1
|
Willford JA, Kaufman JM. Through a teratological lens: A narrative review of exposure to stress and drugs of abuse during pregnancy on neurodevelopment. Neurotoxicol Teratol 2024; 105:107384. [PMID: 39187031 DOI: 10.1016/j.ntt.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Teratological research shows that both prenatal stress and prenatal substance exposure have a significant impact on neurodevelopmental outcomes in children. Using human research, the purpose of this narrative review is to explore the degree to which these exposures may represent complex prenatal and postnatal risks for the development of cognition and behavior in children. An understanding of the HPA axis and its function during pregnancy as well as the types and operationalization of prenatal stress provide a context for understanding the direct and indirect mechanisms by which prenatal stress affects brain and behavior development. In turn, prenatal substance exposure studies are evaluated for their importance in understanding variables that indicate a potential interaction with prenatal stress including reactivity to novelty, arousal, and stress reactivity during early childhood. The similarities and differences between prenatal stress exposure and prenatal substance exposure on neurodevelopmental outcomes including arousal and emotion regulation, cognition, behavior, stress reactivity, and risk for psychopathology are summarized. Further considerations for teratological studies of prenatal stress and/or substance exposure include identifying and addressing methodological challenges, embracing the complexity of pre-and postnatal environments in the research, and the importance of incorporating parenting and resilience into future studies.
Collapse
Affiliation(s)
- Jennifer A Willford
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America.
| | - Jesse M Kaufman
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America
| |
Collapse
|
2
|
Hisada C, Kajimoto K, Tsugane H, Mitsuo I, Azuma K, Kubo KY. Maternal chewing alleviates prenatal stress-related neuroinflammation mediated by microglia in the hippocampus of the mouse offspring. J Prosthodont Res 2023; 67:588-594. [PMID: 36792221 DOI: 10.2186/jpr.jpr_d_22_00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Prenatal stress affects the hippocampal structure and function in pups. Maternal chewing ameliorates hippocampus-dependent cognitive impairments induced by prenatal stress. In this study, we investigated hippocampal microglia-mediated neuroinflammation in pups of dams exposed to prenatal stress with or without chewing during gestation. METHODS Pregnant mice were randomly assigned to control, stress, and stress/chewing groups. Stress and stress/chewing animals were subjected to restraint stress for 45 min three times daily from gestation day 12 to parturition, and were given a wooden stick to chew during the stress period. Four-month-old male pups were intraperitoneally administered with lipopolysaccharide (LPS). Serum corticosterone levels were determined 24 h after administration. The expression levels of hippocampal inflammatory cytokines were measured, and the microglia were analyzed morphologically. RESULTS Prenatal stress increased serum corticosterone levels, induced hippocampal microglia priming, and facilitated the release of interleukin-1β and tumor necrosis factor-α in the offspring. LPS treatment significantly increased the effects of prenatal stress on serum corticosterone levels, hippocampal microglial activation, and hippocampal neuroinflammation. Maternal chewing significantly inhibited the increase in serum corticosterone levels, suppressed microglial overactivation, and normalized inflammatory cytokine levels under basal prenatal stress conditions as well as after LPS administration. CONCLUSIONS Our findings indicate that maternal chewing can alleviate the increase in corticosterone levels and inhibit hippocampal microglia-mediated neuroinflammation induced by LPS administration and prenatal stress in adult offspring.
Collapse
Affiliation(s)
- Chie Hisada
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Kyoko Kajimoto
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Hiroko Tsugane
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Iinuma Mitsuo
- Departments of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Aichi, Japan
| |
Collapse
|
3
|
Hsu MH, Sheen JM, Chen YC, Yu HR, Tain YL, Huang LT. Rats with prenatal dexamethasone exposure and postnatal high-fat diet exhibited insulin resistance, and spatial learning and memory impairment: effects of enriched environment. Neuroreport 2020; 31:265-273. [PMID: 32032284 DOI: 10.1097/wnr.0000000000001406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aimed to examine the combined effects of prenatal glucocorticoid exposure and a postnatal high-fat diet (HFD) on offspring brain development and metabolic disturbance. Besides, the effects of an enriched environment were assessed. Pregnant Sprague-Dawley rats were administered vehicle or dexamethasone between gestation days 14 and 21. Male offspring was then weaned onto either a standard chow or HFD. An enriched environment was implemented between postnatal days 22 and 180 in a subset of rats with prenatal dexamethasone and a postnatal HFD. Adult male offspring with prenatal exposure to dexamethasone and a postnatal HFD showed obesity, increased systolic blood pressure, peripheral and central insulin resistance, and spatial learning and memory impairment detected by Morris water maze. An enriched environment displayed beneficial effects in reducing body weight, decreasing systolic blood pressure, reducing insulin resistance, ameliorating brain molecular alterations, and alleviating spatial deficit in rats with prenatal dexamethasone and a postnatal HFD. In conclusion, adult male offspring with prenatal dexamethasone exposure and a postnatal HFD showed obesity, increased systolic blood pressure, peripheral and central insulin resistance, and spatial learning and memory impairment. In addition, an enriched environment had beneficial effects in this context.
Collapse
Affiliation(s)
- Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Department of Medicine, Chang Gung University, Linkou, Taiwan
| |
Collapse
|
4
|
Viluma L. Do Cesarean Delivery rates rise when the economy declines? A test of the economic stress hypothesis. ECONOMICS AND HUMAN BIOLOGY 2020; 36:100816. [PMID: 31542347 DOI: 10.1016/j.ehb.2019.100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
A growing body of research supports the Barker hypothesis that adverse conditions around the time of birth have a negative effect on health. Nevertheless, the mechanisms linking early life conditions with health are still unclear. This paper investigates one of such potential mechanisms, specifically, ambient stress, by analyzing the effect of economic downturns as a stressor on the probability of Cesarean Delivery (CD). I focus particularly on male CD since the literature reports that male fetuses are more sensitive to stressors in utero than female fetuses. Using data from Lifelines, a large cohort study from the northern Netherlands, I show that the probability of CD for male babies increases when unemployment levels rise. This result suggests that maternal stress might be one of the mechanisms how early life economic conditions affect health.
