1
|
Men Z, Chen Z, Gu X, Wang Y, Zhang X, Fang F, Shen M, Huang S, Wu S, Zhou L, Bai Z. Clinical relevance of lung microbiota composition in critically ill children with acute lower respiratory tract infections: insights from a retrospective analysis of metagenomic sequencing. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04980-y. [PMID: 39520618 DOI: 10.1007/s10096-024-04980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Acute lower respiratory tract infections (ALRIs) is a leading cause of child mortality worldwide. Metagenomic next-generation sequencing (mNGS) identifies ALRIs pathogens and explores the lung microbiota's role in disease severity and clinical outcomes. This study examines the association between lung microbiota and ALRIs outcomes in children, exploring its potential as a prognostic biomarker. METHODS We retrospectively analyzed mNGS data from the bronchoalveolar lavage fluid (BALF) of 83 pediatric ALRIs patients from 2019 to 2023. Microbial diversity and relative abundances of specific taxa were compared between survivor and non-survivor groups, as well as between varying severity levels. LEfSe was employed to identify key biomarkers related to survival and disease severity. RESULTS Among the 83 patients, 68 survived and 15 died. Patients were also divided into a low severity group (n = 38) and a moderate-to-very-high severity group (n = 45) according to mPIRO score at admission. Significant differences in beta diversity were observed between the survival groups and across different severity levels. Prevotella, Haemophilus and Veillonella exhibited higher abundances in both the survivor and low severity groups, suggesting their potential as predictors of better outcomes. Conversely, Enterococcus and Acinetobacter baumannii were more prevalent in the non-survivor and moderate-to-very-high severity groups. Additionally, Streptococcus pneumoniae and Streptococcus mitis showed increased abundances in survivors. LEfSe further revealed that these microorganisms may predict outcomes and severity in ALRIs. CONCLUSION Our findings underscore the complex relationship between lung microbiota and ALRIs, with specific microbial profiles associated with disease severity and clinical outcomes. This underscores the need for further research to explore and validate its prognostic predictive capacity. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Zhiyu Men
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Zhiheng Chen
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Xinmeng Gu
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Yichen Wang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Xingheng Zhang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meili Shen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, Jiangsu, China
| | - Saihu Huang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Shuiyan Wu
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Libing Zhou
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China.
| | - Zhenjiang Bai
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China.
| |
Collapse
|
2
|
Crucianelli S, Mariano A, Valeriani F, Cocomello N, Gianfranceschi G, Baseggio Conrado A, Moretti F, Scotto d'Abusco A, Mennuni G, Fraioli A, Del Ben M, Romano Spica V, Fontana M. Effects of sulphur thermal water inhalations in long-COVID syndrome: Spa-centred, double-blinded, randomised case-control pilot study. Clin Med (Lond) 2024; 24:100251. [PMID: 39370044 PMCID: PMC11570715 DOI: 10.1016/j.clinme.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND The long-COVID syndrome is characterised by a plethora of symptoms. Given its social and economic impact, many studies have stressed the urgency of proposing innovative strategies other than hospital settings. In this double-blinded, randomised, case-control trial, we investigate the effects of sulphur thermal water inhalations, rich in H2S, compared to distilled water inhalations on symptoms, inflammatory markers and nasal microbiome in long-COVID patients. METHODS About 30 outpatients aged 18-75 with positive diagnosis for long-COVID were randomised in two groups undergoing 12 consecutive days of inhalations. The active group (STW) received sulphur thermal water inhalations whereas the placebo group received inhalations of sterile distilled non-pyrogenic water (SDW). Each participant was tested prior treatment at day 1 (T0), after the inhalations at day 14 (T1) and at 3 months follow-up (T2). At each time point, blood tests, nasal swabs for microbiome sampling, pulmonary functionality tests (PFTs) and pro-inflammatory marker measure were performed. RESULTS The scores obtained in the administered tests (6MWT, Borg score and SGRQ) at T0 showed a significant variation in the STW group, at T1 and T2. Serum cytokine levels and other inflammatory biomarkers reported a statistically significant decrease. Some specific parameters of PFTs showed ameliorations in the STW group only. Changes in the STW nasopharyngeal microbiota composition were noticed, especially from T0 to T2. CONCLUSIONS Inhalations of sulphur thermal water exerted objective and subjective improvements on participants affected by long-COVID. Significant reduction of inflammatory markers, dyspnoea scores and quantitative and qualitative changes in the nasopharyngeal microbiome were also assessed.
Collapse
Affiliation(s)
- Serena Crucianelli
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Nicholas Cocomello
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Gianluca Gianfranceschi
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Alessia Baseggio Conrado
- Department of Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ferdinando Moretti
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Gioacchino Mennuni
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Antonio Fraioli
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Maria Del Ben
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, Rome 00135, Italy
| | - Mario Fontana
- School of Thermal Medicine, Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| |
Collapse
|
3
|
da Silva R, Vallinoto ACR, dos Santos EJM. The Silent Syndrome of Long COVID and Gaps in Scientific Knowledge: A Narrative Review. Viruses 2024; 16:1256. [PMID: 39205230 PMCID: PMC11359800 DOI: 10.3390/v16081256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
COVID-19 is still a major public health concern, mainly due to the persistence of symptoms or the appearance of new symptoms. To date, more than 200 symptoms of long COVID (LC) have been described. The present review describes and maps its relevant clinical characteristics, pathophysiology, epidemiology, and genetic and nongenetic risk factors. Given the currently available evidence on LC, we demonstrate that there are still gaps and controversies in the diagnosis, pathophysiology, epidemiology, and detection of prognostic and predictive factors, as well as the role of the viral strain and vaccination.
