, Sanguinetti M. "CLADE-FINDER": Candida auris Lineage Analysis Determination by Fourier Transform Infrared Spectroscopy and Artificial Neural Networks. Microorganisms 2024; 12:2153. [PMID: 39597542 PMCID: PMC11596196 DOI: 10.3390/microorganisms12112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
In 2019, Candida auris became the first fungal pathogen included in the list of the urgent antimicrobial threats by the Centers for Disease Control (CDC). Short tandem repeat (STR) analysis and whole-genome sequencing (WGS) are considered the gold standard, and can be complemented by other molecular methods, for the genomic surveillance and clade classification of this multidrug-resistant yeast. However, these methods can be expensive and require time and expertise that are not always available. The long turnaround time is especially not compatible with the speed needed to manage clonal transmission in healthcare settings. Fourier transform infrared (FTIR) spectroscopy, a biochemical fingerprint approach, has been applied in this study to a set of 74 C. auris isolates belonging to the five clades of C. auris (I-V) in combination with an artificial neural network (ANN) algorithm to create and validate "CLADE-FINDER", a tool for C. auris clade determination. The CLADE-FINDER classifier allowed us to discriminate the four primary C. auris clades (I-IV) with a correct classification for 96% of the samples in the validation set. This newly developed genotyping scheme can be reasonably applied for the effective epidemiological monitoring and management of C. auris cases in real time.
Collapse
Affiliation(s)
- Carlotta Magrì
- Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy (M.S.)
| | - Elena De Carolis
- Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy (M.S.)
| | - Vittorio Ivagnes
- Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy (M.S.)
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (V.D.P.); (A.M.)
- Microbiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands (E.F.J.M.)
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, 6532 Nijmegen, The Netherlands
| | - Anna Marchese
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy; (V.D.P.); (A.M.)
- Microbiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Eelco F. J. Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands (E.F.J.M.)
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, 6532 Nijmegen, The Netherlands
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy (M.S.)
| |
Collapse
|
15
|
Mitchell BI, Kling K, Bolon MK, Rathod SN, Malczynski M, Ruiz J, Polanco W, Fritz K, Maali S, Stosor V, Zembower TR, Qi C. Identifying Candida auris transmission in a hospital outbreak investigation using whole-genome sequencing and SNP phylogenetic analysis. J Clin Microbiol 2024; 62:e0068024. [PMID: 39283080 PMCID: PMC11481579 DOI: 10.1128/jcm.00680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/31/2024] [Indexed: 10/17/2024] Open
Abstract
Candida auris poses a global public health challenge, causing multiple outbreaks within healthcare facilities. Despite advancements in strain typing for various infectious diseases, a consensus on the genetic relatedness threshold for identifying C. auris transmission in local hospital outbreaks remains elusive. We investigated genetic variations within our local isolate collection using whole-genome-based single nucleotide polymorphism (SNP) phylogenetic analysis. A total of 74 C. auris isolates were subjected to whole-genome sequencing (WGS) and SNP phylogenetic analysis via the QIAGEN CLC Genomics Workbench. Isolates included known related strains from the same patient, strains from different hospitals, strains from our hospital patients with no epidemiological link, and 19 patient isolates from a recent C. auris outbreak. All but three isolates were identified to be Clade IV. By examining the genetic diversities of C. auris within patients and between patients, we identified a SNP variation range of 0-13 for identifying related isolates. During an outbreak investigation, utilizing this range, maximum likelihood phylogenetic analysis revealed two distinct clusters that aligned with the epidemiological links. Determining a SNP variation range to delineate genetic relatedness among isolates is crucial for the application of WGS and SNP phylogenetic analysis in identifying C. auris transmission during hospital outbreak investigations. The use of WGS SNP phylogenetic analysis via the CLC Genomics Workbench has emerged as a valuable method for typing C. auris in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Brooks I. Mitchell
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Kendall Kling
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maureen K. Bolon
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Shardul N. Rathod
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Michael Malczynski
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Javier Ruiz
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Wanda Polanco
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Kevin Fritz
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Sarah Maali
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Valentina Stosor
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Teresa R. Zembower
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Clinical Microbiology Laboratory, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
16
|
Castanheira M, Deshpande LM, Rhomberg PR, Carvalhaes CG. Recent increase in Candida auris frequency in the SENTRY surveillance program: antifungal activity and genotypic characterization. Antimicrob Agents Chemother 2024; 68:e0057024. [PMID: 39264189 PMCID: PMC11459971 DOI: 10.1128/aac.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
We observed an increase in the frequency of Candida auris among invasive candidiasis isolates in the 2022 SENTRY Antifungal Surveillance Program compared to prior years: ≤0.1% before 2018, 0.4%-0.6% from 2018 to 2021, and 1.6% in 2022. C. auris isolates were collected in seven countries, but 28 (35.9%) isolates were recovered in the USA (five states; more common in New York, Texas, and New Jersey) and 26 (33.3%) in Panama. Greece and Turkey had 12 and 9 isolates, respectively. Overall, 82.1% of the isolates were resistant to fluconazole; 17.9% were resistant to amphotericin B; and 1.3% were resistant to caspofungin, anidulafungin, or micafungin (Centers for Disease Control and Prevention tentative resistance breakpoints). Rezafungin inhibited 96.2% of the isolates (Clinical and Laboratory Standards Institute susceptibility breakpoint). Pandrug resistance was not observed, but 17.9% of the isolates were resistant to fluconazole and amphotericin B. South Asian (Clade I) isolates were most common (n = 40, 51.3%); of these, 97.5% were resistant to fluconazole and 30.0% were resistant to amphotericin B. Thirty (38.5%) isolates belonged to the South American region (Clade IV), and 56.7% of those were resistant to fluconazole and 6.7% to amphotericin B. Seven isolates belonged to the South African Clade III and one to East Asian Clade II. Erg11 (Y132F, K143R, and F126L) and MRR1 (N647T) alterations were detected. One isolate that was resistant to all echinocandins carried an FKS R1354G alteration. Two isolates displayed elevated rezafungin minimum inhibitory concentration (MIC) values but low MIC values against other echinocandins and no FKS alterations. As C. auris is spreading globally, monitoring this species is prudent.
Collapse
|
17
|
Spruijtenburg B, de Souza Lima BJF, Tosar STG, Borman AM, Andersen CT, Nizamuddin S, Ahmad S, de Almeida Junior JN, Vicente VA, Nosanchuk JD, Buil JB, de Hoog S, Meijer EFJ, Meis JF, de Groot T. The yeast genus Tardiomyces gen. nov. with one new species and two new combinations. Infection 2024; 52:1799-1812. [PMID: 38573472 PMCID: PMC11499460 DOI: 10.1007/s15010-024-02229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE Rare yeasts species are increasingly reported as causative agents of invasive human infection. Proper identification and antifungal therapy are essential to manage these infections. Candida blankii is one of these emerging pathogens and is known for its reduced susceptibility to multiple antifungals. METHODS To obtain more insight into the characteristics of this species, 26 isolates reported as C. blankii were investigated using genetic and phenotypical approaches. RESULTS Among the 26 isolates, seven recovered either from blood, sputum, urine, or the oral cavity, displayed substantial genetic and some phenotypical differences compared to the other isolates, which were confirmed as C. blankii. We consider these seven strains to represent a novel species, Tardiomyces depauwii. Phylogenomics assigned C. blankii, C. digboiensis, and the novel species in a distinct branch within the order Dipodascales, for which the novel genus Tardiomyces is erected. The new combinations Tardiomyces blankii and Tardiomyces digboiensis are introduced. Differences with related, strictly environmental genera Sugiyamaella, Crinitomyces, and Diddensiella are enumerated. All three Tardiomyces species share the rare ability to grow up to 42 °C, display slower growth in nutrient-poor media, and show a reduced susceptibility to azoles and echinocandins. Characteristics of T. depauwii include high MIC values with voriconazole and a unique protein pattern. CONCLUSION We propose the novel yeast species Tardiomyces depauwii and the transfer of C. blankii and C. digboiensis to the novel Tardiomyces genus.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands.
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands.
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands.
| | - Bruna Jacomel Favoreto de Souza Lima
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Sonia T Granadillo Tosar
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Andrew M Borman
- UK Health Security Agency National Mycology Reference Laboratory, Southmead Hospital, Bristol, BS10 5NB, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, EX4 4QD, UK
| | | | - Summiya Nizamuddin
- Section of Microbiology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | | | - Vânia Aparecida Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
- Microbiological Collections of Paraná Network (CMRP/Taxonline), Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Joshua D Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Jochem B Buil
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
| | - Sybren de Hoog
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Eelco F J Meijer
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Kappel D, Gifford H, Brackin A, Abdolrasouli A, Eyre DW, Jeffery K, Schlenz S, Aanensen DM, Brown CS, Borman A, Johnson E, Holmes A, Armstrong-James D, Fisher MC, Rhodes J. Genomic epidemiology describes introduction and outbreaks of antifungal drug-resistant Candida auris. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:26. [PMID: 39359891 PMCID: PMC11442302 DOI: 10.1038/s44259-024-00043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Candida auris is a globally emerged fungal pathogen causing nosocomial invasive infections. Here, we use cutting-edge genomic approaches to elucidate the temporal and geographic epidemiology of drug-resistant C. auris within the UK. We analysed a representative sample of over 200 isolates from multiple UK hospitals to assess the number and timings of C. auris introductions and infer subsequent patterns of inter- and intra-hospital transmission of azole drug-resistant isolates. We identify at least one introduction from Clade I and two from Clade III into the UK, and observe temporal and geographical evidence for multiple transmission events of antifungal drug resistant isolates between hospitals and identified local within-hospital patient-to-patient transmission events. Our study confirms outbreaks of drug-resistant C. auris are linked and that transmission amongst patients occurs, explaining local hospital outbreaks, and demonstrating a need for improved epidemiological surveillance of C. auris to protect patients and healthcare services.
