1
|
de Oliveira I, Chrysargyris A, Finimundy TC, Carocho M, Santos-Buelga C, Calhelha RC, Tzortzakis N, Barros L, Heleno SA. The influence of magnesium and manganese cations on the chemical and bioactive properties of purple and green basil. Food Funct 2024; 15:10644-10662. [PMID: 39376008 DOI: 10.1039/d4fo02820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This research investigated the effects of hydroponic cultivation with enriched concentrations of magnesium (+Mg), manganese (+Mn), a combination of +Mg and +Mn, or decreased concentrations of these minerals (control) on the nutritional, chemical, and bioactive attributes of purple and green basil. While Mn significantly increased the growth of purple basil and affected the composition of essential oil and mineral accumulation, plants treated with Mg showed alterations in nutrient absorption. Protein values were lower, indicating suboptimal protein synthesis, but significant increases were observed in fat, ash, and carbohydrates, suggesting a more nutrient-rich composition due to hydroponic cultivation. Regarding phenolic compounds, green basil showed higher concentrations of rosmarinic acid with +Mg+Mn, while purple basil exhibited lower levels with the addition of +Mn or +Mg+Mn. Antioxidant activities mirrored the phenolic profile, with purple basil displaying superior performance in the thiobarbituric acid-reactive substance (TBARS) test with +Mg treatment, and green basil showing higher activity in the cell antioxidant activity (CAA) test with the +Mg+Mn combination. In microbiological analyses, purple basil was more effective against S. aureus, while green basil performed better against L. monocytogenes. Although none were bactericidal, all treatments showed potential as antimicrobials. Purple basil extracts had significant antiproliferative effects on tumor cell lines, especially non-small cell lung carcinoma (NCI-H460), with synergistic effects observed in gastric adenocarcinoma (AGS) with +Mg+Mn. Additionally, +Mg+Mn demonstrated unique efficacy against colorectal adenocarcinoma (CaCo2) and breast carcinoma (MFC-7 cells), without toxicity to non-tumor a renal epithelial cell line from an African green monkey (VERO) cell, emphasizing the safety of the extracts. Green basil extracts showed no activity against the tumor cell lines analyzed (AGS, Caco2, MFC-7 and NCI-H460); however, they revealed remarkable antiproliferative effects against NCI-H460 cells in the control group. The results are important because they show how mineral treatments, such as the use of magnesium and manganese, influence the nutritional and medicinal properties of purple and green basil leaves. This highlights the relevance of manipulating nutrient solutions to improve plant quality, which is crucial for the production of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Izamara de Oliveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Tiane C Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Spain
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Kumari T, Phogat D, Jakhar N, Shukla V. Effectiveness of copper oxychloride coated with iron nanoparticles against earthworms. Sci Rep 2024; 14:23150. [PMID: 39367091 PMCID: PMC11452375 DOI: 10.1038/s41598-024-73794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
This study examines the potential of iron nanoparticle-coated copper oxychloride in mitigating its toxic effects on earthworms, a key component of sustainable agriculture due to their role in enhancing soil quality and promoting plant growth. While earthworms and their coelomic fluid play a crucial role in enhancing soil health and promoting plant growth. Copper oxychloride, a commonly used fungicide, induces oxidative stress by disrupting antioxidant defense mechanisms in living systems. Through probit analysis, the median lethal concentration (LC50) of copper oxychloride was determined to be 2511.9 mg/kg. Artificial soil was treated with copper oxychloride at 60% and 80% of LC50, but the addition of iron nanoparticle-coated fungicide successfully reduced earthworm mortality to 0%. These findings offer promising insights into protecting non-target organisms from fungicide toxicity while maintaining agricultural productivity. The findings present a potential breakthrough in sustainable agriculture by demonstrating how nanotechnology can mitigate the harmful effects of fungicides on essential soil fauna. The use of iron nanoparticle-coated fungicides not only protects earthworms but also offers a path to maintaining ecological balance and enhancing crop productivity without compromising soil health.
Collapse
Affiliation(s)
- Tamanna Kumari
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India
- Department of Zoology, G.V.M Girls College, Sonepat, Haryana, India
| | - Deepak Phogat
- Department of Environment Science, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Navneet Jakhar
- Organic Agriculture and Food Systems, University of Hohenheim, Stuttgart, Germany
| | - Vineeta Shukla
- Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
3
|
Wang Y, Shi G, Zeng Y, Li J, Wu Y, Zheng J, Xu A, Ma Y, Zhang L, Li H. Antidepressant Effect and Mechanism of Picea mariana Essential Oil on Reserpine-Induced Depression Model Mice. J Microbiol Biotechnol 2024; 34:1778-1788. [PMID: 39113199 PMCID: PMC11473511 DOI: 10.4014/jmb.2405.05013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 10/01/2024]
Abstract
The disturbance of brain biochemical substances serves as a primary cause and aggravating factor of depression. This study aimed to investigate the principal components of Picea mariana and its effect on reserpine-induced depression mice,w ith its relationship with brain central transmitters and related proteins. The main constituents of P. mariana essential oil (PMEO) were analyzed by GC-MS spectrometry. The quiescent time in the tail suspension test (TST) and forced swim test (FST), along with the weight change of the mice was detected. The number of normal neurons was quantified through Nissl staining. Immunohistochemistry was employed to determine the levels of 5HT-1A and 5HT-2A in the brain. Western blotting was utilized to detect 5HT-2A, CRF and TrkB protein levels. RT-qPCR was used to detect the mRNA levels of 5HT-1A, 5HT-2A, TrkB, CRF, and BDNF. The main active ingredients of PMEOs were (-) -bornyl acetate (44.95%), γ-Terpinene (14.17%), and β-Pinene (10.12%). PMEOs effectively improved the retardation and weight loss due to anorexia in depression-like mice. This improvement was associated with an increase in the number of normal neurons. After administering different doses of PMEOs, the levels of 5HT-1A, 5HT-2A, CRF, and TrkB were found to be increased in brain tissue. RT-qPCR revealed that the mRNA levels of CRF, 5HT-1A, and 5HT-2A were generally upregulated, whereas TrkB and BDNF were downregulated. PMEO can effectively alleviate depression induced by reserpine, which may be attributed to its regulation of 5HT-1A, 5HT-2A, CRF and TrkB protein expression, thus reducing brain nerve injury.
Collapse
Affiliation(s)
- Ying Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Guofeng Shi
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Yixi Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Juting Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Yongyu Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Jiahui Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Anjing Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Yanqing Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
| | - Hui Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, P.R. China
- Department of Traditional Chinese Medicine, Institute of Guangdong Geriatric, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou 510080, P.R. China
| |
Collapse
|
4
|
Aghamirzaei H, Mumivand H, Nia AE, Raji MR, Maroyi A, Maggi F. Effects of Micronutrients on the Growth and Phytochemical Composition of Basil ( Ocimum basilicum L.) in the Field and Greenhouse (Hydroponics and Soil Culture). PLANTS (BASEL, SWITZERLAND) 2024; 13:2498. [PMID: 39273982 PMCID: PMC11397607 DOI: 10.3390/plants13172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The current research was conducted to compare the growth, yield, and phytochemical composition of basil (Ocimum basilicum) in the open field and the soil and hydroponic cultivation in a greenhouse. Furthermore, the effect of foliar spraying of micronutrients on this crop was also evaluated. In each of the cultivation systems, foliar spraying of one micronutrient, either iron sulfate (Fe), zinc sulfate (Zn), copper sulfate (Cu), manganese sulfate (Mn), or boric acid (B), at a concentration of 0.1% was applied in a randomized complete block design. Plants grown in the hydroponic system had higher yield and biomass. The concentration of the elements K, Ca, Mg, N, P, Mn, Fe, B, and Zn in the leaves of hydroponic plants was higher. Contrarily, plants cultivated in the field showed higher stem dry weight, essential oil content, phenolic and flavonoid content, and antioxidant activity. The level of methyl chavicol was higher in the hydroponic culture, but the level of 1,8-cineole was much lower in this cropping system. Foliar spraying of Cu, Mn, Zn, Fe, or B significantly increased leaf dry weight and anthocyanin content. In field conditions, the highest levels of phenolics, flavonoids, and antioxidant capacity were observed with Zn or Mn application. In the hydroponic system, foliar spraying of Zn or B led to the highest antioxidant capacity, and total phenolic and flavonoid contents. Overall, the basil plants cultivated in the field showed higher bioactive ingredients. However, the essential oil of plants cultivated in the hydroponic system had a higher economic value due to its higher percentage of methyl chavicol.