Collapse
Affiliation(s)
- Rosilene da Silva
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
| | - Antonio Carlos Rosário Vallinoto
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Eduardo José Melo dos Santos
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil;
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
4
|
Folliero V, Ferravante C, Dell’Annunziata F, Brancaccio RN, D’Agostino Y, Giurato G, Manente R, Terenzi I, Greco R, Boccia G, Pagliano P, Weisz A, Franci G, Rizzo F. Influence of Mycobiota in the Nasopharyngeal Tract of COVID-19 Patients. Microorganisms 2024; 12:1468. [PMID: 39065235 PMCID: PMC11279359 DOI: 10.3390/microorganisms12071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The nasopharyngeal tract contains a complex microbial community essential to maintaining host homeostasis. Recent studies have shown that SARS-CoV-2 infection changes the microbial composition of the nasopharynx. Still, little is known about how it affects the fungal microbiome, which could provide valuable insights into disease pathogenesis. Nasopharyngeal swabs were collected from 55 patients, during three distinct COVID-19 waves that occurred in the Campania Region (southern Italy). An RNA-seq-based analysis was performed to evaluate changes in mycobiota diversity, showing variations depending on the disease's severity and the sample collection wave. The phyla Basidiomycota and Ascomycota were shown to have higher abundance in patients with severe symptoms. Furthermore, the diversity of the fungal population was greater in the second wave. Conclusion: According to our research, COVID-19 induces significant dysbiosis of the fungal microbiome, which may contribute to disease pathogenesis, and understanding its underlying mechanisms could contribute to developing effective treatments.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
| | - Carlo Ferravante
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Medical Genomics Program, AOU ‘S. Giovanni di Dio e Ruggi d’Aragona’, University of Salerno, 84131 Salerno, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Rosario Nicola Brancaccio
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Medical Genomics Program, AOU ‘S. Giovanni di Dio e Ruggi d’Aragona’, University of Salerno, 84131 Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Genome Research Center for Health—CRGS, Campus of Medicine, University of Salerno, 84081 Salerno, Italy
| | - Roberta Manente
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ilaria Terenzi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
| | - Rita Greco
- UOC Microbiologia e Virologia, AORN S. Anna e S. Sebastiano, 81100 Caserta, Italy;
| | - Giovanni Boccia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- UOC Igiene Ospedaliera ed Epidemiologia, DAI Igiene Sanitaria e Valutativa, San Giovanni di Dio e Ruggi D’Aragona, University of Salerno, 84131 Salerno, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- Infectious Disease Unit, San Giovanni di Dio e Ruggi D’Aragona, University of Salerno, 84131 Salerno, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Medical Genomics Program, AOU ‘S. Giovanni di Dio e Ruggi d’Aragona’, University of Salerno, 84131 Salerno, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine, University of Salerno, 84081 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona, University of Salerno, 84131 Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Genome Research Center for Health—CRGS, Campus of Medicine, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
5
|
Lin J, Wang J, Feng J, Zhu R, Guo Y, Dong Y, Zhang H, Jin X. Changes in the ocular surface microbiome of patients with coronavirus disease 2019 (COVID-19). Front Microbiol 2024; 15:1389139. [PMID: 39040901 PMCID: PMC11262004 DOI: 10.3389/fmicb.2024.1389139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose To elucidate the reasons behind the increased incidence of ocular disease in patients with coronavirus disease 2019 (COVID-19), this study delved deeper into the specific effects of COVID-19 on patients' ocular surface microbiome (OSM) and investigated its relationship with the increased incidence of ocular disease. Methods In this study, conjunctival sac swabs were collected from 43 participants for 16S rRNA amplicon sequencing. The participants were categorized into three groups based on their COVID-19 status: the control group (C group) consisted of 15 participants who showed no evidence of COVID-19, the experimental group (E group) included 15 participants who tested positive for COVID-19, and the COVID-19 recovery period group (R group) comprised 13 participants. Results In the comparison of alpha diversity, group E had a higher Shannon, Chao1 and Goods coverage index. When comparing beta diversity, groups E and R were more similar to each other. At the phylum level, although the OSM of the three groups was dominated by Proteobacteria, Actinobacteriota, Bacteroidota and Firmicutes, the compositional proportions were significantly different. At the genus level, the dominant species in the three OSM groups were significantly different, with Pseudomonas becoming the dominant genus in groups E and R compared to group C, and the abundance of Ralstonia decreasing significantly. Conclusion This study provides additional evidence supporting the association between the OSM and COVID-19, which contributes to our understanding of the potential mechanisms underlying ocular symptoms and complications associated with COVID-19 in the future.
