1
|
Kilpinen K, Tisler S, Jørgensen MB, Mortensen P, Christensen JH. Temporal trends and sources of organic micropollutants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177555. [PMID: 39557171 DOI: 10.1016/j.scitotenv.2024.177555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Effluent wastewater from conventional wastewater treatment plants (WWTPs) is a source of environmental micropollutants. This study investigated temporal trends of organic micropollutants in effluent wastewater, aiming to identify underlying drivers and their implications for treatment efficiency. From September to December 2022, we collected 168 effluent and 10 influent samples. These samples were concentrated using a three-layer solid-phase extraction method and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Both targeted and suspect screening approaches were employed, allowing for the full quantification of 64 micropollutants and the identification of 90 additional compounds through suspect screening. Correlations revealed distinct groups of micropollutants with similar temporal trends, indicating common sources or behaviors during treatment. Notably, caffeine and paracetamol showed strong correlations with influent flow rates, indicating their removal efficiency is significantly influenced by hydraulic conditions. PFAS compounds, tire-wear chemicals, and biocides correlated with rain events. Micropollutants were categorized into nine groups based on their temporal trends, linking them to sources and persistence in the WWTP. Industrial discharges significantly contributed to spikes in pharmaceuticals like amitriptyline and citalopram. Metabolite analysis effectively distinguishing between sources of consumption and industrial discharge. These findings underscore the need for regulatory frameworks addressing a broader range of micropollutants. Key events such as rain and industrial discharges impact micropollutant composition and concentrations in effluent wastewater. Our study provides insights into their dynamics within WWTPs, informing improved treatment strategies.
Collapse
Affiliation(s)
- Kristoffer Kilpinen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Eurofins Environment Denmark, Ladelundvej 85, DK-6600 Vejen, Denmark.
| | - Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Mathias B Jørgensen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; MSCI, Bøgesvinget 8, DK-2740 Skovlunde, Denmark; BIOFOS A/S, Refshalevej 250, DK-1432 Copenhagen, Denmark
| | - Peter Mortensen
- Eurofins Environment Denmark, Ladelundvej 85, DK-6600 Vejen, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
2
|
Imiuwa ME, Baynes A, Kanda R, Routledge EJ. Environmentally relevant concentrations of the tricyclic antidepressant, amitriptyline, affect feeding and reproduction in a freshwater mollusc. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116656. [PMID: 38945099 DOI: 10.1016/j.ecoenv.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Antidepressant drugs (ADDs) are one of the most extensively used pharmaceuticals globally. They act at particularly low therapeutic concentrations to modulate monoamine neurotransmission, which is one of the most evolutionary conserved pathways in both humans and animal species including invertebrates. As ADDs are widely detected in the aquatic environment at low concentrations (ng/L to low µg/L), their potential to exert drug-target mediated effects in aquatic species has raised serious concerns. Amitriptyline (AMI) is the most widely used tricyclic ADD, while monoamines, the target of ADDs, are major bioregulators of multiple key physiological processes including feeding, reproduction and behaviour in molluscs. However, the effects of AMI on feeding, reproduction and mating behaviour are unknown in molluscs despite their ecological importance, diversity and reported sensitivity to ADDs. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of AMI (0, 10, 100, 500 and 1000 ng/L) on feeding, reproduction and key locomotor behaviours, including mating, in the freshwater gastropod, Biomphalaria glabrata over a period of 28 days. To further provide insight into the sensitivity of molluscs to ADDs, AMI concentrations (exposure water and hemolymph) were determined using a novel extraction method. The Fish Plasma Model (FPM), a critical tool for prioritization assessment of pharmaceuticals with potential to cause drug target-mediated effects in fish, was then evaluated for its applicability to molluscs for the first time. Disruption of food intake (1000 ng/L) and reproductive output (500 and 1000 ng/L) were observed at particularly low hemolymph levels of AMI, whereas locomotor behaviours were unaffected. Importantly, the predicted hemolymph levels of AMI using the FPM agreed closely with the measured levels. The findings suggest that hemolymph levels of AMI may be a useful indicator of feeding and reproductive disruptions in wild population of freshwater gastropods, and confirm the applicability of the FPM to molluscs for comparative pharmaceutical hazard identification.
Collapse
Affiliation(s)
- Maurice E Imiuwa
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria.
| | - Alice Baynes
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Rakesh Kanda
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Edwin J Routledge
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK.
| |
Collapse
|
3
|
Roghani M, Ghaedi G, Iranzadeh S, Golezar MH, Afshinmajd S. Efficacy and safety of venlafaxine versus nortriptyline for the preventive treatment of migraine: A double-blind randomized clinical trial. Clin Neurol Neurosurg 2024; 243:108400. [PMID: 38901375 DOI: 10.1016/j.clineuro.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Migraine, as a primary headache disorder, stands as one of the primary causes of disability worldwide. Consequently, prophylactic treatments are highly recommended for individuals experiencing recurrent migraine episodes. Our study aimed to compare the efficacy and safety profiles of venlafaxine and nortriptyline in the prophylactic management of migraine. METHODS In this single-center, randomized, double-blind clinical trial, 210 migraine patients were allocated into two groups in a 1:1 ratio. One group received venlafaxine (37.5 mg, orally twice daily), while the other group administered nortriptyline (25 mg, orally once daily). A neurologist documented (1) headache intensity using the Visual Analog Scale (VAS) and 6-point Behavioral Rating Scale (BRS-6), (2) headache frequency (per month), and (3) headache duration (in hours) of participants on days 0, 45, and 90 of the intervention. RESULTS Following the 90-day intervention, a significant decrease was observed in VAS, BRS-6, frequency, and duration of headaches within both groups (all with p-values <0.001). No difference in VAS, BRS-6, or headache durations was observed between the two groups after 45 and 90 days of treatment (all p-values > 0.05). Although the headache frequency exhibited no difference between the groups after 45 days (p-value = 0.097), a significantly lower frequency in the venlafaxine group was observed at day 90 of the intervention (p-value = 0.011). The reductions in attack parameters in the 0-45- and 0-90-day intervals did not meet statistical significance between the two groups (p-values > 0.05). 77.0 % of the participants in the venlafaxine group and 79.2 % in the nortriptyline group experienced a minimum of 50 % improvement in all attack parameters. Venlafaxine demonstrated a statistically significant lower incidence of adverse reactions in comparison to nortriptyline (p-value = 0.005). A total of 33 adverse drug reactions were documented in the venlafaxine group and 53 in the nortriptyline group, with insomnia observed in the former and xerostomia in the latter as the most prevalent side effects. CONCLUSIONS Venlafaxine and nortriptyline demonstrate clinically significant and comparable therapeutic efficacy for migraine patients in reducing the intensity, frequency, and duration of headache attacks. Venlafaxine may be preferred to nortriptyline in the context of migraine preventive treatment under comparable conditions due to its lower incidence of adverse effects.
Collapse
Affiliation(s)
- Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | | | | | | | - Siamak Afshinmajd
- Neurophysiology Research Center, Shahed University, Tehran, Iran; Department of Neurology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
4
|
Li X, Xin L, Yang L, Yang Y, Li W, Zhang M, Liao Y, Sun C, Li W, Peng Y, Zheng J. Identification of an Epoxide Metabolite of Amitriptyline In Vitro and In Vivo. Chem Res Toxicol 2024; 37:935-943. [PMID: 38761382 DOI: 10.1021/acs.chemrestox.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Amitriptyline (ATL), a tricyclic antidepressant, has been reported to cause various adverse effects, particularly hepatotoxicity. The mechanisms of ATL-induced hepatotoxicity remain unknown. The study was performed to identify the olefin epoxidation metabolite of ATL and determine the possible toxicity mechanism. Two glutathione (GSH) conjugates (M1 and M2) and two N-acetylcysteine (NAC) conjugates (M3 and M4) were detected in rat liver microsomal incubations supplemented with GSH and NAC, respectively. Moreover, M1/M2 and M3/M4 were respectively found in ATL-treated rat primary hepatocytes and in bile and urine of rats given ATL. Recombinant P450 enzyme incubations demonstrated that CYP3A4 was the primary enzyme involved in the olefin epoxidation of ATL. Treatment of hepatocytes with ATL resulted in significant cell death. Inhibition of CYP3A attenuated the susceptibility to the observed cytotoxicity of ATL. The metabolic activation of ATL most likely participates in the cytotoxicity of ATL.
Collapse
Affiliation(s)
- Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Lihua Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Lan Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Mingyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| |
Collapse
|
5
|
Kobus M, Friedrich T, Zorn E, Burmeister N, Maison W. Medicinal Chemistry of Drugs with N-Oxide Functionalities. J Med Chem 2024; 67:5168-5184. [PMID: 38549449 PMCID: PMC11017254 DOI: 10.1021/acs.jmedchem.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Molecules with N-oxide functionalities are omnipresent in nature and play an important role in Medicinal Chemistry. They are synthetic or biosynthetic intermediates, prodrugs, drugs, or polymers for applications in drug development and surface engineering. Typically, the N-oxide group is critical for biomedical applications of these molecules. It may provide water solubility or decrease membrane permeability or immunogenicity. In other cases, the N-oxide has a special redox reactivity which is important for drug targeting and/or cytotoxicity. Many of the underlying mechanisms have only recently been discovered, and the number of applications of N-oxides in the healthcare field is rapidly growing. This Perspective article gives a short summary of the properties of N-oxides and their synthesis. It also provides a discussion of current applications of N-oxides in the biomedical field and explains the basic molecular mechanisms responsible for their biological activity.
Collapse
Affiliation(s)
- Michelle Kobus
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Timo Friedrich
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eilika Zorn
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Nils Burmeister
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Khalil SM, MacKenzie KR, Maletic-Savatic M, Li F. Metabolic bioactivation of antidepressants: advance and underlying hepatotoxicity. Drug Metab Rev 2024; 56:97-126. [PMID: 38311829 PMCID: PMC11118075 DOI: 10.1080/03602532.2024.2313967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Many drugs that serve as first-line medications for the treatment of depression are associated with severe side effects, including liver injury. Of the 34 antidepressants discussed in this review, four have been withdrawn from the market due to severe hepatotoxicity, and others carry boxed warnings for idiosyncratic liver toxicity. The clinical and economic implications of antidepressant-induced liver injury are substantial, but the underlying mechanisms remain elusive. Drug-induced liver injury may involve the host immune system, the parent drug, or its metabolites, and reactive drug metabolites are one of the most commonly referenced risk factors. Although the precise mechanism by which toxicity is induced may be difficult to determine, identifying reactive metabolites that cause toxicity can offer valuable insights for decreasing the bioactivation potential of candidates during the drug discovery process. A comprehensive understanding of drug metabolic pathways can mitigate adverse drug-drug interactions that may be caused by elevated formation of reactive metabolites. This review provides a comprehensive overview of the current state of knowledge on antidepressant bioactivation, the metabolizing enzymes responsible for the formation of reactive metabolites, and their potential implication in hepatotoxicity. This information can be a valuable resource for medicinal chemists, toxicologists, and clinicians engaged in the fields of antidepressant development, toxicity, and depression treatment.
