1
|
Hogenelst K, Krone T, Eveleens Maarse B, Warnke I, Snabel J, van den Broek TJ, Schuren F, Moerland M, Hoevenaars FP. A prebiotic intervention improves mood in everyday life in healthy women but not in men: Exploratory results from a larger double-blind placebo controlled cross-over study. Brain Behav Immun Health 2025; 43:100918. [PMID: 39717875 PMCID: PMC11665422 DOI: 10.1016/j.bbih.2024.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Prebiotic dietary fiber (PDF) may reduce feelings of stress or improve mood in healthy individuals. Yet gut intervention studies that focus on mood in daily life are lacking and few studies include extensive biological sample analyses to gain mechanistic insights. As part of a larger randomized placebo-controlled crossover study including healthy individuals, we explored the effects of 12 weeks of PDF (acacia gum and carrot powder) on everyday mood, as measured with ecological momentary assessment (EMA). Microbiome composition and levels of microbial metabolites, endocrine, and inflammatory markers were determined prior to and after both intervention phases. Fifty-four participants completed the study. The intervention significantly increased daily positive affect (PA) and reduced daily negative affect (NA) in female but not male participants. The intervention-induced reduction in NA was associated with an increase in microbial diversity in female participants. The intervention did not significantly affect levels of fecal short chain fatty acids, cortisol, and inflammatory markers. This is one of the first studies to show that a dietary fiber intervention can positively alter mood as it is experienced in everyday life. Overall, our findings may stimulate more targeted gut-microbiome interventions and detection of its mental health effects in real life.
Collapse
Affiliation(s)
- Koen Hogenelst
- Department of Human Performance, The Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, the Netherlands
| | - Tanja Krone
- Department of Risk Analysis for Products in Development, The Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, the Netherlands
| | - Boukje Eveleens Maarse
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jessica Snabel
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Tim J. van den Broek
- Department of Microbiology and Systems Biology, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Frank Schuren
- Department of Microbiology and Systems Biology, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, the Netherlands
| | - Femke P.M. Hoevenaars
- Department of Microbiology and Systems Biology, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands
| |
Collapse
|
2
|
Basnet J, Eissa MA, Cardozo LLY, Romero DG, Rezq S. Impact of Probiotics and Prebiotics on Gut Microbiome and Hormonal Regulation. GASTROINTESTINAL DISORDERS 2024; 6:801-815. [PMID: 39649015 PMCID: PMC11623347 DOI: 10.3390/gidisord6040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
The gut microbiome plays a crucial role in human health by influencing various physiological functions through complex interactions with the endocrine system. These interactions involve the production of metabolites, signaling molecules, and direct communication with endocrine cells, which modulate hormone secretion and activity. As a result, the microbiome can exert neuroendocrine effects and contribute to metabolic regulation, adiposity, and appetite control. Additionally, the gut microbiome influences reproductive health by altering levels of sex hormones such as estrogen and testosterone, potentially contributing to conditions like polycystic ovary syndrome (PCOS) and hypogonadism. Given these roles, targeting the gut microbiome offers researchers and clinicians novel opportunities to improve overall health and well-being. Probiotics, such as Lactobacillus and Bifidobacterium, are live beneficial microbes that help maintain gut health by balancing the microbiota. Prebiotics, non-digestible fibers, nourish these beneficial bacteria, promoting their growth and activity. When combined, probiotics and prebiotics form synbiotics, which work synergistically to enhance the gut microbiota balance and improve metabolic, immune, and hormonal health. This integrated approach shows promising potential for managing conditions related to hormonal imbalances, though further research is needed to fully understand their specific mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Manar A. Eissa
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Licy L. Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Damian G. Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
3
|
Dalile B, Boyle NB, Ruiz FT, Chakrabarti A, Respondek F, Dodd GF, Kadosh KC, Hepsomali P, Brummer RJ, McArthur S, Dam V, Zanzer YC, Vermeiren Y, Schellekens H. Targeting Cognitive Resilience through Prebiotics: A Focused Perspective. Adv Nutr 2024; 16:100343. [PMID: 39551433 DOI: 10.1016/j.advnut.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
This perspective article is a product of the work of an expert group within the Prebiotic Task Force convened by the International Life Sciences Institute Europe, a non-profit organization that brings together experts from academia, industry, and public service to catalyze nutrition science for public benefit. An expert group was conceived in October 2023 to discuss the evidence base on the use of prebiotics to promote cognitive functioning, with a focus on highlighting knowledge gaps and proposing a list of recommendations to guide this specific area of research forward. To address this, we evaluated existing systematic reviews and meta-analyses of human intervention studies that examine the effects of prebiotics on cognitive functioning. These are predominantly conducted in healthy participants under basal conditions and have, to date, revealed limited effects. In this perspective, we propose that prebiotics should be investigated as agents to promote cognitive resilience by testing their effects on cognitive performance under certain cognition-taxing factors that individuals encounter across their lifespan. These include stress, poor sleep outcomes, sedentary behavior, and unhealthy dietary patterns, all of which have been shown to be associated with altered microbiome and impact global cognition or specific cognitive domains. In addition, we recommend identifying vulnerable populations that are either subclinical or that struggle chronically or periodically with 1 or more cognition-taxing factors, to better uncover the boundary conditions for prebiotic effectiveness. By broadening the scope of research to include diverse populations and challenging conditions in daily life or experimental settings, we can expand our understanding of the role of prebiotics not only in cognitive health or impairment, but also as potential preventative agents that may promote cognitive resilience during aging and in response to various lifestyle-related challenges.