Collapse
|
6
|
Zhou XJ, Horga A, Puri A, Winchester L, Montrond M, Pietropaolo K, Belanger B, Fletcher CV, Hammond J. Human bronchopulmonary disposition and plasma pharmacokinetics of oral bemnifosbuvir (AT-527), an experimental guanosine nucleotide prodrug for COVID-19. J Antimicrob Chemother 2024; 79:1423-1431. [PMID: 38708557 PMCID: PMC11144486 DOI: 10.1093/jac/dkae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Bemnifosbuvir (AT-527) is a novel oral guanosine nucleotide antiviral drug for the treatment of persons with COVID-19. Direct assessment of drug disposition in the lungs, via bronchoalveolar lavage, is necessary to ensure antiviral drug levels at the primary site of SARS-CoV-2 infection are achieved. OBJECTIVES This Phase 1 study in healthy subjects aimed to assess the bronchopulmonary pharmacokinetics, safety and tolerability of repeated doses of bemnifosbuvir. METHODS A total of 24 subjects were assigned to receive bemnifosbuvir twice daily at doses of 275, 550 or 825 mg for up to 3.5 days. RESULTS AT-511, the free base of bemnifosbuvir, was largely eliminated from the plasma within 6 h post dose in all dosing groups. Antiviral drug levels of bemnifosbuvir were consistently achieved in the lungs with bemnifosbuvir 550 mg twice daily. The mean level of the guanosine nucleoside metabolite AT-273, the surrogate of the active triphosphate metabolite of the drug, measured in the epithelial lining fluid of the lungs was 0.62 µM at 4-5 h post dose. This exceeded the target in vitro 90% effective concentration (EC90) of 0.5 µM for antiviral drug exposure against SARS-CoV-2 replication in human airway epithelial cells. Bemnifosbuvir was well tolerated across all doses tested, and most treatment-emergent adverse events reported were mild in severity and resolved. CONCLUSIONS The favourable pharmacokinetics and safety profile of bemnifosbuvir demonstrates its potential as an oral antiviral treatment for COVID-19, with 550 mg bemnifosbuvir twice daily currently under further clinical evaluation in persons with COVID-19.
Collapse
Affiliation(s)
| | | | - Adeep Puri
- Hammersmith Medicines Research Ltd, London, UK
| | - Lee Winchester
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
7
|
Aljabr W, Dandachi I, Abbas B, Karkashan A, Al-Amari A, AlShahrani D. Metagenomic next-generation sequencing of nasopharyngeal microbiota in COVID-19 patients with different disease severities. Microbiol Spectr 2024; 12:e0416623. [PMID: 38557102 PMCID: PMC11237758 DOI: 10.1128/spectrum.04166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/24/2024] [Indexed: 04/04/2024] Open
Abstract
Throughout the COVID-19 pandemic, extensive research has been conducted on SARS-COV-2 to elucidate its genome, prognosis, and possible treatments. However, few looked at the microbial markers that could be explored in infected patients and that could predict possible disease severity. The aim of this study is to compare the nasopharyngeal microbiota of healthy subjects, moderate, under medication, and recovered SARS-COV-2 patients. In 2020, 38 nasopharyngeal swabs were collected from 6 healthy subjects, 14 moderates, 10 under medication and 8 recovered SARS-COV-2 patients at the Prince Mohammed Bin Abdulaziz Hospital Riyadh. Metatranscriptomic sequencing was performed using Minion Oxford nanopore sequencing. No significant difference in alpha as well as beta diversity was observed among all four categories. Nevertheless, we have found that Streptococcus spp including Streptococcus pneumoniae and Streptococcus thermophilus were among the top 15 most abundant species detected in COVID-19 patients but not in healthy subjects. The genus Staphylococcus was found to be associated with COVID-19 patients compared to healthy subjects. Furthermore, the abundance of Leptotrichia was significantly higher in healthy subjects compared to recovered patients. Corynebacterium on the other hand, was associated with under-medication patients. Taken together, our study revealed no differences in the overall microbial composition between healthy subjects and COVID-19 patients. Significant differences were seen only at specific taxonomic level. Future studies should explore the nasopharyngeal microbiota between controls and COVID-19 patients while controlling for confounders including age, gender, and comorbidities; since these latter could affect the results and accordingly the interpretation.IMPORTANCEIn this work, no significant difference in the microbial diversity was seen between healthy subjects and COVID-19 patients. Changes in specific taxa including Leptotrichia, Staphylococcus, and Corynebacterium were only observed. Leptotrichia was significantly higher in healthy subjects, whereas Staphylococcus and Corynebacterium were mostly associated with COVID-19, and specifically with under-medication SARS-COV-2 patients, respectively. Although the COVID-19 pandemic has ended, the SARS-COV-2 virus is continuously evolving and the emergence of new variants causing more severe disease should be always kept in mind. Microbial markers in SARS-COV-2 infected patients can be useful in the early suspicion of the disease, predicting clinical outcomes, framing hospital and intensive care unit admission as well as, risk stratification. Data on which microbial marker to tackle is still controversial and more work is needed, hence the importance of this study.