Collapse
Affiliation(s)
- Laura Viluma
- Department of Economics, VU Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Vataeva LA, Tyulkova EI, Alekhin AN, Stratilov VA. Effects of Hypoxia or Dexamethasone at Different Gestation Periods on Fear Conditioning in Adult Rats. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093018060030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kubo KY, Suzuki A, Iinuma M, Sato Y, Nagashio R, Ohta E, Azuma K. Vulnerability to stress in mouse offspring is ameliorated when pregnant dams are provided a chewing stick during prenatal stress. Arch Oral Biol 2018; 97:150-155. [PMID: 30390464 DOI: 10.1016/j.archoralbio.2018.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate whether maternal chewing during prenatal stress alters the responsivity of young offspring to novel stress, we examined the expression of hippocampal glucocorticoid receptors and mineralocorticoid receptors, and the levels of hypothalamic corticotropin-releasing hormone in young adult mouse offspring of dams exposed to restraint stress during pregnancy. DESIGN To induce stress, the dams were placed in a ventilated restraint tube for 45 min each day from day 12 of pregnancy through parturition. While restrained in the tube, one group of dams was provided a wooden stick for chewing. Hippocampal expression of glucocorticoid receptor and mineralocorticoid receptor messenger ribonucleic acid was assessed in 1-month-old pups. Hypothalamic expression of corticotropin-releasing hormone messenger ribonucleic acid was examined before and after exposing the offspring to a novel stressor. RESULTS Prenatal stress significantly decreased hippocampal expression of both glucocorticoid receptor and mineralocorticoid receptor messenger ribonucleic acid in the offspring, and increased the expression of corticotropin-releasing hormone messenger ribonucleic acid in the hypothalamic paraventricular nucleus in the offspring after novel stress exposure. Maternal chewing during exposure to prenatal stress attenuated the decreased hippocampal expression of both glucocorticoid receptor and mineralocorticoid receptor messenger ribonucleic acid, and the increased corticotropin-releasing hormone messenger ribonucleic acid expression in the hypothalamic paraventricular nucleus in the offspring. CONCLUSIONS Downregulation of hippocampal glucocorticoid receptor and mineralocorticoid receptor expression in offspring due to prenatal stress, which may be associated with increased susceptibility to novel stress in adulthood, are attenuated by allowing the dams to chew on a wooden stick.
Collapse
Affiliation(s)
- Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, 3-40, Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8610, Japan.
| | - Ayumi Suzuki
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Science, 1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan; R & D Center for Cell Design, Institute for Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ryo Nagashio
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Science, 1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan; R & D Center for Cell Design, Institute for Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Etsuro Ohta
- R & D Center for Cell Design, Institute for Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan; Department of Immunology, Kitasato University School of Allied Health Sciences, Kitasato, 1-15-1, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
7
|
Slotkin TA, Ko A, Seidler FJ. Does growth impairment underlie the adverse effects of dexamethasone on development of noradrenergic systems? Toxicology 2018; 408:11-21. [PMID: 29935188 DOI: 10.1016/j.tox.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
Glucocorticoids are given in preterm labor to prevent respiratory distress but these agents evoke neurobehavioral deficits in association with reduced brain region volumes. To determine whether the neurodevelopmental effects are distinct from growth impairment, we gave developing rats dexamethasone at doses below or within the therapeutic range (0.05, 0.2 or 0.8 mg/kg) at different stages: gestational days (GD) 17-19, postnatal days (PN) 1-3 or PN7-9. In adolescence and adulthood, we assessed the impact on noradrenergic systems in multiple brain regions, comparing the effects to those on somatic growth or on brain region growth. Somatic growth was reduced with exposure in all three stages, with greater sensitivity for the postnatal regimens; brain region growth was impaired to a lesser extent. Norepinephrine content and concentration were reduced depending on the treatment regimen, with a rank order of deficits of PN7-9 > PN1-3 > GD17-19. However, brain growth impairment did not parallel reduced norepinephrine content in magnitude, dose threshold, sex or regional selectivity, or temporal pattern, and even when corrected for reduced brain region weights (norepinephrine per g tissue), the dexamethasone-exposed animals showed subnormal values. Regression analysis showed that somatic growth impairment accounted for an insubstantial amount of the reduction in norepinephrine content, and brain growth impairment accounted for only 12%, whereas specific effects on norepinephrine accounted for most of the effect. The adverse effects of dexamethasone on noradrenergic system development are not simply related to impaired somatic or brain region growth, but rather include specific targeting of neurodifferentiation.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| | - Ashley Ko
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
8
|
Knight BS, Pennell CE, Shah R, Lye SJ. Strain Differences in the Impact of Dietary Restriction on Fetal Growth and Pregnancy in Mice. Reprod Sci 2016; 14:81-90. [PMID: 17636220 DOI: 10.1177/1933719106298217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The association between suboptimal intrauterine environment and developmental origins of adult health and disease is variable, suggesting that genotype may contribute to eventual outcome. The objective of this study was to characterize maternal and fetal responses to maternal dietary restriction during pregnancy in 2 phylogenetically distant strains of mice. Pregnant A/J (n=35) and C57BL/6J (B6) (n=36) mice underwent either a 30% dietary restriction (DR) from day 6.5 until day 17.5 of gestation or were fed ad libitum. Seven mothers from each strain and diet were randomly selected for dissection on day 18.5 to assess fetal body and organ weights and maternal endocrine status through the collection of serum to measure progesterone, corticosterone, cortisol, and estradiol levels. The remaining mice were allowed to deliver spontaneously to assess gestational effects. Both strains showed similar responses to maternal DR during pregnancy in terms of reductions in maternal weight gain during pregnancy, reductions in fetal body weight, increased pup death within 24 hours of birth, and decreased placental 11beta-HSD2 protein expression. The impact of maternal DR was greater in B6 mice than A/J when assessing reductions in fetal kidney weight, embryo-placenta ratio, increases in placental weight, fetal brain-liver ratio, and maternal corticosterone and cortisol levels. Moreover, preterm delivery was significantly increased in DR B6 mice compared to DR A/J mice. The observed strain variations in response to dietary restriction may offer a unique opportunity to investigate gene-environment interactions associated with developmental origins of adult health and disease.
