1
|
Milton EM, Cartolano MC, McDonald MD. A multi-targeted investigation of Deepwater Horizon crude oil exposure impacts on the marine teleost stress axis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106444. [PMID: 36848692 DOI: 10.1016/j.aquatox.2023.106444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/09/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The toxicity of the polycyclic aromatic hydrocarbons (PAHs) in Deepwater Horizon (DWH) oil is well-established, but a knowledge gap exists regarding how this combination of PAHs affects the vertebrate stress axis. We hypothesized that (1) marine vertebrates exposed to DWH PAHs experience stress axis impairment, and co-exposure to an additional chronic stressor may exacerbate these effects, (2) serotonin (5-hydroxytryptamine; 5-HT) may act as a secondary cortisol secretagogue in DWH PAH-exposed fish to compensate for impairment, and (3) the mechanism of stress axis impairment may involve downregulation of cyclic adenosine monophosphate (cAMP; as proxy for melanocortin 2 receptor (MC2R) functionality), total cholesterol, and/or mRNA expression of CYP1A and steroidogenic proteins StAR, P450scc, and 11β-h at the level of the kidney. We found that in vivo plasma cortisol and plasma adrenocorticotropic hormone (ACTH) concentrations in Gulf toadfish exposed to an environmentally relevant DWH PAH concentration (ΣPAH50= 4.6 ± 1.6 μg/L) for 7 days were not significantly different from controls, whether fish were chronically stressed or not. However, the rate of cortisol secretion by isolated kidneys after acute stimulation with ACTH was significantly lower in PAH-exposed toadfish compared to clean seawater (SW) controls. 5-HT does not appear to be acting as a secondary cortisol secretagogue, rather, PAH-exposed + stressed toadfish exhibited significantly lower plasma 5-HT concentrations than clean SW + stressed fish as well as a reduced sensitivity to 5-HT at the level of the kidney. There was a tendency for kidney cAMP concentrations to be lower in PAH-exposed fish (p = 0.069); however, mRNA expression of steroidogenic proteins between control and PAH-exposed toadfish were not significantly different and a significant elevation in total cholesterol concentration in PAH-exposed toadfish compared to controls was measured. Future work is needed to establish whether the slower cortisol secretion rate by isolated kidneys of PAH-exposed fish is detrimental, to determine the potential role of other secretagogues in compensating for the impaired kidney interrenal cell function, and to determine whether there is a reduction in MC2R mRNA expression or an impairment in the function of steroidogenic proteins.
Collapse
Affiliation(s)
- Emily M Milton
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA
| | - Maria C Cartolano
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA.
| |
Collapse
|
2
|
Taghert PH. The incidence of candidate binding sites for β-arrestin in Drosophila neuropeptide GPCRs. PLoS One 2022; 17:e0275410. [PMID: 36318573 PMCID: PMC9624432 DOI: 10.1371/journal.pone.0275410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
To support studies of neuropeptide neuromodulation, I have studied beta-arrestin binding sites (BBS's) by evaluating the incidence of BBS sequences among the C terminal tails (CTs) of each of the 49 Drosophila melanogaster neuropeptide GPCRs. BBS were identified by matches with a prediction derived from structural analysis of rhodopsin:arrestin and vasopressin receptor: arrestin complexes [1]. To increase the rigor of the identification, I determined the conservation of BBS sequences between two long-diverged species D. melanogaster and D. virilis. There is great diversity in the profile of BBS's in this group of GPCRs. I present evidence for conserved BBS's in a majority of the Drosophila neuropeptide GPCRs; notably some have no conserved BBS sequences. In addition, certain GPCRs display numerous conserved compound BBS's, and many GPCRs display BBS-like sequences in their intracellular loop (ICL) domains as well. Finally, 20 of the neuropeptide GPCRs are expressed as protein isoforms that vary in their CT domains. BBS profiles are typically different across related isoforms suggesting a need to diversify and regulate the extent and nature of GPCR:arrestin interactions. This work provides the initial basis to initiate future in vivo, genetic analyses in Drosophila to evaluate the roles of arrestins in neuropeptide GPCR desensitization, trafficking and signaling.
Collapse
Affiliation(s)
- Paul H. Taghert
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
3
|
Cartolano MC, Alloy MM, Milton E, Plotnikova A, Mager EM, McDonald MD. Exposure and Recovery from Environmentally Relevant Levels of Waterborne Polycyclic Aromatic Hydrocarbons from Deepwater Horizon Oil: Effects on the Gulf Toadfish Stress Axis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1062-1074. [PMID: 33252787 DOI: 10.1002/etc.4945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
There is evidence that the combination of polycyclic aromatic hydrocarbons (PAHs) released in the Deepwater Horizon oil spill impairs the glucocorticoid stress response of vertebrates in the Gulf of Mexico, but the mechanisms are unclear. We hypothesized that inhibition of cortisol release may be due to 1) overstimulation of the hypothalamic-pituitary-inter-renal (HPI) axis, or 2) an inhibition of cortisol biosynthesis through PAH activation of the aryl hydrocarbon receptor (AhR). Using a flow-through system, Gulf toadfish (Opsanus beta) were continuously exposed to control conditions or one of 3 environmentally relevant concentrations of PAHs from Deepwater Horizon oil (∑PAH50 = 0-3 μg L-1 ) for up to 7 d. One group of toadfish was then exposed to a recovery period for up to 7 d. No changes in corticotrophin-releasing factor mRNA expression, adrenocorticotropic hormone (ACTH), or pituitary mass suggested that overstimulation of the HPI axis was not a factor. The AhR activation was measured by an elevation of cytochrome P4501A1 (CYP1A) mRNA expression within the HPI axis in fish exposed to high PAH concentrations; however, CYP1A was no longer induced after 3 d of recovery in any of the tissues. At 7 d of recovery, there was an impairment of cortisol release in response to an additional simulated predator chase that does not appear to be due to changes in the mRNA expression of the kidney steroidogenic pathway proteins steroidogenic acute regulatory protein, cytochrome P450 side chain cleavage, and 11β-hydroxylase. Future analyses are needed to determine whether the stress response impairment is due to cholesterol availability and/or down-regulation of the melanocortin 2 receptor. Environ Toxicol Chem 2021;40:1062-1074. © 2020 SETAC.