Collapse
Affiliation(s)
- Boushra Dalile
- Brain Research on Affective Mechanisms (BRAMLab), Laboratory of Biological Psychology, Research Unit Brain & Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
| | - Neil B Boyle
- School of Psychology, University of Leeds, Leeds, United Kingdom; Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Franco T Ruiz
- Translational Research Center for Gastrointestinal Disorder (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | | | | | | - Kathrin Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Robert J Brummer
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Veerle Dam
- Sensus B.V., Roosendaal, The Netherlands
| | | | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group Nutritional Biology, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Freijy TM, Cribb L, Oliver G, Metri NJ, Opie RS, Jacka FN, Hawrelak JA, Rucklidge JJ, Ng CH, Sarris J. The impact of a prebiotic-rich diet and/or probiotic supplements on human cognition: Secondary outcomes from the 'Gut Feelings' randomised controlled trial. Nutr Neurosci 2024:1-11. [PMID: 39546418 DOI: 10.1080/1028415x.2024.2425570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND Emerging evidence indicates that gut microbiota-targeted interventions may lead to improvements in cognition. We assessed whether a prebiotic-rich dietary intervention, probiotic supplement, or synbiotic combination of both would improve human cognition, as part of the 'Gut Feelings' trial. METHODS An 8-week, 2 × 2 factorial randomised controlled trial was conducted on 118 adults with low mood and potential for dietary improvement. Treatment arms: (1) probiotic supplement and diet-as-usual (probiotic group); (2) high-prebiotic diet and placebo supplement (prebiotic diet group); (3) probiotic supplement and high-prebiotic diet (synbiotic group); and (4) placebo supplement and diet-as-usual (placebo group). At baseline and 8-weeks, the Cogstate Brief Battery was administered, testing processing speed, attention, visual learning, and working memory. Data were analysed using Bayesian linear regression. RESULTS We found weak evidence that the probiotic improved working memory (Cohen's d = -0.32, 95% CI: -0.67, 0.03; posterior probability [post. prob] of benefit: 96%). For the other treatments, there was little or no evidence of cognitive improvement. We found weak evidence that the prebiotic diet impaired processing speed (d = 0.25, 95% CI: -0.02, 0.51; post. prob of harm: 97%). There was little indication of a synergistic interaction between the probiotic and prebiotic diet. CONCLUSION We found suggestive evidence of a probiotic-induced improvement in working memory, and prebiotic-induced impairment in processing speed. However, the evidence remains inconclusive regarding any cognitive benefit or harm induced by the probiotic, prebiotic diet, or synbiotic treatments. Larger intervention studies are recommended, with inclusion of neuroimaging or electrophysiology measures.Trial Registration: Australian New Zealand Clinical Trials Registry (ACTRN12617000795392; registered 31 May 2017).
Collapse
Affiliation(s)
- Tanya M Freijy
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Lachlan Cribb
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, Australia
| | - Georgina Oliver
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, Australia
| | - Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Rachelle S Opie
- IPAN, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Felice N Jacka
- Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Jason A Hawrelak
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
- Human Nutrition and Functional Medicine Department, University of Western States, Portland, OR, USA
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Chee H Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, Australia
| | - Jerome Sarris
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| |
Collapse
|
5
|
Prokopidis K, Giannos P, Ispoglou T, Witard OC, Isanejad M. Dietary Fiber Intake is Associated with Cognitive Function in Older Adults: Data from the National Health and Nutrition Examination Survey. Am J Med 2022; 135:e257-e262. [PMID: 35367443 DOI: 10.1016/j.amjmed.2022.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Aging is a global health challenge that is associated with a decline in cognitive function. In the United States, most older adults (≥50 years) do not meet the recommended daily fiber intake, although preliminary evidence suggests that dietary fiber consumption could elicit clinical benefits on cognitive function. We investigated the associations between dietary fiber intake and cognitive function in older adults. METHODS We analyzed data from the US National Health and Nutrition Examination Survey (NHANES) between 2011 and 2014, with a study cohort of 1070 older adults (≥60 years). Cognitive function was assessed using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning Test (WLT), Word Recall Test (WRT) and their Intrusion Word Count Tests (WLT-IC and WRT-IC), the Animal Fluency Test (AFT), and the Digit Symbol Substitution Test (DSST). Multiple linear regression and cubic spline analyses were employed to examine the association between dietary fiber intake and cognitive performance on a test-by-test basis, after covariates adjustment (ie, age, sex, race, socioeconomic status, educational level, medical history, body mass index, alcohol, and energy intake). RESULTS Participants had a mean age of 69.2 years and were primarily non-Hispanic white of middle-high socioeconomic status with a college degree at minimum. The mean dietary fiber intake was 17.3 g/d. The analysis showed that dietary fiber intake was positively associated with DSST (P = .031). No associations with CERAD WLT (P = .41), WRT (P = .68), WLT-IC (P = .07), and WRT-IC (P = .28), and AFT (P = .40) scores were observed. A plateau in DSST score was revealed at a dietary fiber intake of 34 g/d. CONCLUSIONS Higher dietary fiber intake is associated with improved specific components of cognitive function in older adults aged 60 years and older. Public health interventions that target a recommended dietary fiber intake may provide a promising strategy to combat cognitive decline in high-risk groups of older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Society of Meta-research and Biomedical Innovation, London, UK.
