1
|
He A, Liang Y, Li J, Zhou Z, Li F, Li Z, Wang Y, Jiang G. A Critical Review of Populations with Occupational Exposure to Per- and Polyfluoroalkyl Substances: External Exposome, Internal Exposure Levels, and Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10715-10733. [PMID: 40442988 DOI: 10.1021/acs.est.4c14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The relationship between per- and polyfluoroalkyl substances (PFAS) exposure and human health has received widespread attention. This review focuses on the key distinctions in PFAS exposure between the occupational population and the general population from different countries. A systematic summary is made from the external exposure environment, exposure pathways, internal exposure levels, and health effects of the occupational population. The manufacturing, use, and disposal processes of PFAS increase their concentration levels in the ambient environment, leading to significantly higher concentrations than background areas. Different PFAS exposure pathways may lead to different molecular initiating events and health outcomes in the occupational population and the general population. Moreover, the PFAS exposure levels of the occupational population are nearly one hundred times higher than those of the general population. Mixed exposure to more unknown PFAS is another important feature of the occupational population. Although occupational exposure to PFAS is not associated with mortality, PFAS exposure can significantly disrupt metabolic pathways and cause adverse effects on the liver, kidney, and lipid homeostasis. Therefore, more stringent occupational protections for the PFAS occupational population are necessary to reduce their health risks.
Collapse
Affiliation(s)
- Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Feifei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Paustenbach D, McCauley K, Siracusa J, Smallets S, Brew D, Stevens M, Deckard B, Hua M. United States Environmental Protection Agency's Perfluorooctanoic Acid, Perfluorooctane Sulfonic Acid, and Related Per- and Polyfluoroalkyl Substances 2024 Drinking Water Maximum Contaminant Level: Part 2 - Fifteen Misconceptions About the Health Hazards. Crit Rev Toxicol 2025; 55:368-415. [PMID: 40391660 DOI: 10.1080/10408444.2024.2446453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 05/22/2025]
Abstract
This paper examines widely held beliefs about the six per- and polyfluoroalkyl substances (PFAS) addressed in the final U.S. Environmental Protection Agency's (EPA) rule on PFAS in drinking water (e.g., the Maximum Contaminant Levels - MCLs). Based on our understanding of the scientific literature and the comments submitted by stakeholders regarding the EPA's regulation that was promulgated in April 2024, we identified 15 misconceptions that had a weak scientific foundation. These are now memoralized in the MCLs for the six PFAS but remain debated due to ongoing ambiguous research findings. Many critics of the MCLs found the EPA's systematic review of the published relevant information, particularly the toxicology of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), to be inadequate. The following seven views are among the most important. First, the EPA asserted that the toxicology of these six chemicals was poorly understood and lacked sufficient data to determine a safe daily intake level for chronic health effects; nonetheless, they promulgated what may be the costliest environmental regulation to date. Notably, adverse effects remain difficult to demonstrate in occupationally exposed individuals even at blood concentrations 50-100 times higher than current background PFAS levels. Second, the Agency indicated that the epidemiology data showed that exposure to PFOA and PFOS caused kidney and potentially other cancers, yet the data were equivocal and do not support that assertion. Third, it was stated that specific non-cancer effects, such as heart disease, would be prevented under the promulgated rule; however, the studies that they relied upon do not show an increased incidence of heart disease even in highly exposed populations. Fourth, the Agency relied on animal data to support its views on the likely toxic effects in humans, despite ample toxicology data that animals, particularly rodents, are poor predictors of the human response to PFAS exposures. Fifth, the EPA predicted a reduction in healthcare expenditures that would offset much of the cost of complying with the MCL, but, they did not have adequate data to support this prediction. Sixth, the EPA suggested that these six PFAS act through a shared mechanism of action (i.e., PPARα pathway induction); however, data indicate that PPARα induction in humans may be 80% less than what is observed in rodents. Also, induction of the PPARα pathway is not a cause of systemic disease. Seventh, the Agency failed to disclose that achieving the new MCL would yield negligible reductions in blood PFAS levels even among highly exposed populations, given drinking water accounts for only 20% or less of total PFAS exposure. The survey that could answer that question, the EPA's fifth Unregulated Contaminant Monitoring Rule, was only 25% complete at the time the MCL was promulgated. Overall, our analysis concluded that while the EPA's intent to regulate these chemicals due to their environmental presence was necessary, the derivation of the MCLs and the alleged health effects was based on the application of the precautionary principle rather than robust scientific evidence.
Collapse
Affiliation(s)
| | | | | | | | - David Brew
- Paustenbach and Associates, Jackson, WY, USA
| | | | | | - My Hua
- Paustenbach and Associates, Glendale, CA, USA
| |
Collapse
|
3
|
Younas M, Khan K, Zeb M, Yaseen M, Shah NS, Alshemmari H, Kavil YN, Alelyani SS, Hussien M, Zeb S, Du D. A global review on perfluoroalkyl acids (PFAAs) in the riverine systems: Environmental behaviours and risks implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178596. [PMID: 39855128 DOI: 10.1016/j.scitotenv.2025.178596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
This review provides a comprehensive global overview of the occurrences, distribution, emissions, and associated risks of perfluoroalkyl acids (PFAAs) in riverine systems across both developed and developing countries including the United States (US), Spain, France, Netherlands, Germany, Pakistan, China, Korea, Vietnam, Italy, and Japan. Data for this review were systematically gathered through a comprehensive and structured search process using various databases, search engines, and academic repositories to identify relevant literature and studies. Human health risks were assessed using recommended United States Environmental Protection Agency (USEPA) models, including estimated daily intake (EDI), hazard risk (HR), and hazard index (HI) for each reported PFAA compound in the studied countries. The overall results revealed significant variability in PFAAs contamination from the 1950s to 2023, reflecting extensive industrial usage and increasing environmental concerns, with levels often exceeding the permissible limits set by environmental quality standards established by national or international regulatory authorities, agencies, and organizations. Among the studied countries, Italy exhibited the highest average sum of PFAA compounds (∑PFAAs) concentration in riverine water, ranging from 4.07 to 140.61 ng/L, with an average of 41.37 ng/L, followed by the Netherlands, China, Japan, the US, Pakistan, Spain, France, Germany, Korea, and Vietnam. Similarly, Germany showed the highest average ∑PFAAs concentration in riverine sediments, ranging from 40.25 to 213.00 ng/g, with an average of 126.63 ng/g, followed by China, Spain, the US, Pakistan, Vietnam, and Korea. Whereas, in riverine fish, Spain had the highest average ∑PFAAs concentration, ranging from 0.05 to 144.97 ng/g, with a mean of 15.94 ng/g, followed by Korea, Vietnam, and the US. From a human risk perspective, the highest average EDI of ∑PFAAs via riverine water consumption was observed in the dependent population of Italy (2.02 × 10-3 ng/L/day), followed by the Netherlands (8.24 × 10-4 ng/L/day), the US (5.56 × 10-4 ng/L/day), Pakistan (3.99 × 10-4 ng/L/day), Japan (3.69 × 10-4 ng/L/day), France (3.42 × 10-4 ng/L/day), China (2.58 × 10-4 ng/L/day), Spain (2.43 × 10-4 ng/L/day), Germany (1.17 × 10-4 ng/L/day), Korea (6.01 × 10-5 ng/L/day), and Vietnam (1.28 × 10-5 ng/L/day). For fish consumption, Spain recorded the highest average EDI of ∑PFAAs (9.92 × 100 ng/g/day) in its dependent population, followed by the US (3.44 × 100 ng/g/day), Korea (8.13 × 10-1 ng/g/day), and Vietnam (4.99 × 10-1 ng/g/day). The non-carcinogenic HR values for individual PFAA compounds via riverine water intake in the dependent populations of both developed and developing countries were within acceptable limits (<1). However, the HI values for ∑PFAAs intake via riverine fish consumption in the dependent population exceeded the threshold (>1) in the developed countries, the US and Spain, indicating higher potential risks associated with fish consumption in these countries. Given the inadequate wastewater treatment facilities in many regions, coupled with untreated runoff from urban areas and agricultural fields draining directly into rivers, this study underscores the urgent need for integrated prevention and control measures to mitigate PFAAs contamination in riverine systems and reduce associated risks. Ultimately, stricter regulations, improved monitoring, and enhanced water treatment technologies are crucial to reducing PFAAs contamination and safeguarding public health.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Maria Zeb
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Noor Samad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hassan Alshemmari
- Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait; Environmental Pollution and Climate Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait
| | - Yasar N Kavil
- Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait; Renewable Environment Company for Environmental Consulting (REC), P.O. Box 80207, Jeddah 21589, Saudi Arabia; Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Saeed Saad Alelyani
- Renewable Environment Company for Environmental Consulting (REC), P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Mohamed Hussien
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Sidra Zeb
- Department of Animal Science, Erciyes University, Kayseri 38039, Türkiye
| | - Di Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Huacachino AA, Chung A, Sharp K, Penning TM. Specific and potent inhibition of steroid hormone pre-receptor regulator AKR1C2 by perfluorooctanoic acid: Implications for androgen metabolism. J Steroid Biochem Mol Biol 2025; 246:106641. [PMID: 39571823 PMCID: PMC11652220 DOI: 10.1016/j.jsbmb.2024.106641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental pollutants that are highly stable synthetic organofluorine compounds. One congener perfluorooctanoic acid (PFOA) can be detected in nearly all humans and is recognized as an endocrine disrupting chemical (EDC). EDCs disrupt hormone synthesis and metabolism and receptor function. One mechanism of steroid hormone action is the pre-receptor regulation of ligand access to steroid hormone receptors by aldo-keto reductases. Here we report PFOA inhibition of AKR family 1 member C2 (AKR1C2), leading to dysregulation of androgen action. Spectrofluorimetric inhibitor screens identified PFOA as a competitive and tight binding inhibitor of AKR1C2, whose role is to inactivate 5α-dihydrotestosterone (5α-DHT). Further site directed mutagenesis studies along with molecular docking simulations revealed the importance of residue Valine 54 in mediating AKR1C2 inhibitor specificity. Binding site restrictions were explored by testing inhibition of other related PFAS chemicals, confirming that steric hinderance is a key factor. Furthermore, radiochromatography using HPLC and in line radiometric detection confirmed the accumulation of 5α-DHT as a result of PFOA inhibition of AKR1C2. We showed that PFOA could enhance the transactivation of AR in reporter genes assays in which 5α-DHT metabolism was blocked by AKR1C2 inhibition in HeLa cells. Taken together, these data suggest PFOA has a role in disrupting androgen action through inhibiting AKR1C2. Our work identifies an EDC function for PFOA not previously revealed.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Chung
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M Penning
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Zhong J, Zhang L, Chen K, Yuan X, Cui Z, Tang S, Zheng F, Li Y, Héroux P, Wu Y, Xia D. Environmentally relevant concentration PFNA promotes degradation of SMAD7 to drive progression of ovarian cancer via TGF-β/SMADs signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116907. [PMID: 39205352 DOI: 10.1016/j.ecoenv.2024.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Perfluorononanoic acid (PFNA), an acknowledged environmental endocrine disruptor, is increasingly utilized as a substitute for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Despite its growing use, limited research has been conducted to investigate its potential impact on tumorigenesis and progression, and the potential molecular mechanisms. Earlier studies linked perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure to breast and gynecological cancer progression in humans, lacking a clear understanding of the underlying mechanisms, notably in ovarian cancer. Our investigation into PFNA's effects at environmental concentrations (0.25-2 mM) showed no significant impact on cell proliferation but a notable increase in invasion and migration of ovarian cancer cells. This led to alterations in epithelial-mesenchymal transition (EMT) markers, including Claudin1, Vimentin, and Snail. Notably, PFNA exposure activated the TGF-β/SMADs signaling pathway. Crucially, SMAD7 degradation through the ubiquitin-proteasome system emerged as PFNA's pivotal molecular target for inducing EMT, corroborated in mouse models. In summary, this study presented evidence that environmentally relevant concentrations of PFNA could induce SMAD7 degradation via the proteasome pathway, subsequently activating the TGF-β/SMADs signaling pathway, and promoting EMT in ovarian cancer. These results illuminated the association between PFNA exposure and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Jiamin Zhong
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Tang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Ying Li
- Department of Epidemiology, Biostatistics and Occupational Health, 2001 McGill University, Suite 1200, Montreal H3A 1G1, Canada
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, 2001 McGill University, Suite 1200, Montreal H3A 1G1, Canada
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Westerhout J, den Heijer-Jordaan A, Princen HMG, Stierum R. A systems toxicology approach for identification of disruptions in cholesterol homeostasis after aggregated exposure to mixtures of perfluorinated compounds in humans. Toxicol Sci 2024; 198:191-209. [PMID: 38243716 DOI: 10.1093/toxsci/kfae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used in various household and industrial products. In humans, positive associations were reported between PFAS, including perfluorsulfonic acid and perfluorooctanoic acid, and cholesterol, a cardiometabolic risk factor. Animal studies show the opposite. Human-centered approaches are needed to better understand the effects of PFAS mixtures on cholesterol. Here, a systems toxicology approach is described, using a gene-centered cholesterol biokinetic model. PFAS exposure-gene expression relations from published data were introduced into the model. An existing PFAS physiologically based kinetic model was augmented with lung and dermal compartments and integrated with the cholesterol model to enable exposure-effect modeling. The final model was populated with data reflecting lifetime mixture exposure from: tolerable weekly intake values; the environment; high occupational exposures (ski waxing, PFAS industry). Results indicate that low level exposures (tolerable weekly intake, environmental) did not change cholesterol. In contrast, occupational exposures clearly resulted in internal PFAS exposure and disruption of cholesterol homeostasis, largely in line with epidemiological observations. Despite model limitations (eg, dynamic range, directionality), changes in cholesterol homeostasis were predicted for ski waxers, hitherto unknown from epidemiological studies. Here, future studies involving lipid metabolism could improve risk assessment.