Collapse
Affiliation(s)
- Hamid Aghamirzaei
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Hasan Mumivand
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Abdollah Ehtesham Nia
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Mohamad Reza Raji
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice 5700, South Africa
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
5
|
Tazi A, El Moujahed S, Jaouad N, Saghrouchni H, Al-Ashkar I, Liu L, Errachidi F. Exploring the Bioactive Potential of Moroccan Lemon Grass ( Cymbopogon citratus L.): Investigations on Molecular Weight Distribution and Antioxidant and Antimicrobial Potentials. Molecules 2024; 29:3982. [PMID: 39274830 PMCID: PMC11395846 DOI: 10.3390/molecules29173982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Research on lemon grass (Cymbopogon citratus L.) revealed a variety of active molecules and examined their biological characteristics. However, most of these studies were conducted on wild varieties, while cultivated plants were addressed less. This study aimed to characterize the biomolecules and biological activities of lemon grass growing under North African conditions in Morocco. Phenolic compound profiles of aqueous (AE), ethanol (EE), and methanol (ME) extracts and their fractions were obtained with steric exclusion chromatography on Sephadex G50 gel and identified by LC-MS/MS. Then, total polyphenols (TPC), flavonoids (TFC), and antioxidant activities (FRAP: scavenging value and TAC: Total Antioxidant Capacity) of the fraction were evaluated, as well as the antimicrobial activity. The obtained results showed that the ME contained eight major compounds (i.e., apigenine-7-O-rutinoside and myricitine-3-O-rutinoside). The AE showed the presence of five molecules (i.e., kaempferol-3-O-glucuronide), while EE showed the presence of three molecules (i.e., quercetine-3-O-rutinoside). Regarding the chemical characterization, the highest value of total phenolic content (TPC) was obtained in AE (25) (4.60 ± 0.29 mg/g), and the highest value of total flavonoid content (TFC) was obtained in ME (29) (0.7 ± 0.08 mg/g). Concerning the antioxidant activity, the highest FRAP was obtained in ME (29) (97.89%), and the highest total antioxidant capacity (TAC) was obtained in ME (29) (89.89%). Correlation between FRAP, TPC, and TFC was noted only in fractions of AE and ME. All tested extracts of C. citratus and their fractions showed a significant antimicrobial effect. The lowest minimum inhibitory concentration (MIC) was recorded for ME against E. coli. Extracts' biological activities and their fractions were governed by their active molecules. These data are new and clarify a novel aspect of bioactive molecules in the extracts of cultivated C. citratus. Equally, throughout this research, we clarified the relationship between identified molecules and their biological properties, including antioxidant and anti-microbial activities, which is new for the study area. This study is suggested as a reference for comparative studies and other assays of other biological activities for the study plant.
Collapse
Affiliation(s)
- Ahmed Tazi
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Sara El Moujahed
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Noura Jaouad
- Laboratory of Engineering, Electrochemistry, Modeling and Environment (LIEME), Faculty of Sciences Dhar Lmehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, Balcalı, 01330 Adana, Turkey
| | - Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Liyun Liu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
6
|
Kumar S, Sarkar B. Deciphering the multi-target therapeutic capabilities of Ocimum tenuiflorum Linn. Compounds against systemic lupus erythematosus and inflammatory bowel disease: a network pharmacology and molecular modelling approach. Nat Prod Res 2024:1-5. [PMID: 39105677 DOI: 10.1080/14786419.2024.2388792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
The coexistence of Systemic Lupus Erythematosus (SLE) and Inflammatory Bowel Disease (IBD) is a rare and hard-to-diagnose multisystem autoimmune disorder. Allopathic treatment approaches often fall short in managing both conditions simultaneously, as specific medications targeting this dual manifestation are lacking. In such instances, herbal medicine can offer a potential solution through its holistic approach. Ocimum tenuiflorum (O. tenuiflorum) a rich source of bioactive compounds belonging to Lamiaceae family. This study employs network pharmacology and molecular modelling to unveil the multi-target and multi-pathway mechanisms of O. tenuiflorum as a complementary therapy. A total of 423 common targets were obtained, among which AKT1, TNF, SRC, EGFR, HIF1A, HSP9AA, BCL2, and STAT3 were identified as the key targets. Lastly, molecular modelling validated the strong binding affinity between O. tenuiflorum 's compounds and the identified targets. In conclusion, these investigations provide new insight for further study of O. tenuiflorum towards the management of SLE and IBD.
Collapse
Affiliation(s)
- Satish Kumar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
7
|
Zöngür A. Antimicrobial, Antioxidant and Cytotoxic Effects of Essential Oil, Fatty Acids and Bioactive Compounds of Beta vulgaris var. crassa (Fodder Beet). Indian J Microbiol 2024; 64:719-731. [PMID: 39010984 PMCID: PMC11246347 DOI: 10.1007/s12088-024-01269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/24/2024] [Indexed: 07/17/2024] Open
Abstract
Beta vulgaris var. crassa is undoubtedly a very important plant that is not used enough in the world. In this study, it was aimed to determine the cytotoxic activities of the components (essential oils, fatty acids, total phenol and flavonoid) found in the leaf parts of Beta vulgaris var. crassa against PC-3, MCF-7 and HeLa cancer cell lines. In addition, the effectiveness of these ingredients against bacteria and fungi that can cause serious health problems in humans was tested. In experiments, three tumor cell lines were exposed to various plant extract concentrations (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) for 72 h. It was found that plant extracts showed high (SI: 2.14 > 2) cytotoxicity to PC-3 cells, moderate (SI: 1.62 < 2) to HeLa cells, and low (SI: 0.93 < 2) cytotoxicity to MCF-7 cells. Also, different plant extract concentrations were found to cause an inhibition rate of 16.3-22.3% in Staphylococcus aureus, 16.8-23.5% in Streptococcus pyogenes and 12-16.2% in Cutibacterium acnes. Similarly, inhibition rates were determined between 9.5-20.7% for Candida albicans, 3.5-7.7% for Candida auris, and 5.5-15.1% for Candida glabrata. The results showed that the plant extract exhibited a concentration-dependent cytotoxic and antimicrobial effect against both cancer cell lines and microbial pathogens. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01269-8.
Collapse
|
8
|
Vassilina G, Sabitova A, Idrisheva Z, Zhumabekova A, Kanapiyeva F, Orynbassar R, Zhamanbayeva M, Kamalova M, Assilbayeva J, Turgumbayeva A, Abilkassymova A. Bio-active compounds and major biomedical properties of basil ( Ocimum basilicum, lamiaceae). Nat Prod Res 2024:1-19. [PMID: 38813679 DOI: 10.1080/14786419.2024.2357662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Due to the numerous health benefits and therapeutic properties, herbs and plant metabolites/extracts are gaining popularity. This is particularly evident in the current era of drug resistance and the adverse effects of chemical drugs. Ocimum basilicum, also known as basil, has been extensively studied for its pharmacological benefits, including antimicrobial, antifungal, antioxidant, anti-inflammatory, antiviral, and wound healing properties. As a result, this plant has the potential to treat a wide range of diseases in both humans and animals. Ocimum basilicum contains various bioactive chemical compounds, such as neryl acetate, 1,8-cineole, p-allylanisole, geraniol, methyl eugenol, methyl chavicol, and trans-α-bergamotene. The latest advancements in technology can be utilised to enhance the beneficial properties of raw Ocimum basilicum extract. This review compiles and presents the profile of phytocomponents and pharmacological properties of Ocimum basilicum. The findings presented here will contribute to further research on this remarkable herb, aiming to develop effective pharmaceutical solutions for various health issues in humans and animals.
Collapse
Affiliation(s)
- Gulzira Vassilina
- Department of Physical Chemistry, Catalysis and Petrochemistry, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Alfira Sabitova
- Department of Chemical Technology and Ecology, Shakarim University of Semey, Semey, Kazakhstan
| | - Zhanat Idrisheva
- D. Serikbayev East, Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
| | - Arai Zhumabekova
- Department of Chemistry, Chemical Technology and Ecology, Faculty of Technology, Kazakh University of Technology and Business, Astana, Kazakhstan
| | - Fatima Kanapiyeva
- Department of Physical Chemistry, Catalysis and Petrochemistry, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Raigul Orynbassar
- Department of Chemistry and Chemical Technology, K.Zhubanov Aktobe Regional University, Aktobe, Kazakhstan
| | - Manira Zhamanbayeva
- D. Serikbayev East, Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
| | - Manshuk Kamalova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Jamilya Assilbayeva
- Department of Pharmaceutical Disciplines, Astana Medical University, Astana, Kazakhstan
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Alima Abilkassymova
- School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
9
|
Soliman MS, Qattan SYA, Reda FM, Mohamed LA, Mahgoub SA, Othman SI, Allam AA, Tellez-Isaias G, Alagawany M. Does dietary supplementation with lettuce seed oil enhance broiler performance, immunity, lipid profile, liver and kidney functions, antioxidant parameters, and intestinal microbiota? Poult Sci 2024; 103:103409. [PMID: 38215509 PMCID: PMC10825343 DOI: 10.1016/j.psj.2023.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
The aim of this research was to evaluate the influence of lettuce seed oil (LSO) on the performance, carcass yield, kidney and liver indices, immunity, lipid profile, and cecal microbiota of fattening chicks. A total of 200, 7-day-old Cobb-500 were distributed into 5 experimental groups; each group contained 5 replicates with 8 birds each. The first group 1) the basal diet (only); 2) the basal diet plus lettuce seed oil (0.50 mL/kg); 3) the basal diet plus lettuce seed oil (1.00 mL/kg); 4) the basal diet plus lettuce seed oil (1.50 mL/kg); and 5) the basal diet plus lettuce seed oil (2.00 mL/kg). No significant effect was observed on growth performance, carcass traits, or kidney function at any level of oil. But, liver function was significantly affected due to LSO levels. Serum lipid profiles (total cholesterol-TC, triglyceride-TG, low-density lipoprotein-LDL, and very low-density lipoprotein-VLDL) were significantly reduced by using LSO levels compared to the control group. Dietary LSO significantly increased immunological and antioxidant parameters, except for malondialdehyde-MDA, which was reduced. On the other hand, the cecal microbiota was significantly improved by LSO additives. It was concluded that the dietary supplementation of LSO had beneficial effects on liver and kidney functions, lipid profile, immunity, antioxidant parameters, and the bacteriology of fattening chicks.