Collapse
Affiliation(s)
- Maria C Cartolano
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Matthew M Alloy
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Emily Milton
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Anastasiya Plotnikova
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Edward M Mager
- Advanced Environmental Research Institute, University of North Texas, Denton, Texas, USA
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| |
Collapse
|
4
|
Hazell G, Horn G, Lightman SL, Spiga F. Dynamics of ACTH-Mediated Regulation of Gene Transcription in ATC1 and ATC7 Adrenal Zona Fasciculata Cell Lines. Endocrinology 2019; 160:587-604. [PMID: 30768667 PMCID: PMC6380881 DOI: 10.1210/en.2018-00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that mouse ATC1 and ATC7 cells, the first adrenocortical cell lines to exhibit a complete zona fasciculata (ZF) cell phenotype, respond to dynamic ACTH stimulation in a similar manner as the adrenal gland in vivo. Exploiting our previous in vivo observations that gene transcription within the steroidogenic pathway is dynamically regulated in response to a pulse of ACTH, we exposed ATC1 and ATC7 cells to various patterns of ACTH, including pulsatile and constant, and measured the transcriptional activation of this pathway. We show that pulses of ACTH administered to ATC7 cells can reliably stimulate a pulsatile pattern of transcriptional activity that is comparable to that observed in adrenal ZF cells in vivo. Hourly pulses of ACTH stimulate dynamic increases in CREB phosphorylation (pCREB) and transcription of genes involved in critical steps of steroidogenesis including signal transduction (e.g., MRAP), cholesterol delivery (e.g., StAR), and steroid biosynthesis (e.g., CYP11A1), as well as those relating to transcriptional regulation of steroidogenic factors (e.g., SF-1 and Nur-77). In contrast, constant ACTH stimulation results in a prolonged and exaggerated pCREB and steroidogenic gene transcriptional response. We also show that when a large dose of ACTH (100 nM) is applied after these treatment regimens, a significant increase in steroidogenic transcriptional responsiveness is achieved only in cells that have been exposed to pulsatile, rather than constant, ACTH. Our data support our in vivo observations that pulsatile ACTH is important for the optimal transcriptional responsiveness of the adrenal. Importantly, our data suggest that ATC7 cells respond to dynamic ACTH stimulation.
Collapse
Affiliation(s)
- Georgina Hazell
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - George Horn
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Francesca Spiga
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
da Silva Oliveira Barbosa E, Roggero EA, González FB, Fernández RDV, Carvalho VF, Bottasso OA, Pérez AR, Villar SR. Evidence in Favor of an Alternative Glucocorticoid Synthesis Pathway During Acute Experimental Chagas Disease. Front Endocrinol (Lausanne) 2019; 10:866. [PMID: 31998227 PMCID: PMC6961479 DOI: 10.3389/fendo.2019.00866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
It is well-established that infectious stress activates the hypothalamus-pituitary-adrenal axis leading to the production of pituitary adrenocorticotropin (ACTH) and adrenal glucocorticoids (GCs). Usually, GC synthesis is mediated by protein kinase A (PKA) signaling pathway triggered by ACTH. We previously demonstrated that acute murine Chagas disease courses with a marked increase of GC, with some data suggesting that GC synthesis may be ACTH-dissociated in the late phase of this parasitic infection. Alternative pathways of GC synthesis have been reported in sepsis or mental diseases, in which interleukin (IL)-1β, prostaglandin E2 (PGE2), and/or cAMP-activated guanine nucleotide exchange factor 2 (EPAC2) are likely to play a role in this regard. Accordingly, we have searched for the existence of an ACTH-independent pathway in an experimental model of a major parasitic disease like Chagas disease, in addition to characterizing potential alternative pathways of GC synthesis. To this end, C57BL/6 male mice were infected with T. cruzi (Tc), and evaluated throughout the acute phase for several parameters, including the kinetic of GC and ACTH release, the adrenal level of MC2R (ACTH receptor) expression, the p-PKA/PKA ratio as ACTH-dependent mechanism of signal transduction, as well as adrenal expression of IL-1β and its receptor, EPAC2 and PGE2 synthase. Our results reveal the existence of two phases involved in GC synthesis during Tc infection in mice, an initial one dealing with the well-known ACTH-dependent pathway, followed by a further ACTH-hyporesponsive phase. Furthermore, inflamed adrenal microenvironment may tune the production of intracellular mediators that also operate upon GC synthesis, like PGE2 synthase and EPAC2, as emerging driving forces for GC production in the advanced course of Tc infection. In essence, GC production seems to be associated with a biphasic action of PGE2, suggesting that the effect of PGE2/cAMP in the ACTH-independent second phase may be mediated by EPAC2.
Collapse
Affiliation(s)
| | - Eduardo A. Roggero
- Institute of Clinical and Experimental Immunology of Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Florencia B. González
- Institute of Clinical and Experimental Immunology of Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Rocío del Valle Fernández
- Institute of Clinical and Experimental Immunology of Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Oscar A. Bottasso
- Institute of Clinical and Experimental Immunology of Rosario (IDICER-CONICET-UNR), Rosario, Argentina
| | - Ana R. Pérez
- Institute of Clinical and Experimental Immunology of Rosario (IDICER-CONICET-UNR), Rosario, Argentina
- Center for Research and Production of Biological Reagents (CIPREB), Faculty of Medical Sciences, National University of Rosario, Rosario, Argentina
| | - Silvina R. Villar
- Institute of Clinical and Experimental Immunology of Rosario (IDICER-CONICET-UNR), Rosario, Argentina
- Center for Research and Production of Biological Reagents (CIPREB), Faculty of Medical Sciences, National University of Rosario, Rosario, Argentina
- *Correspondence: Silvina R. Villar ;
| |
Collapse
|
6
|
Clark AJL, Chan L. Stability and Turnover of the ACTH Receptor Complex. Front Endocrinol (Lausanne) 2019; 10:491. [PMID: 31402897 PMCID: PMC6676219 DOI: 10.3389/fendo.2019.00491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid production in mammals is principally regulated by the action of the pituitary hormone adrenocorticotropin (ACTH) acting on its cognate membrane receptor on the zona fasciculata cells of the adrenal cortex. The receptor for ACTH consists of two essential components, a small seven transmembrane domain G protein-coupled receptor of the melanocortin receptor subgroup known as the melanocortin 2 receptor (MC2R) and a small single transmembrane domain protein that adopts a antiparallel homodimeric form and which is known as the melanocortin 2 receptor accessory protein (MRAP). MRAP is essential for the trafficking of the MC2R to the cell surface as well as being required for receptor responsiveness to ACTH at physiological concentrations-probably by facilitating ACTH binding, but possibly also by supporting G protein interaction with the MC2R. A number of studies have shown that ACTH stimulates the expression of functional receptor at the cell surface and the transcription of both MC2R and MRAP mRNA. However, the time course of these transcriptional effects differs such that MRAP is expressed relatively rapidly whereas MC2R transcription responds much more slowly. Furthermore, recent data suggests that MRAP protein is turned over with a short half-life whereas MC2R has a significantly longer half-life. These findings imply that these two ACTH receptor proteins have distinct trajectories and that it is likely that MRAP-independent MC2R is present at the cell surface. In such a situation newly transcribed and translated MRAP could enable the rapid recruitment of functional receptor at the plasma membrane without the need for new MC2R translation. This may be advantageous in circumstances of significant stress in that the potentially complex and perhaps inefficient process of de novo MC2R translation, folding, post-translational modification and trafficking can be avoided.