| | - Panagiotis Giannos
- Society of Meta-research and Biomedical Innovation, London, UK; Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | | | - Oliver C Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Masoud Isanejad
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Frausto DM, Forsyth CB, Keshavarzian A, Voigt RM. Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Front Neurosci 2021; 15:736814. [PMID: 34867153 PMCID: PMC8639879 DOI: 10.3389/fnins.2021.736814] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that impacts 45 million people worldwide and is ranked as the 6th top cause of death among all adults by the Centers for Disease Control and Prevention. While genetics is an important risk factor for the development of AD, environment and lifestyle are also contributing risk factors. One such environmental factor is diet, which has emerged as a key influencer of AD development/progression as well as cognition. Diets containing large quantities of saturated/trans-fats, refined carbohydrates, limited intake of fiber, and alcohol are associated with cognitive dysfunction while conversely diets low in saturated/trans-fats (i.e., bad fats), high mono/polyunsaturated fats (i.e., good fats), high in fiber and polyphenols are associated with better cognitive function and memory in both humans and animal models. Mechanistically, this could be the direct consequence of dietary components (lipids, vitamins, polyphenols) on the brain, but other mechanisms are also likely to be important. Diet is considered to be the single greatest factor influencing the intestinal microbiome. Diet robustly influences the types and function of micro-organisms (called microbiota) that reside in the gastrointestinal tract. Availability of different types of nutrients (from the diet) will favor or disfavor the abundance and function of certain groups of microbiota. Microbiota are highly metabolically active and produce many metabolites and other factors that can affect the brain including cognition and the development and clinical progression of AD. This review summarizes data to support a model in which microbiota metabolites influence brain function and AD.
Collapse
Affiliation(s)
- Dulce M. Frausto
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B. Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
7
|
Kang JW, Zivkovic AM. The Potential Utility of Prebiotics to Modulate Alzheimer's Disease: A Review of the Evidence. Microorganisms 2021; 9:2310. [PMID: 34835436 PMCID: PMC8625457 DOI: 10.3390/microorganisms9112310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
The gut microbiome has recently emerged as a critical modulator of brain function, with the so-called gut-brain axis having multiple links with a variety of neurodegenerative and mental health conditions, including Alzheimer's Disease (AD). Various approaches for modulating the gut microbiome toward compositional and functional states that are consistent with improved cognitive health outcomes have been documented, including probiotics and prebiotics. While probiotics are live microorganisms that directly confer beneficial health effects, prebiotics are oligosaccharide and polysaccharide structures that can beneficially modulate the gut microbiome by enhancing the growth, survival, and/or function of gut microbes that in turn have beneficial effects on the human host. In this review, we discuss evidence showing the potential link between gut microbiome composition and AD onset or development, provide an overview of prebiotic types and their roles in altering gut microbial composition, discuss the effectiveness of prebiotics in regulating gut microbiome composition and microbially derived metabolites, and discuss the current evidence linking prebiotics with health outcomes related to AD in both animal models and human trials. Though there is a paucity of human clinical trials demonstrating the effectiveness of prebiotics in altering gut microbiome-mediated health outcomes in AD, current evidence highlights the potential of various prebiotic approaches for beneficially altering the gut microbiota or gut physiology by promoting the production of butyrate, indoles, and secondary bile acid profiles that further regulate gut immunity and mucosal homeostasis, which are associated with beneficial effects on the central immune system and brain functionality.