Collapse
Affiliation(s)
- Joost Westerhout
- TNO Risk Analysis for Products in Development, 3584 CB Utrecht, The Netherlands
| | | | | | - Rob Stierum
- TNO Risk Analysis for Products in Development, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
7
|
Du Y, Li Q, Zhou G, Cai Z, Man Q, Wang WC. Early-life perfluorooctanoic acid exposure disrupts the function of dopamine transporter protein with glycosylation changes implicating the links between decreased dopamine levels and disruptive behaviors in larval zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170408. [PMID: 38281643 DOI: 10.1016/j.scitotenv.2024.170408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Exposure to perfluorooctanoic acid (PFOA) during early embryonic development is associated with the increased risk of developmental neurotoxicity and neurobehavioral disorders in children. In our previous study, we demonstrated that exposure to PFOA affected locomotor activity and disrupted dopamine-related gene expression in zebrafish larvae. Consequently, we continue to study the dopaminergic system with a focus on dopamine levels and dopamine's effect on behaviors in relation to PFOA exposure. In the present study, we found a decrease in dopamine levels in larval zebrafish. We studied the dopamine transporter (DAT) protein, which is responsible for regulating dopamine levels through the reuptake of dopamine in neuronal cells. We demonstrated that exposure to PFOA disrupted the glycosylation process of DAT, inhibited its uptake function, and induced endoplasmic reticulum (ER) stress in dopaminergic cells. Besides, we conducted a light-dark preference test on larval zebrafish and observed anxiety/depressive-like behavioral changes following exposure to PFOA. Dopamine is one of the most prominent neurotransmitters that significantly influences human behavior, with low dopamine levels being associated with impairments such as anxiety and depression. The anxiety-like response in zebrafish larvae exposure to PFOA implies the link with the reduced dopamine levels. Taken together, we can deduce that glycosylation changes in DAT lead to dysfunction of DAT to regulate dopamine levels, which in turn alters behavior in larval zebrafish. Therefore, alternation in dopamine levels may play a pivotal role in the development of anxiety/depressive-like behavioral changes induced by PFOA.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Qin Li
- Department of Obstetrics and Gynecology, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China.
| |
Collapse
|
8
|
Du Y, Chen C, Zhou G, Cai Z, Man Q, Liu B, Wang WC. Perfluorooctanoic acid disrupts thyroid-specific genes expression and regulation via the TSH-TSHR signaling pathway in thyroid cells. ENVIRONMENTAL RESEARCH 2023; 239:117372. [PMID: 37827365 DOI: 10.1016/j.envres.2023.117372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a highly persistent and widespread chemical in the environment with endocrine disruption effects. Although it has been reported that PFOA can affect multiple aspects of thyroid function, the exact mechanism by which it reduces thyroxine levels has not yet been elucidated. In this study, FRTL-5 rat thyroid follicular cells were used as a model to study the toxicity of PFOA to the genes related to thyroid hormone synthesis and their regulatory network. Our results reveal that PFOA interfered with the phosphorylation of the cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) induced by thyroid-stimulating hormone (TSH), as well as the transcription levels of paired box 8 (PAX8), thyroid transcription factor 1 (TTF1), sodium/iodide cotransporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO). However, the above outcomes can be alleviated by enhancing cAMP production with forskolin treatment. Further investigations showed that PFOA reduced the mRNA level of TSH receptor (TSHR) and impaired its N-glycosylation, suggesting that PFOA has disrupting effects on both transcriptional regulation and post-translational regulation. In addition, PFOA increased endoplasmic reticulum (ER) stress and decreased ER mass in FRTL-5 cells. Based on these findings, it can be inferred that PFOA disrupts the TSH-activated cAMP signaling pathway by inhibiting TSHR expression and its N-glycosylation. We propose that this mechanism may contribute to the decrease in thyroid hormone levels caused by PFOA. Our study sheds light on the molecular mechanism by which PFOA can disrupt thyroid function and provides new insights and potential targets for interventions to counteract the disruptive effects of PFOA.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Chaojie Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Baolin Liu
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, 200093, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200292, China.
| |
Collapse
|
9
|
Christensen BT, Calkins MM. Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980-2021. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:673-686. [PMID: 36977833 PMCID: PMC10533727 DOI: 10.1038/s41370-023-00536-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that have been integrated into a wide variety of industrial processes and consumer products since the 1950s. Due to their profuse usage and high persistence in human serum, understanding workplace exposures to PFAS is critical. OBJECTIVE We aimed to characterize the PFAS exposure profiles of relevant occupational populations, elucidate trends in the PFAS exposure characterization process, and identify major research gaps that remain within the occupational PFAS exposure literature. METHODS A systematic search of four literature databases for peer-reviewed articles published between 1980 and 2021 on PFAS exposure in occupational settings was conducted. RESULTS Of the 2574 articles identified, 92 met the inclusion criteria. Fluorochemical workers were the target population in most early exposure assessment research; however, studies conducted within the last 10 years have evaluated a wider range of occupational populations and settings. The highest exposures were reported in fluorochemical workers, but, in comparison to reference populations, one or more PFAS were elevated in most workers and in most workplaces that were assessed. PFAS was most frequently assessed in worker serum using a discrete analytical panel of PFAS, with earlier studies restricted to a few long-alkyl chain PFAS while more recent studies have included more expansive panels due to more robust methods. SIGNIFICANCE Characterization of occupational exposure to PFAS is limited but expanding. Current analytical methods are not robust enough to fully capture the potential range of PFAS present across different workers and workplaces. While exposures to PFAS for certain occupational groups have been studied in detail, exposure information for other occupational groups with high potential for exposure are limited. This review highlights substantial findings and major research gaps within the occupational literature.
Collapse
Affiliation(s)
- Brian T Christensen
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, 45213, USA.
| | - Miriam M Calkins
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, 45213, USA
| |
Collapse
|
10
|
Ducatman A, Tan Y, Nadeau B, Steenland K. Perfluorooctanoic Acid (PFOA) Exposure and Abnormal Alanine Aminotransferase: Using Clinical Consensus Cutoffs Compared to Statistical Cutoffs for Abnormal Values. TOXICS 2023; 11:449. [PMID: 37235263 PMCID: PMC10222185 DOI: 10.3390/toxics11050449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFASs) including perfluorooctanoic acid (PFOA) are ubiquitous environmental contaminants. Prior analysis in the large "C8 Health Project" population defined abnormal alanine aminotransferase (ALT) with statistically derived cutoffs (>45 IU/L in men, >34 IU/L in women). OBJECTIVE To explore the degree to which PFOA was associated with modern, clinically predictive ALT biomarker cutoffs in obese and nonobese participants, excluding those with diagnosed liver disease. METHODS We reevaluated the relationship of serum PFOA to abnormal ALT using predictive cutoff recommendations including those of the American College of Gastroenterology (ACG). Evaluations modeled lifetime cumulative exposure and measured internal PFOA exposure. RESULTS ACG cutoff values (≥34 IU/L for males, ≥25 IU/L for females) classified 30% of males (3815/12,672) and 21% of females (3359/15,788) above ALT cutoff values. Odds ratios (OR) for above cutoff values were consistently associated with modeled cumulative and measured serum PFOA. Linear trends were highly significant. ORs by quintile showed near monotonic increases. Trends were stronger for the overweight and obese. However, all weight classes were affected. CONCLUSION Predictive cutoffs increase the OR for abnormal ALT results. Obesity increases ORs, yet association with abnormal ALT pertains to all weight classes. The results are discussed in context of current knowledge about the health implications of PFOA hepatotoxicity.
Collapse
Affiliation(s)
- Alan Ducatman
- School of Public Health, West Virginia University, Morgantown, WV 26506-9190, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Brian Nadeau
- Department of Gastroenterology, William Beaumont Hospital, Royal Oak, MI 48173, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Liu B, Zhu L, Wang M, Sun Q. Associations between Per- and Polyfluoroalkyl Substances Exposures and Blood Lipid Levels among Adults-A Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:56001. [PMID: 37141244 PMCID: PMC10159273 DOI: 10.1289/ehp11840] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Associations between per- and polyfluoroalkyl substances (PFAS) and blood lipid levels in humans were mixed. OBJECTIVES The objective of this meta-analysis was to summarize associations between PFAS and blood lipids in adults. METHODS A literature search was conducted on PubMed and Web of Science for articles published through 13 May 2022 that examined associations between PFAS and blood lipids, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triacylglycerols (TGs). Inclusion criteria included the presence of associations between five PFAS (PFOA, PFOS, PFHxS, PFDA, and PFNA) and four blood lipid measures (TC, HDL-C, LDL-C, and TGs) in adults. Data on study characteristics and PFAS-lipid associations were extracted. Assessments of individual study quality were performed. Associations of changes of blood lipid levels corresponding to 1 interquartile range (IQR)-unit increase of blood PFAS levels were pooled using random effects models. Dose-response relationships were examined. RESULTS Twenty-nine publications were included in the present analyses. Every IQR increase of PFOA was significantly associated with a 2.1 -mg / dL increase in TC (95% CI: 1.2, 3.0), a 1.3 -mg / dL increase in TGs (95% CI: 0.1, 2.4), and a 1.4 -mg / dL increase in LDL-C (95% CI: 0.6, 2.2). PFOS was also significantly associated with TC and LDL-C levels, and the corresponding values were 2.6 (95% CI: 1.5, 3.6) and 1.9 (95% CI: 0.9, 3.0), respectively. Associations of PFOS and PFOA with HDL-C levels were largely null. For minor PFAS species, PFHxS was significantly associated with higher levels of HDL-C [0.8 (95% CI: 0.5, 1.2)]. Inverse associations were observed between PFDA and TGs [- 5.0 (95% CI: - 8.1 , - 1.9 )] and between PFNA and TGs [- 1.7 (95% CI: - 3.5 , - 0.02 )], whereas a positive association was observed between PFDA and HDL-C [1.4 (95% CI: 0.1, 2.7)]. Nonsignificant nonlinear dose-response relationships were identified for associations of PFOA and PFOS with certain blood lipids. DISCUSSION PFOA and PFOS were significantly associated with TC and LDL-C levels in adults. Whether these findings may translate into an elevated cardiovascular disease risk associated with PFAS exposure warrants further investigation. https://doi.org/10.1289/EHP11840.