Collapse
|
7
|
Nooh MM, Mancarella S, Bahouth SW. Novel Paradigms Governing β1-Adrenergic Receptor Trafficking in Primary Adult Rat Cardiac Myocytes. Mol Pharmacol 2018; 94:862-875. [PMID: 29848777 DOI: 10.1124/mol.118.112045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
The β1-adrenergic receptor (β1-AR) is a major cardiac G protein-coupled receptor, which mediates cardiac actions of catecholamines and is involved in genesis and treatment of numerous cardiovascular disorders. In mammalian cells, catecholamines induce the internalization of the β1-AR into endosomes and their removal promotes the recycling of the endosomal β1-AR back to the plasma membrane; however, whether these redistributive processes occur in terminally differentiated cells is unknown. Compartmentalization of the β1-AR in response to β-agonists and antagonists was determined by confocal microscopy in primary adult rat ventricular myocytes (ARVMs), which are terminally differentiated myocytes with unique structures such as transverse tubules (T-tubules) and contractile sarcomeres. In unstimulated ARVMs, the fluorescently labeled β1-AR was expressed on the external membrane (the sarcolemma) of cardiomyocytes. Exposing ARVMs to isoproterenol redistributed surface β1-ARs into small (∼225-250 nm) regularly spaced internal punctate structures that overlapped with puncta stained by Di-8 ANEPPS, a membrane-impermeant T-tubule-specific dye. Replacing the β-agonist with the β-blocker alprenolol, induced the translocation of the wild-type β1-AR from these punctate structures back to the plasma membrane. This step was dependent on two barcodes, namely, the type-1 PDZ binding motif and serine at position 312 of the β1-AR, which is phosphorylated by a pool of cAMP-dependent protein kinases anchored at the type-1 PDZ of the β1-AR. These data show that redistribution of the β1-AR in ARVMs from internal structures back to the plasma membrane was mediated by a novel sorting mechanism, which might explain unique aspects of cardiac β1-AR signaling under normal or pathologic conditions.
Collapse
Affiliation(s)
- Mohammed M Nooh
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| | - Salvatore Mancarella
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| | - Suleiman W Bahouth
- Departments of Pharmacology (M.M.N., S.W.B.) and Physiology (S.M.), The University of Tennessee Health Sciences Center, Memphis, Tennessee; and Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt (M.M.N.)
| |
Collapse
|
8
|
Reddam A, Mager EM, Grosell M, McDonald MD. The impact of acute PAH exposure on the toadfish glucocorticoid stress response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:89-96. [PMID: 28942071 DOI: 10.1016/j.aquatox.2017.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 05/22/2023]
Abstract
The objective of the present study was to determine whether the polycyclic aromatic hydrocarbons (PAHs) associated with the Deepwater Horizon (DWH) oil spill impacted the stress response of teleost fish. The hypothesis was that intraperitoneal (IP) treatment with PAHs associated with the DWH oil spill or waterborne exposure to DWH oil high energy water-accommodated fraction (HEWAF) would result in the downregulation of the stress response of Gulf toadfish, Opsanus beta, a benthic marine teleost fish that resides in the Gulf of Mexico. In vivo plasma cortisol levels and adrenocorticotropic hormone (ACTH)-mediated cortisol secretion by in vitro isolated kidney tissue were measured. Toadfish at rest IP-treated with naphthalene had higher plasma cortisol compared to fluorene-treated and control fish; phenanthrene-treated fish tended to have higher plasma cortisol levels that fluorene-treated and controls. When subjected to an additional crowding stress, naphthalene and phenanthrene-treated fish were no longer able to mount a stress response compared to fluorene-treated and control fish, suggesting exhaustion of the stress response. Supporting this in vivo data, there tended to be less cortisol released by the kidney in vitro from naphthalene and phenanthrene-treated fish in response to ACTH compared to controls. In contrast, toadfish at rest exposed to 3% Slick A HEWAF did not have significantly different plasma cortisol levels compared to controls. But, exposed fish did have significantly less cortisol released by the kidney in vitro in response to ACTH. When toadfish were subjected to an additional stress, there were no significant differences in plasma cortisol or ACTH, suggesting the action of a secondary secretagogue to maintain plasma cortisol in vivo. Combined, these data suggest that in response to acute PAH exposure, there may be internalization or downregulation of the melanocortin 2 receptor (MC2R) that mediates the action of ACTH.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149-1098, USA
| | - Edward M Mager
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149-1098, USA; Department of Biological Sciences, University of North Texas, Denton, TX, 76203-5017, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149-1098, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149-1098, USA.
| |
Collapse
|
9
|
Agier J, Różalska S, Wódz K, Brzezińska-Błaszczyk E. Leukotriene receptor expression in mast cells is affected by their agonists. Cell Immunol 2017; 317:37-47. [PMID: 28477840 DOI: 10.1016/j.cellimm.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
The effects of LTs are mediated by GPCRs: cysLTs interact with CYSLTR1, CYSLTR2, or GPR17, and LTB4 acts via BLT1R or BLT2R. Data relating to the presence of these receptors in mature tissue mast cells are not entirely known. By confocal microscopy with image analyses and flow cytometry, we established that native rat mast cells isolated from peritoneal cavity constitutively express all studied receptors. Moreover, we clearly documented that LTs by themselves can influence their own receptor expression. Low concentrations of LTs induce translocation of LT receptors from cell interior to plasma membrane, which can lead to increased mast cell responsiveness to LT stimulation. High concentrations of LTs cause internalization and, in consequence, reduction in the number of receptors on the cell surface, and it may result in desensitization of mast cells to subsequent LT stimulation. These observations may imply a physiological feedback mechanism regulating mast cell sensitivity to LT activation within tissues.
Collapse
Affiliation(s)
- Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Karolina Wódz
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| |
Collapse
|
10
|
Fridmanis D, Roga A, Klovins J. ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms? Front Endocrinol (Lausanne) 2017; 8:13. [PMID: 28220105 PMCID: PMC5292628 DOI: 10.3389/fendo.2017.00013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
Abstract
Coincidentally, the release of this Research Topic in Frontiers in Endocrinology takes place 25 years after the discovery of the adrenocorticotropic hormone receptor (ACTHR) by Mountjoy and colleagues. In subsequent years, following the discovery of other types of mammalian melanocortin receptors (MCRs), ACTHR also became known as melanocortin type 2 receptor (MC2R). At present, five types of MCRs have been reported, all of which share significant sequence similarity at the amino acid level, and all of which specifically bind melanocortins (MCs)-a group of biologically active peptides generated by proteolysis of the proopiomelanocortin precursor. All MCs share an identical -H-F-R-W- pharmacophore sequence. α-Melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) are the most extensively studied MCs and are derived from the same region. Essentially, α-MSH is formed from the first 13 amino acid residues of ACTH. ACTHR is unique among MCRs because it binds one sole ligand-ACTH, which makes it a very attractive research object for molecular pharmacologists. However, much research has failed, and functional studies of this receptor are lagging behind other MCRs. The reason for these difficulties has already been outlined by Mountjoy and colleagues in their publication on ACTHR coding sequence discovery where the Cloudman S91 melanoma cell line was used for receptor expression because it was a "more sensitive assay system." Subsequent work showed that ACTHR could be successfully expressed only in endogenous MCR-expressing cell lines, since in other cell lines it is retained within the endoplasmic reticulum. The resolution of this methodological problem came in 2005 with the discovery of melanocortin receptor accessory protein, which is required for the formation of functionally active ACTHR. The decade that followed this discovery was filled with exciting research that provided insight into the molecular mechanisms underlying the action of ACTHR. The purpose of this review is to summarize the advances in this fascinating research field.