Collapse
Affiliation(s)
- Mohamed S Soliman
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Shaza Y A Qattan
- Biological Sciences Department, Microbiology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Fayiz M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Laila A Mohamed
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samir A Mahgoub
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
10
|
Li Z, He Q, Xu F, Yin X, Guan Z, Song J, He Z, Yang X, Situ C. Exploring the Antibacterial Potential and Underlying Mechanisms of Prunella vulgaris L. on Methicillin-Resistant Staphylococcus aureus. Foods 2024; 13:660. [PMID: 38472772 DOI: 10.3390/foods13050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Prunella vulgaris L. (PV) is a widely distributed plant species, known for its versatile applications in both traditional and contemporary medicine, as well as in functional food development. Despite its broad-spectrum antimicrobial utility, the specific mechanism of antibacterial action remains elusive. To fill this knowledge gap, the present study investigated the antibacterial properties of PV extracts against methicillin-resistant Staphylococcus aureus (MRSA) and assessed their mechanistic impact on bacterial cells and cellular functions. The aqueous extract of PV demonstrated greater anti-MRSA activity compared to the ethanolic and methanolic extracts. UPLC-ESI-MS/MS tentatively identified 28 phytochemical components in the aqueous extract of PV. Exposure to an aqueous extract at ½ MIC and MIC for 5 h resulted in a significant release of intracellular nucleic acid (up to 6-fold) and protein (up to 10-fold) into the extracellular environment. Additionally, this treatment caused a notable decline in the activity of several crucial enzymes, including a 41.51% reduction in alkaline phosphatase (AKP), a 45.71% decrease in adenosine triphosphatase (ATPase), and a 48.99% drop in superoxide dismutase (SOD). Furthermore, there was a decrease of 24.17% at ½ MIC and 27.17% at MIC in tricarboxylic acid (TCA) cycle activity and energy transfer. Collectively, these findings indicate that the anti-MRSA properties of PV may stem from its ability to disrupt membrane and cell wall integrity, interfere with enzymatic activity, and impede bacterial cell metabolism and the transmission of information and energy that is essential for bacterial growth, ultimately resulting in bacterial apoptosis. The diverse range of characteristics exhibited by PV positions it as a promising antimicrobial agent with broad applications for enhancing health and improving food safety and quality.
Collapse
Affiliation(s)
- Ziyin Li
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Qiqi He
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| | - Feifei Xu
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Xinxin Yin
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Zhuofan Guan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Jia Song
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Zhini He
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 500515, China
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK
| |
Collapse
|
11
|
Sęczyk Ł, Kołodziej B. Bioaccessibility of Rosmarinic Acid and Basil ( Ocimum basilicum L.) Co-Compounds in a Simulated Digestion Model-The Influence of the Endogenous Plant Matrix, Dose of Administration and Physicochemical and Biochemical Digestion Environment. Molecules 2024; 29:901. [PMID: 38398652 PMCID: PMC10892404 DOI: 10.3390/molecules29040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study is to determine the effect of endogenous plant matrix components, dose and digestion-related factors on the bioaccessibility of rosmarinic acid and basil co-compounds in in vitro digestion conditions. Different forms of administration, i.e., basil raw plant material, dry extract, and isolated rosmarinic acid at various doses, were applied for the digestion experiment. To evaluate the contribution of biochemical and physicochemical digestion factors, samples were subjected to a full digestion process or treated only with a digestion fluid electrolyte composition without using biochemical components (i.e., digestion enzymes and bile salts), and bioaccessibility was monitored at the gastric and intestinal steps of digestion. The results showed that the components of the endogenous raw plant matrix significantly limited the bioaccessibility of rosmarinic acid and basil co-compounds, especially at the gastric stage of digestion. Physicochemical digestion factors were mainly responsible for the bioaccessibility of basil phytochemicals. Higher doses allowed maintenance of bioaccessibility at a relatively similar level, whereas the most negative changes in bioaccessibility were induced by the lowest doses. In conclusion, the determination of the bioaccessibility of bioactive phytochemicals from basil and factors influencing bioaccessibility may help in better prediction of the pro-health potential of this plant.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland;
| | | |
Collapse
|
12
|
Zhakipbekov K, Turgumbayeva A, Akhelova S, Bekmuratova K, Blinova O, Utegenova G, Shertaeva K, Sadykov N, Tastambek K, Saginbazarova A, Urazgaliyev K, Tulegenova G, Zhalimova Z, Karasova Z. Antimicrobial and Other Pharmacological Properties of Ocimum basilicum, Lamiaceae. Molecules 2024; 29:388. [PMID: 38257301 PMCID: PMC10818432 DOI: 10.3390/molecules29020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Since ancient times, various scientists and doctors have utilized different herbs to heal diseases. Due to the rise in drug resistance and the negative effects of chemosynthetic drugs, researchers and the general public around the world have become more interested in medicinal herbs and plant metabolites/extracts. This is due to its non-toxicity and its several health benefits when used to treat diseases in clinical and medical settings. Ocimum basilicum is one such plant, possessing a wide range of bioactive phytochemicals including alkaloids, phenolics, flavonoids, tannins, saponins, reducing sugars, cardiac glycosides, steroids and glycosides, as well as complex pharmacological activities, including anti-inflammatory, antifungal, antibacterial, antioxidant, wound healing and antiviral properties. The results of many studies on Ocimum basilicum plant extracts are collected and presented in this review. The plant extracts have excellent potential to be used as medicinal raw materials, and exhibit an extensive variety of therapeutic capacities, including antibacterial, antioxidant, wound healing, anti-inflammatory, antifungal, and antiviral properties.
Collapse
Affiliation(s)
- Kairat Zhakipbekov
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Sholpan Akhelova
- Department of Pharmaceutical Disciplines, Astana Medical University, Astana 010000, Kazakhstan; (S.A.); (K.B.); (N.S.)
| | - Kymbat Bekmuratova
- Department of Pharmaceutical Disciplines, Astana Medical University, Astana 010000, Kazakhstan; (S.A.); (K.B.); (N.S.)
| | - Olga Blinova
- Department of Organization and Management of Pharmaceutical Business, South Kazakhstan Medical Academy, Shymkent 160001, Kazakhstan; (O.B.); (G.U.); (K.S.)
| | - Gulnara Utegenova
- Department of Organization and Management of Pharmaceutical Business, South Kazakhstan Medical Academy, Shymkent 160001, Kazakhstan; (O.B.); (G.U.); (K.S.)
| | - Klara Shertaeva
- Department of Organization and Management of Pharmaceutical Business, South Kazakhstan Medical Academy, Shymkent 160001, Kazakhstan; (O.B.); (G.U.); (K.S.)
| | - Nurlan Sadykov
- Department of Pharmaceutical Disciplines, Astana Medical University, Astana 010000, Kazakhstan; (S.A.); (K.B.); (N.S.)
| | - Kuanysh Tastambek
- Department of Biotechnology, M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan;
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Akzharkyn Saginbazarova
- Department of Pharmaceutical Disciplines, West Kazakhstan Medical University Named after Marat Ospanov, Aktobe 030012, Kazakhstan; (A.S.); (K.U.); (G.T.); (Z.Z.); (Z.K.)
| | - Kenzhebek Urazgaliyev
- Department of Pharmaceutical Disciplines, West Kazakhstan Medical University Named after Marat Ospanov, Aktobe 030012, Kazakhstan; (A.S.); (K.U.); (G.T.); (Z.Z.); (Z.K.)
| | - Gulbanu Tulegenova
- Department of Pharmaceutical Disciplines, West Kazakhstan Medical University Named after Marat Ospanov, Aktobe 030012, Kazakhstan; (A.S.); (K.U.); (G.T.); (Z.Z.); (Z.K.)
| | - Zere Zhalimova
- Department of Pharmaceutical Disciplines, West Kazakhstan Medical University Named after Marat Ospanov, Aktobe 030012, Kazakhstan; (A.S.); (K.U.); (G.T.); (Z.Z.); (Z.K.)
| | - Zhanylsyn Karasova
- Department of Pharmaceutical Disciplines, West Kazakhstan Medical University Named after Marat Ospanov, Aktobe 030012, Kazakhstan; (A.S.); (K.U.); (G.T.); (Z.Z.); (Z.K.)
| |
Collapse
|
13
|
Ghaderian E, Esboei BR, Mousavi P, Pourhajibagher M, Homayouni MM, Zeinali M. Anti-leishmanial effects of Eryngium planum and Ecbilliun elaterum methanolic extract against Leishmania major. AMB Express 2024; 14:3. [PMID: 38170375 PMCID: PMC10764691 DOI: 10.1186/s13568-023-01656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Leishmaniasis is a vector-borne disease, one of the most important neglected tropical diseases. Existing anti-leishmanial treatments are not effective for a long time and associated with toxic side effects so searching for a new, effective and safe alternative treatments against infectious diseases is greatly needed. This study is aimed to assess the leishmaniacidal effects of methanolic extracts of Eryngium planum (E. planum) and Ecbilliun elaterum (E. elaterum) on Leishmania major (L. major), In vitro. The selected plants were collected from northern areas of Iran. The methanolic extract from the aerial parts of plants were prepared using maceration methods. GC- Mass analysis was used to determine the compounds of the plants. Promastigotes of L. major was cultured in RPMI-1640 medium and the anti-leishmanial and cytotoxicity effects of extracts at concentrations of 100, 200, 400 and 800 µg/ml were assessed using MTT assay. The data obtained from gas chromatography revealed that α-Pinene, Caryophyllene oxide, β-Caryophyllene, Bicyclogermacrene and α-Bisabolol are the main compounds extracted from E. planum and α-Pinene, Germacrene D, Caryophyllene oxide, γ-Eudesmol and α-Bisabolol are the main components of E. elaterum. The results of MTT Assay revealed that E. planum at concentrations of 800 µg/ml after 24 h at 400 µg/ml after 48 h and the E. elaterium at concentrations of 800 µg/ml after 48 h at 400 µg/ml after 72 h had similar anti-leishmanial effects to the positive control. These results indicated that E. planum and E. elaterum are the potential sources for the discovery of novel anti-leishmanial treatments.