Collapse
Affiliation(s)
- Binkai Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lu Zhu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Crawford KA, Doherty BT, Gilbert-Diamond D, Romano ME, Claus Henn B. Waxing activity as a potential source of exposure to per- and polyfluoroalkyl substances (PFAS) and other environmental contaminants among the US ski and snowboard community. ENVIRONMENTAL RESEARCH 2022; 215:114335. [PMID: 36150439 DOI: 10.1016/j.envres.2022.114335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Skiers and snowboarders apply waxes and solvents to their equipment to enhance glide across the snow. Waxing results in exposures to per- and polyfluoroalkyl substances (PFAS) and particulate matter, which have been associated with adverse health effects among professional wax technicians in Scandinavia. However, little is known about exposure among people who participate at other levels of sport, including recreationally, in other regions. OBJECTIVE We sought to characterize wax-related exposures among US skiers and snowboarders who participate across numerous levels of sport to expand scientific understanding of environmental health risks among this population. METHODS We used an anonymous electronic survey to evaluate wax-related exposures among US cross-country and downhill skiers and snowboarders. Specifically, we assessed (Fang et al., 2020): duration of time involved with each sport in any role (Freberg et al., 2013), intensity of wax-related exposures based on time spent in waxing areas, wax use, and wax type (Rogowski et al., 2007), frequency of fluorinated wax application, and (Freberg et al., 2010) use of exposure interventions. RESULTS Participants tended to be long-term winter sports enthusiasts (e.g., median downhill skiing duration: 31 years). Nearly all (92%) participants personally applied some wax to their skis/snowboards and most applied waxes containing PFAS (67%) and solvents (62%). Ski professionals waxed the most pairs of skis with fluorinated waxes annually (median (IQR): 20 (1, 100)), though individuals participating recreationally also applied fluorinated waxes regularly. Exposure interventions were not widely used. SIGNIFICANCE Waxing activities may pose significant risk of exposure to PFAS and other environmental contaminants among the US ski and snowboard community. Efforts are needed to reduce these exposures through changes to wax use patterns and broader adoption of exposure reduction strategies.
Collapse
Affiliation(s)
| | | | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Linakis MW, Gustafson P, Allen BC, Bachand AM, Van Landingham C, Keast DR, Longnecker MP. Is the cholesterol-perfluoroalkyl substance association confounded by dietary fiber intake?: a Bayesian analysis of NHANES data with adjustment for measurement error in fiber intake. Environ Health 2022; 21:114. [PMID: 36419083 PMCID: PMC9682702 DOI: 10.1186/s12940-022-00923-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Serum concentrations of total cholesterol and related lipid measures have been associated with serum concentrations of per- and polyfluoroalkyl substances (PFAS) in humans, even among those with only background-level exposure to PFAS. Fiber is known to decrease serum cholesterol and a recent report based on National Health and Nutrition Examination Survey (NHANES) showed that PFAS and fiber are inversely associated. We hypothesized that confounding by dietary fiber may account for some of the association between cholesterol and PFAS. METHODS We implemented a Bayesian correction for measurement error in estimated intake of dietary fiber to evaluate whether fiber confounds the cholesterol-PFAS association. The NHANES measure of diet, two 24-h recalls, allowed calculation of an estimate of the "true" long-term fiber intake for each subject. We fit models to the NHANES data on serum cholesterol and serum concentration of perfluorooctanoic acid (PFOA) and two other PFAS for 7,242 participants in NHANES. RESULTS The Bayesian model, after adjustment for soluble fiber intake, suggested a decrease in the size of the coefficient for PFOA by 6.4% compared with the fiber-unadjusted model. CONCLUSIONS The results indicated that the association of serum cholesterol with PFAS was not substantially confounded by fiber intake.
Collapse
Affiliation(s)
- Matthew W Linakis
- Ramboll US Consulting, Inc., 3214 Charles B Root Wynd #130, Raleigh, NC 27612, USA
| | - Paul Gustafson
- Department of Statistics, University of British Columbia, Vancouver, Canada
| | - Bruce C Allen
- Independent consultant, Chapel Hill, North Carolina, USA
| | | | | | - Debra R Keast
- Food & Nutrition Database Research, Inc, Bangor, PA, USA
| | - Matthew P Longnecker
- Ramboll US Consulting, Inc., 3214 Charles B Root Wynd #130, Raleigh, NC 27612, USA.
| |
Collapse
|
14
|
Zhou Y, Qiao Y, Zhang X, Ma X, Liu H, Wang L. PFOA exposure causes variations of Acot1 among tissues in rats, and Acot1 in serum can be potentially used as a sensitive marker for health monitoring. Toxicol Res (Camb) 2022; 11:872-880. [PMID: 36337235 PMCID: PMC9618101 DOI: 10.1093/toxres/tfac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 10/05/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is a type of 8-carbon perfluoroalkyl substances (PFASs) widely used in industrial and domestic products, which now is a persistent organic pollutant (POP) found in the environment. Its structure is similar to fatty acids, which enables it to induce the expression of ACOT genes. To investigate the expression levels of Acot1 in various tissues and organs after exposure to PFOA for 28 days in rats, and to compare the variations of Acot1 expression in different tissues, we sectioned samples and incubated with Acot1 antibody. The results show that the transcription and protein expression levels of Acot1 in the liver and kidney of rats increased significantly. Meanwhile, the transcription and protein expression of Acot1 gene were also detected in testis, muscle, and adipose. The results of immunohistochemistry were also verified by western blot detection, and we detected the transcription of Acot1 gene in these tissues and found that they all increased in varying degrees. In this study, the expression of Acot1 protein in rat serum was detected for the first time, and the expression of Acot1 in rat serum was found to be significantly increased after PFOA exposure. In addition, the expression level of Acot1 in rat organism was found to be higher than that in the control group after 4 days of depuration for 7 days of acute PFOA exposure, and Acot1 protein expression also showed an increase with increasing exposure time, indicating that Acot1 can be used as a sensitive biomarker for health monitoring of PFOA occupational workers or exposed persons.
Collapse
Affiliation(s)
- Yongbing Zhou
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Ying Qiao
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Xuemin Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Xingzhuang Ma
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, PR China
| |
Collapse
|
15
|
Bil W, Zeilmaker MJ, Bokkers BG. Internal Relative Potency Factors for the Risk Assessment of Mixtures of Per- and Polyfluoroalkyl Substances (PFAS) in Human Biomonitoring. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:77005. [PMID: 35881550 PMCID: PMC9320915 DOI: 10.1289/ehp10009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND In human biomonitoring, blood is often used as a matrix to measure exposure to per- and polyfluoroalkyl substances (PFAS). Because the toxicokinetics of a substance (determining the steady-state blood concentration) may affect the toxic potency, the difference in toxicokinetics among PFAS has to be accounted for when blood concentrations are used in mixture risk assessment. OBJECTIVES This research focuses on deriving relative potency factors (RPFs) at the blood serum level. These RPFs can be applied to PFAS concentrations in human blood, thereby facilitating mixture risk assessment with primary input from human biomonitoring studies. METHODS Toxicokinetic models are generated for 10 PFAS to estimate the internal exposure in the male rat at the blood serum level over time. By applying dose-response modeling, these internal exposures are used to derive quantitative internal RPFs based on liver effects. RESULTS Internal RPFs were successfully obtained for nine PFAS. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoDA), perfluorooctane sulfonic acid (PFOS), and hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX) were found to be more potent than perfluorooctanoic acid (PFOA) at the blood serum level in terms of relative liver weight increase, whereas perfluorobutane sulfonic acid (PFBS) and perfluorohexane sulfonic acid (PFHxS) were found to be less potent. The practical implementation of these internal RPFs is illustrated using the National Health and Nutrition Examination Survey (NHANES) biomonitoring data of 2017-2018. DISCUSSION It is recommended to assess the health risk resulting from exposure to PFAS as combined, aggregate exposure to the extent feasible. https://doi.org/10.1289/EHP10009.
Collapse
Affiliation(s)
- Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marco J. Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Bas G.H. Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
16
|
Du Y, Cai Z, Zhou G, Liang W, Man Q, Wang W. Perfluorooctanoic acid exposure increases both proliferation and apoptosis of human placental trophoblast cells mediated by ER stress-induced ROS or UPR pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113508. [PMID: 35427876 DOI: 10.1016/j.ecoenv.2022.113508] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanoate acid (PFOA) is a highly persistent and widespread chemical in the environment. PFOA serum levels in pregnant women are positively associated with an increased risk of placenta-related disorders. However, the mechanism of PFOA cytotoxicity involved in placental cells and cellular responses such as ER stress remains poorly understood. In this study, we studied the cellular toxicity of PFOA with a focus on proliferation and apoptosis in a human placental trophoblast cell line. Cell viability, number, apoptosis, stress response, activation of the involved signaling pathways were assessed. Our results showed PFOA affected cell viability, proliferation and also resulted in apoptosis. Besides, both pro-proliferation and pro-apoptosis effects were attenuated by endoplasmic reticulum (ER) stress inhibitors. Further experiments demonstrated that two different signaling pathways were activated by PFOA-induced ER stress and involved in PFOA toxicity: the reactive oxygen species (ROS)-dependent ERK signaling triggered trophoblast proliferation, while the ATF4-dependent C/EBP homologous protein (CHOP) signaling was the trigger of apoptosis. We conclude that PFOA-induced ER stress is the trigger of proliferation and apoptosis of trophoblast via ROS or UPR signaling pathway, which leads to the altered balance critical to the normal development and function of the placenta.
Collapse
Affiliation(s)
- Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Wei Liang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China.
| |
Collapse
|
17
|
Andersen ME, Hagenbuch B, Apte U, Corton JC, Fletcher T, Lau C, Roth WL, Staels B, Vega GL, Clewell HJ, Longnecker MP. Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFAS) in humans? A workshop report on potential mechanisms. Toxicology 2021; 459:152845. [PMID: 34246716 PMCID: PMC9048712 DOI: 10.1016/j.tox.2021.152845] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 06/22/2021] [Indexed: 01/09/2023]
Abstract
Serum concentrations of cholesterol are positively correlated with exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in humans. The associated change in cholesterol is small across a broad range of exposure to PFOA and PFOS. Animal studies generally have not indicated a mechanism that would account for the association in humans. The extent to which the relationship is causal is an open question. Nonetheless, the association is of particular importance because increased serum cholesterol has been considered as an endpoint to derive a point of departure in at least one recent risk assessment. To gain insight into potential mechanisms for the association, both causal and non-causal, an expert workshop was held Oct 31 and Nov 1, 2019 to discuss relevant data and propose new studies. In this report, we summarize the relevant background data, the discussion among the attendees, and their recommendations for further research.
Collapse
Affiliation(s)
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd - MS 1018, Kansas City, KS 66160, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd - MS 1018, Kansas City, KS 66160, USA.
| | - J Christopher Corton
- Advanced Experimental Toxicology Models Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 T.W. Alexander Dr., MD B105-03, Research Triangle Park, NC 27711, USA.