Collapse
Affiliation(s)
| | - Ance Roga
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
11
|
Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015; 72:1331-45. [PMID: 25504085 PMCID: PMC11113477 DOI: 10.1007/s00018-014-1800-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
The melanocortin system is composed by the agonists adrenocorticotropic hormone and α, β and γ-melanocyte-stimulating hormone, and two naturally occurring antagonists, agouti and agouti-related protein. These ligands act by interaction with a family of five melanocortin receptors (MCRs), assisted by MCRs accessory proteins (MRAPs). MCRs stimulation activates different signaling pathways that mediate a diverse array of physiological processes, including pigmentation, energy metabolism, inflammation and exocrine secretion. This review focuses on the regulatory mechanisms of MCRs signaling, highlighting the differences among the five receptors. MCRs signal through G-dependent and independent mechanisms and their functional coupling to agonists at the cell surface is regulated by interacting proteins, namely MRAPs and β-arrestins. The knowledge of the distinct modulation pattern of MCRs signaling and function may be helpful for the future design of novel drugs able to combine specificity, safety and effectiveness in the course of their therapeutic use.
Collapse
Affiliation(s)
- Adriana R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
12
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
13
|
García-Borrón JC, Abdel-Malek Z, Jiménez-Cervantes C. MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res 2014; 27:699-720. [PMID: 24807163 DOI: 10.1111/pcmr.12257] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
Abstract
The melanocortin 1 receptor (MC1R) is a G protein-coupled receptor crucial for the regulation of melanocyte proliferation and function. Upon binding melanocortins, MC1R activates several signaling cascades, notably the cAMP pathway leading to synthesis of photoprotective eumelanin. Polymorphisms in the MC1R gene are a major source of normal variation of human hair color and skin pigmentation, response to ultraviolet radiation (UVR), and skin cancer susceptibility. The identification of a surprisingly high number of MC1R natural variants strongly associated with pigmentary phenotypes and increased skin cancer risk has prompted research on the functional properties of the wild-type receptor and frequent mutant alleles. We summarize current knowledge on MC1R structural and functional properties, as well as on its intracellular trafficking and signaling. We also review the current knowledge about the function of MC1R as a skin cancer, particularly melanoma, susceptibility gene and how it modulates the response of melanocytes to UVR.
Collapse
Affiliation(s)
- Jose C García-Borrón
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain; Instituto Murciano de Investigación Biomédica (IMIB), El Palmar, Murcia, Spain
| | | | | |
Collapse
|
14
|
Roy S, Roy SJ, Pinard S, Taillefer LD, Rached M, Parent JL, Gallo-Payet N. Mechanisms of melanocortin-2 receptor (MC2R) internalization and recycling in human embryonic kidney (hek) cells: identification of Key Ser/Thr (S/T) amino acids. Mol Endocrinol 2011; 25:1961-77. [PMID: 21920850 DOI: 10.1210/me.2011-0018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ACTH is the most important stimulus of the adrenal cortex. The precise molecular mechanisms underlying the ACTH response are not yet clarified. The functional ACTH receptor includes melanocortin-2 receptor (MC2R) and MC2R accessory proteins (MRAP). In human embryonic kidney 293/Flp recombinase target cells expressing MC2R, MRAP1 isoforms, and MRAP2, we found that ACTH induced a concentration-dependent and arrestin-, clathrin-, and dynamin-dependent MC2R/MRAP1 internalization, followed by intracellular colocalization with Rab (Ras-like small guanosine triphosphate enzyme)4-, Rab5-, and Rab11-positive recycling endosomes. Preincubation of cells with monensin and brefeldin A revealed that 28% of the internalized receptors were recycled back to the plasma membrane and participated in total accumulation of cAMP. Moreover, certain intracellular Ser and Thr (S/T) residues of MC2R were found to play important roles not only in plasma membrane targeting and function but also in promoting receptor internalization. The S/T residues T131, S140, T204, and S280 were involved in MRAP1-independent cell-surface MC2R expression. Other mutants (S140A, S208A, and S202D) had lower cell-surface expressions in absence of MRAPβ. In addition, T143A and T147D drastically impaired cell-surface expression and function, whereas T131A, T131D, and S280D abrogated MC2R internalization. Thus, the modification of MC2R intracellular S/T residues may positively or negatively regulate its plasma membrane expression and the capacity of ACTH to induce cAMP accumulation. Mutations of T131, T143, T147, and S280 into either A or D had major repercussions on cell-surface expression, cAMP accumulation, and/or internalization parameters, pointing mostly to the second intracellular loop as being crucial for MC2R expression and functional regulation.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Roy S, Pinard S, Chouinard L, Gallo-Payet N. Adrenocorticotropin hormone (ACTH) effects on MAPK phosphorylation in human fasciculata cells and in embryonic kidney 293 cells expressing human melanocortin 2 receptor (MC2R) and MC2R accessory protein (MRAP)β. Mol Cell Endocrinol 2011; 336:31-40. [PMID: 21195128 DOI: 10.1016/j.mce.2010.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 11/15/2022]
Abstract
Adrenocorticotropin hormone (ACTH) exerts trophic effects on adrenocortical cells. We studied the phosphorylation of mitogen-activated proteins kinases (MAPKs) in human embryonic kidney cells stably expressing the ACTH receptor, MC2R, and its accessory protein MRAPβ and in primary cultures of human adrenal fasciculata cells. ACTH induced a maximal increase in p44/p42(mapk) and of p38 MAPK phosphorylation after 5min. Neither the overexpression of wild-type arrestin2, arrestin3 or their respective dominant negative forms affected p44/p42(mapk) phosphorylation. However, preincubation with the recycling inhibitors brefeldin A and monensin attenuated both cAMP accumulation and p44/p42(mapk) phosphorylation proportionally. Cyclic AMP-related PKA inhibitors (H89, KI(6-22)) and Rp-cAMPS decreased p44/p42(mapk) phosphorylation but not ACTH-mediated cAMP production. The selective Epac1/2 activator, 8-pCPT-2'-O-MecAMP, did not modify the effect of ACTH. Thus, cAMP/PKA, but not cAMP/Epac1/2 pathways, or arrestin-coupled internalization of MC2R is involved in ACTH-induced p44/p42(mapk) phosphorylation by human MC2R. Together, ACTH binding to MC2R stimulates PKA-dependent p44/p42(mapk) phosphorylation.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | |
Collapse
|
16
|