Collapse
Affiliation(s)
- Erfan Ghaderian
- Department of Parasitology and Mycology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Bahman Rahimi Esboei
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parisa Mousavi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohsen Homayouni
- Department of Parasitology and Mycology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
- Medical Parasitology, Department of Parasitology and Mycology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| | - Mohammad Zeinali
- Center for Communicable Diseases Management, Ministry of Health Treatment and Medical Education, Tehran, Iran
| |
Collapse
|
14
|
Varshney K, Mazumder R, Rani A, Mishra R, Khurana N. Recent Research Trends against Skin Carcinoma - An Overview. Curr Pharm Des 2024; 30:2685-2700. [PMID: 39051578 DOI: 10.2174/0113816128307653240710044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Skin cancer is a prevalent and sometimes lethal cancer that affects a wide range of people. UV radiation exposure is the main cause of skin cancer. Immunosuppression, environmental factors, and genetic predisposition are other contributing variables. Fair-skinned people and those with a history of sunburns or severe sun exposure are more likely to experience this condition. Melanoma, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) are the three main forms. Melanoma poses a bigger hazard because of its tendency for metastasis, while SCC and BCC have limited metastatic potential. Genetic mutations and changes to signalling pathways such as p53 and MAPK are involved in pathogenesis. Early diagnosis is essential, and molecular testing, biopsy, dermoscopy, and visual inspection can all help. In addition to natural medicines like curcumin and green tea polyphenols, treatment options include immunotherapy, targeted therapy, radiation, surgery, and chemotherapy. Reducing the incidence of skin cancer requires preventive actions, including sun protection and early detection programs. An overview of skin cancers, including their forms, pathophysiology, diagnosis, and treatment, highlighting herbal therapy, is given in this review.
Collapse
Affiliation(s)
- Kamya Varshney
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Anjna Rani
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh 201306, India
| | - Rashmi Mishra
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh 201306, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
15
|
Ashraf A, Qadeer S, Ullah S, Asad M, Fatima H, Nasir MF, Shaheen N, Qureshi NA. Characterization and in-vitro plant-based control of hindgut bacteria isolated from Odontotermes obesus Rambur (Termitidae) and Heterotermes indicola Wasmann (Rhinotermitidae). Sci Prog 2024; 107:368504241236026. [PMID: 38490163 PMCID: PMC10943747 DOI: 10.1177/00368504241236026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Termites cause a serious menace to wooden structures all over the world. They rely mostly on entozoic fauna residing in their hindgut for the digestion of cellulosic and hemicellulosic materials. One of the ways to control termites is through their gut symbionts. The present study was designed to characterize the hindgut bacteria isolated from Odontotermes obesus and Heterotermes indicola. Furthermore, the growth inhibitory effect of eight tropical plant extracts was investigated to find out potential control agents for these bacterial isolates. The characterization of bacteria was carried out based on their morphology, Gram staining, biochemical and amplification of 16SrRNA gene. Amplified products were sequenced to confirm their relationship with bacterial isolates from termites of other regions. The growth inhibitory effect of ethanolic leaf extracts of eight plants was evaluated in an invitro agar well diffusion method. Qualitative and quantitative phytochemical analysis of the most effective plant was carried out to learn about bioactive agents. The results confirmed the presence of five bacteria from each termite species. The Bacillus cereus, Escherichia coli, and Lysinibacillus fusiformis were common to both termites whereas Lysinibacillus xylanilyticus and Lysinibacillus macrolides were found in O. obesus only and H. indicola harbor Bacillus subtilis and Shigella sonnei in addition to common three ones. Among the plant extracts of Carica papaya, Eucalyptus camaldulensis, Osmium basilicum, Grevillea robusta, Eucalyptus globulus, Pongamia pinnata, Mentha longifolia, and Melia azedarach, the G. robusta > E. camaldulensis > O. basilicum were found to have growth inhibitory effects with increasing concentrations from 100 to 2000 µg/mL. The biodiversity of the bacterial fauna is important for the biological control of termites. Leaf extracts of these medicinal plants can be used to control termite infestation in an environment-friendly manner to save huge economic loss.
Collapse
Affiliation(s)
- Asma Ashraf
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Saima Qadeer
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sana Ullah
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Asad
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Huma Fatima
- Department of Zoology, Women University Mardan, Mardan, Pakistan
| | - Muhammad Farhan Nasir
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Nargis Shaheen
- Department of Animal Sciences, Faculty of Biological Science, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Naveeda Akhtar Qureshi
- Department of Animal Sciences, Faculty of Biological Science, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
16
|
Gasmi A, Noor S, Dadar M, Semenova Y, Menzel A, Gasmi Benahmed A, Bjørklund G. The Role of Traditional Chinese Medicine and Chinese Pharmacopoeia in the Evaluation and Treatment of COVID-19. Curr Pharm Des 2024; 30:1060-1074. [PMID: 38523518 DOI: 10.2174/0113816128217263240220060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
The epidemic prompted by COVID-19 continues to spread, causing a great risk to the general population's safety and health. There are still no drugs capable of curing it. Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the two other diseases caused by coronaviruses. Traditional Chinese Medicine (TCM) showed benefits in treating SARS and MERS by preventing the disease early, substantially mitigating symptoms, shortening the treatment period, and minimizing risks and adverse reactions caused by hormone therapy. Although several vaccines have been developed and are being used for the treatment of COVID-19, existing vaccines cannot provide complete protection against the virus due to the rapid evolution and mutation of the virus, as mutated viral epitopes evade the vaccine's target and decrease the efficacy of vaccines. Thus, there is a need to develop alternative options. TCM has demonstrated positive effects in the treatment of COVID-19. Previous research studies on TCM showed broad-spectrum antiviral activity, offering a range of possibilities for their potential use against COVID-19. This study shed some light on common TCM used for SARS and MERS outbreaks and their effective use for COVID-19 management. This study provides new insights into COVID-19 drug discovery.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Dadar
- CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
17
|
Azizah NS, Irawan B, Kusmoro J, Safriansyah W, Farabi K, Oktavia D, Doni F, Miranti M. Sweet Basil ( Ocimum basilicum L.)-A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:4148. [PMID: 38140476 PMCID: PMC10748370 DOI: 10.3390/plants12244148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
An urgent demand for natural compound alternatives to conventional medications has arisen due to global health challenges, such as drug resistance and the adverse effects associated with synthetic drugs. Plant extracts are considered an alternative due to their favorable safety profiles and potential for reducing side effects. Sweet basil (Ocimum basilicum L.) is a valuable plant resource and a potential candidate for the development of pharmaceutical medications. A single pure compound or a combination of compounds exhibits exceptional medicinal properties, including antiviral activity against both DNA and RNA viruses, antibacterial effects against both Gram-positive and Gram-negative bacteria, antifungal properties, antioxidant activity, antidiabetic potential, neuroprotective qualities, and anticancer properties. The plant contains various phytochemical constituents, which mostly consist of linalool, eucalyptol, estragole, and eugenol. For centuries, community and traditional healers across the globe have employed O. basilicum L. to treat a wide range of ailments, including flu, fever, colds, as well as issues pertaining to digestion, reproduction, and respiration. In addition, the current research presented underscores the significant potential of O. basilicum-related nanotechnology applications in addressing diverse challenges and advancing numerous fields. This promising avenue of exploration holds great potential for future scientific and technological advancements, promising improved utilization of medicinal products derived from O. basilicum L.