Collapse
Affiliation(s)
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
8
|
La Torre D, Verbeke K, Dalile B. Dietary fibre and the gut-brain axis: microbiota-dependent and independent mechanisms of action. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 2:e3. [PMID: 39296317 PMCID: PMC11406392 DOI: 10.1017/gmb.2021.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 09/21/2024]
Abstract
Dietary fibre is an umbrella term comprising various types of carbohydrate polymers that cannot be digested nor absorbed by the human small intestine. Consumption of dietary fibre is linked to beneficial effects on cognitive and affective processes, although not all fibres produce the same effects. Fibres that increase short-chain fatty acid (SCFA) production following modulation of the gut microbiota are thought to be the most potent fibres to induce effects on cognitive and affective processes. SCFAs can exert their effects by improving central, peripheral and systemic immunity, lowering hypertension and enhancing intestinal barrier integrity. Here, we propose additional mechanisms by which dietary fibres may contribute to improvements in affective and cognitive processes. Fibre-induced modulation of the gut microbiota may influence affective processes and cognition by increasing brain-derived neurotrophic factor levels. Depending on the physicochemical properties of dietary fibre, additional effects on affect and cognition may occur via non-microbiota-related routes, such as enhancement of the immune system and lowering cholesterol levels and subsequently lowering blood pressure. Mechanistic randomised placebo-controlled trials are needed to establish the effects of dietary fibre consumption and the magnitude of explained variance in affect and cognition when incorporating measurements of microbiota-dependent and microbiota-independent mechanisms in humans.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Martínez-Ispizua E, Calatayud Á, Marsal JI, Mateos-Fernández R, Díez MJ, Soler S, Valcárcel JV, Martínez-Cuenca MR. Phenotyping Local Eggplant Varieties: Commitment to Biodiversity and Nutritional Quality Preservation. FRONTIERS IN PLANT SCIENCE 2021; 12:696272. [PMID: 34276746 PMCID: PMC8281111 DOI: 10.3389/fpls.2021.696272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 05/05/2023]
Abstract
Given the little variability among commercialised eggplants mainly in developed countries, exploring, and structuring of traditional varieties germplasm collections have become a key element for extending ecotypes and promoting biodiversity preservation and consumption. Thirty-one eggplant landraces from Spain were characterised with 22 quantitative and 14 qualitative conventional morphological descriptors. Landraces were grouped based on their fruit skin colour (black-purple, striped, white, and reddish). Landraces B7, B20, and B24 were left out for their distinctive fruit characteristics. Wide variation for plant, leaf, flower, and fruit phenology traits was observed across the local landraces, and fruit descriptors were considered the most important ones. In a second experiment, landraces, B14, B16, and B17 were selected to determine fruit quality. By contemplating the benefits provided by antioxidants and sugars for human health, pulp antioxidant capacity, total phenolic, ascorbic acid, carotenoid, flavonoid, and total sugar content were determined. Significant differences were observed across these three landraces, and B14 was highlighted for its antioxidant properties, while B17 stood out for its high sugar content. B16 did not stand out for any traits. The results indicate the wide variability in eggplants for their phenotypic and nutritional characteristics, which emphasises the importance of traditional varieties as the main source of agricultural biodiversity.
Collapse
Affiliation(s)
- Eva Martínez-Ispizua
- Horticulture Department, Valencian Institute for Agricultural Research (IVIA), Valencia, Spain
| | - Ángeles Calatayud
- Horticulture Department, Valencian Institute for Agricultural Research (IVIA), Valencia, Spain
| | - José Ignacio Marsal
- Horticulture Department, Valencian Institute for Agricultural Research (IVIA), Valencia, Spain
| | - Rubén Mateos-Fernández
- Plants Genomics and Biotechnology Department, Institute for Plant Molecular and Cell Biology (IBMCP), Valencia, Spain
| | - María José Díez
- Biotechnology Department, Valencian Institute for the Conservation and Improvement of Agrobiodiversity (COMAV), Polytechnic University of Valencia, Valencia, Spain
| | - Salvador Soler
- Biotechnology Department, Valencian Institute for the Conservation and Improvement of Agrobiodiversity (COMAV), Polytechnic University of Valencia, Valencia, Spain
| | - José Vicente Valcárcel
- Biotechnology Department, Valencian Institute for the Conservation and Improvement of Agrobiodiversity (COMAV), Polytechnic University of Valencia, Valencia, Spain
| | | |
Collapse
|
10
|
Bloomer RJ, Butawan M, van der Merwe M, Keating FH. An Assessment of the Glyconutrient Ambrotose™ on Immunity, Gut Health, and Safety in Men and Women: A Placebo-Controlled, Double-Blind, Randomized Clinical Trial. Nutrients 2020; 12:nu12061751. [PMID: 32545396 PMCID: PMC7353283 DOI: 10.3390/nu12061751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Certain dietary fibers have been reported to improve gut health and cellular immunity. Ambrotose is a glyconutrient supplement that contains mannose-rich polysaccharides (acemannan), reported to improve immune function. A more nutrient-dense version of this dietary supplement has been developed recently, with added aloe leaf gel powder (acemannan). The purpose of this study was to evaluate the impact of the traditional and newly developed Ambrotose products on immunity, gut health, and psychological well-being in healthy men and women. Methods: Seventy-five men and women were randomly assigned in double-blind manner to one of five treatments, as follows: Ambrotose Advanced (AA) at 2 or 4 g daily, Ambrotose LIFE (AL) at 2 or 4 g daily, or placebo. Subjects ingested their assigned treatment daily for eight weeks. Resting heart rate, blood pressure, and measures of psychological well-being were analyzed before and after four and eight weeks of supplementation. Blood samples were