Collapse
Affiliation(s)
- Waleed Aljabr
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Iman Dandachi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Basma Abbas
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alaa Karkashan
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahod Al-Amari
- Department of Basic Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Dayel AlShahrani
- Pediatric infectious diseases, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Žuštra A, Leonard VR, Holland LA, Hu JC, Mu T, Holland SC, Wu LI, Begnel ER, Ojee E, Chohan BH, Richardson BA, Kinuthia J, Wamalwa D, Slyker J, Lehman DA, Gantt S, Lim ES. Longitudinal dynamics of the nasopharyngal microbiome in response to SARS-CoV-2 Omicron variant and HIV infection in Kenyan women and their infants. RESEARCH SQUARE 2024:rs.3.rs-4257641. [PMID: 38699359 PMCID: PMC11065085 DOI: 10.21203/rs.3.rs-4257641/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest and of clinical relevance. The impact of SARS-CoV-2, the etiological agent of the Coronavirus Disease 2019 (COVID-19) pandemic, on the nasopharyngeal microbiome, particularly among individuals living with HIV, is not fully characterized. Here we describe the nasopharyngeal microbiome before, during and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their infants (18 HIV-exposed, uninfected and 18 HIV-unexposed, uninfected), followed between September 2021 through March 2022. We show using genomic epidemiology that mother and infant dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. Additionally, we used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and infants infected with SARS-CoV-2, 6 infants negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint matched SARS-CoV-2 negative mothers and infants. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- and long-term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and infants had significantly different microbiome composition and bacterial load (p-values <.0001). However, in both mothers and infants, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV-exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV.
Collapse
|
9
|
Qiu Y, Mo C, Chen L, Ye W, Chen G, Zhu T. Alterations in microbiota of patients with COVID-19: implications for therapeutic interventions. MedComm (Beijing) 2024; 5:e513. [PMID: 38495122 PMCID: PMC10943180 DOI: 10.1002/mco2.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently caused a global pandemic, resulting in more than 702 million people being infected and over 6.9 million deaths. Patients with coronavirus disease (COVID-19) may suffer from diarrhea, sleep disorders, depression, and even cognitive impairment, which is associated with long COVID during recovery. However, there remains no consensus on effective treatment methods. Studies have found that patients with COVID-19 have alterations in microbiota and their metabolites, particularly in the gut, which may be involved in the regulation of immune responses. Consumption of probiotics may alleviate the discomfort caused by inflammation and oxidative stress. However, the pathophysiological process underlying the alleviation of COVID-19-related symptoms and complications by targeting the microbiota remains unclear. In the current study, we summarize the latest research and evidence on the COVID-19 pandemic, together with symptoms of SARS-CoV-2 and vaccine use, with a focus on the relationship between microbiota alterations and COVID-19-related symptoms and vaccine use. This work provides evidence that probiotic-based interventions may improve COVID-19 symptoms by regulating gut microbiota and systemic immunity. Probiotics may also be used as adjuvants to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yong Qiu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengduChina
| | - Lu Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Wanlin Ye
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Guo Chen
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| | - Tao Zhu
- Department of AnesthesiologyNational Clinical Research Center for Geriatrics and The Research Units of West China (2018RU012)West China HospitalSichuan UniversityChengduChina
- Laboratory of Anesthesia and Critical Care MedicineNational‐Local Joint Engineering Research Center of Translational Medicine of AnesthesiologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Alrezaihi A, Penrice-Randal R, Dong X, Prince T, Randle N, Semple MG, Openshaw PJM, MacGill T, Myers T, Orr R, Zakotnik S, Suljič A, Avšič-Županc T, Petrovec M, Korva M, AlJabr W, Hiscox JA. Enrichment of SARS-CoV-2 sequence from nasopharyngeal swabs whilst identifying the nasal microbiome. J Clin Virol 2024; 171:105620. [PMID: 38237303 DOI: 10.1016/j.jcv.2023.105620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 03/17/2024]
Abstract
Simultaneously characterising the genomic information of coronaviruses and the underlying nasal microbiome from a single clinical sample would help characterise infection and disease. Metatranscriptomic approaches can be used to sequence SARS-CoV-2 (and other coronaviruses) and identify mRNAs associated with active transcription in the nasal microbiome. However, given the large sequence background, unenriched metatranscriptomic approaches often do not sequence SARS-CoV-2 to sufficient read and coverage depth to obtain a consensus genome, especially with moderate and low viral loads from clinical samples. In this study, various enrichment methods were assessed to detect SARS-CoV-2, identify lineages and define the nasal microbiome. The methods were underpinned by Oxford Nanopore long-read sequencing and variations of sequence independent single primer amplification (SISPA). The utility of the method(s) was also validated on samples from patients infected seasonal coronaviruses. The feasibility of profiling the nasal microbiome using these enrichment methods was explored. The findings shed light on the performance of different enrichment strategies and their applicability in characterising the composition of the nasal microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Malcolm G Semple
- University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Alder Hey Children's Hospital, Liverpool, UK
| | | | - Tracy MacGill
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | - Todd Myers
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | - Robert Orr