Collapse
Affiliation(s)
- Saleh M. Khalil
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Słoczyńska K, Orzeł J, Murzyn A, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Pękala E. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: growth, survival and behavior. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106554. [PMID: 37167880 DOI: 10.1016/j.aquatox.2023.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The growing consumption of antidepressant pharmaceuticals has resulted in their widespread occurrence in the environment, particularly in waterways with a typical concentration range from ng L-1 to μg L-1. An increasing number of studies have confirmed the ecotoxic potency of antidepressants, not only at high concentrations but also at environmentally relevant levels. The present review covers literature from the last decade on the individual-level ecotoxicological effects of the most commonly used antidepressants, including their impact on behavior, growth, and survival. We focus on the relationship between antidepressants physico-chemical properties and dynamics in the environment. Furthermore, we discuss the advantages of considering behavioral changes as sensitive endpoints in ecotoxicology, as well as some current methodological shortcomings in the field, including low standardization, reproducibility and context-dependency.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Justyna Orzeł
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aleksandra Murzyn
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
8
|
Schmieg H, Krais S, Kübler K, Ruhl AS, Schmidgall IM, Zwiener C, Köhler HR, Triebskorn R. Effects of the Antidepressant Amitriptyline on Juvenile Brown Trout and Their Modulation by Microplastics. TOXICS 2022; 10:763. [PMID: 36548596 PMCID: PMC9787892 DOI: 10.3390/toxics10120763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals such as antidepressants are designed to be bioactive at low concentrations. According to their mode of action, they can also influence non-target organisms due to the phylogenetic conservation of molecular targets. In addition to the pollution by environmental chemicals, the topic of microplastics (MP) in the aquatic environment came into the focus of scientific and public interest. The aim of the present study was to investigate the influence of the antidepressant amitriptyline in the presence and absence of irregularly shaped polystyrene MP as well as the effects of MP alone on juvenile brown trout (Salmo trutta f. fario). Fish were exposed to different concentrations of amitriptyline (nominal concentrations between 1 and 1000 µg/L) and two concentrations of MP (104 and 105 particles/L; <50 µm) for three weeks. Tissue cortisol concentration, oxidative stress, and the activity of two carboxylesterases and of acetylcholinesterase were assessed. Furthermore, the swimming behavior was analyzed in situations with different stress levels. Exposure to amitriptyline altered the behavior and increased the activity of acetylcholinesterase. Moreover, nominal amitriptyline concentrations above 300 µg/L caused severe acute adverse effects in fish. MP alone did not affect any of the investigated endpoints. Co-exposure caused largely similar effects such as the exposure to solely amitriptyline. However, the effect of amitriptyline on the swimming behavior during the experiment was alleviated by the higher MP concentration.
Collapse
Affiliation(s)
- Hannah Schmieg
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Stefanie Krais
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Kathrin Kübler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Aki S. Ruhl
- Water Treatment, Technische Universität Berlin, KF 4, Str. des 17. Juni 135, 10623 Berlin, Germany
- German Environment Agency (UBA), Section II 3.3 (Water Treatment), Schichauweg 58, 12307 Berlin, Germany
| | - Isabelle M. Schmidgall
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, University of Tübingen, Schnarrenbergstr. 94–96, 72076 Tübingen, Germany
| | - Heinz-R. Köhler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
- Steinbeis Transfer Center for Ecotoxicology and Ecophysiology, Blumenstr. 13, 72108 Rottenburg, Germany
| |
Collapse
|
9
|
Boroujerdi R, Paul R, Abdelkader A. Rapid Detection of Amitriptyline in Dried Blood and Dried Saliva Samples with Surface-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:8257. [PMID: 36365956 PMCID: PMC9657543 DOI: 10.3390/s22218257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
There is growing demand for rapid, nondestructive detection of trace-level bioactive molecules including medicines, toxins, biomolecules, and single cells, in a variety of disciplines. In recent years, surface-enhanced Raman scattering has been increasingly applied for such purposes, and this area of research is rapidly growing. Of particular interest is the detection of such compounds in dried saliva spots (DSS) and dried blood spots (DBS), often in medical scenarios, such as therapeutic drug monitoring (TDM) and disease diagnosis. Such samples are usually analyzed using hyphenated chromatography techniques, which are costly and time consuming. Here we present for the first time a surface-enhanced Raman spectroscopy protocol for the detection of the common antidepressant amitriptyline (AMT) on DBS and DSS using a test substrate modified with silver nanoparticles. The validated protocol is rapid and non-destructive, with a detection limit of 95 ppb, and linear range between 100 ppb and 1.75 ppm on the SERS substrate, which covers the therapeutic window of AMT in biological fluids.
Collapse
Affiliation(s)
- Ramin Boroujerdi
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK
| | | | | |
Collapse
|
10
|
Yavuz-Guzel E, Atasoy A, Gören İE, Daglioglu N. Impact of COVID- 19 pandemic on antidepressants consumptions by wastewater analysis in Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155916. [PMID: 35568186 PMCID: PMC9095074 DOI: 10.1016/j.scitotenv.2022.155916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic has been a major challenge worldwide, forcing countries to take restrictive measures beyond conventional methods in their fight against the spread of the disease. Followingly, many studies have been conducted on the effects of these measures on mental health. Wastewater-based epidemiology (WBE) was used in this study to monitor and estimate changes in antidepressant use under normal conditions (2019) and COVID-19 pandemic conditions (2020). Likewise, this study utilized wastewater-based epidemiology (WBE) to monitor and assess changing trends from the pre-pandemic period (2019) to COVID-19 pandemic conditions in antidepressant use (2020). Wastewater samples were collected from 11 cities in Turkey throughout six sampling periods covering the pre-pandemic and during-pandemic periods (June 2019-December 2020). Then, samples were analyzed via LC-MS/MS method. As a result, we observed that venlafaxine was the drug with the highest concentration (mean ± SD: 103.6 ± 112.1 mg/1000p/day). Moreover, city number 6 presented the highest venlafaxine use and the most dramatic increase during the pandemic period. Finally, this study revealed the potential of WBE to estimate the changing trends in mental health during the ongoing pandemic.
Collapse
Affiliation(s)
- Evsen Yavuz-Guzel
- Cukurova University, Faculty of Fisheries, Department of Basic Sciences, 01330 Adana, Turkey.
| | - Aslı Atasoy
- Cukurova University, Institute of Addiction and Forensic Sciences, 01330 Adana, Turkey.
| | - İsmail Ethem Gören
- Cukurova University, Faculty of Medicine, Department of Forensic Medicine, 01330 Adana, Turkey.
| | - Nebile Daglioglu
- Cukurova University, Faculty of Medicine, Department of Forensic Medicine, 01330 Adana, Turkey.
| |
Collapse
|
11
|
Boppy NVVDP, Haridasyam SB, Vadagam N, Pasham M, Venkatanarayana M, Begum B. Stability-indicating liquid chromatography method development for assay and impurity profiling of amitriptyline hydrochloride in tablet dosage form and forced degradation study. Biomed Chromatogr 2022; 36:e5436. [PMID: 35766584 DOI: 10.1002/bmc.5436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/13/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022]
Abstract
Amitriptyline hydrochloride is an antidepressant drug with sedative effects used to treat the symptoms of anxiety, agitation with depression and schizophrenia with depression. A reversed-phase high-performance liquid chromatography method was developed to separate and quantitatively determine the assay and four organic impurities of amitriptyline in tablet dosage form and bulk drugs using a C18 column in an isocratic elution mode with mobile phase consisting of a mixture of pH 7.5 phosphate buffer and methanol. The pH conditions used in the chromatographic separation are discussed. The stability-indicating characteristics of the proposed method were proved using stress testing [5 m HCl at 80°C/1 h, 5 m NaOH at 80°C/1 h, H2 O (v/w) at 80°C/1 h, 6% H2 O2 (v/v) at 25°C/1 h, dry heat at 105°C/24 h and UV-vis light/4 days] and validated for specificity, detection limit, quantitation limit, linearity, precision, accuracy and robustness. For amitriptyline and its four known organic impurities, the quantitation limits, linearity and recoveries were in the ranges 0.25-3.0 μg/ml (r2 > 0.999) and 87.9-107.6%, respectively. The mass (m/z) spectral data of amitriptyline hydrochloride and its impurity are discussed. The proposed LC method is also suitable for impurity profiling and assay determination of amitriptyline in bulk drugs and pharmaceutical formulations.
Collapse
Affiliation(s)
- N V V D Praveen Boppy
- Department of Chemistry, GITAM (Deemed to be University), Hyderabad, Telangana, India
| | | | - Niroja Vadagam
- Department of Chemistry, GITAM (Deemed to be University), Hyderabad, Telangana, India
| | - Mohan Pasham
- Department of Chemistry, GITAM (Deemed to be University), Hyderabad, Telangana, India
| | | | - Belquis Begum
- MNR College of Pharmacy, Sangareddy, Telangana, India
| |
Collapse
|
12
|
Gao Q, Lv B, Huang W, Sun T, Dong H. Fatal self-poisoning with amitriptyline: a case report and brief review of literature. JOURNAL OF SUBSTANCE USE 2022. [DOI: 10.1080/14659891.2022.2070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qing Gao
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Forensic Medicine, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, PR China
| | - Bin Lv
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Medical Affairs Office, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weisheng Huang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tianying Sun
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
13
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
14
|
Joshi S, Tepper SJ, Lucas S, Rasmussen S, Nelson R. A narrative review of the importance of pharmacokinetics and drug-drug interactions of preventive therapies in migraine management. Headache 2021; 61:838-853. [PMID: 34214182 PMCID: PMC8361687 DOI: 10.1111/head.14135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022]
Abstract
Objective To review the pharmacokinetics of major classes of migraine preventives and the clinical implications of drug–drug interactions (DDIs) with the use of these therapies in migraine management. Background Preventive treatments for migraine are recommended for a large proportion of patients with frequent migraine attacks. These patients often exhibit a number of comorbidities, which may lead to the introduction of multiple concomitant therapies. Potential DDIs must be considered when using polytherapy to avoid increased risk of adverse events (AEs) or inadequate treatment of comorbid conditions. Methods A literature search was performed to identify pharmacokinetic properties and potential DDIs of beta‐blockers, antiepileptic drugs, antidepressants, calcium channel blockers, gepants, and monoclonal antibody therapies targeting the calcitonin gene‐related peptide pathway with medications that may be used for comorbid conditions. Results Most DDIs occur through alterations in cytochrome P450 isoenzyme activity and may be complicated by genetic polymorphism for metabolic enzymes. Additionally, drug metabolism may be altered by grapefruit juice ingestion and smoking. The use of migraine preventive therapies may exacerbate symptoms of comorbid conditions or increase the risk of AEs associated with comorbid conditions as a result of DDIs. Conclusions DDIs are important to consider in patients with migraine who use multiple medications. The development of migraine‐specific evidence‐based preventive treatments allows for tailored clinical management that reduces the risk of DDIs and associated AEs in patients with comorbidities.