Collapse
Affiliation(s)
- Brian S Knight
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Postnatal high-fat diet leads to spatial deficit, obesity, and central and peripheral inflammation in prenatal dexamethasone adult offspring rats. Neuroreport 2016; 27:818-25. [DOI: 10.1097/wnr.0000000000000620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ahmed RG. Gestational dexamethasone alters fetal neuroendocrine axis. Toxicol Lett 2016; 258:46-54. [PMID: 27220267 DOI: 10.1016/j.toxlet.2016.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
This study tested whether the maternal transport of dexamethasone (DEXA) may affect the development of the neuroendocrine system. DEXA (0.2mg/kg b.w., subcutaneous injection) was administered to pregnant rats from gestation day (GD) 1-20. In the DEXA-treated group, a decrease in maternal serum thyroxine (T4), triiodothyronine (T3), and increase in thyrotropin (TSH) levels (hypothyroid status) were observed at GDs 15 & 20 with respect to control group. The reverse pattern (hyperthyroid status) was observed in their fetuses at embryonic days (EDs) 15 & 20. Although the maternal body weight was diminished, the weight of the thyroid gland was increased at studied GDs as compared to the control group. The fetal growth retardation, hyperleptinemia, hyperinsulinism, and cytokines distortions (transforming growth factor-beta; TGF-β, tumor necrosis factor-alpha; TNF-α, and interferon-γ; IFN-γ) were noticed at examined EDs if compared to the control group. Alternatively, the maternofetal thyroid dysfunctions due to the maternal DEXA administration attenuated the levels of fetal cerebral norepinephrine (NE) and epinephrine (E), and elevated the levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) at considered days. These alterations were age-dependent and might damage the nerve transmission. Finally, maternal DEXA might act as neuroendocrine disruptor causing dyshormonogenesis and fetal cerebral dysfunction.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
11
|
Janevski MR, Vujičić AĐ, Đukić SM. Salivary Cortisol as a Biomarker of Stress in Mothers and their Low Birth Weight Infants and Sample Collecting Challenges. J Med Biochem 2016; 35:118-122. [PMID: 28356870 PMCID: PMC5346787 DOI: 10.1515/jomb-2015-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/08/2015] [Indexed: 11/30/2022] Open
Abstract
Background Salivary cortisol measurement is a non-invasive method suitable for use in neonatal research. Mother-infant separation after birth represents stress and skin-to-skin contact (SSC) has numerous benefits. The aim of the study was to measure salivary cortisol in mothers and newborns before and after SSC in order to assess the effect of SSC on mothers’ and infants’ stress and to estimate the efficacy of collecting small saliva samples in newborns. Methods Salivary cortisol was measured in 35 mother-infant pairs before and after the first and the fifth SSC in small saliva samples (50 μL) using the high sensitivity Quantitative ELISA-Kit (0.0828 nmol/L) for low cortisol levels detection. Samples were collected with eye sponge during 3 to 5 minutes. Results Cortisol level in mothers decreased after SSC: the highest levels were measured before and the lowest after SSC and the differences in values were significant during both the first (p<0.001) and the fifth SSC (p<0.001). During the first SSC the cortisol level decrease was detected in 14 (40%) and an increase in 21 (60%) newborns, and during the fifth SSC a decrease was detected in 16 (45.7%) and an increase in 19 (54.3%) newborns, without confirmed significance of the difference. Saliva sampling efficacy using eye sponge was 75%. Conclusions Cortisol level decrease in mothers proves the stress reduction during SSC, while variable cortisol levels in infants do not indicate stress reduction and imply the need for further research. The used sampling method appeared to be one of the most optimal considering the sample volume, sampling time and efficacy.
Collapse
Affiliation(s)
| | | | - Svjetlana Maglajić Đukić
- University Children's Hospital, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
12
|
Bivol S, Owen SJ, Rose'Meyer RB. Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development. Reprod Fertil Dev 2016; 29:RD15356. [PMID: 26844822 DOI: 10.1071/rd15356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.
Collapse
|
13
|
Slotkin TA, Skavicus S, Seidler FJ. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos. Toxicology 2015; 338:8-16. [PMID: 26419632 DOI: 10.1016/j.tox.2015.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 11/20/2022]
Abstract
We examined whether nicotine or dexamethasone, common prenatal drug exposures, sensitize the developing brain to chlorpyrifos. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. In a parallel study, we administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg) used in the management of preterm labor, followed by postnatal chlorpyrifos. We evaluated cerebellar noradrenergic projections, a known target for each agent, and contrasted the effects with those in the cerebral cortex. Either drug augmented the effect of chlorpyrifos, evidenced by deficits in cerebellar β-adrenergic receptors; the receptor effects were not due to increased systemic toxicity or cholinesterase inhibition, nor to altered chlorpyrifos pharmacokinetics. Further, the deficits were not secondary adaptations to presynaptic hyperinnervation/hyperactivity, as there were significant deficits in presynaptic norepinephrine levels that would serve to augment the functional consequence of receptor deficits. The pretreatments also altered development of cerebrocortical noradrenergic circuits, but with a different overall pattern, reflecting the dissimilar developmental stages of the regions at the time of exposure. However, in each case the net effects represented a change in the developmental trajectory of noradrenergic circuits, rather than simply a continuation of an initial injury. Our results point to the ability of prenatal drug exposure to create a subpopulation with heightened vulnerability to environmental neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Samantha Skavicus
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
The impact of maternal synthetic glucocorticoid administration in late pregnancy on fetal and early neonatal hypothalamic-pituitary-adrenal axes regulatory genes is dependent upon dose and gestational age at exposure. J Dev Orig Health Dis 2015; 4:77-89. [PMID: 25080184 DOI: 10.1017/s2040174412000591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we determined the gene and/or protein expression of hypothalamic-pituitary-adrenal (HPA) axis regulatory molecules following synthetic glucocorticoid exposures. Pregnant sheep received intramuscular saline or betamethasone (BET) injections at 104 (BET-1), 104 and 111(BET-2) or 104, 111 and 118 (BET-3) days of gestation (dG). Samples were collected at numerous time-points between 75 dG and 12 weeks postnatal age. In the BET-3 treatment group, fetal plasma cortisol levels were lower at 145 dG than controls and gestational length was lengthened significantly. The cortisol:adrenocorticotropic hormone (ACTH) ratio in fetal plasma of control and BET-3 fetuses rose significantly between132 and 145 dG, and remained elevated in lambs at 6 and 12 weeks of age; this rise was truncated at day 145 in fetuses of BET-3 treated mothers. After BET treatment, fetal and postnatal pituitary proopiomelanocortin mRNA levels were reduced from 109 dG to 12 weeks postnatal age; pituitary prohormone convertase 1 and 2 mRNA levels were reduced at 145 dG and postnatally; hypothalamic arginine vasopressin mRNA levels were lowered at all time-points, but corticotrophin-releasing hormone mRNA levels were reduced only in postnatal lambs. Maternal BET increased late fetal and/or postnatal adrenal mRNA levels of ACTH receptor and 3β hydroxysteroid dehydrogenase but decreased steroidogenic acute regulatory protein and P450 17-α hydroxylase. The altered mRNA levels of key HPA axis regulatory proteins after maternal BET injections suggests processes that may subserve long-term changes in HPA activity in later life after prenatal exposure to synthetic glucocorticoids.