collected at the same times and analyzed for zonulin, hematology measures, and cytokines—IL-6, IL-10, IL-1β, and TNF-α (analyzed both with and without stimulation via lipopolysaccharide [LPS]). Results: All Ambrotose treatments were well-tolerated. There were no differences among treatments in heart rate or blood pressure across time. Self-reported well-being scores were generally higher for the Ambrotose treatments but there were no changes of statistical significance across time (p > 0.05). Differences of statistical significance were noted for select biochemical variables, the most notable being a dramatic decrease in monocytes in the Ambrotose groups. No change was noted in the cytokine response to LPS stimulation in all groups, indicating a maintenance of a healthy immune response. Conclusion:Regular supplementation with Ambrotose is safe and can improve subclinical cellular adversity (as evidenced by a decrease in monocytes), without unnecessary activation of an immune response.
Collapse
|
11
|
Desmedt O, Broers VJV, Zamariola G, Pachikian B, Delzenne N, Luminet O. Effects of prebiotics on affect and cognition in human intervention studies. Nutr Rev 2020; 77:81-95. [PMID: 30535275 DOI: 10.1093/nutrit/nuy052] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies conducted in rodents have highlighted that neurobiological processes underlying cognition and affect are modulated by the gut microbiota. Certain dietary fibers are able to modulate the composition of gut microbiota and are thus considered prebiotics. A review of the impact of the available prebiotic intervention studies in humans on cognition and affect, addressing the potential mediating role of the microbiota, was conducted. PubMed, Scopus, and PsycINFO were selected as sources. Fourteen articles were eligible for narrative synthesis. Data extraction and quality assessment were performed with characteristics established a priori. Some chronic prebiotic interventions (>28 d) improved affect and verbal episodic memory compared with a placebo. Acute prebiotic interventions (<24 h) were more efficient in improving cognitive variables (eg, verbal episodic memory). Future research should measure microbiota using adequate methodologies and recruit patients with dysbiosis, inflammation, or psychopathology. More research is needed to unravel the conditions required to obtain effects on affect and cognition.
Collapse
Affiliation(s)
- Olivier Desmedt
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Valérie J V Broers
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Giorgia Zamariola
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Barbara Pachikian
- Louvain Drug Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathalie Delzenne
- Louvain Drug Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Luminet
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Fonds de la Recherche Scientifique (FNRS), Brussels, Belgium
| |
Collapse
|
12
|
|
13
|
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019; 8:E92. [PMID: 30857316 PMCID: PMC6463098 DOI: 10.3390/foods8030092] [Citation(s) in RCA: 639] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Prebiotics are a group of nutrients that are degraded by gut microbiota. Their relationship with human overall health has been an area of increasing interest in recent years. They can feed the intestinal microbiota, and their degradation products are short-chain fatty acids that are released into blood circulation, consequently, affecting not only the gastrointestinal tracts but also other distant organs. Fructo-oligosaccharides and galacto-oligosaccharides are the two important groups of prebiotics with beneficial effects on human health. Since low quantities of fructo-oligosaccharides and galacto-oligosaccharides naturally exist in foods, scientists are attempting to produce prebiotics on an industrial scale. Considering the health benefits of prebiotics and their safety, as well as their production and storage advantages compared to probiotics, they seem to be fascinating candidates for promoting human health condition as a replacement or in association with probiotics. This review discusses different aspects of prebiotics, including their crucial role in human well-being.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Pharmaceutical Biotechnology Incubator, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Mostafa Seifan
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Milad Mohkam
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Aydin Berenjian
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| |
Collapse
|
14
|
Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis 2018; 9:712. [PMID: 29907758 PMCID: PMC6003909 DOI: 10.1038/s41419-018-0749-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 01/13/2023]
Abstract
Trehalose is a non-reducing disaccharide with two glucose molecules linked through an α, α-1,1-glucosidic bond. Trehalose has received attention for the past few decades for its role in neuroprotection especially in animal models of various neurodegenerative diseases, such as Parkinson and Huntington diseases. The mechanism underlying the neuroprotective effects of trehalose remains elusive. The prevailing hypothesis is that trehalose protects neurons by inducing autophagy, thereby clearing protein aggregates. Some of the animal studies showed activation of autophagy and reduced protein aggregates after trehalose administration in neurodegenerative disease models, seemingly supporting the autophagy induction hypothesis. However, results from cell studies have been less certain; although many studies claim that trehalose induces autophagy and reduces protein aggregates, the studies have their weaknesses, failing to provide sufficient evidence for the autophagy induction theory. Furthermore, a recent study with a thorough examination of autophagy flux showed that trehalose interfered with the flux from autophagosome to autolysosome, raising controversy on the direct effects of trehalose on autophagy. This review summarizes the fundamental properties of trehalose and the studies on its effects on neurodegenerative diseases. We also discuss the controversy related to the autophagy induction theory and seek to explain how trehalose works in neuroprotection.