Collapse
Affiliation(s)
- Shivang Joshi
- Neurology/Headache Medicine, DENT Neurologic Institute, Amherst, NY, USA
| | - Stewart J Tepper
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sylvia Lucas
- Department of Neurology, University of Washington Medical Centers, Seattle, WA, USA
| | | | - Rob Nelson
- Global Medical, Amgen Inc., Thousand Oaks, CA, USA.,US Medical Affairs, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
15
|
Shalimova A, Babasieva V, Chubarev VN, Tarasov VV, Schiöth HB, Mwinyi J. Therapy response prediction in major depressive disorder: current and novel genomic markers influencing pharmacokinetics and pharmacodynamics. Pharmacogenomics 2021; 22:485-503. [PMID: 34018822 DOI: 10.2217/pgs-2020-0157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder is connected with high rates of functional disability and mortality. About a third of the patients are at risk of therapy failure. Several pharmacogenetic markers especially located in CYP450 genes such as CYP2D6 or CYP2C19 are of relevance for therapy outcome prediction in major depressive disorder but a further optimization of predictive tools is warranted. The article summarizes the current knowledge on pharmacogenetic variants, therapy effects and side effects of important antidepressive therapeutics, and sheds light on new methodological approaches for therapy response estimation based on genetic markers with relevance for pharmacokinetics, pharmacodynamics and disease pathology identified in genome-wide association study analyses, highlighting polygenic risk score analysis as a tool for further optimization of individualized therapy outcome prediction.
Collapse
Affiliation(s)
- Alena Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Viktoria Babasieva
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Translational Medicine & Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Institute of Translational Medicine & Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden
| |
Collapse
|
16
|
Matthaei J, Brockmöller J, Steimer W, Pischa K, Leucht S, Kullmann M, Jensen O, Ouethy T, Tzvetkov MV, Rafehi M. Effects of Genetic Polymorphism in CYP2D6, CYP2C19, and the Organic Cation Transporter OCT1 on Amitriptyline Pharmacokinetics in Healthy Volunteers and Depressive Disorder Patients. Front Pharmacol 2021; 12:688950. [PMID: 34093211 PMCID: PMC8175851 DOI: 10.3389/fphar.2021.688950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
The tricyclic antidepressant amitriptyline is frequently prescribed but its use is limited by its narrow therapeutic range and large variation in pharmacokinetics. Apart from interindividual differences in the activity of the metabolising enzymes cytochrome P450 (CYP) 2D6 and 2C19, genetic polymorphism of the hepatic influx transporter organic cation transporter 1 (OCT1) could be contributing to interindividual variation in pharmacokinetics. Here, the impact of OCT1 genetic variation on the pharmacokinetics of amitriptyline and its active metabolite nortriptyline was studied in vitro as well as in healthy volunteers and in depressive disorder patients. Amitriptyline and nortriptyline were found to inhibit OCT1 in recombinant cells with IC50 values of 28.6 and 40.4 µM. Thirty other antidepressant and neuroleptic drugs were also found to be moderate to strong OCT1 inhibitors with IC50 values in the micromolar range. However, in 35 healthy volunteers, preselected for their OCT1 genotypes, who received a single dose of 25 mg amitriptyline, no significant effects on amitriptyline and nortriptyline pharmacokinetics could be attributed to OCT1 genetic polymorphism. In contrast, the strong impact of the CYP2D6 genotype on amitriptyline and nortriptyline pharmacokinetics and of the CYP2C19 genotype on nortriptyline was confirmed. In addition, acylcarnitine derivatives were measured as endogenous biomarkers for OCT1 activity. The mean plasma concentrations of isobutyrylcarnitine and 2-methylbutyrylcarnitine were higher in participants with two active OCT1 alleles compared to those with zero OCT1 activity, further supporting their role as endogenous in vivo biomarkers for OCT1 activity. A moderate reduction in plasma isobutyrylcarnitine concentrations occurred at the time points at which amitriptyline plasma concentrations were the highest. In a second, independent study sample of 50 patients who underwent amitriptyline therapy of 75 mg twice daily, a significant trend of increasing amitriptyline plasma concentrations with decreasing OCT1 activity was observed (p = 0.018), while nortriptyline plasma concentrations were unaffected by the OCT1 genotype. Altogether, this comprehensive study showed that OCT1 activity does not appear to be a major factor determining amitriptyline and nortriptyline pharmacokinetics and that hepatic uptake occurs mainly through other mechanisms.
Collapse
Affiliation(s)
- Johannes Matthaei
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Werner Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Konstanze Pischa
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Leucht
- Section Evidence Based Medicine in Psychiatry and Psychotherapy, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Kullmann
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Typhaine Ouethy
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Mladen Vassilev Tzvetkov
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany.,Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| |
Collapse
|
17
|
Warrings B, Samanski L, Deckert J, Unterecker S, Scherf-Clavel M. Impact of Body Mass Index on Serum Concentrations of Antidepressants and Antipsychotics. Ther Drug Monit 2021; 43:286-291. [PMID: 32910098 DOI: 10.1097/ftd.0000000000000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/14/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rates of overweight and obesity are higher in patients suffering from psychiatric disorders than in the general population. Body composition and enzyme functions are affected by overweight, and consequently, the pharmacokinetics of drugs may vary in overweight patients. Thus, overweight and obesity are important factors in psychiatric disorders and their treatment. This analysis aimed to investigate the impact of body mass index (BMI) on serum concentrations of the antidepressant drugs amitriptyline, doxepin, escitalopram, mirtazapine, and venlafaxine, and the antipsychotic drugs clozapine, quetiapine, and risperidone, taking into account the following confounding parameters: age, sex, and smoking habit. METHODS Inpatients and outpatients (N = 1657) who took at least one of the target drugs were included in this retrospective analysis. Serum concentrations of the target drugs and their metabolites were determined at the Department of Psychiatry, Psychosomatics, and Psychotherapy of the University Hospital of Würzburg during routine therapeutic drug monitoring (January 2009-December 2010), which was performed in the morning (trough level) at steady state. RESULTS Dose-corrected serum concentrations (CD) of the active moiety of doxepin and venlafaxine and of O-desmethylvenlafaxine were negatively associated with BMI (partial Pearson correlation, R = -0.267, P = 0.002; R = -0.206, P ≤ 0.001; R = -0.258, P ≤ 0.001), and the CDs were different in normal weight, overweight, and obese patients (analysis of covariance, P = 0.004, P < 0.001, P ≤ 0.001). No association was found between BMI and serum concentrations of amitriptyline, escitalopram, mirtazapine, clozapine, quetiapine, and risperidone. CONCLUSIONS In obese patients, higher doses of doxepin and venlafaxine are necessary to achieve similar serum concentrations as in normal weight patients and to avoid treatment-resistant depression.
Collapse
Affiliation(s)
- Bodo Warrings
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Eh-Haj BM. Metabolic N-Dealkylation and N-Oxidation as Elucidators of the Role of Alkylamino Moieties in Drugs Acting at Various Receptors. Molecules 2021; 26:1917. [PMID: 33805491 PMCID: PMC8036657 DOI: 10.3390/molecules26071917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic reactions that occur at alkylamino moieties may provide insight into the roles of these moieties when they are parts of drug molecules that act at different receptors. N-dealkylation of N,N-dialkylamino moieties has been associated with retaining, attenuation or loss of pharmacologic activities of metabolites compared to their parent drugs. Further, N-dealkylation has resulted in clinically used drugs, activation of prodrugs, change of receptor selectivity, and providing potential for developing fully-fledged drugs. While both secondary and tertiary alkylamino moieties (open chain aliphatic or heterocyclic) are metabolized by CYP450 isozymes oxidative N-dealkylation, only tertiary alkylamino moieties are subject to metabolic N-oxidation by Flavin-containing monooxygenase (FMO) to give N-oxide products. In this review, two aspects will be examined after surveying the metabolism of representative alkylamino-moieties-containing drugs that act at various receptors (i) the pharmacologic activities and relevant physicochemical properties (basicity and polarity) of the metabolites with respect to their parent drugs and (ii) the role of alkylamino moieties on the molecular docking of drugs in receptors. Such information is illuminative in structure-based drug design considering that fully-fledged metabolite drugs and metabolite prodrugs have been, respectively, developed from N-desalkyl and N-oxide metabolites.