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - Christopher Lau
- Reproductive and Developmental Toxicology Branch, Public Health and Integrated Toxicology Division, Mail Code B105-04, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - William L Roth
- U.S. Food and Drug Administration (Retired), Numerical Animals, 16005 Frontier Rd., Reno, NV 89508, USA.
| | - Bart Staels
- Univ. Lille, Inserm, CHU de Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France.
| | - Gloria L Vega
- Center for Human Nutrition, Dallas, TX, USA; Department of Clinical Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9052, USA.
| | - Harvey J Clewell
- Ramboll US Consulting, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, USA.
| | - Matthew P Longnecker
- Ramboll US Consulting, Inc., 3214 Charles B. Root Wynd, Suite 130, Raleigh, NC 27612, USA.
| |
Collapse
|
18
|
Mumtaz MM, Buser MC, Pohl HR. Per- and polyfluoroalkyl mixtures toxicity assessment "Proof-of-Concept" illustration for the hazard index approach. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:553-567. [PMID: 33754950 PMCID: PMC9069224 DOI: 10.1080/15287394.2021.1901251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The 2018 ATSDR mixture framework recommends three approaches including the hazard index (HI) for environmental mixture toxicity assessment. Per- and polyfluoroalkyls (PFAS) are found in our environment and general populations. Recent experimental mixture toxicity studies of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) and an assessment of 17 PFAS indicate the use of additivity for their joint toxicity assessment. The aim of this investigation was to detail the stepwise procedures and examine the extent and use of the HI approach for PFAS mixture assessment. Using estimated general public lifetime exposures (high, medium, and low), binary mixtures of PFOS and PFOA yielded, respectively, hazard indices (HIs) of 30.67, 8.33, and 3.63 for developmental toxicity; 10.67, 5.04, and 2.34 for immunological toxicity; 3.57, 1.68, and 0.78 for endocrine toxicity; 4.51, 1.73, and 0.79 for hepatic toxicity; and 15.08, 2.29, and 0.88 for reproductive toxicity. A heterogeneous mixture of PFOA, PFAS, dioxin (CDD), and polybrominated compounds (PBDE) for high exposure scenario yielded HIs of 30.99 for developmental, 10.77 for immunological, 3.64 for endocrine, 4.61 for hepatic, and 17.36 for reproductive effects. The HI values are used as a screening tool; the potential concern for exposures rises as HI values increase. For HI values >1, a follow-up including further analysis of specific exposures, use of internal dosimetry, and uncertainty factors is conducted before recommending appropriate actions. The HI approach appears suitable to address present-day PFAS public health concerns for initial assessment of multiple health effects, until further insights are gained into their mechanistic toxicology.The findings and conclusions in this article are those of the author(s) and do not necessarily represent the official position of the Centers for Disease Control and Prevention/the Agency for Toxic Substances and Disease Registry.
Collapse
Affiliation(s)
- M M Mumtaz
- Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States
| | - M C Buser
- Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States
| | - H R Pohl
- Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States
| |
Collapse
|
19
|
Ssebugere P, Sillanpää M, Matovu H, Wang Z, Schramm KW, Omwoma S, Wanasolo W, Ngeno EC, Odongo S. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139913. [PMID: 32540660 DOI: 10.1016/j.scitotenv.2020.139913] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are known organic pollutants with adverse health effects on humans and the ecosystem. This paper synthesises literature about the status of the pollutants and their precursors, identifies knowledge gaps and discusses future perspectives on the study of PFASs in Africa. Limited data on PFASs prevalence in Africa is available because there is limited capacity to monitor PFASs in African laboratories. The levels of PFASs in Africa are higher in samples from urban and industrialized areas compared to rural areas. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the dominant PFASs in human samples from Africa. Levels of PFOS and PFOA in these samples are lower than or comparable to those from industrialized countries. PFOA and PFOS levels in drinking water in Africa are, in some cases, higher than the EPA drinking water guidelines suggesting potential risk to humans. The levels of PFASs in birds' eggs from South Africa are higher, while those in other environmental media from Africa are lower or comparable to those from industrialized countries. Diet influences the pollutant levels in fish, while size and sex affect their accumulation in crocodiles. No bioaccumulation of PFASs in aquatic systems in Africa could be confirmed due to small sample sizes. Reported sources of PFASs in Africa include municipal landfills, inefficient wastewater treatment plants, consumer products containing PFASs, industrial wastewater and urban runoff. Relevant stakeholders need to take serious action to identify and deal with the salient sources of PFASs on the African continent.
Collapse
Affiliation(s)
- Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Henry Matovu
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Department of Chemistry, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Karl-Werner Schramm
- Helmholtz Zentrum Müenchen, German National Research Centre for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Solomon Omwoma
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya
| | - William Wanasolo
- Department of Chemistry, Kyambogo University, P.O. Box 1, Kyambogo, Uganda
| | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
20
|
Liu W, Irudayaraj J. Perfluorooctanoic acid (PFOA) exposure inhibits DNA methyltransferase activities and alters constitutive heterochromatin organization. Food Chem Toxicol 2020; 141:111358. [PMID: 32315686 DOI: 10.1016/j.fct.2020.111358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/13/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent and widespread industry-made chemical. Emerging evidence indicates that PFOA exposure could be meditated through DNA methylation, yet, the molecular mechanisms governing the epigenetic states have not been well established. In this study, we investigated the epigenetic alterations and inhibitory mechanisms upon PFOA exposure by identifying changes related to DNA methyltransferase (DNMT) with fluorescence correlation spectroscopy and stimulated emission depletion nanoscopy in human breast epithelial cells (MCF7). PFOA exposure at 100 and 200 μM altered the mobility of DNMT3A and inhibited the enzymatic activity of DNMT, resulting in global DNA demethylation. Moreover, PFOA significantly altered the heterochromatin organization, as noted by the distribution profile of histone 3 lysine 9 tri-methylation (H3K9me3) at 200 and 400 μM exposure levels with super-resolution microscopy. An increased redistribution around the periphery of the nucleus was noted with a more diffused distribution beyond the 200 μM exposure. Overall, exposure of PFOA resulted in DNA demethylation accompanied by altered expression patterns of DNMT1 and DNMT3A. These findings provided new insights on the epigenetic alterations and revealed an altered heterochromatin packaging upon exposure to PFOA, implicating a mechanistic mode of action of DNA demethylation through direct impacts on DNMTs and increasing susceptibility to diseases such as cancer.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carles Foundation Hospital, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carles Foundation Hospital, Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Pouwer MG, Pieterman EJ, Chang SC, Olsen GW, Caspers MPM, Verschuren L, Jukema JW, Princen HMG. Dose Effects of Ammonium Perfluorooctanoate on Lipoprotein Metabolism in APOE*3-Leiden.CETP Mice. Toxicol Sci 2020; 168:519-534. [PMID: 30657992 PMCID: PMC6432869 DOI: 10.1093/toxsci/kfz015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidemiological studies have reported positive associations between serum perfluorooctanoic acid (PFOA) and total and non-high-density lipoprotein cholesterol (non-HDL-C) although the magnitude of effect of PFOA on cholesterol lacks consistency. The objectives of this study were to evaluate the effect of PFOA on plasma cholesterol and triglyceride metabolism at various plasma PFOA concentrations relevant to humans, and to elucidate the mechanisms using APOE*3-Leiden.CETP mice, a model with a human-like lipoprotein metabolism. APOE*3-Leiden.CETP mice were fed a Western-type diet with PFOA (10, 300, 30 000 ng/g/d) for 4-6 weeks. PFOA exposure did not alter plasma lipids in the 10 and 300 ng/g/d dietary PFOA dose groups. At 30 000 ng/g/d, PFOA decreased plasma triglycerides (TG), total cholesterol (TC), and non-HDL-C, whereas HDL-C was increased. The plasma lipid alterations could be explained by decreased very low-density lipoprotein (VLDL) production and increased VLDL clearance by the liver through increased lipoprotein lipase activity. The concomitant increase in HDL-C was mediated by decreased cholesteryl ester transfer activity and changes in gene expression of proteins involved in HDL metabolism. Hepatic gene expression and pathway analysis confirmed the changes in lipoprotein metabolism that were mediated for a major part through activation of the peroxisome proliferator-activated receptor (PPAR)α. Our data confirmed the findings from a phase 1 clinical trial in humans that demonstrated high serum or plasma PFOA levels resulted in lower cholesterol levels. The study findings do not show an increase in cholesterol at environmental or occupational levels of PFOA exposure, thereby indicating these findings are associative rather than causal.
Collapse
Affiliation(s)
- Marianne G Pouwer
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Elsbet J Pieterman
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| | | | - Geary W Olsen
- Medical Department, 3M Company, Saint Paul, Minnesota 55144
| | - Martien P M Caspers
- The Netherlands Organization of Applied Scientific Research (TNO) - Microbiology and Systems Biology, 3704 HE Zeist, The Netherlands
| | - Lars Verschuren
- The Netherlands Organization of Applied Scientific Research (TNO) - Microbiology and Systems Biology, 3704 HE Zeist, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Hans M G Princen
- The Netherlands Organization of Applied Scientific Research (TNO), Metabolic Health Research, Gaubius Laboratory, 2333 CK, Leiden, The Netherlands
| |
Collapse
|
22
|
Dzierlenga MW, Moreau M, Song G, Mallick P, Ward PL, Campbell JL, Housand C, Yoon M, Allen BC, Clewell HJ, Longnecker MP. Quantitative bias analysis of the association between subclinical thyroid disease and two perfluoroalkyl substances in a single study. ENVIRONMENTAL RESEARCH 2020; 182:109017. [PMID: 31865168 DOI: 10.1016/j.envres.2019.109017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 05/23/2023]
Abstract
Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) has been associated with the occurrence of thyroid disease in some epidemiologic studies. We hypothesized that in a specific epidemiologic study based on the National Health and Nutrition Examination Survey, the association of subclinical thyroid disease with serum concentration of PFOA and PFOS was due to reverse causality. Thyroid hormone affects glomerular filtration, which in turn affects excretion of PFOA and PFOS. We evaluated this by linking a model of thyroid disease status over the lifetime to physiologically based pharmacokinetic models of PFOA and PFOS. Using Monte Carlo methods, we simulated the target study population and analyzed the data using multivariable logistic regression. The target and simulated populations were similar with respect to age, estimated glomerular filtration rate, serum concentrations of PFOA and PFOS, and prevalence of subclinical thyroid disease. Our findings suggest that in the target study the associations with subclinical hypothyroidism were overstated and the results for subclinical hyperthyroidism were, in general, understated. For example, for subclinical hypothyroidism in men, the reported odds ratio per ln(PFOS) increase was 1.98 (95% CI 1.19-3.28), whereas in the simulated data the bias due to reverse causality gave an odds ratio of 1.19 (1.16-1.23). Our results provide evidence of bias due to reverse causality in a specific cross-sectional study of subclinical thyroid disease with exposure to PFOA and PFOS among adults.
Collapse
Affiliation(s)
| | | | - Gina Song
- ScitoVation, LLC, Research Triangle Park, NC, USA
| | | | | | | | | | - Miyoung Yoon
- ScitoVation, LLC, Research Triangle Park, NC, USA; ToxStrategies, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
23
|
Spratlen MJ, Perera FP, Lederman SA, Robinson M, Kannan K, Herbstman J, Trasande L. The Association Between Perfluoroalkyl Substances and Lipids in Cord Blood. J Clin Endocrinol Metab 2020; 105:5571855. [PMID: 31536623 PMCID: PMC6936966 DOI: 10.1210/clinem/dgz024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Perfluoroalkyl substances (PFAS) were among various persistent organic pollutants suspected to have been released during the collapse of the World Trade Center (WTC) on 9/11/2001. Evidence suggests that PFAS may have cardiometabolic effects, including alterations in lipid profiles. This study evaluated the association between cord blood PFAS and lipids in a population prenatally exposed to the WTC disaster. STUDY POPULATION 222 pregnant women in the Columbia University WTC birth cohort enrolled between December 13, 2001 and June 26, 2002 at hospitals located near the WTC site: Beth Israel, St. Vincent's, and New York University Downtown. METHODS We evaluated the association between 5 cord blood PFAS-perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorodecane sulfonate (PFDS)-and cord blood lipids (total lipids, total cholesterol, triglycerides). RESULTS Median (interquartile range [IQR]) concentrations of PFAS were 6.32 (4.58-8.57), 2.46 (1.77-3.24), 0.38 (0.25-0.74), 0.66 (0.48-0.95) and 0.11 (0.09-0.16) ng/mL for PFOS, PFOA, PFNA, PFHxS, and PFDS, respectively. Median (IQR) for lipids were 59.0 (51.5-68.5) mg/dL for total cholesterol, 196.5 (170.5-221.2) mg/dL for total lipids and 33.1 (24.2-43.9) mg/dL for triglycerides. In fully adjusted models, several PFAS were associated with higher lipid levels, including evidence of a strong linear trend between triglycerides and both PFOA and PFHxS. CONCLUSIONS Findings support previous evidence of an association between PFAS exposure and altered lipid profiles and add novel information on this relationship in cord blood, as well as for an understudied PFAS, PFDS (J Clin Endocrinol Metab XX: 0-0, 2019).