- Office of Counterterrorism and Emerging Threats, U.S. Food and Drug Administration, Silver Spring, USA
| | | | - Alen Suljič
- University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Miša Korva
- University of Ljubljana, Ljubljana, Slovenia
| | - Waleed AlJabr
- University of Liverpool, Liverpool, UK; King Fahad Medical City, Riyadh, Saudi Arabia
| | - Julian A Hiscox
- University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK; Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
11
|
Siasios P, Giosi E, Ouranos K, Christoforidi M, Dimopoulou I, Leshi E, Exindari M, Anastassopoulou C, Gioula G. Oropharyngeal Microbiome Analysis in Patients with Varying SARS-CoV-2 Infection Severity: A Prospective Cohort Study. J Pers Med 2024; 14:369. [PMID: 38672996 PMCID: PMC11051038 DOI: 10.3390/jpm14040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Patients with COVID-19 infection have distinct oropharyngeal microbiota composition and diversity metrics according to disease severity. However, these findings are not consistent across the literature. We conducted a multicenter, prospective study in patients with COVID-19 requiring outpatient versus inpatient management to explore the microbial abundance of taxa at the phylum, family, genus, and species level, and we utilized alpha and beta diversity indices to further describe our findings. We collected oropharyngeal washing specimens at the time of study entry, which coincided with the COVID-19 diagnosis, to conduct all analyses. We included 43 patients in the study, of whom 16 were managed as outpatients and 27 required hospitalization. Proteobacteria, Actinobacteria, Bacteroidetes, Saccharibacteria TM7, Fusobacteria, and Spirochaetes were the most abundant phyla among patients, while 61 different families were detected, of which the Streptococcaceae and Staphylococcaceae families were the most predominant. A total of 132 microbial genera were detected, with Streptococcus being the predominant genus in outpatients, in contrast to hospitalized patients, in whom the Staphylococcus genus was predominant. LeFSe analysis identified 57 microbial species in the oropharyngeal washings of study participants that could discriminate the severity of symptoms of COVID-19 infections. Alpha diversity analysis did not reveal a difference in the abundance of bacterial species between the groups, but beta diversity analysis established distinct microbial communities between inpatients and outpatients. Our study provides information on the complex association between the oropharyngeal microbiota and SARS-CoV-2 infection. Although our study cannot establish causation, knowledge of specific taxonomic changes with increasing SARS-CoV-2 infection severity can provide us with novel clues for the prognostic classification of COVID-19 patients.
Collapse
Affiliation(s)
- Panagiotis Siasios
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Evangelia Giosi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Konstantinos Ouranos
- Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Maria Christoforidi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Ifigenia Dimopoulou
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Enada Leshi
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Maria Exindari
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia Gioula
- Microbiology Department, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.S.); (E.G.); (M.C.); (I.D.); (E.L.); (M.E.); (G.G.)
| |
Collapse
|
12
|
Romani L, Del Chierico F, Pane S, Ristori MV, Pirona I, Guarrasi V, Cotugno N, Bernardi S, Lancella L, Perno CF, Rossi P, Villani A, Campana A, Palma P, Putignani L. Exploring nasopharyngeal microbiota profile in children affected by SARS-CoV-2 infection. Microbiol Spectr 2024; 12:e0300923. [PMID: 38289047 PMCID: PMC10913489 DOI: 10.1128/spectrum.03009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/12/2023] [Indexed: 03/06/2024] Open
Abstract
The relationship between COVID-19 and nasopharyngeal (NP) microbiota has been investigated mainly in the adult population. We explored the NP profile of children affected by COVID-19, compared to healthy controls (CTRLs). NP swabs of children with COVID-19, collected between March and September 2020, were investigated at the admission (T0), 72 h to 7 days (T1), and at the discharge (T2) of the patients. NP microbiota was analyzed by 16S rRNA targeted-metagenomics. Data from sequencing were investigated by QIIME 2.0 and PICRUSt 2. Multiple machine learning (ML) models were exploited to classify patients compared to CTRLs. The NP microbiota of COVID-19 patients (N = 71) was characterized by reduction of α-diversity compared to CTRLs (N = 59). The NP microbiota of COVID-19 cohort appeared significantly enriched in Streptococcus, Haemophilus, Staphylococcus, Veillonella, Enterococcus, Neisseria, Moraxella, Enterobacteriaceae, Gemella, Bacillus, and reduced in Faecalibacterium, Akkermansia, Blautia, Bifidobacterium, Ruminococcus, and Bacteroides, compared to CTRLs (FDR < 0.001). Exploiting ML models, Enterococcus, Pseudomonas, Streptococcus, Capnocytopagha, Tepidiphilus, Porphyromonas, Staphylococcus, and Veillonella resulted as NP microbiota biomarkers, in COVID-19 patients. No statistically significant differences were found comparing the NP microbiota profile of COVID-19 patients during the time-points or grouping patients on the basis of high, medium, and low viral load (VL). This evidence provides specific pathobiont signatures of the NP microbiota in pediatric COVID-19 patients, and the reduction of anaerobic protective commensals. Our data suggest that the NP microbiota may have a specific disease-related signature since infection onset without changes during disease progression, regardless of the SARS-CoV-2 VL. IMPORTANCE Since the beginning of pandemic, we know that children are less susceptible to severe COVID-19 disease. A potential role of the nasopharyngeal (NP) microbiota has been hypothesized but to date, most of the studies have been focused on adults. We studied the NP microbiota modifications in children affected by SARS-CoV-2 infection showing a specific NP microbiome profile, mainly composed by pathobionts and almost missing protective anaerobic commensals. Moreover, in our study, specific microbial signatures appear since the first days of infection independently from SARS-CoV-2 viral load.