Collapse
|
15
|
Lui CC, Hsu MH, Kuo HC, Chen CC, Sheen JM, Yu HR, Tiao MM, Tain YL, Chang KA, Huang LT. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels. Dev Neurosci 2015; 37:105-14. [PMID: 25720733 DOI: 10.1159/000368768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Prenatal glucocorticoid exposure causes brain damage in adult offspring; however, the underlying mechanisms remain unclear. Melatonin has been shown to have beneficial effects in compromised pregnancies. Pregnant Sprague-Dawley rats were administered vehicle (VEH) or dexamethasone between gestation days 14 and 21. The programming effects of prenatal dexamethasone exposure on the brain were assessed at postnatal days (PND) 7, 42, and ∼120. Melatonin was administered from PND21 to the rats exposed to dexamethasone, and the outcome was assessed at ∼PND120. In total, there were four groups: VEH, vehicle plus melatonin (VEHM), prenatal dexamethasone-exposure (DEX), and prenatal dexamethasone exposure plus melatonin (DEXM). Spatial memory, gross hippocampal morphology, and hippocampal biochemistry were examined. Spatial memory assessed by the Morris water maze showed no significant differences among the four groups. Brain magnetic resonance imaging showed that all rats with prenatal dexamethasone exposure (DEX + DEXM) exhibited increased T2-weighted signals in the hippocampus. There were no significant differences in the levels of mRNA expression of hippocampal reln, which encodes reelin, and GAD1, which encodes glutamic acid decarboxylase 67, at PND7. At both PND42 and ∼PND120, reln and GAD1 mRNA expression levels were decreased. At ∼PND120, melatonin restored the reduced levels of hippocampal reln and GAD1 mRNA expression in the DEXM group. In addition, melatonin restored the reln mRNA expression levels by (1) reducing DNA methyltransferase 1 (DNMT1) mRNA expression and (2) reducing the binding of DNMT1 and the methyl-CpG binding protein 2 (MeCP2) to the reln promoter. The present study showed that prenatal dexamethasone exposure induced gross alterations in hippocampal morphology and reduced the levels of hippocampal mRNA expression of reln and GAD1. Spatial memory was unimpaired. Thus, melatonin had a beneficial effect in restoring hippocampal reln mRNA expression by reducing DNMT1 and MeCP2 binding to the reln promoter.
Collapse
Affiliation(s)
- Chun-Chung Lui
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bruckner TA, Cheng YW, Singh A, Caughey AB. Economic downturns and male cesarean deliveries: a time-series test of the economic stress hypothesis. BMC Pregnancy Childbirth 2014; 14:198. [PMID: 24906208 PMCID: PMC4059074 DOI: 10.1186/1471-2393-14-198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/29/2014] [Indexed: 03/24/2023] Open
Abstract
Background In light of the recent Great Recession, increasing attention has focused on the health consequences of economic downturns. The perinatal literature does not converge on whether ambient economic declines threaten the health of cohorts in gestation. We set out to test the economic stress hypothesis that the monthly count of cesarean deliveries (CD), which may gauge the level of fetal distress in a population, rises after the economy declines. We focus on male CD since the literature reports that male more than female fetuses appear sensitive to stressors in utero. Methods We tested our ecological hypothesis in California for 228 months from January 1989 to December 2007, the most recent data available to us at the time of our tests. We used as the independent variable the Bureau of Labor Statistics unadjusted total state employment series. Time-series methods controlled for patterns of male CD over time. We also adjusted for the monthly count of female CD, which controls for well-characterized factors (e.g., medical-legal environment, changing risk profile of births) that affect CD but are shared across infant sex. Results Findings support the economic stress hypothesis in that male CD increases above its expected value one month after employment declines (employment coefficient = -24.09, standard error = 11.88, p = .04). Additional exploratory analyses at the metropolitan level indicate that findings in Los Angeles and Orange Counties appear to drive the State-level relation. Conclusions Contracting economies may perturb the health of male more than female fetuses sufficiently enough to warrant more CD. Male relative to female CD may sensitively gauge the cohort health of gestations.
Collapse
Affiliation(s)
- Tim A Bruckner
- Public Health & Planning, Policy and Design, University of California, Irvine, 202 Social Ecology I, Irvine, CA 92697-7075, USA.
| | | | | | | |
Collapse
|
17
|
Braun T, Challis JR, Newnham JP, Sloboda DM. Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr Rev 2013; 34:885-916. [PMID: 23970762 DOI: 10.1210/er.2013-1012] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An adverse early-life environment is associated with long-term disease consequences. Adversity early in life is hypothesized to elicit developmental adaptations that serve to improve fetal and postnatal survival and prepare the organism for a particular range of postnatal environments. These processes, although adaptive in their nature, may later prove to be maladaptive or disadvantageous if the prenatal and postnatal environments are widely discrepant. The exposure of the fetus to elevated levels of either endogenous or synthetic glucocorticoids is one model of early-life adversity that contributes substantially to the propensity of developing disease. Moreover, early-life glucocorticoid exposure has direct clinical relevance because synthetic glucocorticoids are routinely used in the management of women at risk of early preterm birth. In this regard, reports of adverse events in human newborns have raised concerns about the safety of glucocorticoid treatment; synthetic glucocorticoids have detrimental effects on fetal growth and development, childhood cognition, and long-term behavioral outcomes. Experimental evidence supports a link between prenatal exposure to synthetic glucocorticoids and alterations in fetal development and changes in placental function, and many of these alterations appear to be permanent. Because the placenta is the conduit between the maternal and fetal environments, it is likely that placental function plays a key role in mediating effects of fetal glucocorticoid exposure on hypothalamic-pituitary-adrenal axis development and long-term disease risk. Here we review recent insights into how the placenta responds to changes in the intrauterine glucocorticoid environment and discuss possible mechanisms by which the placenta mediates fetal hypothalamic-pituitary-adrenal development, metabolism, cardiovascular function, and reproduction.