Collapse
Affiliation(s)
- Miranda J Spratlen
- Columbia Center for Children’s Environmental Health, Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
- Correspondence: Miranda J. Spratlen, Department of Environmental Health Sciences, Columbia University, 122 W 168th, Room 1105, New York, NY 10032. E-mail:
| | - Frederica P Perera
- Columbia Center for Children’s Environmental Health, Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Sally Ann Lederman
- Department of Population and Family Health, Columbia University Mailman School of Public Health, New York, New York
| | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - Julie Herbstman
- Columbia Center for Children’s Environmental Health, Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
- Department of Population Health, New York University School of Medicine, New York, New York
| |
Collapse
|
24
|
Wang X, Bai Y, Tang C, Cao X, Chang F, Chen L. Impact of Perfluorooctane Sulfonate on Reproductive Ability of Female Mice through Suppression of Estrogen Receptor α-Activated Kisspeptin Neurons. Toxicol Sci 2019; 165:475-486. [PMID: 29939337 DOI: 10.1093/toxsci/kfy167] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) is used extensively in industrial and household applications. High exposure to PFOS has been associated with increased odds of irregular and long menstrual cycles in women. However, the underlying mechanisms remain to be elucidated. Herein, we show that adult female mice appeared prolongation of diestrus and reduction of corpora luteum within a week of oral administration of PFOS (10 mg/kg), which are associated with decreases in the levels of serum progesterone, LH and hypothalamic GnRH. The number of AVPV-kisspeptin neurons and the AVPV-kisspeptin expression were increased in proestrus mice or OVX-mice treated with high-dose estradiol benzoate (0.05 mg/kg), which were suppressed by the administration of PFOS. The administration of PFOS or GPR54 antagonist P234 prevented the generation of LH-surge in OVX-mice treated with high-dose E2. In hypothalamic slices incubated in 100 nM E2 for 4 h, the AVPV-kisspeptin expression was significantly enhanced, which was inhibited by PFOS in a dose-dependent manner or estrogen receptor α (ERα) antagonist MPP, but not ERβ antagonist PHTPP. The incubation of ERα agonist PPT rather than ERβ agonist DPN could increase the level of AVPV-kisspeptin expression, which was sensitive to the treatment with PFOS. The administration of GPR54 agonist kisspeptin-10 in PFOS-mice could correct the prolongation of diestrus and reduction of corpora luteum, and recover the LH-surge and the levels of LH and GnRH. The results indicate that exposure to PFOS suppressed ERα-induced activation of AVPV-kisspeptin neurons leads to diestrus prolongation and ovulation reduction.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Key Lab of Reproductive Medicine.,Department of Physiology.,Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Yingyang Bai
- Department of Physiology.,Centre for Reproductive Medicine, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Chuanfeng Tang
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | | | | | - Ling Chen
- State Key Lab of Reproductive Medicine.,Department of Physiology
| |
Collapse
|
25
|
Zahid M, Mazzon G, Athanassiou A, Bayer IS. Environmentally benign non-wettable textile treatments: A review of recent state-of-the-art. Adv Colloid Interface Sci 2019; 270:216-250. [PMID: 31277037 DOI: 10.1016/j.cis.2019.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Among superhydrophobic materials, non-wettable textiles are probably the ones that come in contact or interact with the human body most frequently. Hence, textile treatments for water or oil repellency should be non-toxic, biocompatible, and comply with stringent health standards. Moreover, considering the volume of the worldwide textile industry, these treatments should be scalable, sustainable, and eco-friendly. Due to this awareness, more and more non-wettable textile treatments with eco-friendly processes and green or non-toxic chemicals are being adopted and reported. Although fluorinated alkylsilanes or fluorinated polymers with C8 chemistry (with ≥ 8 fluorinated carbon atoms) are the best performing materials to render textiles water or oil repellent, they pose substantial health and environmental problems and are being banned. For this reason, water/solvent-borne, C8-free vehicles for non-wettable treatment formulations are probably the only ones that can have commercialization prospects. Hence, researchers have come up with a variety of new, non-toxic, green formulations and materials to render fabrics liquid repellent that constitute the focus of this review paper. As such, this review article discusses and summarizes recent developments and techniques on various sustainable superhydrophobic treatments for textiles, with comparable performance and durability to formulations based on fluorinated C8 compounds. The current state-of-the-art technologies, potential commercialization prospects, and relevant limitations are discussed and summarized with examples. The review also attempts to indicate promising future strategies and new materials that can transform the process for non-wettable textiles into an all-sustainable technology.
Collapse
Affiliation(s)
- Muhammad Zahid
- Smart Materials, Istituto Italiano di Technologia, Via Morego, 30, 16163 Genova, Italy.
| | - Giulia Mazzon
- Smart Materials, Istituto Italiano di Technologia, Via Morego, 30, 16163 Genova, Italy; Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Università Ca' Foscari, Dorsoduro 3246, 30123 Venezia, Italy
| | | | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Technologia, Via Morego, 30, 16163 Genova, Italy.
| |
Collapse
|
26
|
Lin PID, Cardenas A, Hauser R, Gold DR, Kleinman KP, Hivert MF, Fleisch AF, Calafat AM, Webster TF, Horton ES, Oken E. Per- and polyfluoroalkyl substances and blood lipid levels in pre-diabetic adults-longitudinal analysis of the diabetes prevention program outcomes study. ENVIRONMENT INTERNATIONAL 2019; 129:343-353. [PMID: 31150976 PMCID: PMC6570418 DOI: 10.1016/j.envint.2019.05.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 05/20/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) may interfere with lipid regulation. However, most previous studies were cross-sectional with the risk of reverse causation, suggesting a need for long-term prospective studies. We examined the relationship of baseline plasma PFAS concentrations with repeated measures of blood lipids. We included 888 prediabetic adults from the Diabetes Prevention Program (DPP) and DPP Outcomes Study, who had measurements of 6 plasma PFAS concentrations at baseline (1996-1999) and repeated measures of blood lipids over 15 years of follow-up, and were initially randomized to placebo or a lifestyle intervention. We used linear regression to examine cross-sectional associations of PFAS concentrations and lipid levels at baseline, and evaluated prospective risks of hypercholesterolemia and hypertriglyceridemia using Cox proportional hazard models, and tested for effect modification by study arm. Participants (65.9% female, 57.0% White, 65.9% aged 40-59 years) had comparable PFAS concentrations [e.g., median (IQR) perfluorooctanoic acid (PFOA) 4.9 ng/mL (3.2)] with the general U.S. population in 1999-2000. We observed higher total cholesterol at baseline per doubling of PFOA (β: 6.1 mg/dL, 95% CI: 3.1, 9.04), perfluorohexane sulfonic acid (PFHxS, β: 2.2 mg/dL, 95% CI: 0.2, 4.3), and perfluorononanoic acid (PFNA, β: 2.9 mg/dL, 95% CI: 0.7, 5.0). Prospectively, baseline concentrations of several PFASs, including PFOA, PFOS, PFHxS and PFNA, predicted higher risks of incident hypercholesterolemia and hypertriglyceridemia, but only in the placebo group and not the lifestyle intervention group. For example, participants in the placebo group with PFOA concentration > median (4.9 ng/mL) were almost twice as likely (HR: 1.90, 95% CI: 1.25, 2.88) to develop hypertriglyceridemia compared to those ≤median. Findings suggest adverse effects of some PFASs on lipid profiles in prediabetic adults. However, the detrimental effect was attenuated with a lifestyle intervention.
Collapse
Affiliation(s)
- Pi-I D Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ken P Kleinman
- Department of Biostatistics, School of Public Health and Human Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Abby F Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA; Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Edward S Horton
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| |
Collapse
|
27
|
Nian M, Li QQ, Bloom M, Qian ZM, Syberg KM, Vaughn MG, Wang SQ, Wei Q, Zeeshan M, Gurram N, Chu C, Wang J, Tian YP, Hu LW, Liu KK, Yang BY, Liu RQ, Feng D, Zeng XW, Dong GH. Liver function biomarkers disorder is associated with exposure to perfluoroalkyl acids in adults: Isomers of C8 Health Project in China. ENVIRONMENTAL RESEARCH 2019; 172:81-88. [PMID: 30776734 DOI: 10.1016/j.envres.2019.02.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 05/23/2023]
Abstract
Exposure to chemicals may affect liver enzyme to increase the risk of liver diseases. Perfluoroalkyl acids (PFAAs) are one kind of persistent organic pollutants with hepatotoxic effect in organism. However, data is scarce to characterize the hepatotoxic effects of specific structural PFAA isomers in general population. To address this data gap, we evaluated the association between serum PFAAs concentration and liver function biomarkers in the Isomers of C8 Health Project in China. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to measure 18 serum PFAAs, except for linear and branched isomers of PFOA/PFOS, nine perfluorinated carboxylic acids (PFCAs) and two perfluorinated sulfonic acids (PFSAs) were also included, in 1605 adult residents of Shenyang, China. Values for nine serum liver function biomarkers were determined by full-automatic blood biochemical analyzer. Linear regression was used to evaluate associations between PFAAs and continuous liver function biomarkers and logistic regression to assess markers dichotomized per clinical reference intervals. Results indicated that serum PFAAs concentrations were associated with liver biomarker levels suggestive of hepatotoxicity, especially for liver cell injury. For example, a 1 ln-unit increase in total- perfluorooctanoic acid (PFOA) exposure was associated with a 7.4% [95% confidence interval (CI): 3.9%, 11.0%] higher alanine aminotransferase (ALT) level in serum. Interestingly, we observed association between branched PFAA isomers and liver biomarkers. For example, one ln-unit increase in branched perfluorooctane sulfonate (PFOS) isomers exposure was associated with a 4.3% increase in ALT level (95% CI: 1.2%, 7.4%) and a 33.0% increased odds of having abnormal ALT (95% CI: 5.0%, 67.0%). Also, we found that PFNA had positive association with ALT [(6.2%, 95% CI: 3.1%, 9.4%) and AST levels (2.5%, 95% CI: 0.5%, 4.5%)]. Logistic regression results showed that PFPeA, PFHxA, PFNA, PFDoDA, PFTrDA and PFTeDA had statistically association with abnormal prealbumin. Conclusively, our results support previous studies showing association between PFAAs exposure and liver function biomarkers. We found new evidence that branched PFAAs isomer exposure is associated with the risk of clinically relevant hepatocellular dysfunction.