Collapse
Affiliation(s)
- Dana Kappel
- MRC Centre for Global Disease Analysis, Imperial College London, London, UK
| | - Hugh Gifford
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Amelie Brackin
- MRC Centre for Global Disease Analysis, Imperial College London, London, UK
| | | | - David W. Eyre
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Silke Schlenz
- School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, University of Oxford, Oxford, UK
| | - Colin S. Brown
- Royal Free London NHS Foundation Trust, London, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - Andrew Borman
- National Mycology Reference Laboratory, UK Health Security Agency, Bristol, UK
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK
| | - Elizabeth Johnson
- National Mycology Reference Laboratory, UK Health Security Agency, Bristol, UK
| | - Alison Holmes
- National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | | | - Matthew C. Fisher
- MRC Centre for Global Disease Analysis, Imperial College London, London, UK
| | - Johanna Rhodes
- MRC Centre for Global Disease Analysis, Imperial College London, London, UK
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
19
|
Yamamoto M, Alshahni MM, Komori A, Mimaki M, Makimura K. Assessment of LAMPAuris for Rapid Detection of Candida auris in Clinical Specimens. Mycopathologia 2024; 189:87. [PMID: 39312077 DOI: 10.1007/s11046-024-00892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
Candida auris is a pathogenic yeast frequently exhibiting multidrug resistance and thus warrants special attention. The prompt detection and proper identification of this organism are needed to prevent its spread in healthcare facilities. The authors of this paper had previously developed LAMPAuris, a loop-mediated isothermal amplification assay, for the specific detection of C. auris. LAMPAuris is evaluated in this report for its ability to identify C. auris from five clades and to detect it from clinical specimens. A total of 103 skin swab samples were tested in comparison with a culture-based method and C. auris-specific SYBR green qPCR. The results show that the LAMPAuris assay had specificities ranging from 97 to 100% and sensitivities ranging from 66 to 86%. The lower sensitivity could be attributed to DNA degradation caused by the prolonged storage of the samples. In conclusion, LAMPAuris proved to be a rapid and reliable method for identifying C. auris and for detecting it in clinical specimens. Fresh specimens should ensure better yield and higher sensitivities.
Collapse
Affiliation(s)
- Mikachi Yamamoto
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | | | - Aya Komori
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Koichi Makimura
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan.
- Department of Medical Mycology, Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
20
|
Suphavilai C, Ko KKK, Lim KM, Tan MG, Boonsimma P, Chu JJK, Goh SS, Rajandran P, Lee LC, Tan KY, Shaik Ismail BB, Aung MK, Yang Y, Sim JXY, Venkatachalam I, Cherng BPZ, Spruijtenburg B, Chan KS, Oon LLE, Tan AL, Tan YE, Wijaya L, Tan BH, Ling ML, Koh TH, Meis JF, Tsui CKM, Nagarajan N. Detection and characterisation of a sixth Candida auris clade in Singapore: a genomic and phenotypic study. THE LANCET. MICROBE 2024; 5:100878. [PMID: 39008997 DOI: 10.1016/s2666-5247(24)00101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The emerging fungal pathogen Candida auris poses a serious threat to global public health due to its worldwide distribution, multidrug resistance, high transmissibility, propensity to cause outbreaks, and high mortality. We aimed to characterise three unusual C auris isolates detected in Singapore, and to determine whether they constitute a novel clade distinct from all previously known C auris clades (I-V). METHODS In this genotypic and phenotypic study, we characterised three C auris clinical isolates, which were cultured from epidemiologically unlinked inpatients at a large tertiary hospital in Singapore. The index isolate was detected in April, 2023. We performed whole-genome sequencing (WGS) and obtained hybrid assemblies of these C auris isolates. The complete genomes were compared with representative genomes of all known C auris clades. To provide a global context, 3651 international WGS data from the National Center for Biotechnology Information (NCBI) database were included in a high-resolution single nucleotide polymorphism (SNP) analysis. Antifungal susceptibility testing was done and antifungal resistance genes, mating-type locus, and chromosomal rearrangements were characterised from the WGS data of the three investigated isolates. We further implemented Bayesian logistic regression models to classify isolates into known clades and simulate the automatic detection of isolates belonging to novel clades as their WGS data became available. FINDINGS The three investigated isolates were separated by at least 37 000 SNPs (range 37 000-236 900) from all existing C auris clades. These isolates had opposite mating-type allele and different chromosomal rearrangements when compared with their closest clade IV relatives. The isolates were susceptible to all tested antifungals. Therefore, we propose that these isolates represent a new clade of C auris, clade VI. Furthermore, an independent WGS dataset from Bangladesh, accessed via the NCBI Sequence Read Archive, was found to belong to this new clade. As a proof-of-concept, our Bayesian logistic regression model was able to flag these outlier genomes as a potential new clade. INTERPRETATION The discovery of a new C auris clade in Singapore and Bangladesh in the Indomalayan zone, showing a close relationship to clade IV members most commonly found in South America, highlights the unknown genetic diversity and origin of C auris, particularly in under-resourced regions. Active surveillance in clinical settings, along with effective sequencing strategies and downstream analysis, will be essential in the identification of novel strains, tracking of transmission, and containment of adverse clinical effects of C auris infections. FUNDING Duke-NUS Academic Medical Center Nurturing Clinician Researcher Scheme, and the Genedant-GIS Innovation Program.
Collapse
Affiliation(s)
- Chayaporn Suphavilai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Karrie Kwan Ki Ko
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Kar Mun Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Mei Gie Tan
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Patipan Boonsimma
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Joash Jun Keat Chu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Sui Sin Goh
- Department of Microbiology, Singapore General Hospital, Singapore
| | | | - Lai Chee Lee
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Kwee Yuen Tan
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | | | - May Kyawt Aung
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Yong Yang
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Jean Xiang Ying Sim
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Indumathi Venkatachalam
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Benjamin Pei Zhi Cherng
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands; Center of Expertise in Mycology of Radboud University Medical Center, Nijmegen, Netherlands
| | - Kian Sing Chan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Lynette Lin Ean Oon
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Ai Ling Tan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Yen Ee Tan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Limin Wijaya
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Moi Lin Ling
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands; Center of Expertise in Mycology of Radboud University Medical Center, Nijmegen, Netherlands; Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Clement Kin Ming Tsui
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
21
|
Pinho S, Miranda IM, Costa-de-Oliveira S. Global Epidemiology of Invasive Infections by Uncommon Candida Species: A Systematic Review. J Fungi (Basel) 2024; 10:558. [PMID: 39194884 DOI: 10.3390/jof10080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Emerging and uncommon Candida species have been reported as an increasing cause of invasive Candida infections (ICI). We aim to systematize the global epidemiology associated with emergent uncommon Candida species responsible for invasive infections in adult patients. A systematic review (from 1 January 2001 to 28 February 2023) regarding epidemiological, clinical, and microbiological data associated to invasive Candida infections by uncommon Candida spp. were collected. In total, 1567 publications were identified, and 36 were selected according to inclusion criteria (45 cases). The chosen studies covered: C. auris (n = 21), C. haemulonii (n = 6), C. fermentati (n = 4), C. kefyr (n = 4), C. norvegensis (n = 3), C. nivariensis (n = 3), C. bracarensis (n = 1), C. duobushaemulonii (n = 1), C. blankii (n = 1), and C. khanbhai (n = 1). Over the recent years, there has been an increase in the number of invasive infections caused by uncommon Candida spp. Asia and Europe are the continents with the most reported cases. The challenges in strain identification and antifungal susceptibility interpretation were significant. The absence of clinical breakpoints for the susceptibility profile determination for uncommon Candida spp. makes interpretation and treatment options a clinical challenge. It is crucial that we focus on new and accessible microbiology techniques to make fast and accurate diagnostics and treatments.
Collapse
Affiliation(s)
- Sandra Pinho
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research-CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
22
|
Spruijtenburg B, Meis JF, Verweij PE, de Groot T, Meijer EFJ. Short Tandem Repeat Genotyping of Medically Important Fungi: A Comprehensive Review of a Powerful Tool with Extensive Future Potential. Mycopathologia 2024; 189:72. [PMID: 39096450 PMCID: PMC11297828 DOI: 10.1007/s11046-024-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 08/05/2024]
Abstract
Fungal infections pose an increasing threat to public health. New pathogens and changing epidemiology are a pronounced risk for nosocomial outbreaks. To investigate clonal transmission between patients and trace the source, genotyping is required. In the last decades, various typing assays have been developed and applied to different medically important fungal species. While these different typing methods will be briefly discussed, this review will focus on the development and application of short tandem repeat (STR) genotyping. This method relies on the amplification and comparison of highly variable STR markers between isolates. For most common fungal pathogens, STR schemes were developed and compared to other methods, like multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) and whole genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. The pros and cons of STR typing as compared to the other methods are discussed, as well as the requirements for the development of a solid STR typing assay. The resolution of STR typing, in general, is higher than MLST and AFLP, with WGS SNP analysis being the gold standard when it comes to resolution. Although most modern laboratories are capable to perform STR typing, little progress has been made to standardize typing schemes. Allelic ladders, as developed for Aspergillus fumigatus, facilitate the comparison of STR results between laboratories and develop global typing databases. Overall, STR genotyping is an extremely powerful tool, often complimentary to whole genome sequencing. Crucial details for STR assay development, its applications and merit are discussed in this review.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, Institute of Translational Research, University of Cologne, Cologne, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Eelco F J Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands.