Collapse
Affiliation(s)
- Nabilah Sekar Azizah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Budi Irawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Wahyu Safriansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Dina Oktavia
- Department of Transdisciplinary, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| |
Collapse
|
18
|
Chassagne F, Butaud JF, Ho R, Conte E, Hnawia É, Raharivelomanana P. Traditional medical practices for children in five islands from the Society archipelago (French Polynesia). JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:44. [PMID: 37853377 PMCID: PMC10585756 DOI: 10.1186/s13002-023-00617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Traditional Polynesian medicine for children has been poorly documented, and few data are available on their efficacy and safety. In this context, the aim of this study was to identify traditional practices used for treating children and then assess the efficacy and safety of the most cited remedies by reviewing the literature. METHODS In 2022, a semi-structured survey was carried out on five islands from the Society archipelago (Bora Bora, Huahine, Moorea, Raiatea, and Tahiti). A total of 86 participants were interviewed including 19 experts in herbalism. A thorough literature review was performed on the most cited plant species to gather the relevant ethnobotanical, pharmacological, and clinical data of each remedy. RESULTS Participants mentioned using 469 remedies to treat 69 health disorders. The most represented health categories were digestive system, skin disorders, infectious diseases, and respiratory system. A total of 67 plant species (representing 731 use-reports) were mentioned and Annona muricata, Gardenia taitensis, and Hibiscus rosa-sinensis were the main plants reported. Regarding the safety of cited remedies, one plant (Microsorum grossum) showed high risk of toxicity, and its use should be avoided in infants and children. CONCLUSION Our survey confirms the importance of traditional medical practices for children in the Society Islands. A lack of data in children for most cited remedies demonstrate the need for more pharmacological and toxicological research on Polynesian medicinal plants. Finally, the potential risk of toxicity for some cited plant species reported calls for a better information of traditional medicine users and healers.
Collapse
Affiliation(s)
- François Chassagne
- UMR 152 PharmaDev, Université Paul Sabatier, Institut de Recherche pour le Développement (IRD), Toulouse, France.
- Maison des Sciences de l'Homme du Pacifique (UAR 2503), Université de la Polynésie Française / Centre National de la Recherche Scientifique, Tahiti, French Polynesia.
| | - Jean-François Butaud
- Correspondant du Muséum National d'Histoire Naturelle (PatriNat), Paris & Consultant en foresterie et botanique polynesienne, Tahiti, French Polynesia
| | - Raimana Ho
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, Faaa, Tahiti, French Polynesia
| | - Eric Conte
- Maison des Sciences de l'Homme du Pacifique (UAR 2503), Université de la Polynésie Française / Centre National de la Recherche Scientifique, Tahiti, French Polynesia
| | - Édouard Hnawia
- UMR 152 PharmaDev, Institut de Recherche pour le Développement (IRD), Nouméa, New Caledonia
| | - Phila Raharivelomanana
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, Faaa, Tahiti, French Polynesia
| |
Collapse
|
19
|
Singh V, Mujwar S, Singh M, Singh T, Ahmad SF. Computational Studies to Understand the Neuroprotective Mechanism of Action Basil Compounds. Molecules 2023; 28:7005. [PMID: 37894484 PMCID: PMC10609097 DOI: 10.3390/molecules28207005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's, pose a significant global health challenge, emphasizing the need for novel neuroprotective agents. Basil (Ocimum spp.) has been recognized for its therapeutic potential, and numerous studies have reported neuroprotective effects. In this manuscript, we present a computational protocol to extricate the underlying mechanism of action of basil compounds in neuroprotective effects. Molecular docking-based investigation of the chemical interactions between selected bioactive compounds from basil and key neuroprotective targets, including AChE, GSK3β, γ-secretase, and sirtuin2. Our results demonstrate that basil compound myricerone caffeoyl ester possesses a high affinity of -10.01 and -8.85 kcal/mol against GSK3β and γ-secretase, respectively, indicating their potential in modulating various neurobiological processes. Additionally, molecular dynamics simulations were performed to explore the protein-ligand complexes' stability and to analyze the bound basil compounds' dynamic behavior. This comprehensive computational investigation enlightens the putative mechanistic basis for the neuroprotective effects of basil compounds, providing a rationale for their therapeutic use in neurodegenerative disorders after further experimental validation.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77807, USA;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Salazar-Gómez A, Velo-Silvestre AA, Alonso-Castro AJ, Hernández-Zimbrón LF. Medicinal Plants Used for Eye Conditions in Mexico-A Review. Pharmaceuticals (Basel) 2023; 16:1432. [PMID: 37895904 PMCID: PMC10610470 DOI: 10.3390/ph16101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Medicinal plants have been historically significant for treating common human diseases in Mexico. Although some ethnobotanical research exists, limited ethnomedicinal data has documented medicinal plants employed for eye health. This review focuses on ethnomedicinal information and preclinical and clinical studies regarding medicinal plants used in Mexico for treating symptoms associated with eye conditions. An electronic database search was conducted by consulting scientific articles, books about Mexican herbal medicine, and academic theses. This work recorded 69 plant species belonging to 26 plant families, especially plants from the Crassulaceae family, which are used as remedies for irritation and infections in the eye. Eight of these medicinal plants have been the subject of preclinical studies using ocular models, and one medicinal plant has been tested in clinical trials. The evidence of pharmacological effects indicates the promising therapeutic potential of these medicinal plants for developing new treatments for eye conditions. However, toxicological studies are necessary to ensure safe application to the eye, particularly as traditional medicine continues to be relied upon worldwide. In addition, this review highlights the need to perform ethnobotanical and phytochemical studies in Mexico regarding the medicinal flora used as remedies for eye conditions.
Collapse
Affiliation(s)
- Anuar Salazar-Gómez
- Laboratorio de Investigación Interdisciplinaria, Área de Optomtería, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico;
| | - Amabile A. Velo-Silvestre
- Clínica de Optometría, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico;
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36250, Mexico
| | - Luis Fernando Hernández-Zimbrón
- Laboratorio de Investigación Interdisciplinaria, Área de Optomtería, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico;
- Clínica de Optometría, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico;
| |
Collapse
|
21
|
Brindisi LJ, Simon JE. Preharvest and postharvest techniques that optimize the shelf life of fresh basil ( Ocimum basilicum L.): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1237577. [PMID: 37745993 PMCID: PMC10514919 DOI: 10.3389/fpls.2023.1237577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Basil (Ocimum basilicum L.) is a popular specialty crop known for its use as a culinary herb and medicinal plant around the world. However, its profitability and availability are limited by a short postharvest shelf life due to poor handling, cold sensitivity and microbial contamination. Here, we comprehensively review the research on pre- and postharvest techniques that extend the shelf life of basil to serve as a practical tool for growers, distributors, retailers and scientists. Modifications to postharvest storage conditions, pre- and postharvest treatments, harvest time and preharvest production methods have been found to directly impact the quality of basil and its shelf life. The most effective strategies for extending the shelf life and improving the quality of basil are discussed and promising strategies that research and industry employ are identified.
Collapse
Affiliation(s)
| | - James E. Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and the Center for Agricultural Food Ecosystems (RUCAFE), Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
22
|
Ivanova T, Bosseva Y, Chervenkov M, Dimitrova D. Sweet Basil between the Soul and the Table-Transformation of Traditional Knowledge on Ocimum basilicum L. in Bulgaria. PLANTS (BASEL, SWITZERLAND) 2023; 12:2771. [PMID: 37570924 PMCID: PMC10420671 DOI: 10.3390/plants12152771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
The study tracks the utilization of Ocimum basilicum L. (sweet basil)-a garden plant popular for its ritual and ornamental value in the past, that is currently applied in various forms and ways as medicine, food, insect repellent, etc.-in Bulgaria. Previous data for Bulgarian rural home gardens showed a significant number of preserved local landraces; however, it remained unclear how people perceive the large varietal diversity of this species and how the traditions related to its use are preserved. We combined a literature review on the cultural value of sweet basil and the breeding of local genetic resources with an online questionnaire, directed to adult laypeople, that sought to access different aspects of past (recalled) and present use and related knowledge. The identification skills of the participants were tested using images of local plant landraces and foreign varieties. Responses from 220 participants showed that potted "Genovese"-type individual was most frequently identified as sweet basil (89.9%), followed by two examples of local landraces in flower. Participants who grow sweet basil or used it in more varied ways had significantly better identification skills. Ocimum basilicum was most frequently reported as food, while ritual/symbolic use was preserved while devalued during the Communism regime (1945-1989). Food and religious uses were negatively associated in the past, but presently, the tendency is completely reversed. Preferences for the informal exchange of seeds and seed-saving practices were discussed.
Collapse
Affiliation(s)
- Teodora Ivanova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.B.); (M.C.); (D.D.)
| | - Yulia Bosseva
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.B.); (M.C.); (D.D.)
| | - Mihail Chervenkov
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.B.); (M.C.); (D.D.)