Collapse
Affiliation(s)
- Min Nian
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Michael Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China; Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Kevin M Syberg
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Si-Quan Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Qi Wei
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Namratha Gurram
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China; Departments of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Jia Wang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Yan-Peng Tian
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Kang-Kang Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Dan Feng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2(nd) Road, Yuexiu District, Guangzhou 510080, China.
| |
Collapse
|
28
|
Cai Y, Chen H, Chen H, Li H, Yang S, Wang F. Evaluation of Single and Joint Toxicity of Perfluorinated Carboxylic Acids and Copper to Metal-Resistant Arthrobacter Strains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16010135. [PMID: 30621016 PMCID: PMC6338955 DOI: 10.3390/ijerph16010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Abstract
Perfluorocarboxylic acid compounds (PFCAs) and copper have been regarded as ubiquitous environmental contaminants in aquatic ecosystems worldwide. However, data on their possible joint toxic effects on microorganisms are still lacking. To study the combined effects of four PFCAs with different carbon chain lengths and copper, a series of experiments were conducted to explore the acute toxicity of these PFCAs in the absence and presence of copper on a metal-resistant Arthrobacter strain GQ-9 by microcalorimetry. The thermokinetic parameters, including growth rate constant (k), inhibitory ratio (I), and half inhibitory concentration (IC50), were calculated and compared using the data obtained from the power-time curves. Our work revealed that GQ-9 is more resistant to perfluorooctanoic acid (PFOA) than Escherichia coli. The single and joint toxicity of PFCAs with copper are dose- and carbon chain length-dependent. The longer the carbon chain length of PFCAs, the higher the toxicity. In addition, PFCAs interacted synergistically with copper. This work could provide useful information for the risk assessment of co-exposure to perfluorinated compounds and heavy metals in natural environments.
Collapse
Affiliation(s)
- Yanping Cai
- School of Energy and Environmental Engineering, and Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Huilun Chen
- School of Energy and Environmental Engineering, and Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Haiqing Li
- School of Energy and Environmental Engineering, and Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Shuo Yang
- School of Energy and Environmental Engineering, and Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Fei Wang
- School of Energy and Environmental Engineering, and Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
29
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
30
|
Re: Health Status of Workers Exposed to Perfluorinated Alkylate Substances. J Occup Environ Med 2018; 60:e563-e566. [PMID: 30289835 DOI: 10.1097/jom.0000000000001410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Salihovic S, Stubleski J, Kärrman A, Larsson A, Fall T, Lind L, Lind PM. Changes in markers of liver function in relation to changes in perfluoroalkyl substances - A longitudinal study. ENVIRONMENT INTERNATIONAL 2018; 117:196-203. [PMID: 29754000 DOI: 10.1016/j.envint.2018.04.052] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND While it is known that perfluoroalkyl substances (PFASs) induce liver toxicity in experimental studies, the evidence of an association in humans is inconsistent. OBJECTIVE The main aim of the present study was to examine the association of PFAS concentrations and markers of liver function using panel data. METHODS We investigated 1002 individuals from Sweden (50% women) at ages 70, 75 and 80 in 2001-2014. Eight PFASs were measured in plasma using isotope dilution ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). Bilirubin and hepatic enzymes alanine aminotransferase (ALT), alkaline phosphatase (ALP), and γ-glutamyltransferase (GGT) were determined in serum using an immunoassay methodology. Mixed-effects linear regression models were used to examine the relationship between the changes in markers of liver function and changes in PFAS levels. RESULTS The changes in majority of PFAS concentrations were positively associated with the changes in activity of ALT, ALP, and GGT and inversely associated with the changes in circulating bilirubin after adjustment for gender and the time-updated covariates LDL- and HDL-cholesterol, serum triglycerides, BMI, statin use, smoking, fasting glucose levels and correction for multiple testing. For example, changes in perfluorononanoic acid (PFNA) were associated with the changes liver function markers βBILIRUBIN = -1.56, 95% confidence interval (CI) -1.93 to -1.19, βALT = 0.04, 95% CI 0.03-0.06, and βALP = 0.11, 95% CI 0.06-0.15. CONCLUSION Our longitudinal assessment established associations between changes in markers of liver function and changes in plasma PFAS concentrations. These findings suggest a relationship between low-dose background PFAS exposure and altered liver function in the general population.
Collapse
Affiliation(s)
- Samira Salihovic
- Department of Medical Sciences and Science for Life Laboratory, Molecular Epidemiology Unit, Uppsala University, Uppsala, Sweden; MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden.
| | - Jordan Stubleski
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Anna Kärrman
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Anders Larsson
- Department of Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences and Science for Life Laboratory, Molecular Epidemiology Unit, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Liu QS, Sun Y, Qu G, Long Y, Zhao X, Zhang A, Zhou Q, Hu L, Jiang G. Structure-Dependent Hematological Effects of Per- and Polyfluoroalkyl Substances on Activation of Plasma Kallikrein-Kinin System Cascade. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10173-10183. [PMID: 28745506 DOI: 10.1021/acs.est.7b02055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a global concern because of their ubiquitous occurrence and high persistence in human blood, and increasing amounts of unidentified fluorinated compounds are now becoming new exposure issues. This study aims to investigate the structure-related effects of PFASs on the activation of the plasma kallikrein-kinin system (KKS). The effects of 20 PFASs and the related long-chain aliphatic compounds were screened, and their binding affinities for the initial zymogen, Hagmen factor XII (FXII) in the KKS, were evaluated by molecular docking analysis. PFASs were demonstrated to activate the KKS in a structure-dependent mode. More specifically, PFASs with longer carbon chain length, higher fluorine atom substitution degree, and terminal acid group exhibited relatively higher activities in activating the KKS. The binding affinities of PFASs with FXII determined their capabilities for inducing KKS activation. The alternative binding modes of PFASs with FXII, together with van der Waals and hydrogen bonds, specifically accommodated the distinctive chemical structures. To our knowledge, PFASs, for the first time, were found to induce the activation of the KKS in plasma, and their chemical structure-related effects would be extremely important for risk assessment on emerging PFASs in addition to the listing in Stockholm Convention.
Collapse
Affiliation(s)
- Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, 100049, P. R. China
| | - Yuzhen Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China
- Institute of Environment and Health, Jianghan University , Wuhan, 430000, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, 100049, P. R. China
| | - Yanmin Long
- Institute of Environment and Health, Jianghan University , Wuhan, 430000, P. R. China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, 100049, P. R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, 100049, P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, 100049, P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China
- Institute of Environment and Health, Jianghan University , Wuhan, 430000, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Worley RR, Moore SM, Tierney BC, Ye X, Calafat AM, Campbell S, Woudneh MB, Fisher J. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. ENVIRONMENT INTERNATIONAL 2017; 106:135-143. [PMID: 28645013 PMCID: PMC5673082 DOI: 10.1016/j.envint.2017.06.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are considered chemicals of emerging concern, in part due to their environmental and biological persistence and the potential for widespread human exposure. In 2007, a PFAS manufacturer near Decatur, Alabama notified the United States Environmental Protection Agency (EPA) it had discharged PFAS into a wastewater treatment plant, resulting in environmental contamination and potential exposures to the local community. OBJECTIVES To characterize PFAS exposure over time, the Agency for Toxic Substances and Disease Registry (ATSDR) collected blood and urine samples from local residents. METHODS Eight PFAS were measured in serum in 2010 (n=153). Eleven PFAS were measured in serum, and five PFAS were measured in urine (n=45) from some of the same residents in 2016. Serum concentrations were compared to nationally representative data and change in serum concentration over time was evaluated. Biological half-lives were estimated for perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS) using a one-compartment pharmacokinetic model. RESULTS In 2010 and 2016, geometric mean PFOA and PFOS serum concentrations were elevated in participants compared to the general U.S. POPULATION In 2016, the geometric mean PFHxS serum concentration was elevated compared to the general U.S. POPULATION Geometric mean serum concentrations of PFOA, PFOS, and perfluorononanoic acid (PFNA) were significantly (p≤0.0001) lower (49%, 53%, and 58%, respectively) in 2016 compared to 2010. Half-lives for PFOA, PFOS, and PFHxS were estimated to be 3.9, 3.3, and 15.5years, respectively. Concentrations of PFOA in serum and urine were highly correlated (r=0.75) in males. CONCLUSIONS Serum concentrations of some PFAS are decreasing in this residentially exposed community, but remain elevated compared to the U.S. general population.
Collapse
Affiliation(s)
- Rachel Rogers Worley
- Division of Community Health Investigations, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA.
| | - Susan McAfee Moore
- Division of Community Health Investigations, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Bruce C Tierney
- Division of Community Health Investigations, Agency for Toxic Substances and Disease Registry, Atlanta, GA, USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Atlanta, GA, USA
| | | | | | - Jeffrey Fisher
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
34
|
Liu H, Wang J, Sheng N, Cui R, Pan Y, Dai J. Acot1 is a sensitive indicator for PPARα activation after perfluorooctanoic acid exposure in primary hepatocytes of Sprague-Dawley rats. Toxicol In Vitro 2017; 42:299-307. [DOI: 10.1016/j.tiv.2017.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 01/09/2023]
|
35
|
Rockwell CE, Turley AE, Cheng X, Fields PE, Klaassen CD. Persistent alterations in immune cell populations and function from a single dose of perfluorononanoic acid (PFNA) in C57Bl/6 mice. Food Chem Toxicol 2017; 100:24-33. [PMID: 27939831 PMCID: PMC5717760 DOI: 10.1016/j.fct.2016.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022]
Abstract
Perfluorononanoic acid (PFNA) is a perfluoroalkyl substance (PFAS) that is structurally related to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Whereas PFOA and PFOS are known immunotoxicants, PFNA is less well characterized. Our previous study showed that PFNA has immunomodulatory effects on leukocyte populations and immune function. The present studies sought to determine whether, and to what degree, the immune system recovered 28 days after PFNA exposure. None of the parameters measured had fully recovered. A few parameters had partially recovered, including decreased spleen size and the decreased ratio of the CD4+/CD8+ double-positive population in thymus. The majority of effects of PFNA remained unchanged 28 days after exposure, including decreased proportion of intact thymocytes (as determined by FSC vs SSC), alterations in the ratios of immune cell populations in spleen and the CD4+, CD8+ and double-negative populations in thymus. Notably, PFNA markedly increased the TNFα response to LPS in vivo, and no recovery was evident 28 days after exposure. The effect of PFNA on CD4+ T cells, CD8+ T cells and CD19+ cells was more pronounced in females. The current study demonstrates that a single high dose exposure to PFNA (e.g. as might occur accidentally in an occupational setting) has long-lasting effects on the immune system.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Alexandra E Turley
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Xingguo Cheng
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patrick E Fields
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
Halsne R, Tandberg JI, Lobert VH, Østby GC, Thoen E, Ropstad E, Verhaegen S. Effects of perfluorinated alkyl acids on cellular responses of MCF-10A mammary epithelial cells in monolayers and on acini formation in vitro. Toxicol Lett 2016; 259:95-107. [PMID: 27511595 DOI: 10.1016/j.toxlet.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/29/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
Abstract
Perfluorinated alkyl acids (PFAAs) are stable chemicals detected in tissue and serum from various species, including humans, and have been linked to adverse health outcomes. Experimental PFAA exposure in rodents has been associated with changes in mammary gland development. The estrogen receptor (ER)-negative human breast epithelial cell line, MCF-10A, can be grown as monolayer, but also has the ability to form three-dimensional acini in vitro, reflecting aspects of mammary glandular morphogenesis. Cells were exposed to five different PFAAs, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), both in monolayer and acini cultures. In monolayer cultures only the higher concentrations of PFOS, PFNA and PFDA (400-500μM) caused a significant increase in cell death, whereas PFOA and PFUnDA had no effect. Normal acini maturation was negatively impacted by PFOS, PFNA and PFDA already at the lowest concentration tested (0.6μM). Observed effects included loss of organization of the cell clusters and absence of a hollow lumen. Overall, this study demonstrated that PFAAs can interfere with cellular events related to normal development of glandular breast tissue through ER-independent mechanisms.