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands.
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Mulet-Bayona JV, Cancino-Muñoz I, Salvador-García C, Tormo-Palop N, Guna-Serrano MDR, Ferrer-Gómez C, Melero-García M, González-Candelas F, Gimeno-Cardona C. Genotypic and phenotypic characterisation of a nosocomial outbreak of Candida auris in Spain during 5 years. Mycoses 2024; 67:e13776. [PMID: 39086009 DOI: 10.1111/myc.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES The investigation of Candida auris outbreaks is needed to provide insights into its population structure and transmission dynamics. We genotypically and phenotypically characterised a C. auris nosocomial outbreak occurred in Consorcio Hospital General Universitario de Valencia (CHGUV), Spain. METHODS Data and isolates were collected from CHGUV from September 2017 (first case) until September 2021. Thirty-five isolates, including one from an environmental source, were randomly selected for whole genome sequencing (WGS), and the genomes were analysed along with a database with 335 publicly available genomes, assigning them to one of the five major clades. In order to identify polymorphisms associated with drug resistance, we used the fully susceptible GCA_003014415.1 strain as reference sequence. Known mutations in genes ERG11 and FKS1 conferring resistance to fluconazole and echinocandins, respectively, were investigated. Isolates were classified into aggregating or non-aggregating. RESULTS All isolates belonged to clade III and were from an outbreak with a single origin. They clustered close to three publicly available genomes from a hospital from where the first patient was transferred, being the probable origin. The mutation VF125AL in the ERG11 gene, conferring resistance to fluconazole, was present in all the isolates and one isolate also carried the mutation S639Y in the FKS1 gene. All the isolates had a non-aggregating phenotype (potentially more virulent). CONCLUSIONS Isolates are genotypically related and phenotypically identical but one with resistance to echinocandins, which seems to indicate that they all belong to an outbreak originated from a single isolate, remaining largely invariable over the years. This result stresses the importance of implementing infection control practices as soon as the first case is detected or when a patient is transferred from a setting with known cases.
Collapse
Affiliation(s)
- Juan Vicente Mulet-Bayona
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Irving Cancino-Muñoz
- Unidad Mixta Infección y Salud Pública FISABIO-Universidad de Valencia, Valencia, Spain
- Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, Spain
| | - Carme Salvador-García
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Nuria Tormo-Palop
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - María Del Remedio Guna-Serrano
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Carolina Ferrer-Gómez
- Servicio de Anestesiología, Reanimación y Terapéutica del Dolor, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Mercedes Melero-García
- Servicio de Medicina Preventiva, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO-Universidad de Valencia, Valencia, Spain
- Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Concepción Gimeno-Cardona
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
24
|
Martinez M, Garsin DA, Lorenz MC. Vertebrate and invertebrate animal infection models of Candida auris pathogenicity. Curr Opin Microbiol 2024; 80:102506. [PMID: 38925077 PMCID: PMC11432150 DOI: 10.1016/j.mib.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Candida auris is an emerging fungal pathogen with several concerning qualities. First recognized in 2009, it has arisen in multiple geographically distinct genomic clades nearly simultaneously. C. auris strains are typically multidrug resistant and colonize the skin much better than most other pathogenic fungi; it also persists on abiotic surfaces, enabling outbreaks due to transmission in health care facilities. All these suggest a biology substantially different from the 'model' fungal pathogen, Candida albicans and support intensive investigation of C. auris biology directly. To uncover novel virulence mechanisms in this species requires the development of appropriate animal infection models. Various studies using mice, the definitive model, are inconsistent due to differences in mouse and fungal strains, immunosuppressive regimes, doses, and outcome metrics. At the same time, developing models of skin colonization present a route to new insights into an aspect of fungal pathogenesis that has not been well studied in other species. We also discuss the growing use of nonmammalian model systems, including both vertebrates and invertebrates, such as zebrafish, C. elegans, Drosophila, and Galleria mellonella, that have been productively employed in virulence studies with other fungal species. This review will discuss progress in developing appropriate animal models, outline current challenges, and highlight opportunities in demystifying this curious species.
Collapse
Affiliation(s)
- Melissa Martinez
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA.
| |
Collapse
|
25
|
Barough RE, Javidnia J, Davoodi A, Talebpour Amiri F, Moazeni M, Sarvi S, Valadan R, Siahposht-Khachaki A, Moosazadeh M, Nosratabadi M, Haghani I, Meis JF, Abastabar M, Badali H. Metabolic Patterns of Fluconazole Resistant and Susceptible Candida auris Clade V and I. J Fungi (Basel) 2024; 10:518. [PMID: 39194844 DOI: 10.3390/jof10080518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Candida auris, an emerging non-albicans multidrug-resistant yeast, has become a significant cause of invasive candidiasis in healthcare settings. So far, data on the metabolites of C. auris in different clades are minimal, and no studies have focused on clade V metabolites. Therefore, Gas chromatography-mass spectrometry (GC-MS) was used for the metabolomic profiling of clade I C. auris compared with fluconazole-resistant and susceptible C. auris in clade V strains. GC-MS chromatography revealed 28, 22, and 30 compounds in methanolic extracts of the fluconazole-susceptible and fluconazole-resistant C. auris clade V and C. auris clade I strain, respectively. Some compounds, such as acetamide and metaraminol, were found in fluconazole-susceptible and resistant C. auris clade V and clade I. N-methyl-ethanamine and bis(2-ethylhexyl) phthalate metabolites were found in both fluconazole -susceptible and resistant C. auris clade V, as well as 3-methyl-4-isopropylphenol, 3,5-bis(1,1-dimethyl)-1,2-benzenediol, and diisostyl phthalate metabolites in both fluconazole resistant C. auris clade V and I. Identifying these metabolites contributes to understanding the morphogenesis and pathogenesis of C. auris, highlighting their potential role in antifungal drug resistance and the control of fungal growth. However, further experiments are warranted to fully comprehend the identified metabolites' regulatory responses, and there may be potential challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Robab Ebrahimi Barough
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Javad Javidnia
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Ali Davoodi
- Department of Pharmacognosy and Biotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Maryam Moazeni
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, Communicable Diseases Institute, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Molecular and Cell-Biology Research Center, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Ali Siahposht-Khachaki
- Department of Physiology and Pharmacology, Mazandaran University of Medical Sciences, Ramsar International Branch, Sari 48157-33971, Iran
| | - Mahmood Moosazadeh
- Health Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Mohsen Nosratabadi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Jacques F Meis
- Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, 50923 Cologne, Germany
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
26
|
Determann B, Fu J, Wickes BL. Development of a Shuttle Vector That Transforms at High Frequency for the Emerging Human Fungal Pathogen: Candida auris. J Fungi (Basel) 2024; 10:477. [PMID: 39057362 PMCID: PMC11278357 DOI: 10.3390/jof10070477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Routine molecular manipulation of any organism is inefficient and difficult without the existence of a plasmid. Although transformation is possible in C. auris, no plasmids are available that can serve as cloning or shuttle vectors. C. auris centromeres have been well characterized but have not been explored further as molecular tools. We tested C. auris centromeric sequences to identify which, if any, could be used to create a plasmid that was stably maintained after transformation. We cloned all seven C. auris centromeric sequences and tested them for transformation frequency and stability. Transformation frequency varied significantly; however, one was found to transform at a very high frequency. A 1.7 Kb subclone of this sequence was used to construct a shuttle vector. The vector was stable with selection and maintained at ~1 copy per cell but could be easily lost when selection was removed, which suggested that the properties of the centromeric sequence were more Autonomously Replicating Sequence (ARS)-like than centromere-like when part of a plasmid. Rescue of this plasmid from transformed C. auris cells into E. coli revealed that it remained intact after the initial C. auris transformation, even when carrying large inserts. The plasmid was found to be able to transform all four clades of C. auris, with varying frequencies. This plasmid is an important new reagent in the C. auris molecular toolbox, which will enhance the investigation of this human fungal pathogen.
Collapse
Affiliation(s)
| | | | - Brian L. Wickes
- The Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA (J.F.)
| |
Collapse
|
27
|
Cafarchia C, Mendoza-Roldan JA, Rhimi W, C I Ugochukwu I, Miglianti M, Beugnet F, Giuffrè L, Romeo O, Otranto D. Candida auris from the Egyptian cobra: Role of snakes as potential reservoirs. Med Mycol 2024; 62:myae056. [PMID: 38816207 DOI: 10.1093/mmy/myae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Candida auris represents one of the most urgent threats to public health, although its ecology remains largely unknown. Because amphibians and reptiles may present favorable conditions for C. auris colonization, cloacal and blood samples (n = 68), from several snake species, were cultured and molecularly screened for C. auris using molecular amplification of glycosylphosphatidylinositol protein-encoding genes and ribosomal internal transcribed spacer sequencing. Candida auris was isolated from the cloacal swab of one Egyptian cobra (Naja haje legionis) and molecularly identified in its cloaca and blood. The isolation of C. auris from wild animals is herein reported for the first time, thus suggesting the role that these animals could play as reservoirs of this emerging pathogen. The occurrence of C. auris in blood requires further investigation, although the presence of cationic antimicrobial peptides in the plasma of reptiles could play a role in reducing the vitality of the fungus.