Collapse
|
15
|
Kao ACC, Harty S, Burnet PWJ. The Influence of Prebiotics on Neurobiology and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:21-48. [PMID: 27793220 DOI: 10.1016/bs.irn.2016.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Manipulating the intestinal microbiota for the benefit of the brain is a concept that has become widely acknowledged. Prebiotics are nondigestible nutrients (i.e., fibers, carbohydrates, or various saccharides) that proliferate intrinsic, beneficial gut bacteria, and so provide an alternative strategy for effectively altering the enteric ecosystem, and thence brain function. Rodent studies demonstrating neurobiological changes following prebiotic intake are slowly emerging, and have thus far revealed significant benefits in disease models, including antiinflammatory and neuroprotective actions. There are also compelling data showing the robust and favorable effects of prebiotics on several behavioral paradigms including, anxiety, learning, and memory. At present, studies in humans are limited, though there is strong evidence for prebiotics modulating emotional processes and the neuroendocrine stress response that may underlie the pathophysiology of anxiety. While the mechanistic details linking the enteric microbiota to the central nervous system remain to be elucidated, there are a number of considerations that can guide future studies. These include the modulation of intestinal endocrine systems and inflammatory cascades, as well as direct interaction with the enteric nervous system and gut mucosa. Our knowledge of gut microbiome-brain communication is steadily progressing, and thorough investigations validating the use of prebiotics in the treatment of neuropsychiatric disorders would be highly valued and are encouraged.
Collapse
Affiliation(s)
- A C C Kao
- University of Oxford, Oxford, United Kingdom
| | - S Harty
- University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
16
|
Collins S, Reid G. Distant Site Effects of Ingested Prebiotics. Nutrients 2016; 8:E523. [PMID: 27571098 PMCID: PMC5037510 DOI: 10.3390/nu8090523] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption.
Collapse
Affiliation(s)
- Stephanie Collins
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Gregor Reid
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, 268 Grosvenor St., London, ON N6A 4V2, Canada.
| |
Collapse
|
17
|
Best T, Howe P, Bryan J, Buckley J, Scholey A. Acute effects of a dietary non-starch polysaccharide supplement on cognitive performance in healthy middle-aged adults. Nutr Neurosci 2014; 18:76-86. [PMID: 24621069 DOI: 10.1179/1476830513y.0000000101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Certain plant polysaccharides may provide psychological health benefits. The aim of this study was to evaluate whether they can acutely improve mood and cognitive function. METHOD In a randomized, double-blind, placebo-controlled, between subjects design trial, 73 middle-aged adults consumed 4 g of a proprietary mixture of non-starch polysaccharides (NSPs) (Ambrotose® complex), a rice flour placebo, or a sucrose control. Participants completed testing at baseline and 30 minutes post-consumption. Acute effects of consumption on mood, cognition, and blood glucose were evaluated during mental tests designed to induce mental fatigue. RESULTS Significant improvement in recognition and working memory performance was observed in the group that consumed NSP compared with placebo or sucrose. Improvements in memory performance following NSP intake were independent of changes in blood glucose. DISCUSSION This is the first report of acute behavioural improvement following plant polysaccharide intake in healthy middle-aged adults under conditions of mental fatigue. The findings suggest that certain NSP may enhance memory performance through mechanisms other than elevated blood glucose.
Collapse
|
18
|
Esins J, Schultz J, Bülthoff I, Kennerknecht I. Galactose uncovers face recognition and mental images in congenital prosopagnosia: the first case report. Nutr Neurosci 2013; 17:239-40. [PMID: 24164936 PMCID: PMC4096494 DOI: 10.1179/1476830513y.0000000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A woman in her early 40s with congenital prosopagnosia and attention deficit hyperactivity disorder observed for the first time sudden and extensive improvement of her face recognition abilities, mental imagery, and sense of navigation after galactose intake. This effect of galactose on prosopagnosia has never been reported before. Even if this effect is restricted to a subform of congenital prosopagnosia, galactose might improve the condition of other prosopagnosics. Congenital prosopagnosia, the inability to recognize other people by their face, has extensive negative impact on everyday life. It has a high prevalence of about 2.5%. Monosaccharides are known to have a positive impact on cognitive performance. Here, we report the case of a prosopagnosic woman for whom the daily intake of 5 g of galactose resulted in a remarkable improvement of her lifelong face blindness, along with improved sense of orientation and more vivid mental imagery. All these improvements vanished after discontinuing galactose intake. The self-reported effects of galactose were wide-ranging and remarkably strong but could not be reproduced for 16 other prosopagnosics tested. Indications about heterogeneity within prosopagnosia have been reported; this could explain the difficulty to find similar effects in other prosopagnosics. Detailed analyses of the effects of galactose in prosopagnosia might give more insight into the effects of galactose on human cognition in general. Galactose is cheap and easy to obtain, therefore, a systematic test of its positive effects on other cases of congenital prosopagnosia may be warranted.