Ribeiro FM, Ferreira LT, Paquet M, Cregan T, Ding Q, Gros R, Ferguson SSG. Phosphorylation-independent regulation of metabotropic glutamate receptor 5 desensitization and internalization by G protein-coupled receptor kinase 2 in neurons. J Biol Chem 2009; 284:23444-53. [PMID: 19564331 DOI: 10.1074/jbc.m109.000778] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The uncoupling of metabotropic glutamate receptors (mGluRs) from heterotrimeric G proteins represents an essential feedback mechanism that protects neurons against receptor overstimulation that may ultimately result in damage. The desensitization of mGluR signaling is mediated by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). Unlike mGluR1, the attenuation of mGluR5 signaling in HEK 293 cells is reported to be mediated by a phosphorylation-dependent mechanism. However, the mechanisms regulating mGluR5 signaling and endocytosis in neurons have not been investigated. Here we show that a 2-fold overexpression of GRK2 leads to the attenuation of endogenous mGluR5-mediated inositol phosphate (InsP) formation in striatal neurons and siRNA knockdown of GRK2 expression leads to enhanced mGluR5-mediated InsP formation. Expression of a catalytically inactive GRK2-K220R mutant also effectively attenuates mGluR5 signaling, but the expression of a GRK2-D110A mutant devoid in Galpha(q/11) binding increases mGluR5 signaling in response to agonist stimulation. Taken together, these results indicate that the attenuation of mGluR5 responses in striatal neurons is phosphorylation-independent. In addition, we find that mGluR5 does not internalize in response to agonist treatment in striatal neuron, but is efficiently internalized in cortical neurons that have higher levels of endogenous GRK2 protein expression. When overexpressed in striatal neurons, GRK2 promotes agonist-stimulated mGluR5 internalization. Moreover, GRK2-mediated promotion of mGluR5 endocytosis does not require GRK2 catalytic activity. Thus, we provide evidence that GRK2 mediates phosphorylation-independent mGluR5 desensitization and internalization in neurons.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Aluru N, Vijayan MM. Molecular characterization, tissue-specific expression, and regulation of melanocortin 2 receptor in rainbow trout. Endocrinology 2008; 149:4577-88. [PMID: 18535097 PMCID: PMC2553378 DOI: 10.1210/en.2008-0435] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ACTH, the primary secretagogue for corticosteroid biosynthesis, binds to melanocortin 2 receptor (MC2R) and activates the signaling cascade leading to steroid biosynthesis in the adrenal cortex. Whereas MC2R regulation has been studied using mammalian models, little is known about the molecular mechanisms involved in ACTH signaling in nonmammalian vertebrates. A full-length cDNA encoding MC2R was sequenced from rainbow trout (Oncorhynchus mykiss) interrenal tissue (analogous to the adrenal cortex in mammals) and showed about 60 and about 44% amino acid sequence similarity to teleosts and humans, respectively. Phylogenetic analysis confirmed that MC2R from all species clustered together and was distant from other MCRs. Quantitative real-time PCR revealed a marked tissue-specific difference in MC2R mRNA abundance, with the highest levels observed in the interrenal tissue, ovary, and testis. Acute ACTH, but not alpha-MSH or [Nle4, d-Phe7]-MSH, stimulation resulted in a time- and dose-related elevation in MC2R mRNA abundance in the interrenal tissue. This corresponded with higher steroidogenic acute regulatory protein and cytochrome P450 side-chain cleavage enzyme gene expression as well as elevated cortisol production. An acute stressor transiently elevated plasma ACTH and cortisol levels at 1 h, and this was followed by a significant increase in MC2R mRNA abundance at 4 h after stressor exposure. Taken together, our results demonstrate that ACTH regulation of MC2R is highly conserved in vertebrates, whereas the tissue-specific distribution of this receptor transcript level leads us to propose a role for ACTH signaling in the stressor-mediated suppression of sex steroid levels in fish.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/metabolism
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- Gene Expression Regulation
- Hydrocortisone/metabolism
- Molecular Sequence Data
- Oncorhynchus mykiss/genetics
- Oncorhynchus mykiss/metabolism
- Organ Specificity/genetics
- Phylogeny
- Receptor, Melanocortin, Type 2/agonists
- Receptor, Melanocortin, Type 2/antagonists & inhibitors
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
18
|
Janes ME, Chu KME, Clark AJL, King PJ. Mechanisms of adrenocorticotropin-induced activation of extracellularly regulated kinase 1/2 mitogen-activated protein kinase in the human H295R adrenal cell line. Endocrinology 2008; 149:1898-905. [PMID: 18174287 DOI: 10.1210/en.2007-0949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of ACTH in stimulating or inhibiting growth of adrenal cells has been a subject of some controversy. Reports that ACTH may stimulate ERK/MAPK in Y1 cells have suggested a role for cAMP in this process. In attempting to extend this work, the ACTH responses in the human H295R cell line have been studied. This cell line makes only a very modest cAMP response to ACTH, yet the ERK1/2 response is highly reproducible and immediate but not prolonged. It is minimally reduced by the protein kinase A inhibitor, H89, but unaffected by protein kinase C and calcium inhibitors. Inhibition of epidermal growth factor receptor or other tyrosine kinase receptor transactivation was without effect, as was inhibition of c-Src activity or c-Src phosphorylation. The most effective inhibitor of this pathway was dansylcadaverine, an inhibitor of receptor internalization. These findings imply that ACTH-induced ERK1/2 activation in H295R cells is dependent on a mechanism distinct from that by which most G protein-coupled receptors activate ERK1/2 but that nevertheless seems to depend on receptor internalization.
Collapse
Affiliation(s)
- Mandy E Janes
- Centre for Endocrinology, Barts and the London School of Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
19
|
Rehman KS, Sirianni R, Parker CR, Rainey WE, Carr BR. The regulation of adrenocorticotrophic hormone receptor by corticotropin-releasing hormone in human fetal adrenal definitive/transitional zone cells. Reprod Sci 2007; 14:578-87. [PMID: 17959886 DOI: 10.1177/1933719107307908] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As gestation progresses, human fetal adrenals (HFA) initiate the production of cortisol, which increases placental corticotropin-releasing hormone (CRH) biosynthesis. While adrenocorticotrophic hormone (ACTH) is important for the onset of cortisol production, the late gestational surge in cortisol production occurs despite falling ACTH levels in the fetal circulation. The authors determine if CRH directly regulates the expression of the ACTH receptor (ACTHR) in HFA definitive/transitional zone (DZ/TZ) cells. DZ/TZ cells isolated from midgestation HFA were cultured before treatment with 0.01 nM to 100 nM CRH or ACTH. Cortisol was measured by radioimmunoassay. Real-time reverse-transcriptase polymerase chain reaction was used to measure ACTHR mRNA. Whole-cell ACTH binding studies were performed using I(125) (Tyr-23) ACTH. CRH produced a dose-dependent rise in cortisol production and caused a time-dependent increase in ACTHR mRNA levels between 12 and 24 hours. As little as 0.1 nM CRH induced ACTHR transcript by 12-fold at 24 hours. Together with ACTH 0.01 nM, 0.03 or 0.1 nM CRH increased ACTHR expression more than ACTH alone. Binding assays demonstrated a 3.5-fold increase in ACTHR protein at 48 hours with combined CRH and ACTH treatment. Physiologic levels of CRH seen in the late-gestation fetus stimulate DZ/TZ ACTHR expression. Since placental CRH production increases strikingly near the end of gestation, the authors suggest that CRH-induced ACTH receptor expression may increase TZ responsiveness to circulating ACTH and contribute to the late gestational rise in cortisol secretion by the HFA, participating in an endocrine cascade that is involved in fetal organ maturation and potentially in the timing of human parturition.