Collapse
Affiliation(s)
- Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy , 70010
| | | | - Wafa Rhimi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
| | - Iniobong C I Ugochukwu
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria, 410001
| | - Mara Miglianti
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
| | | | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy, 98122
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy, 98122
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
- Department of Veterinary Clinical Sciences, City University of Hong Kong, 518057
| |
Collapse
|
28
|
Khan T, Faysal NI, Hossain MM, Mah-E-Muneer S, Haider A, Moon SB, Sen D, Ahmed D, Parnell LA, Jubair M, Chow NA, Chowdhury F, Rahman M. Emergence of the novel sixth Candida auris Clade VI in Bangladesh. Microbiol Spectr 2024; 12:e0354023. [PMID: 38842332 PMCID: PMC11218448 DOI: 10.1128/spectrum.03540-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024] Open
Abstract
Candida auris, initially identified in 2009, has rapidly become a critical concern due to its antifungal resistance and significant mortality rates in healthcare-associated outbreaks. To date, whole-genome sequencing (WGS) has identified five unique clades of C. auris, with some strains displaying resistance to all primary antifungal drug classes. In this study, we presented the first WGS analysis of C. auris from Bangladesh, describing its origins, transmission dynamics, and antifungal susceptibility testing (AFST) profile. Ten C. auris isolates collected from hospital settings in Bangladesh were initially identified by CHROMagar Candida Plus, followed by VITEK2 system, and later sequenced using Illumina NextSeq 550 system. Reference-based phylogenetic analysis and variant calling pipelines were used to classify the isolates in different clades. All isolates aligned ~90% with the Clade I C. auris B11205 reference genome. Of the 10 isolates, 8 were clustered with Clade I isolates, highlighting a South Asian lineage prevalent in Bangladesh. Remarkably, the remaining two isolates formed a distinct cluster, exhibiting >42,447 single-nucleotide polymorphism differences compared to their closest Clade IV counterparts. This significant variation corroborates the emergence of a sixth clade (Clade VI) of C. auris in Bangladesh, with potential for international transmission. AFST results showed that 80% of the C. auris isolates were resistant to fluconazole and voriconazole, whereas Clade VI isolates were susceptible to azoles, echinocandins, and pyrimidine analogue. Genomic sequencing revealed ERG11_Y132F mutation conferring azole resistance while FCY1_S70R mutation found inconsequential in describing 5-flucytosine resistance. Our study underscores the pressing need for comprehensive genomic surveillance in Bangladesh to better understand the emergence, transmission dynamics, and resistance profiles of C. auris infections. Unveiling the discovery of a sixth clade (Clade VI) accentuates the indispensable role of advanced sequencing methodologies.IMPORTANCECandida auris is a nosocomial fungal pathogen that is commonly misidentified as other Candida species. Since its emergence in 2009, this multidrug-resistant fungus has become one of the five urgent antimicrobial threats by 2019. Whole-genome sequencing (WGS) has proven to be the most accurate identification technique of C. auris which also played a crucial role in the initial discovery of this pathogen. WGS analysis of C. auris has revealed five distinct clades where isolates of each clade differ among themselves based on pathogenicity, colonization, infection mechanism, as well as other phenotypic characteristics. In Bangladesh, C. auris was first reported in 2019 from clinical samples of a large hospital in Dhaka city. To understand the origin, transmission dynamics, and antifungal-resistance profile of C. auris isolates circulating in Bangladesh, we conducted a WGS-based surveillance study on two of the largest hospital settings in Dhaka, Bangladesh.
Collapse
Affiliation(s)
- Tahsin Khan
- Genome Center, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | | | - Syeda Mah-E-Muneer
- Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Arefeen Haider
- Genome Center, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Shovan Basak Moon
- Genome Center, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Debashis Sen
- Mycology Laboratory, Laboratory Sciences and Services Division, icddr,b, Dhaka, Bangladesh
| | - Dilruba Ahmed
- Mycology Laboratory, Laboratory Sciences and Services Division, icddr,b, Dhaka, Bangladesh
| | - Lindsay A Parnell
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mohammad Jubair
- Genome Center, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Nancy A Chow
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fahmida Chowdhury
- Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Mustafizur Rahman
- Genome Center, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| |
Collapse
|
29
|
Macedo D, Berrio I, Escandon P, Gamarra S, Garcia-Effron G. Mechanism of azole resistance in Candida vulturna, an emerging multidrug resistant pathogen related with Candida haeumulonii and Candida auris. Mycoses 2024; 67:e13757. [PMID: 39049157 DOI: 10.1111/myc.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Candida vulturna is an emerging pathogen belonging to the Metshnikowiaceae family together with Candida auris and Candida haemulonii species complex. Some strains of this species were reported to be resistant to several antifungal agents. OBJECTIVES This study aims to address identification difficulties, evaluate antiungal susceptibilities and explore the molecular mechanisms of azole resistance of Candida vulturna. METHODS We studied five C. vulturna clinical strains isolated in three Colombian cities. Identification was performed by phenotypical, proteomic and molecular methods. Antifungal susceptibility testing was performed following CLSI protocol. Its ERG11 genes were sequenced and a substitution was encountered in azole resistant isolates. To confirm the role of this substitution in the resistance phenotype, Saccharomyces cerevisiae strains with a chimeric ERG11 gene were created. RESULTS Discrepancies in identification methods are highlighted. Sequencing confirmed the identification as C. vulturna. Antifungal susceptibility varied among strains, with four strains exhibiting reduced susceptibility to azoles and amphotericin B. ERG11 sequencing showed a point mutation (producing a P135S substitution) that was associated with the azole-resistant phenotype. CONCLUSIONS This study contributes to the understanding of C. vulturna's identification challenges, its susceptibility patterns, and sheds light on its molecular mechanisms of azole resistance.
Collapse
Affiliation(s)
- Daiana Macedo
- Facultad de Bioquímica, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Indira Berrio
- Corporación para Investigaciones Biológicas, Medellín, Colombia
- Hospital General de Medellín, Luz Castro Gutiérrez ESE, Medellín, Colombia
| | - Patricia Escandon
- Grupo de Microbiologia, Instituto Nacional de Salud, Bogotá, Colombia
| | - Soledad Gamarra
- Facultad de Bioquímica, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermo Garcia-Effron
- Facultad de Bioquímica, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
30
|
Ionescu S, Luchian I, Damian C, Goriuc A, Porumb-Andrese E, Popa CG, Cobzaru RG, Ripa C, Ursu RG. Candida auris Updates: Outbreak Evaluation through Molecular Assays and Antifungal Stewardship-A Narrative Review. Curr Issues Mol Biol 2024; 46:6069-6084. [PMID: 38921033 PMCID: PMC11202268 DOI: 10.3390/cimb46060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris was reported by the WHO as second to Cryptococcus neoformans, in the list of nineteen fungal priority pathogens, along with two species with a new nomenclature, Nakaseomyces glabrata (Candida glabrata) and Pichia kudriavzevii (Candida krusei). This novel classification was based on antifungal resistance, the number of deaths, evidence-based treatment, access to diagnostics, annual incidence, and complications and sequelae. We assessed which molecular assays have been used to diagnose Candida auris outbreaks in the last five years. Using "Candida auris; outbreak; molecular detection" as keywords, our search in PubMed revealed 32 results, from which we selected 23 original papers published in 2019-2024. The analyzed studies revealed that the detection methods were very different: from the VITEK® 2 System to MALDI TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight), NGS (Next-Generation Sequencing), WGS (Whole Genome Sequencing), and commercially available real-time PCR (Polymerase Chain Reaction) assays. Moreover, we identified studies that detected antifungal resistance genes (e.g., FKS for echinocandins and ERG11 for azoles). The analyzed outbreaks were from all continents, which confirms the capability of this yeast to spread between humans and to contaminate the environment. It is important that real-time PCR assays were developed for accurate and affordable detection by all laboratories, including the detection of antifungal resistance genes. This will allow the fast and efficient implementation of stewardship programs in hospitals.
Collapse
Affiliation(s)
- Silvia Ionescu
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Costin Damian
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)—Discipline of Dermatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cosmin Gabriel Popa
- Department of Anatomy, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Roxana Gabriela Cobzaru
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Carmen Ripa
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
| | - Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX), Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania (R.G.U.)
- Microbiology Department, Gynecology and Obstetrics Hospital-Cuza Voda, 700038 Iasi, Romania
| |
Collapse
|
31
|
Feng J, Chen J, Du B, Cui X, Xia Y, Xue G, Feng Y, Ke Y, Zhao H, Cui J, Yan C, Gan L, Fan Z, Fu T, Xu Z, Yang Y, Yu Z, Huang L, Zhao S, Tian Z, Ding Z, Chen Y, Li Z, Yuan J. Development of a Recombinase-Aided Amplification Assay for the Rapid Detection of Candida auris. Anal Chem 2024; 96:9424-9429. [PMID: 38825761 DOI: 10.1021/acs.analchem.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Candida auris (C. auris) was first discovered in Japan in 2009 and has since spread worldwide. It exhibits strong transmission ability, high multidrug resistance, blood infectivity, and mortality rates. Traditional diagnostic techniques for C. auris have shortcomings, leading to difficulty in its timely diagnosis and identification. Therefore, timely and accurate diagnostic assays for clinical samples are crucial. We developed a novel, rapid recombinase-aided amplification (RAA) assay targeting the 18S rRNA, ITS1, 5.8S rRNA, ITS2, and 28S rRNA genes for C. auris identification. This assay can rapidly amplify DNA at 39 °C in 20 min. The analytical sensitivity and specificity were evaluated. From 241 clinical samples collected from pediatric inpatients, none were detected as C. auris-positive. We then prepared simulated clinical samples by adding 10-fold serial dilutions of C. auris into the samples to test the RAA assay's efficacy and compared it with that of real-time PCR. The assay demonstrated an analytical sensitivity of 10 copies/μL and an analytical specificity of 100%. The lower detection limit of the RAA assay for simulated clinical samples was 101 CFU/mL, which was better than that of real-time PCR (102-103 CFU/mL), demonstrating that the RAA assay may have a better detection efficacy for clinical samples. In summary, the RAA assay has high sensitivity, specificity, and detection efficacy. This assay is a potential new method for detecting C. auris, with simple reaction condition requirements, thus helping to manage C. auris epidemics.