Collapse
Affiliation(s)
- L. Romani
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - F. Del Chierico
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S. Pane
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - M. V. Ristori
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - I. Pirona
- GenomeUp SRL, Viale Pasteur, Rome, Italy
| | | | - N. Cotugno
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - S. Bernardi
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - L. Lancella
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - C. F. Perno
- Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P. Rossi
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - A. Villani
- Pediatric Emergency Department and General Pediatrics, Bambino Gesù Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - A. Campana
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P. Palma
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
| | - L. Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - the CACTUS Study TeamCarducciFrancesca CalòCancriniCaterinaChiurchiùSaradegli AttiMarta CiofiCursiLauraCutreraRenatoD’AmoreCarmenD’ArgenioPatriziaDe IorisMaria A.De LucaMaiaFinocchiAndreaMannoEmma ConcettaMorrocchiElenaPansaPaolaSessaLiberaZangariPaola
- Infectious Disease Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Unit of Microbiomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- GenomeUp SRL, Viale Pasteur, Rome, Italy
- Research Unit of Congenital and Perinatal Infections, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome ‘‘Tor Vergata’’, Rome, Italy
- Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Pediatric Emergency Department and General Pediatrics, Bambino Gesù Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
- Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Álvarez-Santacruz C, Tyrkalska SD, Candel S. The Microbiota in Long COVID. Int J Mol Sci 2024; 25:1330. [PMID: 38279329 PMCID: PMC10816132 DOI: 10.3390/ijms25021330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Interest in the coronavirus disease 2019 (COVID-19) has progressively decreased lately, mainly due to the great effectivity of vaccines. Furthermore, no new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants able to circumvent the protection of these vaccines, while presenting high transmissibility and/or lethality, have appeared. However, long COVID has emerged as a huge threat to human health and economy globally. The human microbiota plays an important role in health and disease, participating in the modulation of innate and adaptive immune responses. Thus, multiple studies have found that the nasopharyngeal microbiota is altered in COVID-19 patients, with these changes associated with the onset and/or severity of the disease. Nevertheless, although dysbiosis has also been reported in long COVID patients, mainly in the gut, little is known about the possible involvement of the microbiota in the development of this disease. Therefore, in this work, we aim to fill this gap in the knowledge by discussing and comparing the most relevant studies that have been published in this field up to this point. Hence, we discuss that the relevance of long COVID has probably been underestimated, and that the available data suggest that the microbiota could be playing a pivotal role on the pathogenesis of the disease. Further research to elucidate the involvement of the microbiota in long COVID will be essential to explore new therapeutic strategies based on manipulation of the microbiota.
Collapse
Affiliation(s)
| | - Sylwia D. Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Xiang G, Xu K, Jian Y, He L, Shen Z, Li M, Liu Q. Prolonged mask wearing changed nasal microbial characterization of young adults during the COVID-19 pandemic in Shanghai, China. Front Immunol 2023; 14:1266941. [PMID: 37908346 PMCID: PMC10614009 DOI: 10.3389/fimmu.2023.1266941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Background Face masks have become a common sight during the Coronavirus Disease 2019 (COVID-19) pandemic in many countries. However, the impact of prolonged face mask wearing on nasal microbiota of healthy people is not fully understood. Methods In this study, we compared the nasal microbiota of 82 young adults who wore face masks for an extended period of time to 172 mask-free peers from the same school recruited before the COVID-19 pandemic via 16S ribosomal RNA gene sequencing. Diversity, composition, and function of nasal microbiota between the two groups were analyzed. Prevalence of commensal bacteria colonized in the nasal cavity was determined by culture-based analysis. Results We observed that prolonged face mask wearers had significantly different nasal microbial characterization and metabolic function compared to mask-free controls from 2018. Specifically, the nasal microbiota of the prolonged mask wearers displayed increased abundance of Staphylococcus, Pseudoalteromonas, Corynebacterium, etc. Meanwhile, the abundance of several genera including Bacteroides, Faecalibacterium, and Agathobacter was decreased. Moreover, we observed that COVID-19 infection history did not affect the composition of nasal microbiota significantly. Additionally, the culture-based analysis revealed that Staphylococcus aureus and Corynebacterium accolens increased, and Staphylococcus epidermidis decreased in the nasal cavity of prolonged mask wearers. Conclusions Overall, our study suggests that prolonged face mask wearing can significantly alter the nasal microbiota.