Collapse
Affiliation(s)
- Babiker M Eh-Haj
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, University of Science and Technology of Fujairah, Emirate of Fujairah, Fujairah 2022, United Arab Emirates
| |
Collapse
|
19
|
Rothschild AJ, Parikh SV, Hain D, Law R, Thase ME, Dunlop BW, DeBattista C, Conway CR, Forester BP, Shelton RC, Macaluso M, Brown K, Lewis D, Gutin A, Jablonski MR, Greden JF. Clinical validation of combinatorial pharmacogenomic testing and single-gene guidelines in predicting psychotropic medication blood levels and clinical outcomes in patients with depression. Psychiatry Res 2021; 296:113649. [PMID: 33360967 DOI: 10.1016/j.psychres.2020.113649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
We evaluated the clinical validity of a combinatorial pharmacogenomic test and single-gene Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines against patient outcomes and medication blood levels to assess their ability to inform prescribing in major depressive disorder (MDD). This is a secondary analysis of the Genomics Used to Improve DEpression Decisions (GUIDED) randomized-controlled trial, which included patients with a diagnosis of MDD, and ≥1 prior medication failure. The ability to predict increased/decreased medication metabolism was validated against blood levels at screening (adjusted for age, sex, smoking status). The ability of predicted gene-drug interactions (pharmacogenomic test) or therapeutic recommendations (single-gene guidelines) to predict patient outcomes was validated against week 8 outcomes (17-item Hamilton Depression Rating Scale; symptom improvement, response, remission). Analyses were performed for patients taking any eligible medication (outcomes N=1,022, blood levels N=1,034) and the subset taking medications with single-gene guidelines (outcomes N=584, blood levels N=372). The combinatorial pharmacogenomic test was the only significant predictor of patient outcomes. Both the combinatorial pharmacogenomic test and single-gene guidelines were significant predictors of blood levels for all medications when evaluated separately; however, only the combinatorial pharmacogenomic test remained significant when both were included in the multivariate model. There were no substantial differences when all medications were evaluated or for the subset with single-gene guidelines. Overall, this evaluation of clinical validity demonstrates that the combinatorial pharmacogenomic test was a superior predictor of patient outcomes and medication blood levels when compared with guidelines based on individual genes.
Collapse
Affiliation(s)
- Anthony J Rothschild
- University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01655, United States.
| | - Sagar V Parikh
- University of Michigan Comprehensive Depression Center and Department of Psychiatry, and National Network of Depression Centers, Ann Arbor, MI 48109, United States
| | - Daniel Hain
- Myriad Neuroscience, Mason, OH 45040, United States
| | - Rebecca Law
- Myriad Neuroscience, Mason, OH 45040, United States
| | - Michael E Thase
- Perelman School of Medicine of the University of Pennsylvania and the Corporal Michael Crescenz VAMC, Philadelphia, PA 19104, United States
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States
| | - Charles DeBattista
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Charles R Conway
- Department of Psychiatry, Washington University School of Medicine, and the John Cochran Veteran's Administration Hospital, St. Louis, MO 63110, United States
| | - Brent P Forester
- McLean Hospital, Division of Geriatric Psychiatry, Belmont, MA 02478, United States; Harvard Medical School, Boston, MA, United States
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology and School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew Macaluso
- Department of Psychiatry and Behavioral Neurobiology and School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Krystal Brown
- Myriad Genetics, Inc., Salt Lake City, UT 84108, United States
| | - David Lewis
- Myriad Neuroscience, Mason, OH 45040, United States
| | - Alexander Gutin
- Myriad Genetics, Inc., Salt Lake City, UT 84108, United States
| | | | - John F Greden
- University of Michigan Comprehensive Depression Center and Department of Psychiatry, and National Network of Depression Centers, Ann Arbor, MI 48109, United States
| |
Collapse
|
20
|
Interacting Effects of Polystyrene Microplastics and the Antidepressant Amitriptyline on Early Life Stages of Brown Trout (Salmo trutta f. fario). WATER 2020. [DOI: 10.3390/w12092361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Whether microplastics themselves or their interactions with chemicals influence the health and development of aquatic organisms has become a matter of scientific discussion. In aquatic environments, several groups of chemicals are abundant in parallel to microplastics. The tricyclic antidepressant amitriptyline is frequently prescribed, and residues of it are regularly found in surface waters. In the present study, the influence of irregularly shaped polystyrene microplastics (<50 µm), amitriptyline, and their mixture on early life-stages of brown trout were investigated. In a first experiment, the impacts of 100, 104, and 105 particles/L were studied from the fertilization of eggs until one month after yolk-sac consumption. In a second experiment, eggs were exposed in eyed ova stages to 105, 106 particles/L, to amitriptyline (pulse-spiked, average 48 ± 33 µg/L) or to two mixtures for two months. Microplastics alone did neither influence the development of fish nor the oxidative stress level or the acetylcholinesterase activity. Solely, a slight effect on the resting behavior of fry exposed to 106 particles/L was observed. Amitriptyline exposure exerted a significant effect on development, caused elevated acetylcholinesterase activity and inhibition of two carboxylesterases. Most obvious was the severely altered swimming and resting behavior. However, effects of amitriptyline were not modulated by microplastics.
Collapse
|
21
|
Zhai Y, Wu L, Zheng Y, Wu M, Huang Y, Huang Q, Shentu J, Zhao Q, Liu J. Bioequivalence Study of Amitriptyline Hydrochloride Tablets in Healthy Chinese Volunteers Under Fasting and Fed Conditions. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3131-3142. [PMID: 32801649 PMCID: PMC7414938 DOI: 10.2147/dddt.s258173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022]
Abstract
Purpose This study compares the pharmacokinetic and safety profiles between a new generic and a branded reference formulation of amitriptyline hydrochloride tablets, and assesses the bioequivalence of the two products in healthy Chinese volunteers to obtain sufficient evidence for the marketing approval of the generic drug. Materials and Methods A randomized, open-label, two-period crossover study (clinicaltrials.gov, NCT03646526) was conducted under both fasting and fed conditions in healthy Chinese volunteers (24 subjects/condition). Eligible subjects randomly received a single 25 mg dose of either the test or the reference formulation, followed by a 3-week washout period. Blood samples were collected until 144 h following administration. The pharmacokinetic parameters were acquired based on the concentration-time profiles, including the areas under the plasma concentration-time curve (AUC0-t, AUC0-∞), the peak plasma concentration (Cmax), the time to achieve Cmax (Tmax), and the elimination half-life (t1/2). The geometric mean ratios (GMRs) and the corresponding 90% confidence intervals (CIs) of amitriptyline were acquired for bioequivalence analysis, and values of these parameters for nortriptyline were used for comparison of therapeutic outcomes. Safety assessments included laboratory tests, physical examination, vital signs, and incidence of adverse events (AEs). Results The values of t1/2 and Tmax for amitriptyline were not significantly different between the test and reference products under both fasting and fed conditions (P > 0.05). The GMRs of Cmax, AUC0–t, and AUC0-∞ between the two products, and corresponding 90% CIs, were all within the range of 80% to 125% under both fasting and fed conditions. The test and reference products were well tolerated and did not elicit serious adverse events. Conclusion This study demonstrated that the generic and reference products were well tolerated by the subjects and bioequivalent, according to the rate and extent of the drug absorption.
Collapse
Affiliation(s)
- You Zhai
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Lihua Wu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yunliang Zheng
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Minglan Wu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yujie Huang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qian Huang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianzhong Shentu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingwei Zhao
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian Liu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Oliveira FMD, Scheel GL, Augusti R, Tarley CRT, Nascentes CC. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine. Anal Chim Acta 2020; 1106:52-60. [DOI: 10.1016/j.aca.2020.01.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
|
23
|
Kampa JM, Sahin M, Slopianka M, Giampà M, Bednarz H, Ernst R, Riefke B, Niehaus K, Fatangare A. Mass spectrometry imaging reveals lipid upregulation and bile acid changes indicating amitriptyline induced steatosis in a rat model. Toxicol Lett 2020; 325:43-50. [PMID: 32092452 DOI: 10.1016/j.toxlet.2020.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
As a consequence of the detoxification process, drugs and drug related metabolites can accumulate in the liver, resulting in drug induced liver injury (DILI), which is the major cause for dose limitation. Amitriptyline, a commonly used tricyclic anti-depressant, is known to cause DILI. The mechanism of Amitriptyline induced liver injury is not yet completely understood. However, as it undergoes extensive hepatic metabolism, unraveling the molecular changes in the liver upon Amitriptyline treatment can help understand Amitriptyline's mode of toxicity. In this study, Amitriptyline treated male rat liver tissue was analyzed using Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) to investigate the spatial abundances of Amitriptyline, lipids, and bile acids. The metabolism of Amitriptyline in liver tissue was successfully demonstrated, as the spatial distribution of Amitriptyline and its metabolites localize throughout treatment group liver samples. Several lipids appear upregulated, from which nine were identified as distinct phosphatidylcholine (PC) species. The detected bile acids were found to be lower in Amitriptyline treatment group. The combined results from histological findings, Oil Red O staining, and lipid zonation by MSI revealed lipid upregulation in the periportal area indicating drug induced macrovesicular steatosis (DIS).
Collapse
Affiliation(s)
- Judith M Kampa
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Mikail Sahin
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Markus Slopianka
- Metabolic Profiling and Clinical Pathology, Investigational Toxicology, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Marco Giampà
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Hanna Bednarz
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Rainer Ernst
- Metabolic Profiling and Clinical Pathology, Investigational Toxicology, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Bjoern Riefke
- Metabolic Profiling and Clinical Pathology, Investigational Toxicology, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Amol Fatangare
- Metabolic Profiling and Clinical Pathology, Investigational Toxicology, Pharmaceuticals Division, Bayer AG, Berlin, Germany.
| |
Collapse
|
24
|
Mifsud Buhagiar L, Sammut C, Chircop Y, Axisa K, Sammut Bartolo N, Vella Szijj J, Serracino Inglott A, LaFerla G. Practical liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of amitriptyline, nortriptyline and their hydroxy metabolites in human serum. Biomed Chromatogr 2019; 33:e4679. [PMID: 31415098 DOI: 10.1002/bmc.4679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
Abstract
Amitriptyline (AMI) has been in use for decades in treating depression and more recently for the management of neuropathic pain. A highly sensitive and specific LC-tandem mass spectrometry method was developed for simultaneous determination of AMI, its active metabolite nortriptyline (NOR) and their hydroxy-metabolites in human serum, using deuterated AMI and NOR as internal standards. The isobaric E-10-hydroxyamitriptyline (E-OH AMI), Z-10-hydroxyamitriptyline (Z-OH AMI), E-10-hydroxynortriptyline (E-OH NOR) and Z-10-hydroxynortriptyline (Z-OH NOR), together with their parent compounds, were separated on an ACE C18 column using a simple protein precipitation method, followed by dilution and analysis using positive electrospray ionisation with multiple reaction monitoring. The total run time was 6 min with elution of E-OH AMI, E-OH NOR, Z-OH AMI, Z-OH NOR, AMI (+ deuterated AMI) and NOR (+ deuterated NOR) at 1.21, 1.28, 1.66, 1.71, 2.50 and 2.59 min, respectively. The method was validated in human serum with a lower limit of quantitation of 0.5 ng/mL for all analytes. A linear response function was established for the range of concentrations 0.5-400 ng/mL (r2 > .999). The practical assay was applied on samples from patients on AMI, genotyped for CYP2C19 and CYP2D6, to understand the influence of metaboliser status and concomitant medication on therapeutic drug monitoring.