Collapse
Affiliation(s)
- Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinfeng Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuyan Xia
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yang Yang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lijuan Huang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuo Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zanbo Ding
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yujie Chen
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhoufei Li
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| |
Collapse
|
32
|
Spruijtenburg B, Nobrega de Almeida Júnior J, Ribeiro FDC, Kemmerich KK, Baeta K, Meijer EFJ, de Groot T, Meis JF, Colombo AL. Multicenter Candida auris outbreak caused by azole-susceptible clade IV in Pernambuco, Brazil. Mycoses 2024; 67:e13752. [PMID: 38880933 DOI: 10.1111/myc.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant yeast, frequently causing outbreaks in health care facilities. The pathogen persistently colonises human skin and inanimate surfaces such as catheters, aiding to its spread. Moreover, colonisation is a risk factor to develop invasive infection. OBJECTIVES We investigated 61 C. auris strains isolated from non-sterile human body sites (n = 53) and the hospital environment (n = 8), originating from four different centres in a single Brazilian state. MATERIALS AND METHODS Antifungal susceptibility testing (AFST) against common antifungals was performed, and resistance-associated genes were evaluated. Genetic relatedness was investigated with short tandem repeat (STR) genotyping and validated with whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. RESULTS Antifungal susceptibility testing demonstrated that all isolates were susceptible to azoles, echinocandins and amphotericin B. No mutations were detected in ERG11 and FKS1 genes. With STR typing, isolates were allocated to clade IV and appeared closely related. This was confirmed by WGS SNP analysis of 6 isolates, which demonstrated a maximal difference of only 41 SNPs between these strains. Furthermore, the Brazilian isolates formed a distinct autochthonous branch within clade IV, excluding recent introductions from outside the country. A molecular clock analysis of clade IV isolates from various countries suggests that early in the previous century there was a unique event causing environmental spread of a C. auris ancestor throughout the Latin-American continent, followed by human introduction during the last decades. CONCLUSION We report the emergence of C. auris patient colonisation in multiple centres by fluconazole-susceptible clade IV close-related strains in Pernambuco State, Brazil.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - João Nobrega de Almeida Júnior
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo-ARIES, São Paulo, Brazil
| | - Felipe de Camargo Ribeiro
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo-ARIES, São Paulo, Brazil
| | - Karoline Kristina Kemmerich
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo-ARIES, São Paulo, Brazil
| | - Karla Baeta
- Agência Pernambucana de Vigilância Sanitária, Recife, Brazil
| | - Eelco F J Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, The Netherlands
| | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Arnaldo Lopes Colombo
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo-ARIES, São Paulo, Brazil
| |
Collapse
|
33
|
Politi L, Vrioni G, Hatzianastasiou S, Lada M, Martsoukou M, Sipsas NV, Chini M, Baka V, Kafkoula E, Masgala A, Pirounaki M, Michailidis C, Chrysos G, Zarkotou O, Mamali V, Papastamopoulos V, Saroglou G, Pournaras S, Meletiadis J, Karakasiliotis I, Karachalios S, Smilakou S, Skandami V, Orfanidou M, Argyropoulou A, Tsakris A, Kontopidou F. Candida auris in Greek healthcare facilities: Active surveillance results on first cases and outbreaks from eleven hospitals within Attica region. J Mycol Med 2024; 34:101477. [PMID: 38574412 DOI: 10.1016/j.mycmed.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Candida auris was sporadically detected in Greece until 2019. Thereupon, there has been an increase in isolations among inpatients of healthcare facilities. AIM We aim to report active surveillance data on MALDI-TOF confirmed Candida auris cases and outbreaks, from November 2019 to September 2021. METHODS A retrospective study on hospital-based Candida auris data, over a 23-month period was conducted, involving 11 hospitals within Attica region. Antifungal susceptibility testing and genotyping were conducted. Case mortality and fatality rates were calculated and p-values less than 0.05 were considered statistically significant. Infection control measures were enforced and enhanced. RESULTS Twenty cases with invasive infection and 25 colonized were identified (median age: 72 years), all admitted to hospitals for reasons other than fungal infections. Median hospitalisation time until diagnosis was 26 days. Common risk factors among cases were the presence of indwelling devices (91.1 %), concurrent bacterial infections during hospitalisation (60.0 %), multiple antimicrobial drug treatment courses prior to hospitalisation (57.8 %), and admission in the ICU (44.4 %). Overall mortality rate was 53 %, after a median of 41.5 hospitalisation days. Resistance to fluconazole and amphotericin B was identified in 100 % and 3 % of tested clinical isolates, respectively. All isolates belonged to South Asian clade I. Outbreaks were identified in six hospitals, while remaining hospitals detected sporadic C. auris cases. CONCLUSION Candida auris has proven its ability to rapidly spread and persist among inpatients and environment of healthcare facilities. Surveillance focused on the presence of risk factors and local epidemiology, and implementation of strict infection control measures remain the most useful interventions.
Collapse
Affiliation(s)
- Lida Politi
- ECDC Fellowship Programme, Field Epidemiology Path (EPIET), European Centre for Disease Prevention and Control (ECDC), Department of Microbial Resistance and Infections in Health Care Settings, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, Athens, Greece.
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Sofia Hatzianastasiou
- Department of Microbial Resistance and Infections in Health Care Settings, Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, Athens, Greece
| | - Malvina Lada
- Second Department of Internal Medicine, "Sismanogleio" General Hospital of Athens, Athens, Greece
| | - Maria Martsoukou
- Department of Microbiology, "Sismanogleio" General Hospital, Athens, Greece
| | - Nikolaos V Sipsas
- Infectious Diseases Unit, "Laikon" General Hospital, and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Chini
- 3rd Department of Internal Medicine and Infectious Diseases Unit, "Korgialeneion-Benakeion" General Hospital, Athens, Greece
| | - Vasiliki Baka
- Microbiology Department, "Korgialeneion-Benakeion" General Hospital, Athens, Greece
| | - Eleni Kafkoula
- Microbiology Department, "Korgialeneion-Benakeion" General Hospital, Athens, Greece
| | - Aikaterini Masgala
- 2nd Department of Internal Medicine, "Konstantopouleio" General Hospital, Athens, Greece
| | - Maria Pirounaki
- Department of Medicine and Laboratory, National and Kapodistrian University of Athens Medical School, "Hippokration" General Hospital, Athens, Greece
| | - Christos Michailidis
- 1st Department of Internal Medicine, "Georgios Gennimatas" General Hospital of Athens, Athens, Greece
| | - Georgios Chrysos
- 2nd Department of Medicine and Infectious Diseases Unit, Tzaneio Hospital, Piraeus, Greece
| | | | - Vasiliki Mamali
- Department of Microbiology, Tzaneio Hospital, Piraeus, Greece
| | - Vasileios Papastamopoulos
- 5th Department of Internal Medicine and Infectious Diseases Unit, "Evaggelismos" General Hospital, Athens, Greece
| | - Georgios Saroglou
- Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Spyros Pournaras
- Department of Clinical Microbiology, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Department of Clinical Microbiology, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stefanos Karachalios
- Department of Microbiology, "Agioi Anargyroi" General Oncology Hospital, Athens, Greece
| | | | - Vasiliki Skandami
- Department of Microbiology, "Hippokration" Athens General Hospital, Athens, Greece
| | - Maria Orfanidou
- Microbiology Department, "Georgios Gennimatas" General Hospital, Athens, Greece
| | - Athina Argyropoulou
- Department of Clinical Microbiology, "Evaggelismos" General Hospital, Athens, Greece
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Flora Kontopidou
- Directorate of Surveillance and Prevention of Infectious Diseases, National Public Health Organization, Athens, Greece
| |
Collapse
|
34
|
Osaigbovo II, Ekeng BE, Davies AA, Ebeigbe E, Bongomin F, Kanyua A, Revathi G, Oladele RO. Candida auris: A Systematic Review of a Globally Emerging Fungal Pathogen in Africa. Open Forum Infect Dis 2024; 11:ofad681. [PMID: 38887473 PMCID: PMC11181182 DOI: 10.1093/ofid/ofad681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Candida auris is a World Health Organization critical priority fungal pathogen. We conducted a systematic review to describe its epidemiology in Africa. PubMed and Google scholar databases were searched between January 2009 and September 2023 for clinical studies on C. auris cases and/or isolates from Africa. Reviews were excluded. We included 19 studies, involving at least 2529 cases from 6 African countries with the most, 2372 (93.8%), reported from South Africa. Whole-genome sequencing of 127 isolates identified 100 (78.7%) as clade III. Among 527 isolates, 481 (91.3%) were resistant to fluconazole, 108 (20.5%) to amphotericin B, and 9 (1.7%) to micafungin. Ninety of 211 (42.7%) patients with clinical outcomes died. C. auris is associated with high mortality and antifungal resistance, yet this critical pathogen remains underreported in Africa. Collaborative surveillance, fungal diagnostics, antifungals, and sustainable infection control practices are urgently needed for containment.