Collapse
Affiliation(s)
- Thorsten Braun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, 1280 Main Street West, HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1.
| | | | | | | |
Collapse
|
18
|
Slotkin TA, Card J, Seidler FJ. Prenatal dexamethasone, as used in preterm labor, worsens the impact of postnatal chlorpyrifos exposure on serotonergic pathways. Brain Res Bull 2013; 100:44-54. [PMID: 24280657 DOI: 10.1016/j.brainresbull.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/21/2013] [Accepted: 10/28/2013] [Indexed: 11/29/2022]
Abstract
This study explores how glucocorticoids sensitize the developing brain to the organophosphate pesticide, chlorpyrifos. Pregnant rats received a standard therapeutic dose (0.2mg/kg) of dexamethasone on gestational days 17-19; pups were given subtoxic doses of chlorpyrifos on postnatal days 1-4 (1mg/kg, <10% cholinesterase inhibition). We evaluated serotonin (5HT) synaptic function from postnatal day 30 to day 150, assessing the expression of 5HT receptors and the 5HT transporter, along with 5HT turnover (index of presynaptic impulse activity) in brain regions encompassing all the 5HT projections and cell bodies. These parameters are known targets for neurodevelopmental effects of dexamethasone and chlorpyrifos individually. In males, chlorpyrifos evoked overall elevations in the expression of 5HT synaptic proteins, with a progressive increase from adolescence to adulthood; this effect was attenuated by prenatal dexamethasone treatment. The chlorpyrifos-induced upregulation was preceded by deficits in 5HT turnover, indicating that the receptor upregulation was an adaptive response to deficient presynaptic activity. Turnover deficiencies were magnified by dexamethasone pretreatment, worsening the functional impairment caused by chlorpyrifos. In females, chlorpyrifos-induced receptor changes reflected relative sparing of adverse effects compared to males. Nevertheless, prenatal dexamethasone still worsened the 5HT turnover deficits and reduced 5HT receptor expression in females, demonstrating the same adverse interaction. Glucocorticoids are used in 10% of U.S. pregnancies, and are also elevated in maternal stress; accordingly, our results indicate that this group represents a large subpopulation that may have heightened vulnerability to developmental neurotoxicants such as the organophosphates.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| | - Jennifer Card
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Frederic J Seidler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Prenatal dexamethasone augments the neurobehavioral teratology of chlorpyrifos: significance for maternal stress and preterm labor. Neurotoxicol Teratol 2013; 41:35-42. [PMID: 24177596 DOI: 10.1016/j.ntt.2013.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/23/2022]
Abstract
Glucocorticoids are the consensus treatment given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so human developmental coexposures to these two agents are common. This study explores how prenatal dexamethasone exposure modifies the neurobehavioral teratology of chlorpyrifos, one of the most widely used organophosphates. We administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2 mg/kg); offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1 mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. Dexamethasone did not alter brain chlorpyrifos concentrations, nor did either agent alone or in combination affect brain thyroxine levels. Assessments were carried out from adolescence through adulthood encompassing T-maze alternation, Figure 8 maze (locomotor activity, habituation), novelty-suppressed feeding and novel object recognition tests. For behaviors where chlorpyrifos or dexamethasone individually had small effects, the dual exposure produced larger, significant effects that reflected additivity (locomotor activity, novelty-suppressed feeding, novel object recognition). Where the individual effects were in opposite directions or were restricted to only one agent, we found enhancement of chlorpyrifos' effects by prenatal dexamethasone (habituation). Finally, for behaviors where controls displayed a normal sex difference in performance, the combined treatment either eliminated or reversed the difference (locomotor activity, novel object recognition). Combined exposure to dexamethasone and chlorpyrifos results in a worsened neurobehavioral outcome, providing a proof-of-principle that prenatal glucocorticoids can create a subpopulation with enhanced vulnerability to environmental toxicants.
Collapse
|
20
|
Rose'meyer R. A review of the serotonin transporter and prenatal cortisol in the development of autism spectrum disorders. Mol Autism 2013; 4:37. [PMID: 24103554 PMCID: PMC3852299 DOI: 10.1186/2040-2392-4-37] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/13/2013] [Indexed: 01/28/2023] Open
Abstract
The diagnosis of autism spectrum disorder (ASD) during early childhood has a profound effect not only on young children but on their families. Aside from the physical and behavioural issues that need to be dealt with, there are significant emotional and financial costs associated with living with someone diagnosed with ASD. Understanding how autism occurs will assist in preparing families to deal with ASD, if not preventing or lessening its occurrence. Serotonin plays a vital role in the development of the brain during the prenatal and postnatal periods, yet very little is known about the serotonergic systems that affect children with ASD. This review seeks to provide an understanding of the biochemistry and physiological actions of serotonin and its termination of action through the serotonin reuptake transporter (SERT). Epidemiological studies investigating prenatal conditions that can increase the risk of ASD describe a number of factors which elevate plasma cortisol levels causing such symptoms during pregnancy such as hypertension, gestational diabetes and depression. Because cortisol plays an important role in driving dysregulation of serotonergic signalling through elevating SERT production in the developing brain, it is also necessary to investigate the physiological functions of cortisol, its action during gestation and metabolic syndromes.
Collapse
Affiliation(s)
- Roselyn Rose'meyer
- School of Medical Sciences, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland 4222, Australia.