- Faculty of Veterinary Medicine, University of Forestry, 1797 Sofia, Bulgaria
| | - Dessislava Dimitrova
- Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (Y.B.); (M.C.); (D.D.)
| |
Collapse
|
23
|
Sayarer M, Aytaç Z, Kürkçüoğlu M. The Effect of Irrigation and Humic Acid on the Plant Yield and Quality of Sweet Basil ( Ocimum basilicum L.) with Mulching Application under Semi-Arid Ecological Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1522. [PMID: 37050148 PMCID: PMC10097155 DOI: 10.3390/plants12071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The adoption of suitable irrigation levels (IRL), humic acid doses (HAD) and soil mulching (SM) are important tools for improving the morpho-physiological and biochemical traits of medicinal and aromatic plants. Ocimum basilicum L. cultivated under four IRL: IRL 100 = 100% FC-IRL 75 = 75% FC-IRL 50 = 50% FC-IRL 25 = 25% FC and four HAD: HA 0 = 0.0 Lha-1-HA 10 = 10.0 Lha-1-HA 20 = 20.0 L ha-1-HA 40 = 40.0 L ha-1 were applied in order to evaluate morpho-physiological and biochemical traits under the ecological conditions of Eskişehir in 2016 and 2017. A second trial was conducted with black plastic soil mulch (SM) and compared with the control plots (CP) in 2016. The experiment was arranged in a randomized complete block design with split plots and three replications. The plant height (PH), fresh herb yield (FHY), dry herb yield (DHY), dry leaf yield (DLY), protein ratio (PR), and main essential oil compounds (MEOC) of Ocimum basilicum L. increased and the essential oil ratio (EOR) and essential oil yield (EOY) decreased with increasing IRL (IRL 100 and IRL 75). FHY (7268.3 and 7472.7 kg ha-1) and DLY (635.3 and 637.5 kg ha-1) increased with increasing HAD (HA 20 and HA 40) compared to the values of FHY and DLY at HA 0 (6852.6 and 587.0 respectively). The SM application at IRL 50 increased the PH between 8.8 and 13.5%, FHY 11.7 and 16.7%, DLY 22.5 and 29.2%, and at IRL 75 the EOY between 20.0 and 23.9% compared to CP. In addition, PH, FHY, DLY, and EOY were highest at HA 40 and HA 20. The MEOC (linalool, 1,8-cineole, and (E) - β-bergamotene) under SM were more pronounced at IRL 25 and IRL 50 compared to CP. HA particularly improved FHY, DLY, and the main essential oil compounds that can be considered plant biostimulants, which were defined by several studies and regulations.
Collapse
Affiliation(s)
- Melike Sayarer
- Department of Field Crops, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir 26160, Türkiye
| | - Zehra Aytaç
- Department of Field Crops, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir 26160, Türkiye
| | - Mine Kürkçüoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Türkiye
| |
Collapse
|
24
|
M K, A R R. Pharmacological potential of fungal endophytes associated with the genus Ocimum L. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2023. [DOI: 10.21448/ijsm.1055749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Endophytes are a rich source of secondary metabolites such as tannins, phenolics, and alkaloids. Endophytic fungi have potential as antioxidants, antimicrobials, anticancer agents, antidiabetic agents, hepatoprotectants, growth promoters, and immunomodulators. Recent studies have shown that endophytes are a valuable source of undiscovered biomolecules. As a result, endophytic isolates from medicinal plants can be used in the pharmaceutical, industrial, and agricultural sectors. Ocimum species, for example, have several medicinal properties and are used in traditional medicine. Fungal endophytes have a strong association with Ocimum plants. Previous research has shown that the fungal endophytes of Ocimum sanctum produce phytochemicals such as alkaloids, terpenoids, cardiac glycosides, flavonoids, terpenes, and volatile compounds. Additionally, fungal endophytes have a direct impact on the medicinal value of the genus Ocimum. This review aimed to discuss the pharmacological properties and diversity of endophytic fungi associated with the genus Ocimum.
Collapse
Affiliation(s)
| | - Rasmi A R
- Governmnet Victoria College,Palakkad
| |
Collapse
|
25
|
Ciriello M, Cirillo V, Formisano L, El-Nakhel C, Pannico A, De Pascale S, Rouphael Y. Productive, Morpho-Physiological, and Postharvest Performance of Six Basil Types Grown in a Floating Raft System: A Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:486. [PMID: 36771571 PMCID: PMC9919531 DOI: 10.3390/plants12030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Basil (Ocimum sp.) is one of the world's most famous culinary fresh herbs, characterized by rapid growth that makes it particularly suitable for hydroponic cultivation. This study aimed to evaluate the adaptability of six types of basil to a closed-loop hydroponic system (floating raft system) and their post-harvest performance. Twenty-three days after transplantation, productivity, morpho-physiological performance, and mineral profile (by ion chromatography) were evaluated. At 3, 6, and 9 days after harvest, the loss of water from the from leaves stored at 10 °C in the dark was evaluated. Although the total fresh production of Thai, Mexican, and Genovese did not differ significantly, the latter provided a higher fresh leaf weight (16.52 g of plant-1) despite a lower leaf number (30.06 n. of plant-1). Nine days after harvest, Thai and Mexican showed the lowest water loss. Although Mexican Purple had the lowest net CO2 assimilation, it accumulated the highest concentration of ascorbic acid (909.41 mg 100 g fw-1).
Collapse
|
26
|
Luca SV, Zengin G, Sinan KI, Skalicka-Woźniak K, Trifan A. Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors. Antioxidants (Basel) 2023; 12:antiox12010210. [PMID: 36671072 PMCID: PMC9855019 DOI: 10.3390/antiox12010210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
There is currently no use for the vast quantities of post-distillation by-products, such as spent plant materials and residual waters, produced by the essential oil (EO) industry of aromatic herbs. In this study, the EOs of three Lamiaceae species (thyme, oregano, and basil) and their total, spent, and residual water extracts were phytochemically characterized and biologically assessed. The collected information was put through a series of analyses, including principal component analysis, heatmap analysis, and Pearson correlation analysis. Concerning the EOs, 58 volatile compounds were present in thyme (e.g., p-cymene, thymol), 44 compounds in oregano (e.g., thymol, carvacrol), and 67 compounds in basil (e.g., eucalyptol, linalool, estragole, (E)-methyl cinnamate). The LC-HRMS/MS analysis of the total, spent, and residual water extracts showed the presence of 31 compounds in thyme (e.g., quercetin-O-hexoside, pebrellin, eriodictyol), 31 compounds in oregano (e.g., rosmarinic acid, apigenin, kaempferol, salvianolic acids I, B, and E), and 25 compounds in basil (e.g., fertaric acid, cichoric acid, caftaric acid, salvianolic acid A). The EOs of the three Lamiaceae species showed the highest metal-reducing properties (up to 1792.32 mg TE/g in the CUPRAC assay), whereas the spent extracts of oregano and basil displayed very high radical-scavenging properties (up to 266.59 mg TE/g in DPPH assay). All extracts exhibited anti-acetylcholinesterase (up to 3.29 mg GALAE/g), anti-tyrosinase (up to 70.00 mg KAE/g), anti-amylase (up to 0.66 mmol ACAE/g), and anti-glucosidase (up to 1.22 mmol ACAE/g) effects. Thus, the present research demonstrated that both the raw extracts (EOs and total extracts) and the post-distillation by-products (spent material and residual water extracts) are rich in bioactive metabolites with antioxidant and enzyme inhibitory properties.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Correspondence: (S.V.L.); (G.Z.)
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
- Correspondence: (S.V.L.); (G.Z.)
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | | | - Adriana Trifan
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
27
|
Rafeeq M, Bilal RM, Alagawany M, Batool F, Yameen K, Farag MR, Ali S, Elnesr SS, El-Shall NA. The use of some herbal plants as effective alternatives to antibiotic growth enhancers in poultry nutrition. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Majid Rafeeq
- Center for Advanced Studies in Vaccinology and Biotechnology University of Balochistan, Quetta, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fiza Batool
- Faculty of Agriculture, Department of Forestry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif Yameen
- Department of Poultry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Sher Ali
- Faculty of Animal Production & Technology, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfna, Egypt
| |
Collapse
|
28
|
Murwani R, Kusumanti E, Naumova EN. Areca catechu L. and Anredera cordifolia (Ten) Steenis supplementation reduces faecal parasites and improves caecal histopathology in laying hens. Int J Vet Sci Med 2022; 10:52-63. [PMID: 35874604 PMCID: PMC9272918 DOI: 10.1080/23144599.2022.2090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Retno Murwani
- Faculty of Animal and Agriculture Sciences, Department of Animal Science, Laboratory of Physiology and Biochemistry, Universitas Diponegoro, Semarang, Indonesia
- Natural Product Laboratory –Laboratorium Terpadu, Universitas Diponegoro, Semarang, Indonesia
| | - Endang Kusumanti
- Faculty of Animal and Agriculture Sciences, Department of Animal Science, Laboratory of Physiology and Biochemistry, Universitas Diponegoro, Semarang, Indonesia
| | - Elena N. Naumova
- Division of the Nutrition Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
29
|
Almoshari Y. Medicinal Plants Used for Dermatological Disorders among the People of the Kingdom of Saudi Arabia: A Narrative Review. Saudi J Biol Sci 2022; 29:103303. [PMID: 35592741 PMCID: PMC9111994 DOI: 10.1016/j.sjbs.2022.103303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 04/17/2022] [Indexed: 12/15/2022] Open
Abstract
Historically, skin disorders have received less attention in health management than other life-threatening diseases that occur on a global scale. However, numerous skin problems are reported to primary health care systems worldwide, particularly in tropical locations. While modern physicians often address most skin conditions, it is estimated that over 70% of individuals with skin illnesses do not seek treatment. Traditional medicine dates all the way back to human civilization's inception. Numerous materials are utilized in traditional medicinal remedies, but the use of plants is particularly critical. Saudi Arabia is one of the world's most botanically varied countries, having an extensive folk medicine heritage. While several reviews on the use of plants to cure skin disorders has been published worldwide, very few have been undertaken in Saudi Arabia, much alone a comprehensive one. Thus, the present review identified the most significant and medicinally relevant herbs used in the treatment of various dermatological conditions in Saudi Arabia. A total of 43 plants were identified and described in this study. This investigation omitted publications that lacked detailed data and had only fragmented information regarding the herb's traditional use in topical applications.