Collapse
Affiliation(s)
- Luana Mifsud Buhagiar
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Malta Medicines Authority, Life Sciences Park, San Ġwann, Malta
| | - Carmel Sammut
- Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Yana Chircop
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Kersty Axisa
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Janis Vella Szijj
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Anthony Serracino Inglott
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Malta Medicines Authority, Life Sciences Park, San Ġwann, Malta
| | - Godfrey LaFerla
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
25
|
Ziarrusta H, Ribbenstedt A, Mijangos L, Picart-Armada S, Perera-Lluna A, Prieto A, Izagirre U, Benskin JP, Olivares M, Zuloaga O, Etxebarria N. Amitriptyline at an Environmentally Relevant Concentration Alters the Profile of Metabolites Beyond Monoamines in Gilt-Head Bream. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:965-977. [PMID: 30702171 DOI: 10.1002/etc.4381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The antidepressant amitriptyline is a widely used selective serotonin reuptake inhibitor that is found in the aquatic environment. The present study investigates alterations in the brain and the liver metabolome of gilt-head bream (Sparus aurata) after exposure at an environmentally relevant concentration (0.2 µg/L) of amitriptyline for 7 d. Analysis of variance-simultaneous component analysis is used to identify metabolites that distinguish exposed from control animals. Overall, alterations in lipid metabolism suggest the occurrence of oxidative stress in both the brain and the liver-a common adverse effect of xenobiotics. However, alterations in the amino acid arginine are also observed. These are likely related to the nitric oxide system that is known to be associated with the mechanism of action of antidepressants. In addition, changes in asparagine and methionine levels in the brain and pantothenate, uric acid, and formylisoglutamine/N-formimino-L-glutamate levels in the liver could indicate variation of amino acid metabolism in both tissues; and the perturbation of glutamate in the liver implies that the energy metabolism is also affected. These results reveal that environmentally relevant concentrations of amitriptyline perturb a fraction of the metabolome that is not typically associated with antidepressant exposure in fish. Environ Toxicol Chem 2019;00:1-13. © 2019 SETAC.
Collapse
Affiliation(s)
- Haizea Ziarrusta
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Anton Ribbenstedt
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Leire Mijangos
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Sergio Picart-Armada
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alex Perera-Lluna
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Urtzi Izagirre
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
26
|
Analysis of smoking behavior on the pharmacokinetics of antidepressants and antipsychotics: evidence for the role of alternative pathways apart from CYP1A2. Int Clin Psychopharmacol 2019; 34:93-100. [PMID: 30557209 DOI: 10.1097/yic.0000000000000250] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Smoking is common among psychiatric patients and has been shown to accelerate the metabolism of different drugs. We aimed to determine the effect of smoking on the serum concentrations of psychopharmacological drugs in a naturalistic clinical setting. Dose-corrected, steady-state serum concentrations of individual patients were analyzed retrospectively by linear regression including age, sex, and smoking for amitriptyline (n=503), doxepin (n=198), mirtazapine (n=572), venlafaxine (n=534), clozapine (n=106), quetiapine (n=182), and risperidone (n=136). Serum levels of amitriptyline (P=0.038), clozapine (P=0.02), and mirtazapine (P=0.002) were significantly lower in smokers compared with nonsmokers after correction for age and sex. In addition, the ratios of nortriptyline/amitriptyline (P=0.001) and nordoxepin/doxepin (P=0.014) were significantly higher in smokers compared with nonsmokers. Smoking may not only induce CYP1A2, but may possibly also affect CYP2C19. Furthermore, CYP3A4, UGT1A3, and UGT1A4 might be induced by tobacco smoke. Hence, a different dosing strategy is required among smoking and nonsmoking patients. Nevertheless, the clinical relevance of the results remained unclear.
Collapse
|
27
|
Morineau L, Jacobsen SC, Kleberg K, Hansen HS, Janfelt C. Delivery of amitriptyline by intravenous and intraperitoneal administration compared in the same animal by whole-body mass spectrometry imaging of a stable isotope labelled drug substance in mice. Expert Opin Drug Deliv 2018; 15:1157-1163. [PMID: 30359150 DOI: 10.1080/17425247.2018.1541084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND The distribution and metabolism of a drug in the organism are dependent on the administration route as well as on the drug formulation. It is important to be able to assess which impact the administration route or formulation of a drug has for its distribution and metabolism. METHODS The antidepressant drug amitriptyline was intravenously (IV) dosed to a mouse and immediately after, a similar amount of a deuterium-labeled version of the drug was intraperitoneally (IP) dosed to the same animal. Whole-body cryo-sections were made at t = 5, 15, 30, and 60 min post-dosing, and the two drug substances and metabolites were imaged by DESI-MS/MS. RESULTS After 5 min, the IV dosed drug was detected throughout the animal, while the IP dosed drug was primarily found in the abdominal cavity. At later times, the differences between the two administration routes became less pronounced. Two administration routes provided highly similar metabolite distributions, also at early time points. CONCLUSION The method provides a unique way to compare delivery and metabolism of a drug by different administration routes or formulations in the very same animal, eliminating uncertainties caused by animal-to-animal variation and avoiding the use of radioactive labeling.
Collapse
Affiliation(s)
- Loïs Morineau
- a UFR Sciences et Techniques , Université de Nantes , Nantes , France
| | - Sophie Chakroun Jacobsen
- b Department of Pharmacy, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Karen Kleberg
- c Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Harald S Hansen
- c Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Christian Janfelt
- b Department of Pharmacy, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
28
|
Mikami A, Hori S, Ohtani H, Sawada Y. Analysis of the Mechanism of Prolonged Persistence of Drug Interaction between Terbinafine and Amitriptyline or Nortriptyline. Biol Pharm Bull 2017; 40:1010-1020. [PMID: 28674244 DOI: 10.1248/bpb.b16-01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the study was to quantitatively estimate and predict drug interactions between terbinafine and tricyclic antidepressants (TCAs), amitriptyline or nortriptyline, based on in vitro studies. Inhibition of TCA-metabolizing activity by terbinafine was investigated using human liver microsomes. Based on the unbound Ki values obtained in vitro and reported pharmacokinetic parameters, a pharmacokinetic model of drug interaction was fitted to the reported plasma concentration profiles of TCAs administered concomitantly with terbinafine to obtain the drug-drug interaction parameters. Then, the model was used to predict nortriptyline plasma concentration with concomitant administration of terbinafine and changes of area under the curve (AUC) of nortriptyline after cessation of terbinafine. The CYP2D6 inhibitory potency of terbinafine was unaffected by preincubation, so the inhibition seems to be reversible. Terbinafine competitively inhibited amitriptyline or nortriptyline E-10-hydroxylation, with unbound Ki values of 13.7 and 12.4 nM, respectively. Observed plasma concentrations of TCAs administered concomitantly with terbinafine were successfully simulated with the drug interaction model using the in vitro parameters. Model-predicted nortriptyline plasma concentration after concomitant nortriptylene/terbinafine administration for two weeks exceeded the toxic level, and drug interaction was predicted to be prolonged; the AUC of nortriptyline was predicted to be increased by 2.5- or 2.0- and 1.5-fold at 0, 3 and 6 months after cessation of terbinafine, respectively. The developed model enables us to quantitatively predict the prolonged drug interaction between terbinafine and TCAs. The model should be helpful for clinical management of terbinafine-CYP2D6 substrate drug interactions, which are difficult to predict due to their time-dependency.
Collapse
Affiliation(s)
- Akiko Mikami
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Satoko Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Interfaculty Initiative in Information Studies, The University of Tokyo
| | | | - Yasufumi Sawada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
29
|
Ryu S, Park S, Lee JH, Kim YR, Na HS, Lim HS, Choi HY, Hwang IY, Lee JG, Park ZW, Oh WY, Kim JM, Choi SE. A Study on CYP2C19 and CYP2D6 Polymorphic Effects on Pharmacokinetics and Pharmacodynamics of Amitriptyline in Healthy Koreans. Clin Transl Sci 2017; 10:93-101. [PMID: 28296334 PMCID: PMC5355968 DOI: 10.1111/cts.12451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
We performed a double-blinded, genotype-based stratification study to explore the pharmacokinetics and pharmacodynamics of amitriptyline according to CYP2C19 and CYP2D6 genotype in Korean subjects. Twenty-four healthy adults were grouped by genotype of CYP2C19 and CYP2D6. After a single dose of 25 mg of amitriptyline, blood samples were collected and anticholinergic effects were measured. The extent of N-demethylation of amitriptyline significantly decreased in subjects carrying two nonfunctional alleles of CYP2C19. The extent of hydroxylation of amitriptyline or nortriptyline was significantly reduced in subjects carrying two CYP2D6 decreased functional alleles compared with those with no or one decreased functional allele. The overall metabolic pathway of amitriptyline was more likely to be dominated by CYP2C19 than CYP2D6. The gene variations of CYP2C19 and CYP2D6 did not change the pharmacodynamic effect. The findings of this study will provide useful information on individualized drug treatment with amitriptyline considering both CYP2D6 and CYP2C19 gene variations.
Collapse
Affiliation(s)
- S Ryu
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - S Park
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - J H Lee
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - Y R Kim
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - H S Na
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - H S Lim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Republic of Korea
| | - H Y Choi
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, University of Ulsan, Asan Medical Center, Republic of Korea
| | - I Y Hwang
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - J G Lee
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - Z W Park
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - W Y Oh
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - J M Kim
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| | - S E Choi
- Clinical Research Division, National Institute of Food and Drug Safety, Ministry of Food and Drug Safety, Republic of Korea
| |
Collapse
|
30
|
Ziarrusta H, Mijangos L, Izagirre U, Plassmann MM, Benskin JP, Anakabe E, Olivares M, Zuloaga O. Bioconcentration and Biotransformation of Amitriptyline in Gilt-Head Bream. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2464-2471. [PMID: 28106990 DOI: 10.1021/acs.est.6b05831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extensive global use of the serotonin-norepinephrine reuptake inhibitor Amitriptyline (AMI) for treatment of mental health problems has led to its common occurrence in the aquatic environment. To assess AMI bioconcentration factors, tissue distribution, and metabolite formation in fish, we exposed gilt-head bream (Sparus aurata) to AMI in seawater for 7 days at two concentrations (0.2 μg/L and 10 μg/L). Day 7 proportional bioconcentration factors (BCFs) ranged from 6 (10 μg/L dose, muscle) to 127 (0.2 μg/L dose, brain) and were consistently larger at the low dose level. The relative tissue distribution of AMI was consistent at both doses, with concentrations decreasing in the order brain ≈ gill > liver > plasma > bile ≫ muscle. Using a suspect screening workflow based on liquid chromatography-high resolution (Orbitrap) mass spectrometry we identified 33 AMI metabolites (both Phase I and Phase II), occurring mostly in bile, liver and plasma. Ten structures are reported for the first time. Remarkably, all 33 metabolites retained the tricyclic ring structure common to tricyclic antidepressants, which may be toxicologically relevant. Collectively these data indicate that, in addition to AMI, a broad suite of metabolites should be included in biomonitoring campaigns in order to fully characterize exposure in aquatic wildlife.