| |
Collapse
|
21
|
Zuloaga DG, Siegel JA, Acevedo SF, Agam M, Raber J. Developmental methamphetamine exposure results in short- and long-term alterations in hypothalamic-pituitary-adrenal-axis-associated proteins. Dev Neurosci 2013; 35:338-46. [PMID: 23860125 DOI: 10.1159/000351278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Developmental exposure to methamphetamine (MA) causes long-term behavioral and cognitive deficits. One pathway through which MA might induce these deficits is by elevating glucocorticoid levels. Glucocorticoid overexposure during brain development can lead to long-term disruptions in the hypothalamic-pituitary-adrenal (HPA) axis. These disruptions affect the regulation of stress responses and may contribute to behavioral and cognitive deficits reported following developmental MA exposure. Furthermore, alterations in proteins associated with the HPA axis, including vasopressin, oxytocin, and glucocorticoid receptors (GR), are correlated with disruptions in mood and cognition. We therefore hypothesized that early MA exposure will result in short- and long-term alterations in the expression of HPA axis-associated proteins. Male mice were treated with MA (5 mg/kg daily) or saline from postnatal day (P) 11 to P20. At P20 and P90, mice were perfused and their brains processed for vasopressin, oxytocin, and GR immunoreactivity within HPA axis-associated regions. At P20, there was a significant decrease in the number of vasopressin-immunoreactive cells and the area occupied by vasopressin immunoreactivity in the paraventricular nucleus (PVN) of MA-treated mice, but no difference in oxytocin immunoreactivity in the PVN, or GR immunoreactivity in the hippocampus or PVN. In the central nucleus of the amygdala, the area occupied by GR immunoreactivity was decreased by MA. At P90, the number of vasopressin-immunoreactive cells was still decreased, but the area occupied by vasopressin immunoreactivity no longer differed from saline controls. No effects of MA were found on oxytocin or GR immunoreactivity at P90. Thus developmental MA exposure has short- and long-term effects on vasopressin immunoreactivity and short-term effects on GR immunoreactivity.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
22
|
Slotkin TA, Card J, Seidler FJ. Adverse benzo[a]pyrene effects on neurodifferentiation are altered by other neurotoxicant coexposures: interactions with dexamethasone, chlorpyrifos, or nicotine in PC12 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:825-31. [PMID: 23603068 PMCID: PMC3702011 DOI: 10.1289/ehp.1306528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/18/2013] [Indexed: 05/26/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons are suspected developmental neurotoxicants, but human exposures typically occur in combination with other neurotoxic contaminants. OBJECTIVE AND METHODS We explored the effects of benzo[a]pyrene (BaP) on neurodifferentiation in PC12 cells, in combination with a glucocorticoid (dexamethasone, used in preterm labor), an organophosphate pesticide (chlorpyrifos), or nicotine. RESULTS In cells treated with BaP alone, the transition from cell division to neurodifferentiation was suppressed, resulting in increased cell numbers at the expense of cell growth, neurite formation, and development of dopaminergic and cholinergic phenotypes. Dexamethasone enhanced the effect of BaP on cell numbers and altered the impact on neurotransmitter phenotypes. Whereas BaP alone shifted differentiation away from the cholinergic phenotype and toward the dopaminergic phenotype, the addition of dexamethasone along with BaP did the opposite. Chlorpyrifos coexposure augmented BaP inhibition of cell growth and enhanced the BaP-induced shift in phenotype toward a higher proportion of dopaminergic cells. Nicotine had no effect on BaP-induced changes in cell number or growth, but it synergistically enhanced the BaP suppression of differentiation into both dopaminergic and cholinergic phenotypes equally. CONCLUSION Our results indicate that, although BaP can act directly as a developmental neurotoxicant, its impact is greatly modified by coexposure to other commonly encountered neurotoxicants from prenatal drug therapy, pesticides, or tobacco. Accordingly, neurodevelopmental effects attributable to polycyclic aromatic hydrocarbons may be quite different depending on which other agents are present and on their concentrations relative to each other.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710 , USA
| | | | | |
Collapse
|
23
|
Slotkin TA, Card J, Infante A, Seidler FJ. Prenatal dexamethasone augments the sex-selective developmental neurotoxicity of chlorpyrifos: implications for vulnerability after pharmacotherapy for preterm labor. Neurotoxicol Teratol 2013; 37:1-12. [PMID: 23416428 DOI: 10.1016/j.ntt.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 01/01/2023]
Abstract
Glucocorticoids are routinely given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so coexposures to these two agents are pervasive. We administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg); offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of dexamethasone and chlorpyrifos given individually. Dexamethasone did not enhance the systemic toxicity of chlorpyrifos, as evidenced by weight gain and measurements of cholinesterase inhibition during chlorpyrifos treatment. Nevertheless, it enhanced the loss of presynaptic ACh function selectively in females, who ordinarily show sparing of organophosphate developmental neurotoxicity relative to males. Females receiving the combined treatment showed decrements in choline transporter binding and choline acetyltransferase activity that were unique (not found with either treatment alone), as well as additive decrements in nicotinic receptor binding. On the other hand, males given dexamethasone showed no augmentation of the effects of chlorpyrifos. Our findings indicate that prior dexamethasone exposure could create a subpopulation that is especially vulnerable to the adverse effects of organophosphates or other developmental neurotoxicants.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
24
|
Altmann S, Murani E, Schwerin M, Metges CC, Wimmers K, Ponsuksili S. Dietary protein restriction and excess of pregnant German Landrace sows induce changes in hepatic gene expression and promoter methylation of key metabolic genes in the offspring. J Nutr Biochem 2013; 24:484-95. [DOI: 10.1016/j.jnutbio.2012.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 01/26/2012] [Indexed: 02/01/2023]
|
25
|
Chlorpyrifos developmental neurotoxicity: interaction with glucocorticoids in PC12 cells. Neurotoxicol Teratol 2012; 34:505-12. [PMID: 22796634 DOI: 10.1016/j.ntt.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
Abstract
Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on models relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuritogenesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent.
Collapse
|
26
|
Hong L, Wei N, Joshi V, Yu Y, Kim N, Krishnamachari Y, Zhang Q, Salem AK. Effects of glucocorticoid receptor small interfering RNA delivered using poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells. Tissue Eng Part A 2012; 18:775-84. [PMID: 21988716 DOI: 10.1089/ten.tea.2011.0432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) are a potential attractive source of cells for stem cell-based tissue regeneration, but the small number and reduced capabilities of MSC proliferation and differentiation due to in vitro replicative senescence and donor-associated pathophysiological factors, including age and estrogen depletion, severely restrict their potential usefulness in clinical applications. Glucocorticoids (GC) are well-known steroid hormones that regulate MSC proliferation and differentiation, but the defined effects and underlying mechanisms of endogenous glucocorticoids on MSC characteristics are not understood. This study investigated the effects of the blockage of endogenous GC using glucocorticoid receptor (GR) small interfering RNA (siRNA) delivered using biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles on proliferation and differentiation capabilities of human MSC in vitro. The results show that we can prepare PLGA microparticles as a delivery system for GR siRNA and maintain release of siRNA up to 40 days in vitro. Transfection of GR siRNA significantly downregulates GR and upregulates the expression of fibroblast growth factor-2 and Sox-11 of human MSC. MSC that have proliferated with endogenous GC blocked in vitro have greater proliferation rates and exhibit upregulated expression of osteogenic markers (alkaline phosphatase and core binding factor alpha 1) under differentiation stimulation after 1 week. Under adipogenic differentiation, MSC proliferated in vitro with siRNA transfection, resulting in significantly lower adipogenic markers (peroxisome proliferator-activated receptor and lipoprotein lipase) than controls. In conclusion, PLGA particles can serve as a tool for delivery of GR siRNA to effectively block the effects of endogenous GC on MSC, which has the potential to improve the capabilities of human MSC for clinical application by preventing replicative senescence.