Collapse
Affiliation(s)
- Iriagbonse I Osaigbovo
- Department of Medical Microbiology, School of Medicine, College of Medical Sciences, University of Benin, Benin City, Nigeria
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Bassey E Ekeng
- Department of Medical Microbiology and Parasitology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Adeyinka A Davies
- Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria
| | - Ejime Ebeigbe
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alice Kanyua
- Department of Pathology and Laboratory Medicine, Aga Khan University, Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology and Laboratory Medicine, Aga Khan University, Nairobi, Kenya
| | - Rita O Oladele
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
35
|
Shukla M, Singh R, Chandley P, Rohatgi S. Molecular cloning, expression, and purification, along with in silico epitope analysis of recombinant enolase proteins (a potential vaccine candidate) from Candida albicans and Candida auris. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1399546. [PMID: 38881582 PMCID: PMC11176544 DOI: 10.3389/ffunb.2024.1399546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Candida albicans is the predominant cause of systemic candidiasis, although other non albicans Candida species are progressively becoming more widespread nowadays. Candida auris has emerged as a deadly multidrug-resistant fungal pathogen, posing a significant threat to global public health. In the absence of effective antifungal therapies, the development of a vaccine against C. auris infections is imperative. Enolase, a key glycolytic enzyme, has emerged as a promising vaccine candidate due to its immunogenic properties and essential role in fungal virulence. Herein, full-length Enolase gene sequences from C. albicans and C. auris were cloned into suitable expression vector and transformed into Escherichia coli expression hosts. Recombinant Enolase proteins were successfully expressed and purified using affinity chromatography under native conditions, followed by SDS-PAGE characterization and Western blot analysis. CD spectroscopy verified the existence of expressed proteins in soluble native conformation. Preliminary in silico studies verified the immunogenicity of recombinant Enolase proteins isolated from both C. albicans and C. auris. Furthermore, bioinformatics analysis revealed conserved B-cell and T-cell epitopes across C. albicans and C. auris Enolase proteins, suggesting potential cross-reactivity and broad-spectrum vaccine efficacy. Our findings are anticipated to play a role in advancing therapeutic as well as diagnostic strategies against systemic candidiasis.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, India
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, India
| | - Rohit Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, India
| | - Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, India
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, India
| |
Collapse
|
36
|
Casimiro-Ramos A, Bautista-Crescencio C, Vidal-Montiel A, González GM, Hernández-García JA, Hernández-Rodríguez C, Villa-Tanaca L. Comparative Genomics of the First Resistant Candida auris Strain Isolated in Mexico: Phylogenomic and Pan-Genomic Analysis and Mutations Associated with Antifungal Resistance. J Fungi (Basel) 2024; 10:392. [PMID: 38921378 PMCID: PMC11204476 DOI: 10.3390/jof10060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris is an emerging multidrug-resistant and opportunistic pathogenic yeast. Whole-genome sequencing analysis has defined five major clades, each from a distinct geographic region. The current study aimed to examine the genome of the C. auris 20-1498 strain, which is the first isolate of this fungus identified in Mexico. Based on whole-genome sequencing, the draft genome was found to contain 70 contigs. It had a total genome size of 12.86 Mbp, an N50 value of 1.6 Mbp, and an average guanine-cytosine (GC) content of 45.5%. Genome annotation revealed a total of 5432 genes encoding 5515 proteins. According to the genomic analysis, the C. auris 20-1498 strain belongs to clade IV (containing strains endemic to South America). Of the two genes (ERG11 and FKS1) associated with drug resistance in C. auris, a mutation was detected in K143R, a gene located in a mutation hotspot of ERG11 (lanosterol 14-α-demethylase), an antifungal drug target. The focus on whole-genome sequencing and the identification of mutations linked to the drug resistance of fungi could lead to the discovery of new therapeutic targets and new antifungal compounds.
Collapse
Affiliation(s)
- Arturo Casimiro-Ramos
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (A.C.-R.); (C.B.-C.); (A.V.-M.); (J.A.H.-G.); (C.H.-R.)
| | - Celia Bautista-Crescencio
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (A.C.-R.); (C.B.-C.); (A.V.-M.); (J.A.H.-G.); (C.H.-R.)
| | - Alvaro Vidal-Montiel
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (A.C.-R.); (C.B.-C.); (A.V.-M.); (J.A.H.-G.); (C.H.-R.)
| | - Gloria M. González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Hospital Universitario “Dr. José Eleuterio Gonzalez”, Av. Madero y Calle Dr. Eduardo Aguirre Pequeño s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico;
| | - Juan Alfredo Hernández-García
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (A.C.-R.); (C.B.-C.); (A.V.-M.); (J.A.H.-G.); (C.H.-R.)
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (A.C.-R.); (C.B.-C.); (A.V.-M.); (J.A.H.-G.); (C.H.-R.)
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (A.C.-R.); (C.B.-C.); (A.V.-M.); (J.A.H.-G.); (C.H.-R.)
| |
Collapse
|
37
|
Silva I, Miranda IM, Costa-de-Oliveira S. Potential Environmental Reservoirs of Candida auris: A Systematic Review. J Fungi (Basel) 2024; 10:336. [PMID: 38786691 PMCID: PMC11122228 DOI: 10.3390/jof10050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Candida auris, a multidrug-resistant yeast, poses significant challenges in healthcare settings worldwide. Understanding its environmental reservoirs is crucial for effective control strategies. This systematic review aimed to review the literature regarding the natural and environmental reservoirs of C. auris. Following the PRISMA guidelines, published studies until October 2023 were searched in three databases: PubMed, Web of Science, and Scopus. Information regarding the origin, sampling procedure, methods for laboratory identification, and antifungal susceptibility was collected and analyzed. Thirty-three studies published between 2016 and 2023 in 15 countries were included and analyzed. C. auris was detected in various environments, including wastewater treatment plants, hospital patient care surfaces, and natural environments such as salt marshes, sand, seawater, estuaries, apples, and dogs. Detection methods varied, with molecular techniques often used alongside culture. Susceptibility profiles revealed resistance patterns. Phylogenetic studies highlight the potential of environmental strains to influence clinical infections. Despite methodological heterogeneity, this review provides valuable information for future research and highlights the need for standardized sampling and detection protocols to mitigate C. auris transmission.
Collapse
Affiliation(s)
- Isabel Silva
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel M. Miranda
- Cardiovascular R&D Centre UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
38
|
Areitio M, Antoran A, Rodriguez-Erenaga O, Aparicio-Fernandez L, Martin-Souto L, Buldain I, Zaldibar B, Ruiz-Gaitan A, Pemán J, Rementeria A, Ramirez-Garcia A. Identification of the Most Immunoreactive Antigens of Candida auris to IgGs from Systemic Infections in Mice. J Proteome Res 2024; 23:1634-1648. [PMID: 38572994 PMCID: PMC11077488 DOI: 10.1021/acs.jproteome.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
The delay in making a correct diagnosis of Candida auris causes concern in the healthcare system setting, and immunoproteomics studies are important to identify immunoreactive proteins for new diagnostic strategies. In this study, immunocompetent murine systemic infections caused by non-aggregative and aggregative phenotypes of C. auris and by Candida albicans and Candida haemulonii were carried out, and the obtained sera were used to study their immunoreactivity against C. auris proteins. The results showed higher virulence, in terms of infection signs, weight loss, and histopathological damage, of the non-aggregative isolate. Moreover, C. auris was less virulent than C. albicans but more than C. haemulonii. Regarding the immunoproteomics study, 13 spots recognized by sera from mice infected with both C. auris phenotypes and analyzed by mass spectrometry corresponded to enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate mutase. These four proteins were also recognized by sera obtained from human patients with disseminated C. auris infection but not by sera obtained from mice infected with C. albicans or Aspergillus fumigatus. Spot identification data are available via ProteomeXchange with the identifier PXD049077. In conclusion, this study showed that the identified proteins could be potential candidates to be studied as new diagnostic or even therapeutic targets for C. auris.
Collapse
Affiliation(s)
- Maialen Areitio
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Aitziber Antoran
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Oier Rodriguez-Erenaga
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Leire Aparicio-Fernandez
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Leire Martin-Souto
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Idoia Buldain
- Department
of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Beñat Zaldibar
- CBET
Research Group, Department of Zoology and Animal Cell Biology, Faculty
of Science and Technology, Research Centre for Experimental Marine
Biology and Biotechnology PIE, University
of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Alba Ruiz-Gaitan
- Microbiology
Department, University and Polytechnic La
Fe Hospital, 46026 Valencia, Spain
| | - Javier Pemán
- Microbiology
Department, University and Polytechnic La
Fe Hospital, 46026 Valencia, Spain
| | - Aitor Rementeria
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Andoni Ramirez-Garcia
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
39
|
Erkose Genc G, Caklovica Kucukkaya I, Komec S, Toker Onder I, Toptas O, Teke L, Turan D, Aygun G, Gulmez D, Arikan Akdagli S, Erturan Z. Evaluation of the first Candida auris isolates reported from Türkiye in terms of identification by various methods and susceptibility to antifungal drugs. Indian J Med Microbiol 2024; 49:100594. [PMID: 38636843 DOI: 10.1016/j.ijmmb.2024.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Candida auris is increasingly being isolated from patients all over the world. It has five clades. In this study, it was aimed to compare the results of biochemical tests obtained using different methods and the antifungal susceptibility profiles of C. auris strains isolated from the first seven cases reported in Türkiye, and evaluate whether this information could be useful as preliminary data in determining the clade of strains in centers that lack the opportunity to apply molecular methods. METHODS Identification test results obtained using API ID 32 C, API 20 C AUX, VITEK-2 YST, and MALDI-TOF MS; colony color and morphology on Chromagar Candida, CHROMagar Candida Plus media, and cornmeal-Tween 80 agar; susceptibility to antifungals were tested and compared. Antifungal susceptibility test was studied using microdilution method according to the recommendations of EUCAST. Additionally, a pilot study was conducted to investigate the value of CHROMagar Candida Plus. RESULTS All seven strains were identified as Lachancea kluyveri with API ID 32 C, Rhodotorula glutinis; Cryptococcus neoformans with API 20 C AUX, and C. auris with both VITEK-2 YST and MALDI-TOF MS. MIC values for fluconazole were very high (≥64 mg/L) for all seven strains. It was observed that 11 (37.9%) of 29 Candida parapsilosis strains formed colonies with morphology similar to C. auris on CHROMagar Candida Plus medium, leading to false positivity. CONCLUSIONS Although there have been many isolations of C. auris in our country in recent years, clade distribution of only a small number of strains is known yet. In this study, when the biochemical properties and antifungal susceptibility profiles of the seven strains were evaluated, it was concluded that they exhibited some characteristics compatible with clade I. It was also observed that strains 1 and 2 may belong to a different clade.