Collapse
Affiliation(s)
- Khurram S Rehman
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology and Infertility, University of Texas Southwestern Medical Center, Dallas, TX 75390-9032, USA
| | | | | | | | | |
Collapse
|
20
|
Doufexis M, Storr HL, King PJ, Clark AJL. Interaction of the melanocortin 2 receptor with nucleoporin 50: evidence for a novel pathway between a G-protein-coupled receptor and the nucleus. FASEB J 2007; 21:4095-100. [PMID: 17625072 PMCID: PMC6485448 DOI: 10.1096/fj.06-7927com] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adrenocorticotropin (ACTH) receptor (melanocortin 2 receptor, or MC2R) is the smallest G-protein-coupled receptor that, when activated by the peptide hormone ACTH, stimulates cAMP production and adrenal steroidogenesis. Receptor expression is dependent on a specific membrane trafficking process involving an accessory protein (melanocortin 2 receptor accessory protein, or MRAP) and other unidentified components. In an attempt to discover novel receptor interacting proteins, the C-terminal tail of the MC2R was used to screen a mouse adrenal Y6 cell cDNA library using the bacterial two-hybrid system. This identified the nucleoporin Nup 50 (Npap60) as the major full-length interacting protein. Interaction was confirmed by a GST pulldown assay and by coimmunoprecipitation in human H295R cells (which express both proteins endogenously). Deletion analysis identified the region between residues 143 and 466 in Nup50 as being required for interaction with the MC2R. Stimulation of H295R cells with ACTH (10(-6) M) was followed by a gradual translocation of the Nup50-MC2R complex from the membrane to the nucleus after 30 min. This time course is most consistent with MC2R internalization dynamics and may suggest a novel role for Nup50.
Collapse
Affiliation(s)
- Marina Doufexis
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London, Queen Mary, University of London, West Smithfield, London EC1A 7BE, UK
| | | | | | | |
Collapse
|
21
|
Hoffmann KM, Tapia JA, Berna MJ, Thill M, Braunschweig T, Mantey SA, Moody TW, Jensen RT. Gastrointestinal Hormones Cause Rapid c-Met Receptor Down-regulation by a Novel Mechanism Involving Clathrin-mediated Endocytosis and a Lysosome-dependent Mechanism. J Biol Chem 2006; 281:37705-19. [PMID: 17035232 DOI: 10.1074/jbc.m602583200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The activated c-Met receptor has potent effects on normal tissues and tumors. c-Met levels are regulated by hepatocyte growth factor (HGF); however, it is unknown if they can be regulated by gastrointestinal (GI) hormones. c-Met is found in many GI tissues/tumors that possess GI hormone receptors. We studied the effect of GI hormones on c-Met in rat pancreatic acini, which possess both receptors. CCK-8, carbachol, and bombesin, but not VIP/secretin, decreased c-Met. CCK-8 caused rapid and potent c-Met down-regulation and abolished HGF-induced c-Met and Gab1 tyrosine phosphorylation, while stimulating c-Met serine phosphorylation. The effect of cholecystokinin (CCK) was also seen in intact acini using immunofluorescence, in a biotinylated fraction representing membrane proteins, in single acinar cells, in Panc-1 tumor cells, and in vivo in rats injected with CCK. CCK-8 did not decrease cell viability or overall responsiveness. GF109203X, thapsigargin, or their combination partially reversed the effect of CCK-8. In contrast to HGF-induced c-Met down-regulation, the effect of CCK was decreased by a lysosome inhibitor (concanamycin) but not the proteasome inhibitor lactacystin. Inhibitors of clathrin-mediated endocytosis blocked the effect of CCK. HGF but not CCK-8 caused c-Met ubiquitination. These results show CCK and other GI hormones can cause rapid c-Met down-regulation, which occurs by a novel mechanism. These results could be important for c-Met regulation in normal as well as in neoplastic tissue in the GI tract.
Collapse
Affiliation(s)
- K Martin Hoffmann
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1804, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Breit A, Wolff K, Kalwa H, Jarry H, Büch T, Gudermann T. The natural inverse agonist agouti-related protein induces arrestin-mediated endocytosis of melanocortin-3 and -4 receptors. J Biol Chem 2006; 281:37447-56. [PMID: 17041250 DOI: 10.1074/jbc.m605982200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Agouti-related protein (Agrp), one of the two naturally occurring inverse agonists known to inhibit G protein-coupled receptor activity, regulates energy expenditure by decreasing basal and blocking agonist-promoted melanocortin receptor (MCR) signaling. Here we report that, in addition to its inverse agonistic activities, Agrp exhibits agonistic properties on the endocytosis pathway of melanocortin receptors. Sustained exposure of human embryonic kidney 293 cells to Agrp induced endocytosis of the MC3R or the MC4R. The extent and kinetics of Agrp-promoted MCR endocytosis were similar to the endocytosis induced by melanocortins. Using the bioluminescence resonance energy transfer technique, we further showed that after binding of Agrp both MCRs interacted with beta-arrestins. In line with this observation, in COS-7 cells co-expression of beta-arrestins enhanced Agrp-induced MCR endocytosis, whereas in human embryonic kidney 293 cells co-transfection of beta-arrestin-specific small interference RNAs diminished Agrp-promoted endocytosis. This new regulatory mechanism was likewise detectable in a cell line derived from murine hypothalamic neurons endogenously expressing MC4R, pointing to the physiological relevance of Agrp-promoted receptor endocytosis. In conclusion, we demonstrated that Agrp does not solely act by directly blocking MCR signaling but also by reducing the amount of MCR molecules accessible to melanocortins at the cell surface. This beta-arrestin-dependent mechanism reveals a new aspect of MCR signaling in particular and refines the concept of G protein-coupled receptor antagonism in general.