Collapse
Affiliation(s)
- Haizea Ziarrusta
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU) , Leioa, Basque Country, Spain
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Stockholm, Sweden
| | - Leire Mijangos
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU) , Leioa, Basque Country, Spain
| | - Urtzi Izagirre
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU) , Plentzia, Basque Country, Spain
| | - Merle M Plassmann
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Stockholm, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University , Stockholm, Sweden
| | - Eneritz Anakabe
- Department of Organic Chemistry, University of the Basque Country (UPV/EHU) , Leioa, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU) , Leioa, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU) , Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU) , Plentzia, Basque Country, Spain
| |
Collapse
|
31
|
Berm EJJ, Gout-Zwart JJ, Luttjeboer J, Wilffert B, Postma MJ. A Model Based Cost-Effectiveness Analysis of Routine Genotyping for CYP2D6 among Older, Depressed Inpatients Starting Nortriptyline Pharmacotherapy. PLoS One 2016; 11:e0169065. [PMID: 28033366 PMCID: PMC5199075 DOI: 10.1371/journal.pone.0169065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Genotyping for CYP2D6 has the potential to predict differences in metabolism of nortriptyline. This information could optimize pharmacotherapy. We determined the costs and effects of routine genotyping for old aged Dutch depressed inpatients. METHODS With a decision-tree, we modelled the first 12 weeks of nortriptyline therapy. Direct costs of genotyping, hospitalization, therapeutic drug monitoring and drugs were included. Based on genotype, patients could be correctly, sub-, or supratherapeutically dosed. Improvement from sub- or supratherapeutically dosed patients to correctly dosed patients was simulated, assuming that genotyping would prevent under- or overdosing of patients. In the base case, this improvement was assumed to be 35%. A probabilistic sensitivity analysis (PSA) was performed to determine uncertainty around the incremental cost-effectiveness ratio (ICER). RESULTS In the base case analysis, costs for genotyping were assumed €200 per test with a corresponding ICER at €1 333 000 per QALY. To reach a €50 000 per QALY cut-off, genotyping costs should be decreased towards €40 per test. At genotyping test costs < €35 per test, genotyping was dominant. At test costs of €17 per test there was a 95% probability that genotyping was cost-effective at €50 000 per QALY. CONCLUSIONS CYP2D6 genotyping was not cost-effective at current genotyping costs at a €50 000 per QALY threshold, however at test costs below €40, genotyping could be costs-effective.
Collapse
Affiliation(s)
- Elizabeth J. J. Berm
- University of Groningen, Groningen Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics (PTE2), Groningen, the Netherlands
| | - Judith J. Gout-Zwart
- University of Groningen, Groningen Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics (PTE2), Groningen, the Netherlands
- * E-mail:
| | - Jos Luttjeboer
- University of Groningen, Groningen Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics (PTE2), Groningen, the Netherlands
| | - Bob Wilffert
- University of Groningen, Groningen Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics (PTE2), Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Maarten J. Postma
- University of Groningen, Groningen Institute of Pharmacy, Unit of PharmacoTherapy, -Epidemiology and -Economics (PTE2), Groningen, the Netherlands
- University Medical Center Groningen (UMCG), Institute for Science in Healthy Aging & HealthcaRE (SHARE), Groningen, the Netherlands
- University Medical Center Groningen (UMCG), Department of Epidemiology, Groningen, the Netherlands
| |
Collapse
|
32
|
Mastrianni KR, Lee LA, Brewer WE, Dongari N, Barna M, Morgan SL. Variations in enzymatic hydrolysis efficiencies for amitriptyline and cyclobenzaprine in urine. J Anal Toxicol 2016; 40:732-737. [DOI: 10.1093/jat/bkw062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 11/13/2022] Open
|
33
|
Metabolism and bioactivation of the tricyclic antidepressant amitriptyline in human liver microsomes and human urine. Bioanalysis 2016; 8:1365-81. [DOI: 10.4155/bio-2016-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Amitriptyline is a widely used tricyclic antidepressant, but the metabolic studies were conducted almost 20 years ago using high-performance liquid chromatography coupled with ultraviolet detector or radiolabeled methods. Results: First, multiple ion monitoring (MIM)- enhanced product ion (EPI) scan was used to obtain the diagnostic ions or neutral losses in human liver microsome incubations with amitriptyline. Subsequently, predicted multiple reaction monitoring (MRM)-EPI scan was used to identify the metabolites in human urine with the diagnostic ions or neutral losses. Finally, product ion filtering and neutral loss filtering were used as the data mining tools to screen metabolites. Consequently, a total of 28 metabolites were identified in human urine after an oral administration using LC–MS/MS. Conclusion: An integrated workflow using LC–MS/MS was developed to comprehensively profile the metabolites of amitriptyline in human urine, in which five N-acetyl-l-cysteine conjugates were characterized as tentative biomarkers for idiosyncratic toxicity.
Collapse
|
34
|
Wagmann L, Meyer MR, Maurer HH. What is the contribution of human FMO3 in the N-oxygenation of selected therapeutic drugs and drugs of abuse? Toxicol Lett 2016; 258:55-70. [PMID: 27320963 DOI: 10.1016/j.toxlet.2016.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Little is known about the role of flavin-containing monooxygenases (FMOs) in the metabolism of xenobiotics. FMO3 is the isoform in adult human liver with the highest impact on drug metabolism. The aim of the presented study was to elucidate the contribution of human FMO3 to the N-oxygenation of selected therapeutic drugs and drugs of abuse (DOAs). Its contribution to the in vivo hepatic net clearance of the N-oxygenation products was calculated by application of an extended relative activity factor (RAF) approach to differentiate from contribution of cytochrome P450 (CYP) isoforms. FMO3 and CYP substrates were identified using pooled human liver microsomes after heat inactivation and chemical inhibition, or single enzyme incubations. Kinetic parameters were subsequently determined using recombinant human enzymes and mass spectrometric analysis via authentic reference standards or simple peak areas of the products divided by those of the internal standard. FMO3 was identified as enzyme mainly responsible for the formation of N,N-diallyltryptamine N-oxide and methamphetamine hydroxylamine (>80% contribution for both). A contribution of 50 and 30% was calculated for the formation of N,N-dimethyltryptamine N-oxide and methoxypiperamide N-oxide, respectively. However, FMO3 contributed with less than 5% to the formation of 3-bromomethcathinone hydroxylamine, amitriptyline N-oxide, and clozapine N-oxide. There was no significant difference in the contributions when using calibrations with reference metabolite standards or peak area ratio calculations. The successful application of a modified RAF approach including FMO3 proved the importance of FMO3 in the N-oxygenation of DOAs in human metabolism.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Saarland University, Homburg, Germany; Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Saarland University, Homburg, Germany.
| |
Collapse
|
35
|
Schimek D, Francesconi KA, Mautner A, Libiseller G, Raml R, Magnes C. Matrix removal in state of the art sample preparation methods for serum by charged aerosol detection and metabolomics-based LC-MS. Anal Chim Acta 2016; 915:56-63. [DOI: 10.1016/j.aca.2016.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
36
|
O'Neill E, Kwok B, Day JS, Connor TJ, Harkin A. Amitriptyline protects against TNF-α-induced atrophy and reduction in synaptic markers via a Trk-dependent mechanism. Pharmacol Res Perspect 2016; 4:e00195. [PMID: 27069625 PMCID: PMC4804321 DOI: 10.1002/prp2.195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
Neuritic degeneration and synaptic loss are features of both neuroinflammation and neurodegenerative disease. The tricyclic antidepressant amitriptyline has neurotrophic and anti-inflammatory properties and acts as a novel agonist of the neurotrophin Trk receptors. Primary cortical neurons were treated with amitriptyline, nortriptyline and NGF and tested for neuronal complexity by Sholl analysis, protein expression by Western immunoblotting, and synapse number by colocalization of pre and postsynaptic makers. Amitriptyline (500 nmol/L) and its active metabolite nortriptyline (50 nmol/L) are found to induce neurite outgrowth in rat primary cortical neurons. Amitriptyline-induced neurite outgrowth is blocked by inhibition of Trk signaling using Trk antagonist K252a (200 nmol/L) but not by the neurotrophin inhibitor Y1036 (40 μmol/L), indicating that amitriptyline binds directly to the Trk receptor to initiate neurite outgrowth. MEK inhibitor PD98059 (10 μmol/L) also blocks amitriptyline-induced neurite outgrowth, implicating activation of the MAPK signaling pathway downstream of Trk receptor activation. Furthermore, pretreatment of primary cortical neurons with amitriptyline and nortriptyline prevents the effects of the proinflammatory cytokine TNF-α (10 ng/mL) on neurite outgrowth and colocalization of synaptic proteins. These findings suggest that amitriptyline and nortriptyline can exert neurotrophic effects in primary cortical neurons via activation of a Trk/MAPK signaling pathway. These compounds therefore have significant potential to be used in the treatment of neurodegenerative conditions where atrophy and loss of synaptic connections contribute to progression of disease.