Collapse
|
30
|
A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers (Basel) 2022; 14:polym14061163. [PMID: 35335495 PMCID: PMC8949670 DOI: 10.3390/polym14061163] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Taro (Colocasia esculenta) is an important source of carbohydrates as an energy source and is used as a staple food throughout the world. It is rich in mucilage and starch granules, making it a highly digestible ingredient. Mucilage can act as a matrix and a thickening, binding, emulsifying, or foaming agent in food, pharmaceutical, and several other fields of research. Moreover, mucilage can be extracted from several living organisms and has excellent functional properties, such as water-holding, oil-holding, and swelling capacities. Therefore, these remarkable functional properties make mucilage a promising ingredient with possible industrial applications. Furthermore, several extraction techniques, including enzyme-assisted, ultrasonication, microwave-assisted, aquatic, and solvent extraction methods, are used to obtain quantitative amounts of taro mucilage. Coldwater extraction with ethanol precipitation can be considered an effective and cost-effective technique to obtain high-quality mucilage with suitable industrial applications, whereas the ultrasonication method is more expensive but results in a higher amount of mucilage than other emerging techniques. Mucilage can also be used as a fat replacer or reducer, dye remover, coating agent, and antioxidating agent. Therefore, in this review, we detail the key properties related to the extraction techniques, chemical composition, and characterization of taro mucilage, along with its suitable applications and health benefits.
Collapse
|
31
|
Agradi S, Draghi S, Cotozzolo E, Barbato O, Castrica M, Quattrone A, Sulce M, Vigo D, Menchetti L, Ceccarini MR, Andoni E, Riva F, Marongiu ML, Curone G, Brecchia G. Goji Berries Supplementation in the Diet of Rabbits and Other Livestock Animals: A Mini-Review of the Current Knowledge. Front Vet Sci 2022; 8:823589. [PMID: 35174242 PMCID: PMC8841604 DOI: 10.3389/fvets.2021.823589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, several nutraceutical substances have received great attention for their potential role in the prevention and treatment of different diseases as well as for their beneficial effects in promoting the health of humans and animals. Goji berries (GBs) are the fruit of Lycium barbarum and other species of Lycium, used in traditional Chinese medicine, and they have recently become very popular in the Occidental world because of their properties, such as anti-aging, antioxidant, anticancer, neuroprotective, cytoprotective, antidiabetic, and anti-inflammatory activities. These effects are essentially evaluated in clinical trials in humans; in experimental animal models, such as mice and rats; and in cell lines in in vitro studies. Only recently has scientific research evaluated the effects of GBs diet supplementation in livestock animals, including rabbits. Although studies in the zootechnical field are still limited and the investigation of the GB mechanisms of action is in an early stage, the results are encouraging. This review includes a survey of the experimental trials that evaluated the effects of the GBs supplementation on reproductive and productive performances, immune system, metabolic homeostasis, and meat quality principally in the rabbit with also some references to other livestock animal species. Evidence supports the idea that GB supplementation could be used in rabbit breeding, although future studies should be conducted to establish the optimal dose to be administered and to assess the sustainability of the use of GBs in the diet of the rabbit.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, University of Milan, Milan, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Majlind Sulce
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Laura Menchetti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Laura Menchetti ;
| | | | - Egon Andoni
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Tirana, Albania
| | - Federica Riva
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | | | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | | |
Collapse
|
32
|
Li QY, Munawar M, Saeed M, Shen JQ, Khan MS, Noreen S, Alagawany M, Naveed M, Madni A, Li CX. Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising Traditional Uses, Pharmacological Effects, Aspects, and Potential Applications. Front Pharmacol 2022; 12:791049. [PMID: 35145403 PMCID: PMC8821906 DOI: 10.3389/fphar.2021.791049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 01/15/2023] Open
Abstract
Health consciousness and increased knowledge about the side effects of synthetic drugs have enhanced interest in traditional medicines. Medicinal plants offer cures for various diseases, leading to improved living standards. This has brought ethnomedicinal studies into the spotlight and increased demand for herb-based medicines. Citrullus colocynthis is an herbaceous plant containing an abundance of nutrients that play a key role in the improvement of wellbeing. C. colocynthis has many biological properties, such as antioxidative, hypoglycemic, antibacterial, anti-cancerous, anti-inflammatory, analgesic, gastrointestinal tract, reproduction, protection, anti-microbial, antidiabetic, hypolipidemic, antineoplastic, profibrinolytic, anti-allergic, pesticidal, and immune-stimulatory. There are numerous bioactive compounds like cucurbitacin, flavonoids, and polyphenols in C. colocynthis that give it medicinal properties. Herein, we have extensively compiled, reviewed, and analyzed significant information on C. colocynthhis from the best published available evidence in PubMed, Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, and Google Scholar, etc. Scientific literature evidenced that owing to the bioactive constituents, including cucurbitacin, polyphenols, flavonoids, and other potent molecules, C. colocynthis has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans and animals. So, the primary purpose of this comprehensive review is to provide an overview of the findings of positive impacts and risks of C. colocynthis consumption on human health, especially in poultry and veterinary fields. In the future, this narrative article will be aware of discoveries about the potential of this promising natural fruit and its bioactive compounds as the best nutraceuticals and therapeutic drugs in veterinary and human medicine.
Collapse
Affiliation(s)
- Qin-Yuan Li
- Department of Human Anatomy, Medical Institute of Qinghai University, Xining, China
| | - Mahzaib Munawar
- Department of Poultry and Animal Breeding, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Saeed
- Department of Poultry and Animal Breeding, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical Institute of Qinghai University, Xining, China
| | - Muhammad Sajjad Khan
- Department of Poultry and Animal Breeding, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Sobia Noreen
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Asadullah Madni
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Chang-Xing Li
- Department of Human Anatomy, Medical Institute of Qinghai University, Xining, China
| |
Collapse
|
33
|
Mishra D, Khare P, Singh DK, Yadav V, Luqman S, Kumar PA, Shanker K. Synthesis of Ocimum extract encapsulated cellulose nanofiber/chitosan composite for improved antioxidant and antibacterial activities. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Traditional Herbal Remedies Used for Managing Anxiety and Insomnia in Italy: An Ethnopharmacological Overview. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anxiety and insomnia are among the most common mental health disorders and are a major cause of disability around the world. Traditional herbal medicines are receiving significant attention in global health debates. Several Italian regions maintain rural traditions and are among the most extensively studied areas of Europe regarding medicinal plant uses. The present overview aims to highlight the use of wild and cultivated plants, specifically as sedatives and for insomnia treatment in Italy, and to collect, analyze, and summarize the available literature about their pharmacological activity as well as clinical and pre-clinical studies concerning the most cited plants. In total, 106 wild taxa are used in Italy for sedative purposes. The plant species belong to 76 genera and 32 families, of which the most cited are Asteraceae (24.2%) and Lamiaceae (21.1%). Leaves (29%) and flowers (27%) are the plant parts mostly used as infusion (70%) and decoction (25%). Out of 106 taxa documented, only the most cited are analyzed in this overview (A. arvensis L., C. nepeta L., C. monogyna Jacq., H. lupulus L., L. nobilis L., L. angustifolia Mill., M. sylvestris L., M. chamomilla L., M. officinalis L., O. basilicum L., P. rhoeas L., P. somniferum L., R. officinalis L., T. platyphyllus Scop., and V. officinalis L.). Among the fifteen species selected, only seven have been studied for their pharmacological activity as hypnotic-sedatives. Future pre-clinical and clinical studies are needed to better clarify the mechanism of action of bioactive compounds and confirm the potential of these alternative therapies.
Collapse
|
35
|
Evaluation of Wound Healing Potential of Novel Hydrogel Based on Ocimum basilicum and Trifolium pratense Extracts. Processes (Basel) 2021. [DOI: 10.3390/pr9112096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plants are an inexhaustible source of compounds with different medicinal properties, suitable as alternative options for the prevention and treatment of various pathologies. They are safe, effective and economical. In this paper, a combined extract made of Ocimum basilicum and Trifolium pratense extracts (EOT) was used for the first time to demonstrate its healing effect on dermal pathologies. To evaluate the wound healing effect of EOT, a novel gel formulation was prepared and subsequently tested in vitro (using the scratch test assay) and in vivo (on an animal model). The in vitro tests demonstrated the complete recovery of the dermal fibroblast monolayer when treated with EOT in a concentration of 50 µg/mL. In vivo results using a hydrogel formulation based on EOT demonstrated improved wound contraction time and complete healing after 13 days of treatment. Moreover, a clinical case of Psoriasis vulgaris was presented, in which one week of treatment led to the significant improvement of the patient’s health. In conclusion, the topical use of the novel gel formulation containing EOT is a successful therapeutic alternative in the treatment of dermal diseases.