Collapse
Affiliation(s)
- Guoxiu Xiang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Shen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Mancabelli L, Taurino G, Ticinesi A, Ciociola T, Vacondio F, Milani C, Fontana F, Lugli GA, Tarracchini C, Alessandri G, Viappiani A, Bianchi M, Nouvenne A, Chetta AA, Turroni F, Meschi T, Mor M, Bussolati O, Ventura M. Disentangling the interactions between nasopharyngeal and gut microbiome and their involvement in the modulation of COVID-19 infection. Microbiol Spectr 2023; 11:e0219423. [PMID: 37728335 PMCID: PMC10581039 DOI: 10.1128/spectrum.02194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/01/2023] [Indexed: 09/21/2023] Open
Abstract
The human organism is inhabited by trillions of microorganisms, known as microbiota, which are considered to exploit a pivotal role in the regulation of host health and immunity. Recent investigations have suggested a relationship between the composition of the human microbiota and COVID-19 infection, highlighting a possible role of bacterial communities in the modulation of the disease severity. In this study, we performed a shotgun metagenomics analysis to explore and compare the nasopharyngeal microbiota of 38 hospitalized Italian patients with and without COVID-19 infection during the third and fourth pandemic waves. In detail, the metagenomic analysis combined with specific correlation analyses suggested a positive association of several microbial species, such as S. parasanguinis and P. melaninogenica, with the severity of COVID-19 infection. Furthermore, the comparison of the microbiota composition between the nasopharyngeal and their respective fecal samples highlighted an association between these different compartments represented by a sharing of several bacterial species. Additionally, lipidomic and deep-shotgun functional analyses of the fecal samples suggested a metabolic impact of the microbiome on the host's immune response, indicating the presence of key metabolic compounds in COVID-19 patients, such as lipid oxidation end products, potentially related to the inflammatory state. Conversely, the patients without COVID-19 displayed enzymatic patterns associated with the biosynthesis and degradation of specific compounds like lysine (synthesis) and phenylalanine (degradation) that could positively impact disease severity and contribute to modulating COVID-19 infection. IMPORTANCE The human microbiota is reported to play a major role in the regulation of host health and immunity, suggesting a possible impact on the severity of COVID-19 disease. This preliminary study investigated the possible correlation between nasopharyngeal microbiota and COVID-19 infection. In detail, the analysis of the nasopharyngeal microbiota of hospitalized Italian patients with and without COVID-19 infection suggested a positive association of several microbial species with the severity of the disease and highlighted a sharing of several bacteria species with the respective fecal samples. Moreover, the metabolic analyses suggested a possible impact of the microbiome on the host's immune response and the disease severity.
Collapse
Affiliation(s)
- Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Department of Geriatric-Rehabilitation, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federica Vacondio
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Christian Milani
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Massimiliano Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Department of Geriatric-Rehabilitation, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alfredo Antonio Chetta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Department of Geriatric-Rehabilitation, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marco Mor
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Guo C, Yi B, Wu J, Lu J. The microbiome in post-acute infection syndrome (PAIS). Comput Struct Biotechnol J 2023; 21:3904-3911. [PMID: 37602232 PMCID: PMC10432703 DOI: 10.1016/j.csbj.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Post-Acute Infection Syndrome (PAIS) is a relatively new medical terminology that represents prolonged sequelae symptoms after acute infection by numerous pathogenic agents. Imposing a substantial public health burden worldwide, PASC (post-acute sequelae of COVID-19 infection) and ME/CFS (myalgic encephalomyelitis/chronic fatigue syndrome) are two of the most recognized and prevalent PAIS conditions. The presences of prior infections and similar symptom profiles in PAIS reflect a plausible common etiopathogenesis. The human microbiome is known to play an essential role in health and disease. In this review, we reviewed and summarized available research on oral and gut microbiota alterations in patients with different infections or PAIS conditions. We discussed key theories about the associations between microbiome dysbiosis and PAIS disease development, aiming to explore the mechanistic roles and potential functions the microbiome may have in the process. Additionally, we discuss the areas of knowledge gaps and propose the potential clinical applications of the microbiome for prevention and treatment of PAIS conditions.
Collapse
Affiliation(s)
- Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, USA
| | - Boyang Yi
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jianyong Wu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, China
| |
Collapse
|
17
|
Hyblova M, Hadzega D, Babisova K, Krumpolec P, Gnip A, Sabaka P, Lassan S, Minarik G. Metatranscriptome Analysis of Nasopharyngeal Swabs across the Varying Severity of COVID-19 Disease Demonstrated Unprecedented Species Diversity. Microorganisms 2023; 11:1804. [PMID: 37512976 PMCID: PMC10384460 DOI: 10.3390/microorganisms11071804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recent global emergence of the SARS-CoV-2 pandemic has accelerated research in several areas of science whose valuable outputs and findings can help to address future health challenges in the event of emerging infectious agents. We conducted a comprehensive shotgun analysis targeting multiple aspects to compare differences in bacterial spectrum and viral presence through culture-independent RNA sequencing. We conducted a comparative analysis of the microbiome between healthy individuals and those with varying degrees of COVID-19 severity, including a total of 151 participants. Our findings revealed a noteworthy increase in microbial species diversity among patients with COVID-19, irrespective of disease severity. Specifically, our analysis revealed a significant difference in the abundance of bacterial phyla between healthy individuals and those infected with COVID-19. We found that Actinobacteria, among other bacterial phyla, showed a notably higher abundance in healthy individuals compared to infected individuals. Conversely, Bacteroides showed a lower abundance in the latter group. Infected people, regardless of severity and symptoms, have the same proportional representation of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteriales. In addition to SARS-CoV-2 and numerous phage groups, we identified sequences of clinically significant viruses such as Human Herpes Virus 1, Human Mastadenovirus D, and Rhinovirus A in several samples. Analyses were performed retrospectively, therefore, in the case of SARS-CoV-2 various WHO variants such as Alpha (B.1.1.7), Delta (B.1.617.2), Omicron (B.1.1.529), and 20C strains are represented. Additionally, the presence of specific virus strains has a certain effect on the distribution of individual microbial taxa.