Collapse
MESH Headings
- Agouti-Related Protein
- Animals
- Arrestins/antagonists & inhibitors
- Arrestins/genetics
- Arrestins/metabolism
- Base Sequence
- COS Cells
- Cell Line
- Chlorocebus aethiops
- Cyclic AMP/biosynthesis
- Endocytosis/physiology
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Mice
- Protein Binding
- RNA, Small Interfering/genetics
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Recombinant Fusion Proteins/antagonists & inhibitors
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Transfection
- beta-Arrestins
Collapse
Affiliation(s)
- Andreas Breit
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, 35033 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Cai M, Varga EV, Stankova M, Mayorov A, Perry JW, Yamamura HI, Trivedi D, Hruby VJ. Cell signaling and trafficking of human melanocortin receptors in real time using two-photon fluorescence and confocal laser microscopy: differentiation of agonists and antagonists. Chem Biol Drug Des 2006; 68:183-93. [PMID: 17105482 PMCID: PMC2547351 DOI: 10.1111/j.1747-0285.2006.00432.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanocortin hormones and neurotransmitters regulate a vast array of physiologic processes by interacting with five G-protein-coupled melanocortin receptor types. In the present study, we have systematically studied the regulation of individual human melanocortin receptor wild subtypes using a synthetic rhodamine-labeled human melanotropin agonist and antagonist, arrestins fused to green fluorescent protein in conjunction with two-photon fluorescence laser scanning microscopy and confocal microscopy. Stimulation of the melanocortin receptors by its cognate agonist triggered rapid arrestin recruitment and receptor internalization for all four human melanocortin receptors examined. Antagonists-bound melanocortin receptors, on the other hand, did not recruit beta-arrestins, and remained in the cell membrane even after long-term (30 min) treatment. Agonist-mediated internalization of all melanocortin receptor subtypes was sensitive to inhibitors of clathrin-dependent endocytosis, but not to caveolae inhibitors. In summary, agonist-mediated internalization of all subtypes of melanocortin receptors are dependent upon beta-arrestin-mediated clathrin-coated pits, whereas, beta-arrestin-2 conjugated green fluorescence protein (beta-arrestin-2-GFP) recruitment is not dependent on protein kinase A activation. Real time two-photon fluorescence laser scanning microscopy is a most powerful tool to study the dynamic processes in living cells and tissues, without inflicting significant and often lethal damage to the specimen.
Collapse
Affiliation(s)
- Minying Cai
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Eva V. Varga
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Magda Stankova
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Alexander Mayorov
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Joseph W. Perry
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Henry I. Yamamura
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Dev Trivedi
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Victor J. Hruby
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Huang JS, Dong L, Le Breton GC. Mass-dependent signaling between G protein coupled receptors. Cell Signal 2006; 18:564-76. [PMID: 16125366 DOI: 10.1016/j.cellsig.2005.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 06/10/2005] [Indexed: 12/14/2022]
Abstract
The present study provides evidence that G protein coupled receptor (GPCR) signaling pathways participate in an interactive signaling network governed by the principles of mass action. Using an inducible thromboxane A2 receptor (TPR)/platelet activating factor receptor (PAFR) co-expressing cell model, TPR or PAFR expression was independently up-regulated. Immunostaining and radioligand binding experiments demonstrated that this receptor up-regulation resulted in increased GPCR:G protein mass ratios. This increase in mass ratio impacted both TPR and PAFR ligand affinity. Specifically, up-regulating TPR expression not only decreased TPR ligand affinity, but also decreased the ligand affinity of PAFRs. A similar effect on ligand affinities was observed when PAFRs were up-regulated. In addition, increasing the GPCR:G protein mass ratio for TPRs led to desensitization of the calcium mobilization response to PAFR activation, and increasing PAFR mass desensitized the TPR-mediated calcium response. Finally, it was observed that an increased TPR:G protein mass ratio was associated with a shift in the TPR signaling response, and revealed an additional TPR signaling pathway through G(S). Collectively, these results describe a novel mechanism, i.e., mass-dependent GPCR signaling, by which cells can modulate their GPCR signaling pathways and signaling priorities.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Azepines/pharmacology
- Blood Platelets/drug effects
- CHO Cells
- Calcium/metabolism
- Cricetinae
- Humans
- Ligands
- Platelet Membrane Glycoproteins/antagonists & inhibitors
- Platelet Membrane Glycoproteins/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/agonists
- Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Time Factors
- Triazoles/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Jin-Sheng Huang
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave. (mail code 868), Chicago, IL 60612, USA
| | | | | |
Collapse
|
25
|
Nielsen CK, Campbell JI, Öhd JF, Mörgelin M, Riesbeck K, Landberg G, Sjölander A. A Novel Localization of the G-Protein-Coupled CysLT1 Receptor in the Nucleus of Colorectal Adenocarcinoma Cells. Cancer Res 2005. [DOI: 10.1158/0008-5472.732.65.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Searching for a link between inflammation and colon cancer, we have found that the inflammatory mediator leukotriene D4 (LTD4), via its receptor CysLT1, induces cyclooxygenase-2 expression, survival, and proliferation in intestinal epithelial cells. In conjunction with our previous observation that CysLT1 receptor expression is increased in colorectal adenocarcinomas, we here found an increased nuclear localization of the CysLT1 receptor in colorectal adenocarcinomas. This novel discovery of CysLT1 receptors in the nucleus was further analyzed. It was found to be located in the outer nuclear membrane in colon cancer cells and in the nontransformed epithelial cell line Int 407 cells by Western blot and electron microscopy. Cancer cells displayed higher amounts of the nuclear CysLT1 receptor, but prolonged LTD4 exposure induced its nuclear translocation in nontransformed cells. Truncation of a nuclear localization sequence abrogated this translocation as well as the LTD4-induced proliferative response. In accordance, nuclear CysLT1 receptors exhibited proliferative extracellular signal-regulated kinase 1/2 signaling. The significance of these experimental findings is supported by the observed correlation between the proliferative marker Ki-67 and nuclear CysLT1 receptor localization in colorectal adenocarcinomas. The present findings indicate that LTD4 cannot only be synthesized but also signal proliferation through nuclear CysLT1 receptors, stressing the importance of leukotrienes in inflammation-induced colon carcinogenesis.