Collapse
Affiliation(s)
- Liu Hong
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yu Y, Wei N, Stanford C, Schmidt T, Hong L. In vitro effects of RU486 on proliferation and differentiation capabilities of human bone marrow mesenchymal stromal cells. Steroids 2012; 77:132-7. [PMID: 22093480 PMCID: PMC3242919 DOI: 10.1016/j.steroids.2011.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/10/2011] [Accepted: 10/31/2011] [Indexed: 12/14/2022]
Abstract
Although exogenous glucocorticoids (GC) play a role in the regulation of bone marrow mesenchymal stem/stromal cells (MSCs) proliferation and differentiation, the function of endogenous GC is not well understood. The purpose of this study was to investigate the effect of the blockage of endogenous GC using RU486, an antagonist of the glucocorticoid receptor, on the in vitro proliferation and differentiation capabilities of human MSCs. We quantitatively measured cell proliferation of human MSCs after treatment with increasing concentrations of RU486. We also evaluated multiple MSC differentiation capabilities, as well as the expression of stemness and senescence genes after proliferation of these human cells in vitro in the presence of RU486 at 10(-8)M. It was observed that RU486 treatment significantly increases the proliferation of human MSCs, although the optimal dose of RU486 for this increase in proliferation differs depending on the gender of the MSC donor. This improvement in MSC proliferation with RU486 treatment was higher in MSCs from male donors than that from females. No effect of RU486 on MSC proliferation was observed in a steroid-free medium. RU486 pretreatment significantly increased the expression of mRNA for alkaline phosphatase in human MSCs and the mRNA expression of osteocalcin of these cells up-regulated earlier after their exposure to osteogenic differentiation medium. Although no statistical significance in terms of chondrogenic differentiation markers was detected, mRNA expression for aggrecan and collagen type 2 were higher in a majority of the RU486-pretreated donor MSCs than their untreated controls. No significant difference in terms of MSC adipogenic differentiation capabilities were observed after RU486 treatment. RU486 treatment up-regulated the expressions of FGF-2 and Sox-11 in human MSCs. These results indicate that blockage of endogenous GCs may be developed as a novel approach to effectively improve the proliferation and osteochondral differentiation capabilities of human MSCs for potential clinical applications. Additional studies will be required to determine the potential long-term effects of RU486 treatment on these bone marrow cells.
Collapse
Affiliation(s)
- Yang Yu
- Dows Institute for Dental Research, College of Dentistry, University of Iowa
| | - Na Wei
- Dows Institute for Dental Research, College of Dentistry, University of Iowa
| | - Clark Stanford
- Dows Institute for Dental Research, College of Dentistry, University of Iowa
| | - Thomas Schmidt
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa
| | - Liu Hong
- Dows Institute for Dental Research, College of Dentistry, University of Iowa
- Corresponding author: Liu Hong, M.D., Ph.D. Dows Institute for Dental Research, College of Dentistry, The University of Iowa 405N, DSB, 801 Newton Ave, Iowa City, IA 52242 Phone: 319-384-1756 Fax: 319-335-8895
| |
Collapse
|
28
|
A common cause for a common phenotype: the gatekeeper hypothesis in fetal programming. Med Hypotheses 2011; 78:88-94. [PMID: 22047985 PMCID: PMC3426771 DOI: 10.1016/j.mehy.2011.09.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/29/2011] [Indexed: 01/07/2023]
Abstract
Sub-optimal nutrition during pregnancy has been shown to have long-term effects on the health of offspring in both humans and animals. The most common outcomes of such programming are hypertension, obesity, dyslipidaemia and insulin resistance. This spectrum of disorders, collectively known as metabolic syndrome, appears to be the consequence of nutritional insult during early development, irrespective of the nutritional stress experienced. For example, diets low in protein diet, high in fat, or deficient in iron are all associated with programming of cardiovascular and metabolic disorders when fed during rat pregnancy. In this paper, we hypothesise that the nutritional stresses act on genes or gene pathways common to all of the insults. We have termed these genes and/or gene pathways the “gatekeepers” and hence developed the “gatekeeper hypothesis”. In this paper, we examine the background to the hypothesis and postulate some possible mechanisms or pathways that may constitute programming gatekeepers.