Collapse
Affiliation(s)
- Ruth Halsne
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway.
| | - Julia Isabel Tandberg
- Department of Pharmaceutical Biosciences, School of Pharmacy, Oslo University, P.O. Box 1068, N-0316 Oslo, Norway
| | - Viola Hélène Lobert
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway
| | - Even Thoen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway; Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway
| |
Collapse
|
37
|
Zhang H, Cui R, Guo X, Hu J, Dai J. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:18-28. [PMID: 27045622 DOI: 10.1016/j.jhazmat.2016.03.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 05/27/2023]
Abstract
Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50μM PFOA for 48h and 96h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50-100μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200-400μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Jiayue Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
38
|
Chang ET, Adami HO, Boffetta P, Wedner HJ, Mandel JS. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and immunological health conditions in humans. Crit Rev Toxicol 2016; 46:279-331. [PMID: 26761418 PMCID: PMC4819831 DOI: 10.3109/10408444.2015.1122573] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Whether perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS), two widely used and biopersistent synthetic chemicals, are immunotoxic in humans is unclear. Accordingly, this article systematically and critically reviews the epidemiologic evidence on the association between exposure to PFOA and PFOS and various immune-related health conditions in humans. Twenty-four epidemiologic studies have reported associations of PFOA and/or PFOS with immune-related health conditions, including ten studies of immune biomarker levels or gene expression patterns, ten studies of atopic or allergic disorders, five studies of infectious diseases, four studies of vaccine responses, and five studies of chronic inflammatory or autoimmune conditions (with several studies evaluating multiple endpoints). Asthma, the most commonly studied condition, was evaluated in seven studies. With few, often methodologically limited studies of any particular health condition, generally inconsistent results, and an inability to exclude confounding, bias, or chance as an explanation for observed associations, the available epidemiologic evidence is insufficient to reach a conclusion about a causal relationship between exposure to PFOA and PFOS and any immune-related health condition in humans. When interpreting such studies, an immunodeficiency should not be presumed to exist when there is no evidence of a clinical abnormality. Large, prospective studies with repeated exposure assessment in independent populations are needed to confirm some suggestive associations with certain endpoints.
Collapse
Affiliation(s)
- Ellen T Chang
- a Health Sciences Practice, Exponent, Inc , Menlo Park , CA , USA ;,b Division of Epidemiology, Department of Health Research and Policy , Stanford University School of Medicine , Stanford , CA , USA
| | - Hans-Olov Adami
- c Department of Epidemiology , Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Paolo Boffetta
- d Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute , New York , NY , USA
| | - H James Wedner
- e Division of Allergy and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jack S Mandel
- a Health Sciences Practice, Exponent, Inc , Menlo Park , CA , USA
| |
Collapse
|
39
|
Rebholz SL, Jones T, Herrick RL, Xie C, Calafat AM, Pinney SM, Woollett LA. Hypercholesterolemia with consumption of PFOA-laced Western diets is dependent on strain and sex of mice. Toxicol Rep 2016; 3:46-54. [PMID: 26942110 PMCID: PMC4770828 DOI: 10.1016/j.toxrep.2015.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is a man-made surfactant with a number of industrial applications. It has a long half-life environmentally and biologically. Past studies suggest a direct relationship between plasma cholesterol and PFOA serum concentrations in humans and an inverse one in rodents fed standard rodent chow, making it difficult to examine mechanisms responsible for the potential PFOA-induced hypercholesterolemia and altered sterol metabolism. To examine dietary modification of PFOA-induced effects, C57BL/6 and BALB/c mice were fed PFOA in a fat- and cholesterol-containing diet. When fed these high fat diets, PFOA ingestion resulted in marked hypercholesterolemia in male and female C57BL/6 mice and less robust hypercholesterolemia in male BALB/c mice. The PFOA-induced hypercholesterolemia appeared to be the result of increased liver masses and altered expression of genes associated with hepatic sterol output, specifically bile acid production. mRNA levels of genes associated with sterol input were reduced only in C57BL/6 females, the mice with the greatest increase in plasma cholesterol levels. Strain-specific PFOA-induced changes in cholesterol concentrations in mammary tissues and ovaries paralleled changes in plasma cholesterol levels. mRNA levels of sterol-related genes were reduced in ovaries of C57BL/6 but not in BALB/c mice and not in mammary tissues. Our data suggest that PFOA ingestion leads to hypercholesterolemia in mice fed fat and cholesterol and effects are dependent upon the genetic background and gender of the mice with C57BL/6 female mice being most responsive to PFOA.
Collapse
Affiliation(s)
- Sandra L Rebholz
- Department of Pathology and Laboratory Medicine, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Thomas Jones
- Department of Pathology and Laboratory Medicine, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Robert L Herrick
- Department of Environmental Health, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Changchun Xie
- Department of Environmental Health, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Antonia M Calafat
- University of Cincinnati College of Medicine, Cincinnati, OH and Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Susan M Pinney
- Department of Environmental Health, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| | - Laura A Woollett
- Department of Pathology and Laboratory Medicine, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
40
|
Liu W, Xu C, Sun X, Kuang H, Kuang X, Zou W, Yang B, Wu L, Liu F, Zou T, Zhang D. Grape seed proanthocyanidin extract protects against perfluorooctanoic acid-induced hepatotoxicity by attenuating inflammatory response, oxidative stress and apoptosis in mice. Toxicol Res (Camb) 2016; 5:224-234. [PMID: 30090339 PMCID: PMC6062257 DOI: 10.1039/c5tx00260e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/22/2015] [Indexed: 01/06/2023] Open
Abstract
Grape seed proanthocyanidin extract (GSPE) is a rich source of proanthocyanidins with multiple biological activities and potential health benefits. In the present study, we investigated the protective effect of GSPE against liver injury caused by perfluorooctanoic acid (PFOA) in mice and its possible mechanisms of action. Simultaneous treatment with GSPE for 14 consecutive days attenuated the functional and morphological changes in the liver of PFOA-exposed mice. Furthermore, simultaneous supplementation of GSPE reduced the production of inflammatory cytokines IL-6 and TNF-α, increased the expression of Nrf2 and its target antioxidant genes superoxide dismutase and catalase, and decreased the production of malondialdehyde and hydrogen peroxide in the liver of mice exposed to PFOA. Moreover, GSPE supplementation up-regulated the expression of anti-apoptotic protein Bcl-2 and down-regulated the expression of pro-apoptotic proteins p53 and Bax, with a decreased activity of caspase-3 in the liver of PFOA-treated mice. These findings suggest that GSPE ameliorates PFOA-induced inflammatory response, oxidative stress and apoptosis in the liver of mice.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Changshui Xu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Xi Sun
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Haibin Kuang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Xiaodong Kuang
- Department of Pathology , Medical College of Nanchang University , Nanchang 330006 , PR China
| | - Weiying Zou
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Bei Yang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Lei Wu
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Fangming Liu
- Office of Academic Affairs , Medical College of Nanchang University , Nanchang 330006 , PR China
| | - Ting Zou
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| | - Dalei Zhang
- Department of Physiology , Medical College of Nanchang University , Nanchang 330006 , PR China . ; Tel: +86 791 86360586
| |
Collapse
|
41
|
Worley RR, Fisher J. Application of physiologically-based pharmacokinetic modeling to explore the role of kidney transporters in renal reabsorption of perfluorooctanoic acid in the rat. Toxicol Appl Pharmacol 2015; 289:428-41. [PMID: 26522833 DOI: 10.1016/j.taap.2015.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022]
Abstract
Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the role of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance.
Collapse
Affiliation(s)
- Rachel Rogers Worley
- Agency for Toxic Substances and Disease Registry, Division of Community Health Investigations, 4770 Buford Highway, Atlanta, GA 30341, United States; Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602, United States.
| | - Jeffrey Fisher
- Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602, United States; Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, United States
| |
Collapse
|
42
|
Skuladottir M, Ramel A, Rytter D, Haug LS, Sabaredzovic A, Bech BH, Henriksen TB, Olsen SF, Halldorsson TI. Examining confounding by diet in the association between perfluoroalkyl acids and serum cholesterol in pregnancy. ENVIRONMENTAL RESEARCH 2015; 143:33-8. [PMID: 26432473 DOI: 10.1016/j.envres.2015.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have consistently been associated with higher cholesterol levels in cross sectional studies. Concerns have, however, been raised about potential confounding by diet and clinical relevance. OBJECTIVE To examine the association between concentrations of PFOS and PFOA and total cholesterol in serum during pregnancy taking into considerations confounding by diet. METHODS 854 Danish women who gave birth in 1988-89 and provided a blood sample and reported their diet in week 30 of gestation. RESULTS Mean serum PFOS, PFOA and total cholesterol concentrations were 22.3 ng/mL, 4.1 ng/mL and 7.3 mmol/L, respectively. Maternal diet was a significant predictor of serum PFOS and PFOA concentrations. In particular intake of meat and meat products was positively associated while intake of vegetables was inversely associated (P for trend <0.01) with relative difference between the highest and lowest quartile in PFOS and PFOA concentrations ranging between 6% and 25% of mean values. After adjustment for dietary factors both PFOA and PFOS were positively and similarly associated with serum cholesterol (P for trend ≤0.01). For example, the mean increase in serum cholesterol was 0.39 mmol/L (95%CI: 0.09, 0.68) when comparing women in the highest to lowest quintile of PFOA concentrations. In comparison the mean increase in serum cholesterol was 0.61 mmol/L (95%CI: 0.17, 1.05) when comparing women in the highest to lowest quintile of saturated fat intake. CONCLUSION In this study associations between PFOS and PFOA with serum cholesterol appeared unrelated to dietary intake and were similar in magnitude as the associations between saturated fat intake and serum cholesterol.