Collapse
Affiliation(s)
- Gonca Erkose Genc
- Istanbul University Istanbul Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkiye.
| | - Ilvana Caklovica Kucukkaya
- Istanbul University Istanbul Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkiye.
| | - Selda Komec
- Basaksehir Cam and Sakura City Hospital, Laboratory of Medical Microbiology, Istanbul, Turkiye.
| | - Ilke Toker Onder
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye.
| | - Oyku Toptas
- Altinbas University Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkiye.
| | - Leyla Teke
- University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Laboratory of Medical Microbiology, Istanbul, Turkiye.
| | - Deniz Turan
- University of Health Sciences, Haydarpaşa Numune Training and Research Hospital, Laboratory of Medical Microbiology, Istanbul, Turkiye.
| | - Gokhan Aygun
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkiye.
| | - Dolunay Gulmez
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye.
| | - Sevtap Arikan Akdagli
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye.
| | - Zayre Erturan
- Istanbul University Istanbul Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkiye.
| |
Collapse
|
40
|
Siopi M, Pachoulis I, Leventaki S, Spruijtenburg B, Meis JF, Pournaras S, Vrioni G, Tsakris A, Meletiadis J. Evaluation of the Vitek 2 system for antifungal susceptibility testing of Candida auris using a representative international panel of clinical isolates: overestimation of amphotericin B resistance and underestimation of fluconazole resistance. J Clin Microbiol 2024; 62:e0152823. [PMID: 38501836 PMCID: PMC11005389 DOI: 10.1128/jcm.01528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Although the Vitek 2 system is broadly used for antifungal susceptibility testing of Candida spp., its performance against Candida auris has been assessed using limited number of isolates recovered from restricted geographic areas. We therefore compared Vitek 2 system with the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method using an international collection of 100 C. auris isolates belonging to different clades. The agreement ±1 twofold dilution between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints and Vitek 2-specific wild-type upper limit values (WT-ULVs) were determined. The CLSI-Vitek 2 agreement was poor for 5-flucytosine (0%), fluconazole (16%), and amphotericin B (29%), and moderate for voriconazole (61%), micafungin (67%), and caspofungin (81%). Significant interpretation errors were recorded using the CDC breakpoints for amphotericin B (31% CA, 69% major errors; MaEs) and fluconazole (69% CA, 31% very major errors; VmEs), but not for echinocandins (99% CA, 1% MaEs for both micafungin and caspofungin) for which the Vitek 2 allowed correct categorization of echinocandin-resistant FKS1 mutant isolates. Discrepancies were reduced when the Vitek 2 WT-ULV of 16 mg/L for amphotericin B (98% CA, 2% MaEs) and of 4 mg/L for fluconazole (96% CA, 1% MaEs, 3% VmEs) were used. In conclusion, the Vitek 2 system performed well for echinocandin susceptibility testing of C .auris. Resistance to fluconazole was underestimated whereas resistance to amphotericin B was overestimated using the CDC breakpoints of ≥32 and ≥2 mg/L, respectively. Vitek 2 minimun inhibitory concentrations (MICs) >4 mg/L indicated resistance to fluconazole and Vitek 2 MICs ≤16 mg/L indicated non-resistance to amphotericin B.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Ioannis Pachoulis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Sevasti Leventaki
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Bram Spruijtenburg
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Jacques F. Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Garcia-Bustos V. Is Candida auris the first multidrug-resistant fungal zoonosis emerging from climate change? mBio 2024; 15:e0014624. [PMID: 38477572 PMCID: PMC11005414 DOI: 10.1128/mbio.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
The emergence and evolutionary path of Candida auris poses an intriguing scientific enigma. Its isolation from a pet dog's oral cavity in Kansas, reported by White et al. (T. C. White, B. D. Esquivel, E. M. Rouse Salcido, A. M. Schweiker, et al., mBio 15:e03080-23, 2024, https://doi.org/10.1128/mbio.03080-23), carries significant implications. This discovery intensifies concerns about its hypothetical capacity for zoonotic transmission, particularly considering the dog's extensive human contact and the absence of secondary animal/human cases in both animals and humans. The findings challenge established notions of C. auris transmissibility and underscore the need for further investigation into the transmission dynamics, especially zooanthroponotic pathways. It raises concerns about its adaptability in different hosts and environments, highlighting potential role of environmental and animal reservoirs in its dissemination. Critical points include the evolving thermal tolerance and the genetic divergence in the isolate. This case exemplifies the necessity for an integrated One Health approach, combining human, animal, and environmental health perspectives, to unravel the complexities of C. auris's emergence and behavior.
Collapse
Affiliation(s)
- Victor Garcia-Bustos
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic Hospital La Fe, Valencia, Spain
| |
Collapse
|
42
|
Hui ST, Gifford H, Rhodes J. Emerging Antifungal Resistance in Fungal Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:43-50. [PMID: 38725545 PMCID: PMC11076205 DOI: 10.1007/s40588-024-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 05/12/2024]
Abstract
Purpose of Review Over recent decades, the number of outbreaks caused by fungi has increased for humans, plants (including important crop species) and animals. Yet this problem is compounded by emerging antifungal drug resistance in pathogenic species. Resistance develops over time when fungi are exposed to drugs either in the patient or in the environment. Recent Findings Novel resistant variants of fungal pathogens that were previously susceptible are evolving (such as Aspergillus fumigatus) as well as newly emerging fungal species that are displaying antifungal resistance profiles (e.g. Candida auris and Trichophyton indotineae). Summary This review highlights the important topic of emerging antifungal resistance in fungal pathogens and how it evolved, as well as how this relates to a growing public health burden.
Collapse
Affiliation(s)
- Sui Ting Hui
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Hugh Gifford
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Department of Medical Microbiology, Radboudumc, the Netherlands
| |
Collapse
|
43
|
Narayanan A, Selvakumar P, Siddharthan R, Sanyal K. Identification of C. auris clade 5 isolates using claID. Med Mycol 2024; 62:myae018. [PMID: 38414264 DOI: 10.1093/mmy/myae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Candida auris poses threats to the global medical community due to its multidrug resistance, ability to cause nosocomial outbreaks and resistance to common sterilization agents. Different variants that emerged at different geographical zones were classified as clades. Clade-typing becomes necessary to track its spread, possible emergence of new clades, and to predict the properties that exhibit a clade bias. We previously reported a colony-Polymerase Chain Reaction-based, clade-identification method employing whole genome alignments and identification of clade-specific sequences of four major geographical clades. Here, we expand the panel by identifying clade 5 which was later isolated in Iran, using specific primers designed through in silico analyses.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,560064, India
| | - Pavitra Selvakumar
- Computational Biology, The Institute of Mathematical Sciences, Chennai, 600113, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Rahul Siddharthan
- Computational Biology, The Institute of Mathematical Sciences, Chennai, 600113, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,560064, India
| |
Collapse
|
44
|
Ettadili H, Vural C. Current global status of Candida auris an emerging multidrug-resistant fungal pathogen: bibliometric analysis and network visualization. Braz J Microbiol 2024; 55:391-402. [PMID: 38261261 PMCID: PMC10920528 DOI: 10.1007/s42770-023-01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Candida auris is an emerging multidrug-resistant fungal pathogen associated with nosocomial infections and hospital outbreaks worldwide, presenting a serious global health threat. There has been a rapid emergence of scientific research publications focusing on therapeutic compounds, diagnostic techniques, control strategies, prevention, and understanding the epidemiology related to C. auris. OBJECTIVE This study aims to provide the most up-to-date comprehensive and integrated examination of C. auris research subject and demonstrate that C. auris is indeed a topic of increasing interest. METHODS The search query "candida-auris" was used as a topic term to find and retrieve relevant data published between 2009 and 15 June 2023, from the Web of Science Core Collection (WoSCC) database. In this work, the bibliometric analysis and network visualization were conducted using VOSviewer software, and Biblioshiny interface accessible through the Bibliometrix R-package on RStudio software. RESULTS The yearly growth rate percentage (37.91%), along with the strong positive correlations between publications and citations (r = 0.981; p < 0.001), suggests heightened scholarly engagement in this topic. The USA, India, China, and the UK have emerged as pivotal contributors, with the Centers for Disease Control and Prevention (CDC) in the USA being the most productive institution. Current research hotspots in this field mainly focused on identifying and limiting transmission of the clonal strains, epidemiology, antifungal resistance, and in vitro antifungal susceptibility testing. CONCLUSION This detailed bibliometric analysis in C. auris topic shows that this fungal pathogen has garnered growing attention and attracted progressively more scholars. This paper will help researchers to find without difficulty the relevant articles, research hotspots, influential authors, institutions, and countries related to the topic.