Collapse
Affiliation(s)
| | | | | | - Matthias Mörgelin
- 4Division of Molecular Pathogenesis, Department of Cell and Molecular Biology, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- 3Medical Microbiology, Department of Laboratory Medicine, Malmö University Hospital and
| | | | | |
Collapse
|
26
|
Anis Y, Leshem O, Reuveni H, Wexler I, Ben Sasson R, Yahalom B, Laster M, Raz I, Ben Sasson S, Shafrir E, Ziv E. Antidiabetic effect of novel modulating peptides of G-protein-coupled kinase in experimental models of diabetes. Diabetologia 2004; 47:1232-1244. [PMID: 15235770 DOI: 10.1007/s00125-004-1444-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 04/19/2004] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS G-protein-coupled receptor kinases (GRKs) play a key role in agonist-induced desensitisation of G-protein-coupled receptors (GPCRs) that are involved in metabolic regulation and glucose homeostasis. Our aim was to examine whether small peptides derived from the catalytic domain of GRK2 and -3 would ameliorate Type 2 diabetes in three separate animal models of diabetes. METHODS Synthetic peptides derived from a kinase-substrate interaction site in GRK2/3 were initially screened for their effect on in vitro melanogenesis, a GRK-mediated process. The most effective peptides were administered intraperitoneally, utilising a variety of dosing regimens, to Psammomys obesus gerbils, Zucker diabetic fatty (ZDF) rats, or db/db mice. The metabolic effects of these peptides were assessed by measuring fasting and fed blood glucose levels and glucose tolerance. RESULTS Two peptides, KRX-683(107) and KRX-683(124), significantly reduced fed-state blood glucose levels in the diabetic Psammomys obesus. In animals treated with KRX-683(124) at a dose of 12.5 mg/kg weekly for 7 weeks, ten of eleven treated animals responded with mean blood glucose significantly lower than controls (4.7+/-0.4 vs 16.8+/-0.8 mmol/l, p</=0.0001). Significant reductions in blood glucose compared with controls were also seen in ZDF rats administered KRX-683(124) and in db/db mice, which had significantly reduced fasting and 2-hour postprandial glucose levels after the treatment. CONCLUSIONS/INTERPRETATION Sequence-based peptides derived from GRK2/3 have an antidiabetic effect demonstrated in three different animal models of Type 2 diabetes. By modulating GRK2/3 activity, these peptides enhance GPCR-initiated signal transduction, resulting in improved glucose homeostasis. Sequence-based peptide modulation of GRK could prove useful in the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Y Anis
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - O Leshem
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - H Reuveni
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - I Wexler
- Keryx Biopharmaceuticals, Jerusalem, Israel
- Department of Pediatrics, Hadassah University Hospital, Jerusalem, Israel
| | - R Ben Sasson
- Diabetes Research Center, Department of Medicine, Hadassah University Hospital, Jerusalem 91120, Israel
| | - B Yahalom
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - M Laster
- Keryx Biopharmaceuticals, Jerusalem, Israel
| | - I Raz
- Diabetes Research Center, Department of Medicine, Hadassah University Hospital, Jerusalem 91120, Israel
| | - S Ben Sasson
- Department of Experimental Medicine & Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - E Shafrir
- Diabetes Research Center, Department of Medicine, Hadassah University Hospital, Jerusalem 91120, Israel
| | - E Ziv
- Diabetes Research Center, Department of Medicine, Hadassah University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
27
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:1397-1401. [DOI: 10.11569/wcjd.v12.i6.1397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Fraga S, Jose PA, Soares-da-Silva P. Involvement of G protein-coupled receptor kinase 4 and 6 in rapid desensitization of dopamine D1 receptor in rat IEC-6 intestinal epithelial cells. Am J Physiol Regul Integr Comp Physiol 2004; 287:R772-9. [PMID: 15166006 DOI: 10.1152/ajpregu.00208.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine-induced inhibition of Na(+)-K(+)-ATPase has been suggested to play a role in the regulation of Na(+) absorption at the intestinal level, and these effects were mediated by dopamine D(1)-like receptors. The aim of this work was to evaluate the effect of the activation of the D(1)-like receptors on the activity of the Na(+)/H(+) exchanger (NHE) in the rat intestinal epithelial cell line IEC-6. The presence of D(1) receptors was confirmed by immunoblotting. The dopamine D(1)-like receptor agonist SKF-38393 produced a concentration-dependent inhibition of NHE activity and stimulation of adenylyl cyclase (AC), this being antagonized by the D(1) selective antagonist SKF-83566. Effects of SKF-38393 on NHE and AC activities were maximal at 5 min of exposure to the agonist and rapidly diminished with no effect at 25 min. Exposure of cells for 25 min to dibutyryl-cAMP (0.5 mM) or to the AC activator forskolin (3 microM) effectively inhibited NHE activity. Pretreatment of cells with heparin (1 microM), a nonselective G protein-coupled receptor kinase (GRK) inhibitor, prevented the loss of effects on NHE activity after 25 min exposure to SKF-38393. The presence of GRK4, GRK6A, and GRK6B was confirmed by immunoblotting. Overnight treatment with the anti-GRK4-6 antibody complexed with Lipofectin was also effective in preventing loss of the effects of SKF-38393 on NHE and AC activities. It is concluded that dopamine D(1) receptors in IEC-6 rapidly desensitize to D(1)-like agonist stimulation and GRK4 and 6 appear to be involved in agonist-mediated responsiveness and desensitization.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenylyl Cyclases/metabolism
- Animals
- Antibodies, Blocking/pharmacology
- Blotting, Western
- Cell Line
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- Dopamine Agonists/pharmacology
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/physiology
- G-Protein-Coupled Receptor Kinase 4
- G-Protein-Coupled Receptor Kinases
- Heparin/pharmacology
- Intestines/cytology
- Intestines/physiology
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/metabolism
- Isoenzymes/physiology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/physiology
- Rats
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/physiology
- Sodium-Hydrogen Exchangers/antagonists & inhibitors
- Sodium-Hydrogen Exchangers/metabolism
Collapse
Affiliation(s)
- Sónia Fraga
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200 Porto, Portugal
| | | | | |
Collapse
|
29
|
Rached M, Buronfosse A, Durand P, Begeot M, Penhoat A. Stable expression of human melanocortin 3 receptor fused to EGFP in the HEK293 cells. Biochem Biophys Res Commun 2003; 306:208-12. [PMID: 12788089 DOI: 10.1016/s0006-291x(03)00934-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Among the melanocortins alpha-MSH is known to be involved in feeding behavior. These hormones mediate their effects through G protein-coupled receptors by stimulating adenylate cyclase. In this study, we have developed an in vitro expression model for human melanocortin 3 receptor (hMC3R) tagged at its C terminus with EGFP. The corresponding chimeric cDNA was stably expressed in HEK293 cells. The selected clones expressing the hMC3R-EGFP exhibited cell surface fluorescence and responded to NDP-MSH stimulation by producing cAMP in a dose-dependent manner (EC(50): 0.3 nM). Binding studies revealed a single class of binding sites with a K(D) of 2.24 nM. Moreover, Agouti-related protein was also demonstrated to be an antagonist of the hMC3R-EGFP. Thus, the hMC3R tagged with EGFP stably expressed in HEK293 cells, exhibiting the same characteristics than the wild-type hMC3R, is the only model of expression of this receptor allowing its direct localization inside living cells.
Collapse
Affiliation(s)
- Mohamed Rached
- INSERM U418/INRA UMR1245, IFR Laennec, Hôpital Debrousse, 29 rue soeur Bouvier, 69322 05, Lyon Cédex, France
| | | | | | | | | |
Collapse
|
30
|
Clark AJL, Baig AH, Noon L, Swords FM, Hunyady L, King PJ. Expression, desensitization, and internalization of the ACTH receptor (MC2R). Ann N Y Acad Sci 2003; 994:111-7. [PMID: 12851305 DOI: 10.1111/j.1749-6632.2003.tb03169.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research into the functions and mechanisms of action of the melanocortin 2 receptor (MC2R) has been severely hampered by difficulties in expressing this gene in heterologous cells. This probably arises because of the need for a cofactor for cell surface expression. Using either the Y1 cell line that expresses endogenous MC2R or the Y6 cell line that expresses this putative expression factor, we have explored the mechanisms of desensitization and internalization after agonist stimulation. Protein kinase A dependence of desensitization has been demonstrated, although internalization is apparently independent of this kinase and dependent on a G protein receptor kinase. Possible underlying reasons for this paradox are discussed.
Collapse
Affiliation(s)
- Adrian J L Clark
- Department of Endocrinology, Queen Mary University of London, London EC1A 7BE, United Kingdom.
| | | | | | | | | | | |
Collapse
|