Collapse
Affiliation(s)
- Janina Esins
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Correspondence to: Janina Esins, Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076, Tübingen, Germany.
| | | | | | - Ingo Kennerknecht
- Institute of Human Genetics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
19
|
Sinnott R, Maddela RL, Bae S, Best T. The effect of dietary supplements on the quality of life of retired professional football players. Glob J Health Sci 2012; 5:13-26. [PMID: 23445692 PMCID: PMC4776780 DOI: 10.5539/gjhs.v5n2p13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/12/2012] [Indexed: 01/15/2023] Open
Abstract
Professional football players may experience negative health consequences when they retire such as chronic pain, cognitive problems as well as other consequences of sports-related injuries. The purpose of this pilot study is to determine the effects of dietary supplementation with multiple nutrients on the quality of life of retired football players. Fifteen retired players received daily supplementation of fish oil with cholecalciferol, antioxidants, natural vitamins and minerals, polysaccharides and phytosterol-amino acid complex for 6 months. Using an open-labeled repeated measures design, volunteers completed self-report assessment measures at baseline, 1, 3 and 6 months. Outcome measures were CDC HRQOL-4, WHOQOL-BREF, POMS, MFQ and pain self-assessment. General health rating improvement on CDC HRQOL-4 from month 1 was sustained to month 6 (p<0.0001). Mental health days improved at 6 months (p<0.05). WHOQOL-BREF showed increased health satisfaction at all measurement points (p<0.05) and the Physical and Psychological Domain Scores at 6 months (p<0.05). MFQ General Rating of Memory improved at 3 and 6 months (p<0.05). Vigor scale in POMS was significant at 3 months (p<0.05). Decreased pain was noted only for the elbow at month 1 and the knee at month 3 (p<0.05). No adverse events were reported. Results of this study offer preliminary insight into using dietary supplements to support and optimize quality of life in retired football players. Further research using a placebo-controlled design is needed to characterize the potential benefit to physical and psychological well-being of multiple dietary supplementations for this cohort.
Collapse
|
20
|
Marzorati M, Maignien L, Verhelst A, Luta G, Sinnott R, Kerckhof FM, Boon N, Van de Wiele T, Possemiers S. Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends. Antonie van Leeuwenhoek 2012; 103:409-20. [DOI: 10.1007/s10482-012-9821-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/18/2012] [Indexed: 01/01/2023]
|
21
|
Nelson ED, Ramberg JE, Best T, Sinnott RA. Neurologic effects of exogenous saccharides: a review of controlled human, animal, and in vitro studies. Nutr Neurosci 2012; 15:149-62. [PMID: 22417773 PMCID: PMC3389826 DOI: 10.1179/1476830512y.0000000004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Current research efforts are centered on delineating the novel health benefits of naturally derived saccharides, including growing interest in their abilities to influence neurologic health. We performed a comprehensive review of the literature to consolidate all controlled studies assessing various roles of exogenous saccharide compounds and polysaccharide-rich extracts from plants, fungi, and other natural sources on brain function, with a significant focus on benefits derived from oral intake. METHODS Studies were identified by conducting electronic searches on PubMed and Google Scholar. Reference lists of articles were also reviewed for additional relevant studies. Only articles published in English were included in this review. RESULTS Six randomized, double-blind, placebo-controlled clinical studies were identified in which consumption of a blend of plant-derived polysaccharides showed positive effects on cognitive function and mood in healthy adults. A separate controlled clinical study observed improvements in well-being with ingestion of a yeast beta-glucan. Numerous animal and in vitro studies have demonstrated the ability of individual saccharide compounds and polysaccharide-rich extracts to modify behavior, enhance synaptic plasticity, and provide neuroprotective effects. DISCUSSION Although the mechanisms by which exogenous saccharides can influence brain function are not well understood at this time, the literature suggests that certain naturally occurring compounds and polysaccharide-rich extracts show promise, when taken orally, in supporting neurologic health and function. Additional well-controlled clinical studies on larger populations are necessary, however, before specific recommendations can be made.