Collapse
Affiliation(s)
- Eimear O'Neill
- Neuropsychopharmacology Research Group School of Pharmacy & Pharmaceutical Sciences and Trinity College Institute of Neuroscience Dublin Ireland; Neuroimmunology Research Group Department of Physiology School of Medicine and Trinity College Institute of Neuroscience Dublin Ireland
| | - Billy Kwok
- Neuroimmunology Research Group Department of Physiology School of Medicine and Trinity College Institute of Neuroscience Dublin Ireland
| | - Jennifer S Day
- Neuroimmunology Research Group Department of Physiology School of Medicine and Trinity College Institute of Neuroscience Dublin Ireland
| | - Thomas J Connor
- Neuroimmunology Research Group Department of Physiology School of Medicine and Trinity College Institute of Neuroscience Dublin Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group School of Pharmacy & Pharmaceutical Sciences and Trinity College Institute of Neuroscience Dublin Ireland
| |
Collapse
|
37
|
Rahman N, Khan S. Kinetic modelling for the assay of nortriptyline hydrochloride using potassium permanganate as oxidant. AAPS PharmSciTech 2015; 16:569-78. [PMID: 25380790 DOI: 10.1208/s12249-014-0230-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/25/2014] [Indexed: 11/30/2022] Open
Abstract
Kinetic methods for accurate determination of nortriptyline hydrochloride have been described. The methods are based on the oxidation of nortriptyline hydrochloride with KMnO4 in acidic and basic media. In acidic medium, the decrease in absorbance at 525.5 nm and in basic medium, the increase in absorbance at 608.5 nm were measured as a function of time. The variables affecting the reactions were carefully investigated and optimised. Kinetic models such as initial rate, rate constant, variable time and fixed time were employed to construct the calibration curves. The initial rate and fixed time methods were selected for quantification of nortriptyline hydrochloride. In acidic medium, the calibration curves showed a linear response over the concentration range 10-50 μg mL(-1) for initial rate and 10-60 μg mL(-1) for fixed time method (2 min). In basic medium, the calibration graphs were linear over the concentration range 10-100 μg mL(-1) for initial rate and fixed time methods (4 min). In acidic medium, the limits of detection for initial rate and fixed time methods (2 min) were 1.02 and 3.26 μg mL(-1), respectively. In basic medium, the limits of detection were found to be 1.67 and 1.55 μg mL(-1) for initial rate and fixed time methods (4 min), respectively. The initial rate and fixed time methods have been successfully applied to the determination of nortriptyline hydrochloride in commercial dosage form. Statistical comparison of the results of the proposed methods with those of reference method exhibited excellent agreement and there is no significant difference between the compared methods in terms of accuracy and precision.
Collapse
|
38
|
Lee JY, Lee SY, Lee K, Oh SJ, Kim SK. Determination of species-difference in microsomal metabolism of amitriptyline using a predictive MRM-IDA-EPI method. Chem Biol Interact 2015; 229:109-18. [PMID: 25623954 DOI: 10.1016/j.cbi.2015.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/27/2022]
Abstract
We investigated to compare species differences in amitriptyline (AMI) metabolism among mouse, rat, dog, and human liver microsomes. We developed a method for simultaneous determination of metabolic stability and metabolite profiling using predictive multiple reaction monitoring information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) scanning. In the cofactor-dependent microsomal metabolism study, AMI was metabolized more rapidly in rat and human liver microsomes incubated with NADPH than UDPGA. AMI incubated with NADPH+UDPGA in rat, dog, or mouse liver microsomes disappeared rapidly with a half-life of 3.5, 8.4, or 9.2 min, respectively, but slowly in human liver microsomes with a half-life of 96 min. In total, 9, 10, 11, and 6 putative metabolites of AMI were detected in mouse, rat, dog, and human liver microsomes, respectively, based on mass spectrometric analyses. Kinetic analysis of metabolites in liver microsomes from each species over 120 min showed common metabolic routes of AMI, such as N-demethylation, hydroxylation, and glucuronidation, and subtle interspecies differences in AMI metabolism. The main metabolic routes in mouse, rat, dog, and human liver microsomes were hydroxylation followed by glucuronide conjugation, methyl hydroxylation, and N-demethylation, respectively. The MRM-IDA-EPI method can provide quantitative and qualitative information about metabolic stability and metabolite profiling simultaneously. Moreover, time course analysis of metabolites can not only eliminate false identification of metabolites, but also provide a rationale for proposed metabolic pathways. The MRM-IDA-EPI method combined with time course analysis of metabolites is useful for investigating drug metabolism at the early drug discovery stage.
Collapse
Affiliation(s)
- Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Sang Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - KiHo Lee
- College of Pharmacy, Korea University, Jochiwon-eup, Yeongi-gun, Chungnam 339-700, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, Ochang, Chungbuk, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
39
|
Italiano D, Spina E, de Leon J. Pharmacokinetic and pharmacodynamic interactions between antiepileptics and antidepressants. Expert Opin Drug Metab Toxicol 2014; 10:1457-89. [PMID: 25196459 DOI: 10.1517/17425255.2014.956081] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Antiepileptic-antidepressant combinations are frequently used by clinicians; their pharmacokinetic (PK) and pharmacodynamic (PD) drug interactions (DIs) have not been well studied but are frequently likely to be clinically relevant. AREAS COVERED This article provides a comprehensive review of PK DIs between antiepileptics and antidepressants. In the absence of PD DI studies, PD information on pharmacological mechanisms and studies on efficacy and safety of individual drugs are reviewed. EXPERT OPINION The clinical relevance of the inductive properties of carbamazepine, phenytoin, phenobarbital and primidone and the inhibitory properties of valproic acid and some antidepressants are well understood; correction factors are provided if appropriate DI studies have been completed. More PK studies are needed for: i) antiepileptics with potent inductive effects for all recently approved antidepressants; ii) high doses of mild CYP3A4 inducers, such as clobazam, eslicarbazepine, oxcarbazepine, rufinamide and topiramate for reboxetine and vilazodone; iii) valproate as a possible inhibitor, mild inducer or both a mild inducer and competitive inhibitor of some antidepressants; and iv) inhibitory effects of long-term fluoxetine use on clobazam, lacosamide, phenobarbital, primidone, carbamazepine, felbamate, tiagabine and zonisamide. Possible synergistic or additive beneficial PD DIs in generalized anxiety disorder, chronic pain, migraine prophylaxis, weight control and menopausal symptoms need study.
Collapse
Affiliation(s)
- Domenico Italiano
- University of Messina, Department of Clinical and Experimental Medicine , Messina , Italy
| | | | | |
Collapse
|
40
|
Jakobs HH, Froriep D, Havemeyer A, Mendel RR, Bittner F, Clement B. The Mitochondrial Amidoxime Reducing Component (mARC): Involvement in Metabolic Reduction ofN-Oxides, Oximes andN-Hydroxyamidinohydrazones. ChemMedChem 2014; 9:2381-7. [DOI: 10.1002/cmdc.201402127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 11/12/2022]
|
41
|
Interaction of valproic acid and amitriptyline: analysis of therapeutic drug monitoring data under naturalistic conditions. J Clin Psychopharmacol 2013; 33:561-4. [PMID: 23775047 DOI: 10.1097/jcp.0b013e3182905d42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amitriptyline (AMI) and valproic acid (VPA) are common psychotropic drugs which are frequently used in psychiatry and also administered in neurology or anesthesia in the absence of a psychiatric indication. On the basis of the case of a 73-year-old man with therapy-resistant major depressive episode who experienced anticholinergic delirium after adding VPA to AMI, we retrospectively analyzed therapeutic drug monitoring data of the years 2008 to 2010. We assessed cases receiving a combination of AMI and VPA, and obtained a control sample of AMI patients without VPA which were matched for sex, age, daily dose, and comedication. Both samples were compared regarding the serum levels of AMI and nortriptyline (NOR) as well as the ratio of NOR and AMI with the Mann-Whitney U test. The combination of AMI and VPA led to a remarkable increase of AMI and NOR serum levels. When comparing 33 patients who received comedication with VPA versus 33 matched controls, the total concentration by combining mean AMI and NOR serum levels (237.1 [119.9] vs 126.4 [52.8] ng/mL) and NOR/AMI ratio (1.300 [0.905] vs 0.865 [0.455]) was significantly higher. Both AMI and VPA are widely prescribed drugs. A combination of both is common for psychiatric or neurologic patients. A cautious dosing of AMI with VPA comedication is advisable, and therapeutic drug monitoring should be performed because this combination may lead to a remarkable increase of AMI and NOR serum levels.
Collapse
|
42
|
Abstract
Multidrug resistance P-glycoprotein (P-gp; also known as MDR1 and ABCB1) is expressed in the luminal membrane of the small intestine and blood-brain barrier, and the apical membranes of excretory cells such as hepatocytes and kidney proximal tubule epithelia. P-gp regulates the absorption and elimination of a wide range of compounds, such as digoxin, paclitaxel, HIV protease inhibitors and psychotropic drugs. Its substrate specificity is as broad as that of cytochrome P450 (CYP) 3A4, which encompasses up to 50 % of the currently marketed drugs. There has been considerable interest in variations in the ABCB1 gene as predictors of the pharmacokinetics and/or treatment outcomes of several drug classes, including antidepressants and antipsychotics. Moreover, P-gp-mediated transport activity is saturable, and is subject to modulation by inhibition and induction, which can affect the pharmacokinetics, efficacy or safety of P-gp substrates. In addition, many of the P-gp substrates overlap with CYP3A4 substrates, and several psychotropic drugs that are P-gp substrates are also CYP3A4 substrates. Therefore, psychotropic drugs that are P-gp substrates may cause a drug interaction when P-gp inhibitors and inducers are coadministered, or when psychotropic drugs or other medicines that are P-gp substrates are added to a prescription. Hence, it is clinically important to accumulate data about drug interactions through studies on P-gp, in addition to CYP3A4, to assist in the selection of appropriate psychotropic medications and in avoiding inappropriate combinations of therapeutic agents. There is currently insufficient information available on the psychotropic drug interactions related to P-gp, and therefore we summarize the recent clinical data in this review.