Collapse
Affiliation(s)
- Margret Skuladottir
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland; Unit for Nutrition Research, Landspitali National University Hospital, Reykjavik, Iceland
| | - Alfons Ramel
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland; Unit for Nutrition Research, Landspitali National University Hospital, Reykjavik, Iceland
| | - Dorte Rytter
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Line Småstuen Haug
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Azemira Sabaredzovic
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Bodil Hammer Bech
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | | | - Sjurdur F Olsen
- Center for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark; Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Thorhallur I Halldorsson
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland; Unit for Nutrition Research, Landspitali National University Hospital, Reykjavik, Iceland; Center for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
43
|
|
44
|
Liu W, Yang B, Wu L, Zou W, Pan X, Zou T, Liu F, Xia L, Wang X, Zhang D. Involvement of NRF2 in Perfluorooctanoic Acid-Induced Testicular Damage in Male Mice. Biol Reprod 2015; 93:41. [PMID: 26108789 DOI: 10.1095/biolreprod.115.128819] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/11/2015] [Indexed: 01/06/2023] Open
Abstract
Perfluorooctane acid (PFOA) is a hazardous environmental pollutant that has been reported to exert adverse effects on animal and human health. In this study, male mice were orally administered different concentrations of PFOA (2.5, 5, or 10 mg/kg/day) to evaluate the reproductive toxicity. Exposure to PFOA for 14 consecutive days obviously disrupted seminiferous tubules and reduced sperm count. The highest concentration of PFOA (10 mg/kg/day) caused growth retardation and diminished absolute testis weight. Furthermore, PFOA treatment significantly increased the generation of oxidative stress indicators malondialdehyde and hydrogen peroxide, decreased the expression of transcription factor NRF2, and inhibited the activities of antioxidant enzymes superoxide dismutase and catalase in the testis. Moreover, PFOA exposure up-regulated p-p53 and BAX expression and down-regulated BCL-2 expression in the testis. These results indicated that PFOA-induced male reproductive disorders might be involved in developmental impairment and inhibition of NRF2-mediated antioxidant response in the testis of mice.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Bei Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Lei Wu
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Weiying Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | | | - Ting Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| | - Fangming Liu
- Library, Nanchang University, Nanchang, PR China
| | - Liping Xia
- Library, Nanchang University, Nanchang, PR China
| | - Xiang Wang
- Library, Nanchang University, Nanchang, PR China
| | - Dalei Zhang
- Department of Physiology, Medical College of Nanchang University, Nanchang, PR China
| |
Collapse
|
45
|
Liu H, Sheng N, Zhang W, Dai J. Toxic effects of perfluorononanoic acid on the development of Zebrafish (Danio rerio) embryos. J Environ Sci (China) 2015; 32:26-34. [PMID: 26040728 DOI: 10.1016/j.jes.2014.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
Perfluorononanoic acid (PFNA) is a nine-carbon perfluoroalkyl acid widely used in industrial and domestic products. It is a persistent organic pollutant found in the environment as well as in the tissues of humans and wildlife. There is a concern that this chemical might be a developmental toxicant and teratogen in various ecosystems. In the present study, the toxic effects of PFNA were evaluated in zebrafish (Danio rerio) embryos. One hour post-fertilization embryos were treated with 0, 25, 50, 100, 200, 300, 350, and 400 μmol/L PFNA for 96 hr in 6-well plates. Developmental phenotypes and hatching rates were observed and recorded. Nineteen genes related to oxidative stress and lipid metabolism were examined using Quantitative RT-PCR and confirmed by whole mount in situ hybridization (WISH). Results showed that PFNA delayed the development of zebrafish embryos, reduced the hatching rate, and caused ventricular edema and malformation of the spine. In addition, the amount of reactive oxygen species in the embryo bodies increased significantly after exposure to PFNA compared with that of the control group. The Quantitative RT-PCR and WISH experiments demonstrated that mRNA expression of the lfabp and ucp2 genes increased significantly while that of sod1 and mt-nd1 decreased significantly after PFNA exposure. The mRNA expression levels of gpx1 and mt-atp6 decreased significantly in the high concentration group. However, the mRNA expression levels of both ppara and pparg did not show any significant variation after exposure. These findings suggest that PFNA affected the development of zebrafish embryos at relatively low concentrations.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
46
|
Perfluorooctanoic acid disrupts the blood-testis barrier and activates the TNFα/p38 MAPK signaling pathway in vivo and in vitro. Arch Toxicol 2015; 90:971-83. [PMID: 25743374 DOI: 10.1007/s00204-015-1492-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is correlated with male reproductive dysfunction in animals and humans, but the underlying mechanisms for this remain unknown. To explore the potential reproductive toxicity of PFOA, we studied blood-testis barrier (BTB) damage using in vivo and in vitro models. Male mice were gavage-administered PFOA (0-20 mg/kg/d) for 28 consecutive days, and breeding capacity and permeability of the Sertoli cell-based BTB were estimated. Primary Sertoli cells (SCs) were exposed to PFOA (0-500 μM) for 48 h, and transepithelial electrical resistance (TER) was assessed. Furthermore, BTB-associated protein expression, TNFα content, and phosphorylation and protein levels of the mitogen-activated protein kinase (MAPK) pathway were detected. An apparent decrease in mated and pregnant females per male mouse as well as litter weight was observed. Marked BTB damage was evidenced by increased red biotin fluorescence in the lumen tubular of the testes and the decrease in TER in SCs in vitro. The protein levels of claudin-11, connexin-43, N-cadherin, β-catenin, and occludin were significantly decreased in the testes and also in the SCs in vitro except for N-cadherin and β-catenin. TNFα content showed a dose-dependent increase in the testes and a dose- and time-dependent increase in the SCs, with the p-p38/p38 MAPK ratio also increasing in testes and SCs after PFOA exposure. Moreover, PFOA altered expressions of claudin-11, connexin-43, TNFα, and p-p38 MAPK were recovered 48 h after PFOA removal in the SCs. The SCs appeared to be target to PFOA, and the disruption of the BTB may be crucial to PFOA-induced reproductive dysfunction in mice.
Collapse
|
47
|
Everds NE, Kennedy GL. Serum perfluorooctanoic acid (PFOA) concentrations in normal and hyperlipidemic female hamsters dosed orally with ammonium perfluorooctanoate (APFO) for up to 30 days. Toxicol Rep 2015; 2:70-77. [PMID: 28962339 PMCID: PMC5598093 DOI: 10.1016/j.toxrep.2015.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 02/02/2023] Open
Abstract
In epidemiology studies, the presence of perfluorooctanoate (PFOA) in human blood has been associated with higher serum cholesterol concentrations. A possible explanation for these results is that elevated serum cholesterol might reduce clearance of PFOA. In this study, female hamsters, which transport and regulate cholesterol in a manner similar to humans, were fed normal diet or diet supplemented with 0.05% cholesterol and 10% coconut oil (high-fat diet) resulting in hyperlipidemia throughout the study in supplemented animals. Hamsters on either a normal and high-fat diet were given oral doses of 0.1, 1.0, or 10 mg APFO/kg for 30 days. Serum PFOA concentrations evaluated 24 h after 1, 10, 20, and 30 doses of APFO were not altered in hyperlipidemic hamsters compared to those fed normal diet. For a given dose group, serum concentrations of PFOA were highest following the 10 doses (except for the 10 mg/kg group where concentrations were the highest after the first dose) and were lowest after 20 and 30 doses. Under the condition of this study, higher serum lipids did not affect the absorption and clearance of serum PFOA. Serum PFOA concentrations declined over the course of the study despite continued daily dosing with APFO. This does not support the hypothesis that higher serum lipids might increase the retention of PFOA in the body.
Collapse
Affiliation(s)
- Nancy E Everds
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE, USA.,Department of Pathology, Amgen, Inc., Seattle, WA, USA
| | - Gerald L Kennedy
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE, USA.,DuPont Sustainable Growth Center, Health and Environmental Sciences, Wilmington, DE, USA
| |
Collapse
|
48
|
Gleason JA, Post GB, Fagliano JA. Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007-2010. ENVIRONMENTAL RESEARCH 2015; 136:8-14. [PMID: 25460614 DOI: 10.1016/j.envres.2014.10.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Perfluorinated chemicals (PFCs) are a group of manmade compounds that are not broken down in the body. Four PFCs (PFHxS, PFOS, PFOA, and PFNA) have been found in the blood of more than 98% of the United States population. OBJECTIVES Our goal was to assess associations between PFHxS, PFOS, PFOA, and PFNA and uric acid, alanine transferase (ALT), gamma-glutamyl transferase (GGT), asparate aminotransferase (AST), alkaline phosphate (ALP), and total bilirubin in 2007-2008 and 2009-2010 combined National Health and Nutrition Examination Survey (NHANES). METHODS We used multivariate linear regression and logistic regression adjusted for age, gender, race/ethnicity and BMI group, poverty, smoking, and/or alcohol consumption to estimate associations. Trend analysis was performed. RESULTS PFHxS was associated with ALT. Each quartile of PFOS was statistically associated with total bilirubin [(Q2: OR=1.44, 95% CI 1.12-1.84), (Q3: OR=1.65, 95% CI 1.25-2.18), and (Q4: OR=1.51, 95% CI 1.06-2.15)], with evidence of an increasing trend (p-value=0.028). PFOA was associated with uric acid, ALT, GGT, and total bilirubin. PFNA was linearly associated with ALT (p-value <0.001), and there was statistically significant increasing trend (p-value=0.042). CONCLUSIONS Our analysis found evidence of associations of biomarkers of liver function and uric acid with PFHxS, PFOS, PFOA, and PFNA at levels found in the general U.S. population.
Collapse
Affiliation(s)
- Jessie A Gleason
- Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, 135 East State Street, P.O. Box 369, Trenton, NJ 08625 USA.
| | - Gloria B Post
- Office of Science, New Jersey Department of Environmental Protection, 428 East State Street, Trenton, NJ 08609 USA.
| | - Jerald A Fagliano
- Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, 135 East State Street, P.O. Box 369, Trenton, NJ 08625 USA.
| |
Collapse
|
49
|
Winquist A, Steenland K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1299-305. [PMID: 25260175 PMCID: PMC4256699 DOI: 10.1289/ehp.1307943] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 09/24/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Several previous studies, mostly cross-sectional, have found associations between perfluorooctanoic acid (PFOA) and high cholesterol levels, but studies of hypertension and heart disease have had inconsistent findings. OBJECTIVES In this study we examined the association between modeled PFOA exposure and incident hypertension, hypercholesterolemia, and coronary artery disease among workers at a Mid-Ohio Valley chemical plant that used PFOA, and residents of the surrounding community. METHODS Community- and worker-cohort participants completed surveys during 2008-2011 covering demographics, health-related behaviors, and medical history. Cox proportional hazard models, stratified by birth year, modeled the hazard of each outcome (starting at 20 years of age) as a function of retrospective serum PFOA concentration estimates (generated through fate, transport and exposure modeling), controlling for sex, race, education, smoking, alcohol use, body mass index, and diabetes. RESULTS Among 32,254 participants (28,541 community; 3,713 worker), 12,325 reported hypertension with medication, 9,909 reported hypercholesterolemia with medication, and 3,147 reported coronary artery disease (2,550 validated). Hypercholesterolemia incidence increased with increasing cumulative PFOA exposure (sum of yearly serum concentration estimates), most notably among males 40-60 years of age. Compared with the lowest exposure quintile (< 142 ng/mL-years), hazard ratios for subsequent quintiles (ng/mL-years: 142 to < 234; 234 to < 630; 630 to < 3,579; ≥ 3,579) were 1.24, 1.17, 1.19, and 1.19 overall and 1.38, 1.32, 1.31, and 1.44 among men 40-60 years of age. There was no apparent association between PFOA exposure and hypertension or coronary artery disease incidence. CONCLUSIONS Higher PFOA exposure was associated with incident hypercholesterolemia with medication, but not with hypertension or coronary artery disease.
Collapse
Affiliation(s)
- Andrea Winquist
- Environmental Health Department, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
50
|
Kamendulis LM, Wu Q, Sandusky GE, Hocevar BA. Perfluorooctanoic acid exposure triggers oxidative stress in the mouse pancreas. Toxicol Rep 2014; 1:513-521. [PMID: 28962265 PMCID: PMC5598264 DOI: 10.1016/j.toxrep.2014.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/09/2014] [Accepted: 07/23/2014] [Indexed: 01/09/2023] Open
Abstract
PFOA triggers focal ductal hyperplasia following 7 day exposure. PFOA exposure increases 8-iso-PGF2α levels in the pancreas. Antioxidant gene expression is upregulated in the pancreas following PFOA exposure.
Perfluorooctanoic acid (PFOA) is used in the manufacture of many industrial and commercial products. PFOA does not readily decompose in the environment, and is biologically persistent. Human epidemiologic and animal studies suggest that PFOA exposure elicits adverse effects on the pancreas. While multiple animal studies have examined PFOA-mediated toxicity in the liver, little is known about the potential adverse effects of PFOA on the pancreas. To address this, we treated C57Bl/6 mice with vehicle, or PFOA at doses of 0.5, 2.5 or 5.0 mg/kg BW/day for 7 days. Significant accumulation of PFOA was found in the serum, liver and pancreas of PFOA-treated animals. Histopathologic examination of the pancreas revealed focal ductal hyperplasia in mice treated with 2.5 and 5.0 mg/kg BW/day PFOA, while inflammation was observed only in the high dose group. Elevated serum levels of amylase and lipase were observed in the 2.5 mg/kg BW/day PFOA treatment group. In addition, PFOA exposure resulted in a dose-dependent increase in the level of the lipid peroxidation product 8-iso-PGF2α and induction of the antioxidant response genes Sod1, Sod2, Gpx2 and Nqo1. Our findings provide additional evidence that the pancreas is a target organ for PFOA-mediated toxicity and suggest that oxidative stress may be a mechanism through which PFOA induces histopathological changes in the pancreas.
Collapse
Affiliation(s)
- Lisa M Kamendulis
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - Qiangen Wu
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - George E Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara A Hocevar
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN 47405, USA
| |
Collapse
|