Collapse
|
36
|
Abd El-Hack ME, El-Saadony MT, Swelum AA, Arif M, Abo Ghanima MM, Shukry M, Noreldin A, Taha AE, El-Tarabily KA. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5747-5762. [PMID: 34143894 DOI: 10.1002/jsfa.11372] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
Turmeric (Curcuma longa L.) is a spice utilized widely in India, China, and Southeast Asia as an aromatic stimulant, a food preservative, and coloring material. The commonly used names of turmeric are castor saffron, turmeric, and saffron root. Turmeric is a yellow-orange polyphenolic natural substance derived from C. longa rhizomes. It has been used to treat common inflammatory diseases, tumors, biliary diseases, anorexia, cough, topical wounds, diabetic injuries, liver disorders, rheumatism, and sinusitis. Extensive studies on the biological properties and pharmacological consequences of turmeric extracts have been conducted in recent years. Curcumin, the primary yellow biocomponent of turmeric, has anti-inflammatory, antioxidant, anticarcinogenic, antidiabetic, antibacterial, antiprotozoal, antiviral, antifibrotic, immunomodulatory, and antifungal properties. Defense assessment tests showed that curcumin is tolerated well at high doses, without adverse effects. Thus, curcumin is a highly active biological material with the potential to treat different diseases in modern medicine. This review article focuses on curcumin's biological characteristics. The most popular methods for curcumin encapsulation are also discussed. Several effective techniques and approaches have been proposed for curcuminoid capsulation, including nanocomplexing, gelation, complex coacervation, electrospraying, and solvent-free pH-driven encapsulation. This review also highlights curcumin's chemical properties, allowing the readers to expand their perspectives on its use in the development of functional products with health-promoting properties. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia
| |
Collapse
|
37
|
Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants (Basel) 2021; 10:antiox10101627. [PMID: 34679761 PMCID: PMC8533147 DOI: 10.3390/antiox10101627] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.
Collapse
|
38
|
Du J, Bao T, Wang Z, Sun J. A combination of garlic oil and cooked chilli oil could be effective and efficient for pigeon production. J Anim Physiol Anim Nutr (Berl) 2021; 106:1097-1106. [PMID: 34605078 DOI: 10.1111/jpn.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/01/2022]
Abstract
This study was conducted to investigate whether the combination of garlic oil and cooked chilli oil is worth using for pigeon production in the context of a total ban on antibiotics in feed additives in China. Two hundred female white king pigeons aged 23 days were randomly divided into five groups with ten replicates (four birds each). In the 47 days trial, the control group was fed with a basal diet, treatment groups were given a basal diet supplemented with 20 mg/kg neomycin sulphate or 2 g/kg corresponding oil (garlic oil or cooked chilli oil or their mixture) respectively. The mixed oil showed obvious antibacterial activity against gram-positive bacterium and its minimal bactericidal concentration against St. aureus, Salmonella and Escherichia coli were all no more than 1.0 mg/ml. In the feeding experiment, pigeons feed with garlic oil with strong bacteriostatic activity had lower FCR and better protein metabolism, and chilli oil showed strong effects of promoting feed intake and weight gain on pigeons but increased serum glucose and lipid content. Compared with the control and the antibiotic group, the mixed oil got increased growth performance, less drip loss of meat, better protein metabolism promoting, and more complete intestinal structure of pigeon. In addition, the breast meat in the mixed oil group had higher total points in the sensory test. The mixed oil combined the strong bacteriostasis of garlic oil with the feeding promotion effect of cooked chilli oil, it improved the comprehensive performance of pigeons and had the feasibility to be popularized as a non-antibiotic strategy in pigeon production.
Collapse
Affiliation(s)
- Jian Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Tianchao Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhongyu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jinhua Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Volatile Organic Compounds of the Glandular Trichomes of Ocimum basilicum and Artifacts during the Distillation of the Leaves. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focusing on volatile organic compounds (VOC) of Ocimum basilicum, this study aims to determine the chemical composition of VOC in secretory trichomes and compare it with that of essential oil obtained by hydrodistillation of leaves. The technique of extracting the content of glandular trichomes refers to the microneedle shuttle analysis. Hydrodistillation of fresh leaves was done with a Clevenger distiller (EO). The chemical compositions were determined by GC/FID and GC/MS. The head of the capitate trichomes does not contain volatile compounds. Fifty volatile compounds were detected in the EO, and twenty-four volatile compounds were detected in the VOC; the main components were eugenol (from 15.47 ± 1.05% to 41.89 ± 2.83%) and linalool (from 32.05 ± 2.57% to 28.99 ± 2.32%), respectively. During the distillation of the basil leaves 26 artifacts are formed. The composition of the essential oil of O. basilicum therefore depends not only on the plant but also on the method used to obtain it.
Collapse
|
40
|
Antonescu (Mintas) AI, Miere (Groza) F, Fritea L, Ganea M, Zdrinca M, Dobjanschi L, Antonescu A, Vicas SI, Bodog F, Sindhu RK, Cavalu S. Perspectives on the Combined Effects of Ocimum basilicum and Trifolium pratense Extracts in Terms of Phytochemical Profile and Pharmacological Effects. PLANTS 2021; 10:plants10071390. [PMID: 34371593 PMCID: PMC8309466 DOI: 10.3390/plants10071390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Nowadays, the tendency in pharmaceutical and food industries is to replace synthetic antioxidants with the natural ones. For this reason, there is a growing interest in analyzing natural, healthy and non-toxic additives as potential antioxidants. Some plants, which contain high levels of phenolic compounds, present an increasing interest for medicine due to their ability to scavenge free radicals, along with other pharmacological activities, such as antibacterial activity, wound healing and anti-inflammatory effect, to mention only a few. The aim of this review is to explore the therapeutic potential of Ocimum basilicum and Trifolium pratense in relation with their phytochemical profile and to highlight the pharmacological activity of aqueous or ethanol extracts. Special attention was devoted to the dermal pathology and wound healing effects, in the context of multiple skin conditions such as acne, eczema boils, psoriasis and rashes. Additionally, both extracts (Trifolium sp. and Ocimum sp.) are characterized by high content of antioxidant compounds, which are responsible for the radiance and resistance of the skin and slowing down of the aging process by maintaining estrogen levels. Moreover, the potential combined effect of the mixed extract is pointed out in terms of future applications for wound healing, based on some preliminary results obtained from a “scratch tests” assay performed with respect to human dermal fibroblasts.
Collapse
Affiliation(s)
- Andreea-Ina Antonescu (Mintas)
- Faculty of Medicine and Pharmacy, Doctoral School of Biomedical Science, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania;
| | - Florina Miere (Groza)
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Luminita Fritea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
- Correspondence: (L.F.); (A.A.)
| | - Mariana Ganea
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Mihaela Zdrinca
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Luciana Dobjanschi
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Angela Antonescu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
- Correspondence: (L.F.); (A.A.)
| | - Simona Ioana Vicas
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania;
| | - Florin Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania; (F.M.); (M.G.); (M.Z.); (L.D.); (F.B.); (S.C.)
| |
Collapse
|
41
|
Reda FM, El-Saadony MT, El-Rayes TK, Farahat M, Attia G, Alagawany M. Dietary effect of licorice (Glycyrrhiza glabra) on quail performance, carcass, blood metabolites and intestinal microbiota. Poult Sci 2021; 100:101266. [PMID: 34225203 PMCID: PMC8264150 DOI: 10.1016/j.psj.2021.101266] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to assess the impacts of licorice (Glycyrrhiza glabra) on the growth performance, carcass traits, intestinal microbiota, liver and kidney functions, immunity, oxidative status, and lipid profile of Japanese quails. A total of 200 one-week-old unsexed Japanese quails with an average initial body weight of 26.24 ± 0.2 g were randomly distributed into 5 equal groups of 40 birds and further subdivided into 5 replicates. The first (control) group was fed a diet without any licorice, while licorice powder was added at levels of 250, 500, 750, and 1000 mg per kg diet in the second, third, fourth, and fifth groups, respectively. At the age of 3 wk, the group of quail fed on a diet supplemented with 750 and 1000 mg licorice/kg of diet gained the highest body weight (BW) and daily body weight (DBW), while attaining the lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, groups fed diets with licorice at levels of 0 and 250 mg/kg showed the highest feed intake. After the 5-wk feeding trial, the highest BW and DBW values, and the lowest FCR were recorded in the group fed with 750 mg licorice/kg diet. The different treatments produced no significant differences (P > 0.05) in quail carcass characteristics, including percentages of carcass, liver, gizzard, heart, giblets, and dressing. The blood of the group fed a 750 mg licorice diet had higher contents of total protein and GLOB, while its contents of A/G%, lactate dehydrogenase (LDH), total cholesterol, triglyceride (TG), and low density lipoprotein (LDL) were lower. Apart from the high level of licorice (1000 mg/kg), the MDA level was linearly and quadratically (P = 0.0413 and 0.001) decreased with different licorice groups, while superoxide dismutase (SOD), total antioxidant capacity (TAC), immunoglobulin G (IgG), and M (IgM) were quadratically increased when compared to the control group. Licorice supplementation resulted in marked reductions in the number of total bacteria, coliforms, E. coli, and Salmonella, compared to those in the control. In conclusion, the inclusion of licorice at levels of 750 and 1000 mg/kg into the diet of Japanese quail enhances the animal's performance, immunity, antioxidant capacity, and maintains a healthy gut microbiota.
Collapse
Affiliation(s)
- F M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - M T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - T K El-Rayes
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - M Farahat
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - G Attia
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|