Collapse
Affiliation(s)
- Yumiko Akamine
- Department of Hospital Pharmacy, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | | | | | | |
Collapse
|
43
|
Jensen BP, Roberts RL, Vyas R, Bonke G, Jardine DL, Begg EJ. Influence of ABCB1 (P-glycoprotein) haplotypes on nortriptyline pharmacokinetics and nortriptyline-induced postural hypotension in healthy volunteers. Br J Clin Pharmacol 2012; 73:619-28. [PMID: 21999196 DOI: 10.1111/j.1365-2125.2011.04126.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT A single nucleotide polymorphism in ABCB1, which encodes P-glycoprotein, has retrospectively been associated with symptoms of nortriptyline-induced postural hypotension in depressed patients. This finding needs to be replicated in independent studies before recommendations regarding pharmacogenetic testing can be made. WHAT THIS STUDY ADDS In a prospective study of healthy volunteers homozygous for ABCB1 (1236-2677-3435, TTT/TTT or CGC/CGC), a single dose of nortriptyline was administered, plasma exposure was determined and blood pressure and heart rate were monitored during posture change. No differences between ABCB1 haplotype groups were found in plasma exposure of nortriptyline and its active metabolites, E- and Z-10-hydroxynortriptyline. The heart rate response to posture change was increased with nortriptyline, whereas there was no difference in blood pressure response. However, no differences between haplotype groups were observed except that the pre dose heart rate response to standing was greater in the TTT than CGC homozygotes. The association between ABCB1 polymorphisms and nortriptyline-induced postural hypotension found in a previous study could not be confirmed. The results raise the possibility of a predisposition in heart rate response in the TTT homozygotes rather than an effect of nortriptyline. AIMS To investigate the influence of ABCB1 (1236-2677-3435) polymorphisms on nortriptyline pharmacokinetics and nortriptyline-induced postural hypotension in healthy volunteers. METHODS Genetic screening of 67 healthy volunteers identified eight CGC homozygotes and nine TTT homozygotes of ABCB1 (1236-2677-3435), who were administered a single dose of nortriptyline 25 mg. Plasma exposure of nortriptyline and its active metabolites, E- and Z-10-hydroxynortriptyline, was determined over 72 h. Heart rate and blood pressure responses to posture change (active standing and passive head-up tilt) were measured continuously using finger plethysmography. RESULTS There were no differences in plasma exposure between ABCB1 haplotype groups, as the geometric mean (95% CI) AUC(0,72 h) ratios were 0.98 (0.94, 1.03), 1.02 (0.96, 1.09) and 0.95 (0.80, 1.10) for nortriptyline, E- and Z-10-hydroxynortriptyline, respectively. The pre dose heart rate response to standing was greater in the TTT than CGC homozygotes (mean (95% CI) difference 7.4 (1.5, 13.4) beats min(-1) , P = 0.02). At t(max) at 8 h post dose, nortriptyline increased the heart rate response to posture change in all subjects with mean (95% CI) Δ heart rate values of 7.4 (3.6, 11.3) beats min(-1) on active standing (P = 0.0009) and 4.8 (2.0, 7.6) beats min(-1) on head-up tilt (P = 0.002), but no difference was observed between haplotype groups. There was no difference in blood pressure response to posture change in either group. CONCLUSION The association between ABCB1 polymorphisms and nortriptyline-induced postural hypotension found in the previous study could not be confirmed. The results raise the possibility of a predisposition in heart rate response in the TTT homozygotes rather than an effect of nortriptyline.
Collapse
|
44
|
Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 2011; 24:1345-410. [PMID: 21702456 DOI: 10.1021/tx200168d] [Citation(s) in RCA: 494] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78-86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62-69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identification in drug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated "body burden" of the parent drug and its metabolites will remain an overarching goal in drug discovery.
Collapse
Affiliation(s)
- Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Medico-legal autopsy is the primary method in determining the cause and manner of death when the death is suspected to be unnatural. In some of these autopsies, the death remains ambiguous, even after a complete autopsy including histological investigation and toxicological screenings. In cases where there are no morphological abnormalities, medico-legal genetics may offer additional means to provide knowledge of possible genetic mutations, which may have initiated the process or predisposed the individual to stress risk conditions leading to death. One class of ambiguous deaths consists of drug-related deaths where the interpretation of the toxicological results are not clear. In such situations post mortem genotyping and the analysis of metabolite rations may provide an insight to the findings. A few cases demonstrating the potential strength of pharmacogenetics in medico-legal context has been published. However, there is a paramount need for serious scientific studies before the field of post mortem pharmacogenetics can be utilized in routine medico-legal analyses casework and brought routinely into courtroom.
Collapse
Affiliation(s)
- A Sajantila
- Hjelt Institute, Department of Forensic Medicine, P.O. Box 14, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
46
|
Nagarnaik P, Batt A, Boulanger B. Source characterization of nervous system active pharmaceutical ingredients in healthcare facility wastewaters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:872-877. [PMID: 21094579 DOI: 10.1016/j.jenvman.2010.10.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/06/2010] [Accepted: 10/20/2010] [Indexed: 05/30/2023]
Abstract
Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. This study provides source characterization data describing the composition and magnitude of nervous system APIs present in healthcare facility wastewaters. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metabolites are reported for wastewaters from a hospital, nursing, assisted living, and independent living facility within a single municipality. Concentrations of nervous system APIs ranged from non-detectable levels for alprazolam in all four facility wastewaters to a high of 290 ng/L amitriptyline in nursing facility wastewater. The summed mean concentration of all thirteen analytes ranged from 402 ng/L in independent living facility wastewater to 624 ng/L in assisted living facility wastewater. Wastewater flow rates from each facility were combined with concentration data to estimate the daily mass loading of nervous system APIs leaving each facility through wastewater discharge to the municipal sewer system. The total mass loading of all thirteen analytes for the hospital, nursing, assisted living, and independent living facility was 228, 44, 29.5, and 28.1 mg/day, respectively. The total mass loading of nervous system APIs contributed to the municipality's wastewater from all four facilities was 330 mg/day.
Collapse
Affiliation(s)
- Pranav Nagarnaik
- Env. & Water Resources Division, Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
47
|
The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells. Biochem Pharmacol 2011; 81:432-41. [DOI: 10.1016/j.bcp.2010.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
|
48
|
Dell'Osso B, Palazzo MC, Oldani L, Altamura AC. The noradrenergic action in antidepressant treatments: pharmacological and clinical aspects. CNS Neurosci Ther 2010; 17:723-32. [PMID: 21155988 DOI: 10.1111/j.1755-5949.2010.00217.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Even though noradrenaline has been recognized as one of the key neurotransmitters in the pathophysiology of major depression (MD), noradrenergic compounds have been less extensively utilized in clinical practice, compared to selective serotonin reuptake inhibitors (SSRIs). The development of the first selective noradrenergic reuptake inhibitor (NRI), Reboxetine, has not substantially changed the state of the art. In addition, Atomoxetine, a relatively pure NRI used for the treatment of ADHD, has shown mixed results when administered in augmentation to depressed subjects. Through a Medline search from 2000 to 2010, the present article provides an updated overview of the main pharmacological and clinical aspects of antidepressant classes that, partially or selectively, act on the noradrenergic systems. The noradrenergic action plays an important clinical effect in different antidepressant classes, as confirmed by the efficacy of dual action antidepressants such as the serotonin noradrenaline reuptake inhibitors (SNRIs), the noradrenergic and dopaminergic reuptake inhibitor (NDRI) Bupropion, and other compounds (e.g., Mianserin, Mirtazapine), which enhance the noradrenergic transmission. In addition, many tricyclics, such as Desipramine and Nortriptyline, have prevalent noradrenergic effect. Monoamine oxidase inhibitors (MAOIs), moreover, block the breakdown of serotonin, noradrenaline, dopamine and increase the availability of these monoamines. A novel class of antidepressants--the triple reuptake inhibitors--is under development to selectively act on serotonin, noradrenaline, and dopamine. Finally, the antidepressant effect of the atypical antipsychotic Quetiapine, indicated for the treatment of bipolar depression, is likely to be related to the noradrenergic action of its metabolite Norquetiapine. Even though a pure noradrenergic action might not be sufficient to obtain a full antidepressant effect, a pronoradrenergic action represents an important element for increasing the efficacy of mixed action antidepressants. In particular, the noradrenergic action seemed to be related to the motor activity, attention, and arousal.
Collapse
|
49
|
Kasprzyk-Hordern B. Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 2010; 39:4466-503. [PMID: 20852776 DOI: 10.1039/c000408c] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pharmacologically active compounds including both legally used pharmaceuticals and illicit drugs are potent environmental contaminants. Extensive research has been undertaken over the recent years to understand their environmental fate and toxicity. The one very important phenomenon that has been overlooked by environmental researchers studying the fate of pharmacologically active compounds in the environment is their chirality. Chiral drugs can exist in the form of enantiomers, which have similar physicochemical properties but differ in their biological properties such as distribution, metabolism and excretion, as these processes (due to stereospecific interactions of enantiomers with biological systems) usually favour one enantiomer over the other. Additionally, due to different pharmacological activity, enantiomers of chiral drugs can differ in toxicity. Furthermore, degradation of chiral drugs during wastewater treatment and in the environment can be stereoselective and can lead to chiral products of varied toxicity. The distribution of different enantiomers of the same chiral drug in the aquatic environment and biota can also be stereoselective. Biological processes can lead to stereoselective enrichment or depletion of the enantiomeric composition of chiral drugs. As a result the very same drug might reveal different activity and toxicity and this will depend on its origin and exposure to several factors governing its fate in the environment. In this critical review a discussion of the importance of chirality of pharmacologically active compounds in the environmental context is undertaken and suggestions for directions in further research are made. Several groups of chiral drugs of major environmental relevance are discussed and their pharmacological action and disposition in the body is also outlined as it is a key factor in developing a full understanding of their environmental occurrence, fate and toxicity. This review will be of interest to environmental scientists, especially those interested in issues associated with environmental contamination with pharmacologically active compounds and chiral pollutants. As the review will outline current state of knowledge on chiral drugs, it will be of value to anyone interested in the phenomenon of chirality, chiral drugs, their stereoselective disposition in the body and environmental fate (212 references).
Collapse
Affiliation(s)
- Barbara Kasprzyk-Hordern
- University of Huddersfield, Department of Chemical and Biological Sciences, School of Applied Sciences, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
50
|
Fast and sensitive LC–MS/MS assay for quantification of nortriptyline and its active metabolites E- and Z-10-hydroxynortriptyline in human plasma. Bioanalysis 2010; 2:1553-60. [DOI: 10.4155/bio.10.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: A fast and sensitive validated assay for nortriptyline, E-10-hydroxynortriptyline and Z-10-hydroxynortriptyline in plasma following a single oral dose of nortriptyline 25 mg was needed to support a clinical study. Results: Plasma samples were prepared by protein precipitation, separated on a C18 column with a mobile phase consisting of 0.1% formic acid in an acetonitrile gradient over 6 min and detected by ESI in the positive mode and MS/MS. Mean recoveries of at least 90% were achieved. The LLOQ was 0.2 ng/ml for nortriptyline and 0.5 ng/ml for the metabolites. The standard curve was linear within LLOQ to 40 ng/ml (r2 ≥ 0.997), precision was under 7.1% coefficient of variance (<16% at LLOQ) and accuracy was 92–114%. Conclusion: A fast and sensitive assay for nortriptyline, E- and Z-10-hydroxynortriptyline in plasma was developed and validated. It has been applied successfully to a clinical study.
Collapse
|