Collapse
Affiliation(s)
- Hamza Ettadili
- Faculty of Science, Department of Biology, Molecular Biology Section, Pamukkale University, 20160, Denizli, Turkey
| | - Caner Vural
- Faculty of Science, Department of Biology, Molecular Biology Section, Pamukkale University, 20160, Denizli, Turkey.
| |
Collapse
|
45
|
Kobrazadeh F, Bateni Shalmani A, Mahmoudi S. Candida auris in Iran: A cause for concern? J Infect Public Health 2024; 17:370-371. [PMID: 38211433 DOI: 10.1016/j.jiph.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Affiliation(s)
- Fatemeh Kobrazadeh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arsalan Bateni Shalmani
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Mario-Vasquez JE, Bagal UR, Lowe E, Morgulis A, Phan J, Sexton DJ, Shiryev S, Slatkevičius R, Welsh R, Litvintseva AP, Blumberg M, Agarwala R, Chow NA. Finding Candida auris in public metagenomic repositories. PLoS One 2024; 19:e0291406. [PMID: 38241320 PMCID: PMC10798454 DOI: 10.1371/journal.pone.0291406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
Candida auris is a newly emerged multidrug-resistant fungus capable of causing invasive infections with high mortality. Despite intense efforts to understand how this pathogen rapidly emerged and spread worldwide, its environmental reservoirs are poorly understood. Here, we present a collaborative effort between the U.S. Centers for Disease Control and Prevention, the National Center for Biotechnology Information, and GridRepublic (a volunteer computing platform) to identify C. auris sequences in publicly available metagenomic datasets. We developed the MetaNISH pipeline that uses SRPRISM to align sequences to a set of reference genomes and computes a score for each reference genome. We used MetaNISH to scan ~300,000 SRA metagenomic runs from 2010 onwards and identified five datasets containing C. auris reads. Finally, GridRepublic has implemented a prospective C. auris molecular monitoring system using MetaNISH and volunteer computing.
Collapse
Affiliation(s)
- Jorge E. Mario-Vasquez
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Elijah Lowe
- General Dynamics Information Technology Inc., Atlanta, Georgia, United States of America
| | - Aleksandr Morgulis
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - John Phan
- General Dynamics Information Technology Inc., Atlanta, Georgia, United States of America
| | - D. Joseph Sexton
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sergey Shiryev
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | | | - Rory Welsh
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anastasia P. Litvintseva
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew Blumberg
- GridRepublic, Cambridge, Massachusetts, United States of America
| | - Richa Agarwala
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
47
|
Hernando-Ortiz A, Eraso E, Jauregizar N, de Groot PW, Quindós G, Mateo E. Efficacy of the combination of amphotericin B and echinocandins against Candida auris in vitro and in the Caenorhabditis elegans host model. Microbiol Spectr 2024; 12:e0208623. [PMID: 38018978 PMCID: PMC10783041 DOI: 10.1128/spectrum.02086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Multidrug resistance is a rising problem among non-Candida albicans species, such as Candida auris. This therapeutic problem has been very important during the COVID-19 pandemic. The World Health Organization has included C. auris in its global priority list of health-threatening fungi, to study this emerging multidrug-resistant species and to develop effective alternative therapies. In the present study, the synergistic effect of the combination of amphotericin B and echinocandins has been demonstrated against blood isolates of C. auris. Different susceptibility responses were also observed between aggregative and non-aggregative phenotypes. The antifungal activity of these drug combinations against C. auris was also demonstrated in the Caenorhabditis elegans host model of candidiasis, confirming the suitability and usefulness of this model in the search for solutions to antimicrobial resistance.
Collapse
Affiliation(s)
- Ainara Hernando-Ortiz
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Piet W.J. de Groot
- Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
48
|
Jaromin A, Zarnowski R, Markowski A, Zagórska A, Johnson CJ, Etezadi H, Kihara S, Mota-Santiago P, Nett JE, Boyd BJ, Andes DR. Liposomal formulation of a new antifungal hybrid compound provides protection against Candida auris in the ex vivo skin colonization model. Antimicrob Agents Chemother 2024; 68:e0095523. [PMID: 38092678 PMCID: PMC10777852 DOI: 10.1128/aac.00955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/28/2023] [Indexed: 01/11/2024] Open
Abstract
The newly emerged pathogen, Candida auris, presents a serious threat to public health worldwide. This multidrug-resistant yeast often colonizes and persists on the skin of patients, can easily spread from person to person, and can cause life-threatening systemic infections. New antifungal therapies are therefore urgently needed to limit and control both superficial and systemic C. auris infections. In this study, we designed a novel antifungal agent, PQA-Az-13, that contains a combination of indazole, pyrrolidine, and arylpiperazine scaffolds substituted with a trifluoromethyl moiety. PQA-Az-13 demonstrated antifungal activity against biofilms of a set of 10 different C. auris clinical isolates, representing all four geographical clades distinguished within this species. This compound showed strong activity, with MIC values between 0.67 and 1.25 µg/mL. Cellular proteomics indicated that PQA-Az-13 partially or completely inhibited numerous enzymatic proteins in C. auris biofilms, particularly those involved in both amino acid biosynthesis and metabolism processes, as well as in general energy-producing processes. Due to its hydrophobic nature and limited aqueous solubility, PQA-Az-13 was encapsulated in cationic liposomes composed of soybean phosphatidylcholine (SPC), 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP), and N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (DSPE-PEG 2000), and characterized by biophysical and spectral techniques. These PQA-Az-13-loaded liposomes displayed a mean size of 76.4 nm, a positive charge of +45.0 mV, a high encapsulation efficiency of 97.2%, excellent stability, and no toxicity to normal human dermal fibroblasts. PQA-Az-13 liposomes demonstrated enhanced antifungal activity levels against both C. auris in in vitro biofilms and ex vivo skin colonization models. These initial results suggest that molecules like PQA-Az-13 warrant further study and development.
Collapse
Affiliation(s)
- Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Robert Zarnowski
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Chad J. Johnson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Haniyeh Etezadi
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Kihara
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Jeniel E. Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Victoria, Australia
| | - David R. Andes
- Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
49
|
Xie X, Deng X, Chen J, Chen L, Yuan J, Chen H, Wei C, Liu X, Qiu G. Two new clades recovered at high temperatures provide novel phylogenetic and genomic insights into Candidatus Accumulibacter. ISME COMMUNICATIONS 2024; 4:ycae049. [PMID: 38808122 PMCID: PMC11131965 DOI: 10.1093/ismeco/ycae049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024]
Abstract
Candidatus Accumulibacter, a key genus of polyphosphate-accumulating organisms, plays key roles in lab- and full-scale enhanced biological phosphorus removal (EBPR) systems. A total of 10 high-quality Ca. Accumulibacter genomes were recovered from EBPR systems operated at high temperatures, providing significantly updated phylogenetic and genomic insights into the Ca. Accumulibacter lineage. Among these genomes, clade IIF members SCELSE-3, SCELSE-4, and SCELSE-6 represent the to-date known genomes encoding a complete denitrification pathway, suggesting that Ca. Accumulibacter alone could achieve complete denitrification. Clade IIC members SSA1, SCUT-1, SCELCE-2, and SCELSE-8 lack the entire set of denitrifying genes, representing to-date known non-denitrifying Ca. Accumulibacter. A pan-genomic analysis with other Ca. Accumulibacter members suggested that all Ca. Accumulibacter likely has the potential to use dicarboxylic amino acids. Ca. Accumulibacter aalborgensis AALB and Ca. Accumulibacter affinis BAT3C720 seemed to be the only two members capable of using glucose for EBPR. A heat shock protein Hsp20 encoding gene was found exclusively in genomes recovered at high temperatures, which was absent in clades IA, IC, IG, IIA, IIB, IID, IIG, and II-I members. High transcription of this gene in clade IIC members SCUT-2 and SCUT-3 suggested its role in surviving high temperatures for Ca. Accumulibacter. Ambiguous clade identity was observed for newly recovered genomes (SCELSE-9 and SCELSE-10). Five machine learning models were developed using orthogroups as input features. Prediction results suggested that they belong to a new clade (IIK). The phylogeny of Ca. Accumulibacter was re-evaluated based on the laterally derived polyphosphokinase 2 gene, showing improved resolution in differentiating different clades.
Collapse
Affiliation(s)
- Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
50
|
Cox CA, Manavathu EK, Wakade S, Myntti M, Vazquez JA. Efficacy of biofilm disrupters against Candida auris and other Candida species in monomicrobial and polymicrobial biofilms. Mycoses 2024; 67:e13684. [PMID: 38214428 DOI: 10.1111/myc.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Candida species are now considered global threats by the CDC and WHO. Candida auris specifically is on the critical pathogen threat list along with Candida albicans. In addition, it is not uncommon to find Candida spp. in a mixed culture with bacterial organisms, especially Staphylococcus aureus producing polymicrobial infections. To eradicate these organisms from the environment and from patient surfaces, surface agents such as chlorhexidine (CHD) and Puracyn are used. Biofilm disrupters (BDs) are novel agents with a broad spectrum of antimicrobial activity and have been used in the management of chronic wounds and to sterilise environmental surfaces for the past several years. The goal of this study was to evaluate BDs (BlastX, Torrent, NSSD) and CHD against Candida spp. and S. aureus using zone of inhibition assays, biofilm and time-kill assays. All BDs and CHD inhibited C. auris growth effectively in a concentration-dependent manner. Additionally, CHD and the BDs showed excellent antimicrobial activity within polymicrobial biofilms. A comparative analysis of the BDs and CHD against C. auris and C. albicans using biofilm kill-curves showed at least 99.999% killing. All three BDs and CHD have excellent activity against different Candida species, including C. auris. However, one isolate of C. auris in a polymicrobial biofilm assay showed resistance/tolerance to CHD, but not to the BDs. The fungicidal activity of these novel agents will be valuable in eradicating surface colonisation of Candida spp, especially C. auris from colonised environmental surfaces and from wounds in colonised patients.
Collapse
Affiliation(s)
- Claudia A Cox
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Elias K Manavathu
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Sushama Wakade
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Jose A Vazquez
- Division of Infectious Diseases, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|