Collapse
|
22
|
de Wilde MC, Kamphuis PJGH, Sijben JWC, Scheltens P. Utility of imaging for nutritional intervention studies in Alzheimer's disease. Eur J Pharmacol 2011; 668 Suppl 1:S59-69. [PMID: 21816137 DOI: 10.1016/j.ejphar.2011.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a multi-factorial neurodegenerative disorder and the leading cause of dementia, wherein synapse loss is the strongest structural correlate with cognitive impairment. Basic research has shown that dietary supply of precursors and co-factors for synthesis of neuronal membranes enhances the formation of synapses. Daily intake of a medical food containing a mix of these nutrients for 12 weeks in humans improved memory, measured as immediate and delayed verbal recall by the Wechsler Memory Scale-revised, in patients with very mild AD (MMSE 24-26). An improvement of immediate verbal recall was noted following 24 weeks of intervention in an exploratory extension of the study. These data suggest that the intervention may improve synaptic formation and function in early AD. Here we review emerging technologies that help identify changes in pathological hallmarks in AD, including synaptic function and loss of connectivity in the early stages of AD, before cognitive and behavioural symptoms are observable. These techniques include the detection of specific biomarkers in the cerebrospinal fluid, as well as imaging procedures such as fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET), amyloid PET, structural/functional magnetic resonance imaging, diffusion tensor imaging, magnetoencephalography (MEG) and electroencephalography (EEG). Such techniques can provide new insights into the functional and structural changes in the brain over time, and may therefore help to develop more effective AD therapies. In particular, nutritional intervention studies that target synapse formation and function may benefit from these techniques, especially FDG-PET and EEG/MEG employed in the preclinical or early stages of the disease.
Collapse
Affiliation(s)
- Martijn C de Wilde
- Nutricia Advanced Medical Nutrition, Danone Research, Centre for Specialised Nutrition, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
23
|
Ooi CP, Loke SC, Yassin Z, Hamid T. Carbohydrates for improving the cognitive performance of independent-living older adults with normal cognition or mild cognitive impairment. Cochrane Database Syst Rev 2011; 2011:CD007220. [PMID: 21491398 PMCID: PMC7388979 DOI: 10.1002/14651858.cd007220.pub2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is an intermediate state between normal cognition and dementia in which daily function is largely intact. This condition may present an opportunity for research into the prevention of dementia. Carbohydrate is an essential and easily accessible macronutrient which influences cognitive performance. A better understanding of carbohydrate-driven cognitive changes in normal cognition and mild cognitive impairment may suggest ways to prevent or reduce cognitive decline. OBJECTIVES To assess the effectiveness of carbohydrates in improving cognitive function in older adults. SEARCH STRATEGY We searched ALOIS, the Cochrane Dementia and Cognitive Improvement Group Specialized Register on 22 June 2010 using the terms: carbohydrates OR carbohydrate OR monosaccharides OR disaccharides OR oligosaccharides OR polysaccharides OR CARBS. ALOIS contains records from all major healthcare databases (The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS) as well as from many trial databases and grey literature sources. SELECTION CRITERIA All randomised controlled trials (RCT) that have examined the efficacy of any form of carbohydrates in normal cognition and MCI. DATA COLLECTION AND ANALYSIS One review author selected and retrieved relevant articles for further assessment. The remaining authors independently assessed whether any of the retrieved trials should be included. Disagreements were resolved by discussion. MAIN RESULTS There is no suitable RCT of any form of carbohydrates involving independent-living older adults with normal cognition or mild cognitive impairment. AUTHORS' CONCLUSIONS There are no suitable RCTs on which to base any recommendations about the use of any form of carbohydrate for enhancing cognitive performance in older adults with normal cognition or mild cognitive impairment. More studies of many different carbohydrates are needed to tease out complex nutritional issues and further evaluate memory improvement.
Collapse
Affiliation(s)
- Cheow Peng Ooi
- Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaEndocrine Unit, Department of MedicineSerdangSelangor DEMalaysia43400
| | - Seng Cheong Loke
- Universiti Putra MalaysiaInstitute of GerontologySerdangSelangor DEMalaysia43400
| | - Zaitun Yassin
- University Putra MalaysiaDepartment of Nutrition and Dietetics, Faculty of Medicine & Health Sciences43400 UPM SerdangSelangorMalaysia
| | - Tengku‐Aizan Hamid
- Universiti Putra MalaysiaInstitute of GerontologySerdangSelangor DEMalaysia43400
| | | |
Collapse
|
24
|
Alavi A, Goodfellow L, Fraser O, Tarelli E, Bland M, Axford J. A double-blind, randomized, placebo-controlled study to explore the efficacy of a dietary plant-derived polysaccharide supplement in patients with rheumatoid arthritis. Rheumatology (Oxford) 2011; 50:1111-9. [DOI: 10.1093/rheumatology/keq427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|