Collapse
Affiliation(s)
| | | | | | | | - Andrej Gnip
- Medirex Group Academy, 949 05 Nitra, Slovakia
| | - Peter Sabaka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, 814 99 Bratislava, Slovakia
| | - Stefan Lassan
- Department of Pneumology and Ftizeology I, University Hospital in Bratislava, 831 01 Bratislava, Slovakia
| | | |
Collapse
|
18
|
Ling L, Lai CK, Lui G, Yeung ACM, Chan HC, Cheuk CHS, Cheung AN, Chang L, Chiu LCS, Zhang J, Wong WT, Hui DSC, Wong CK, Chan PKS, Chen Z. Characterization of upper airway microbiome across severity of COVID-19 during hospitalization and treatment. Front Cell Infect Microbiol 2023; 13:1205401. [PMID: 37469595 PMCID: PMC10352853 DOI: 10.3389/fcimb.2023.1205401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
Longitudinal studies on upper respiratory tract microbiome in coronavirus disease 2019 (COVID-19) without potential confounders such as antimicrobial therapy are limited. The objective of this study is to assess for longitudinal changes in the upper respiratory microbiome, its association with disease severity, and potential confounders in adult hospitalized patients with COVID-19. Serial nasopharyngeal and throat swabs (NPSTSs) were taken for 16S rRNA gene amplicon sequencing from adults hospitalized for COVID-19. Alpha and beta diversity was assessed between different groups. Principal coordinate analysis was used to assess beta diversity between groups. Linear discriminant analysis was used to identify discriminative bacterial taxa in NPSTS taken early during hospitalization on need for intensive care unit (ICU) admission. A total of 314 NPSTS samples from 197 subjects (asymptomatic = 14, mild/moderate = 106, and severe/critical = 51 patients with COVID-19; non-COVID-19 mechanically ventilated ICU patients = 11; and healthy volunteers = 15) were sequenced. Among all covariates, antibiotic treatment had the largest effect on upper airway microbiota. When samples taken after antibiotics were excluded, alpha diversity (Shannon, Simpson, richness, and evenness) was similar across severity of COVID-19, whereas beta diversity (weighted GUniFrac and Bray-Curtis distance) remained different. Thirteen bacterial genera from NPSTS taken within the first week of hospitalization were associated with a need for ICU admission (area under the receiver operating characteristic curve, 0.96; 95% CI, 0.91-0.99). Longitudinal analysis showed that the upper respiratory microbiota alpha and beta diversity was unchanged during hospitalization in the absence of antimicrobial therapy.
Collapse
Affiliation(s)
- Lowell Ling
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christopher K.C. Lai
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Grace Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Apple Chung Man Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hiu Ching Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chung Hon Shawn Cheuk
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adonia Nicole Cheung
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lok Ching Chang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lok Ching Sandra Chiu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jack Zhenhe Zhang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai-Tat Wong
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - David S. C. Hui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Candel S, Tyrkalska SD, Pérez-Sanz F, Moreno-Docón A, Esteban Á, Cayuela ML, Mulero V. Analysis of 16S rRNA Gene Sequence of Nasopharyngeal Exudate Reveals Changes in Key Microbial Communities Associated with Aging. Int J Mol Sci 2023; 24:ijms24044127. [PMID: 36835535 PMCID: PMC9960676 DOI: 10.3390/ijms24044127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Functional or compositional perturbations of the microbiome can occur at different sites, of the body and this dysbiosis has been linked to various diseases. Changes in the nasopharyngeal microbiome are associated to patient's susceptibility to multiple viral infections, supporting the idea that the nasopharynx may be playing an important role in health and disease. Most studies on the nasopharyngeal microbiome have focused on a specific period in the lifespan, such as infancy or the old age, or have other limitations such as low sample size. Therefore, detailed studies analyzing the age- and sex-associated changes in the nasopharyngeal microbiome of healthy people across their whole life are essential to understand the relevance of the nasopharynx in the pathogenesis of multiple diseases, particularly viral infections. One hundred twenty nasopharyngeal samples from healthy subjects of all ages and both sexes were analyzed by 16S rRNA sequencing. Nasopharyngeal bacterial alpha diversity did not vary in any case between age or sex groups. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant phyla in all the age groups, with several sex-associated. Acinetobacter, Brevundimonas, Dolosigranulum, Finegoldia, Haemophilus, Leptotrichia, Moraxella, Peptoniphilus, Pseudomonas, Rothia, and Staphylococcus were the only 11 bacterial genera that presented significant age-associated differences. Other bacterial genera such as Anaerococcus, Burkholderia, Campylobacter, Delftia, Prevotella, Neisseria, Propionibacterium, Streptococcus, Ralstonia, Sphingomonas, and Corynebacterium appeared in the population with a very high frequency, suggesting that their presence might be biologically relevant. Therefore, in contrast to other anatomical areas such as the gut, bacterial diversity in the nasopharynx of healthy subjects remains stable and resistant to perturbations throughout the whole life and in both sexes. Age-associated abundance changes were observed at phylum, family, and genus levels, as well as several sex-associated changes probably due to the different levels of sex hormones present in both sexes at certain ages. Our results provide a complete and valuable dataset that will be useful for future research aiming for studying the relationship between changes in the nasopharyngeal microbiome and susceptibility to or severity of multiple diseases.
Collapse
Affiliation(s)
- Sergio Candel
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.C.); (V.M.)
| | - Sylwia D. Tyrkalska
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fernando Pérez-Sanz
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
| | - Antonio Moreno-Docón
- Servicio de Microbiología, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento, Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Ángel Esteban
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
| | - María L. Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoriano Mulero
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.C.); (V.M.)
| |
Collapse
|