Collapse
|
29
|
Brunton PJ, Russell JA. Neuroendocrine control of maternal stress responses and fetal programming by stress in pregnancy. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1178-91. [PMID: 21216265 DOI: 10.1016/j.pnpbp.2010.12.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/30/2010] [Accepted: 12/31/2010] [Indexed: 02/07/2023]
Abstract
The major changes in highly dynamic neuroendocrine systems that are essential for establishing and maintaining pregnancy are outlined from studies on rodents. These changes optimise the internal environment to provide the life support system for the placenta, embryo and fetus. These include automatic prevention of further pregnancy, blood volume expansion, increased appetite and energy storage. The brain regulates these changes, in response to steroid (estrogens, progesterone) and peptide (lactogens, relaxin) hormone signals. Activation of inhibitory endogenous opioid mechanisms in the brain in late pregnancy restrains premature secretion of oxytocin, and attenuates hypothalamo-pituitary-adrenal (HPA) responses to stress. This opioid mechanism is activated by allopregnanolone, a neuroactive progesterone metabolite. The significance of reduced HPA axis responses in shifting maternal metabolic balance, and in protecting the fetuses from adverse programming of HPA axis stress responsiveness and anxious behaviour in later life is critically discussed. Experimental studies showing sex-dependent fetal programming by maternal stress or glucocorticoid exposure in late pregnancy are reviewed. The possibility of over-writing programming in offspring through neurosteroid administration is discussed. The impact of maternal stress on placental function is considered in the context of reconciling studies that show offspring programming by stress in very early or late pregnancy produce similar phenotypes in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH89XD, UK
| | | |
Collapse
|
30
|
Frye CA, Paris JJ, Osborne DM, Campbell JC, Kippin TE. Prenatal Stress Alters Progestogens to Mediate Susceptibility to Sex-Typical, Stress-Sensitive Disorders, such as Drug Abuse: A Review. Front Psychiatry 2011; 2:52. [PMID: 22022315 PMCID: PMC3195272 DOI: 10.3389/fpsyt.2011.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/10/2011] [Indexed: 01/06/2023] Open
Abstract
Maternal-offspring interactions begin prior to birth. Experiences of the mother during gestation play a powerful role in determining the developmental programming of the central nervous system. In particular, stress during gestation alters developmental programming of the offspring resulting in susceptibility to sex-typical and stress-sensitive neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. However, neither these effects, nor the underlying mechanisms, are well understood. Our hypothesis is that allopregnanolone, during gestation, plays a particularly vital role in mitigating effects of stress on the developing fetus and may mediate, in part, alterations apparent throughout the lifespan. Specifically, altered balance between glucocorticoids and progestogens during critical periods of development (stemming from psychological, immunological, and/or endocrinological stressors during gestation) may permanently influence behavior, brain morphology, and/or neuroendocrine-sensitive processes. 5α-reduced progestogens are integral in the developmental programming of sex-typical, stress-sensitive, and/or disorder-relevant phenotypes. Prenatal stress (PNS) may alter these responses and dysregulate allopregnanolone and its normative effects on stress axis function. As an example of a neurodevelopmental, neuropsychiatric, and/or neurodegenerative process, this review focuses on responsiveness to drugs of abuse, which is sensitive to PNS and progestogen milieu. This review explores the notion that allopregnanolone may effect, or be influenced by, PNS, with consequences for neurodevelopmental-, neuropsychiatric-, and/or neurodegenerative- relevant processes, such as addiction.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, University at Albany-State University of New York Albany, NY, USA
| | | | | | | | | |
Collapse
|
31
|
Developmental expression of multidrug resistance phosphoglycoprotein (P-gp) in the mouse fetal brain and glucocorticoid regulation. Brain Res 2010; 1357:9-18. [DOI: 10.1016/j.brainres.2010.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 02/04/2023]
|
32
|
Sliwowska JH, Barker JM, Barha CK, Lan N, Weinberg J, Galea LAM. Stress-induced suppression of hippocampal neurogenesis in adult male rats is altered by prenatal ethanol exposure. Stress 2010; 13:301-13. [PMID: 20536332 PMCID: PMC4833451 DOI: 10.3109/10253890903531582] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In adulthood, both alcohol (ethanol) and stress are known to suppress hippocampal neurogenesis in male rats. Similarly, most studies report that prenatal alcohol exposure (PAE) reduces cell proliferation and/or cell survival in the hippocampus of adult males. Furthermore, PAE is known to have marked effects on behavioral and hypothalamic-pituitary-adrenal (HPA) responsiveness to stressors. However, no studies have examined the modulation of adult hippocampal neurogenesis by stress in PAE animals. We hypothesized that, in accordance with previous data, PAE would suppress basal levels of adult hippocampal neurogenesis, and further that stress acting on a sensitized HPA axis would have greater adverse effects on adult hippocampal neurogenesis in PAE than in control rats. Adult male offspring from PAE, pair-fed (PF) control, and ad libitum-fed control (C) groups were subjected to restraint stress (9 days, 1 h/day) or left undisturbed. Rats were then injected with bromodeoxyuridine (BrdU) on day 10, perfused 24 h (proliferation) or 3 weeks (survival) later, and brains processed for BrdU immunohistochemistry. We found that (1) under non-stressed conditions, PAE rats had a small but statistically significant suppressive effect on levels of hippocampal neurogenesis and (2) unexpectedly, repeated restraint stress significantly reduced neurogenesis in C and PF, but not PAE rats. We speculate that the failure of PAE males to mount an appropriate (i.e. suppressive) neurogenic response to stressors, implies reduced plasticity and adaptability or resilience, which could impact negatively on hippocampal structure and function.
Collapse
Affiliation(s)
- J H Sliwowska
- Department of Cellular and Physiological Sciences, The University of the British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Bruckner TA, Catalano R, Ahern J. Male fetal loss in the U.S. following the terrorist attacks of September 11, 2001. BMC Public Health 2010; 10:273. [PMID: 20500812 PMCID: PMC2889867 DOI: 10.1186/1471-2458-10-273] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 05/25/2010] [Indexed: 11/13/2022] Open
Abstract
Background The secondary sex ratio (i.e., the odds of a male birth) reportedly declines following natural disasters, pollution events, and economic collapse. It remains unclear whether this decline results from an excess of male fetal loss or reduced male conceptions. The literature also does not converge as to whether the terrorist attacks of September 11, 2001 induced "communal bereavement", or the widespread feeling of distress among persons who never met those directly involved in the attacks. We test the communal bereavement hypothesis among gravid women by examining whether male fetal deaths rose above expected levels in the US following September 11, 2001. Methods We apply interrupted time-series methods to all fetal deaths at or greater than the 20th week of gestation in the US from 1996 to 2002. Time-series methods control for trends, seasonality, and other forms of autocorrelation that could induce spurious associations. Results Results support the hypothesis in that the fetal death sex ratio (i.e., the odds of a male fetal death) increased above its expected value in September 2001. Additional analysis of the secondary sex ratio indirectly supports that the terrorist attacks may have threatened the gestation of male more than female fetuses. Conclusions Societal responses to events such as September 11, 2001 do not appear confined only to persons who have ever met the deceased. The fetal death sex ratio in the US population may serve as a sentinel indicator of the degree to which pregnant women react to population stressors.
Collapse
Affiliation(s)
- Tim A Bruckner
- Public Health & Planning, Policy and Design, University of California at Irvine, Irvine, CA, USA.
| | | | | |
Collapse
|
34
|
Hellemans KG, Sliwowska J, Verma P, Weinberg J. Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci Biobehav Rev 2010; 34:791-807. [PMID: 19545588 PMCID: PMC5518679 DOI: 10.1016/j.neubiorev.2009.06.004] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 06/01/2009] [Accepted: 06/11/2009] [Indexed: 01/21/2023]
Abstract
Children with fetal alcohol spectrum disorder (FASD) exhibit cognitive, neuropsychological and behavioral problems, and numerous secondary disabilities including depression and anxiety disorders. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is common in depression/anxiety, reflected primarily in increased HPA tone or activity. Prenatal alcohol exposure (PAE) increases HPA tone and results in HPA dysregulation throughout life, paralleling many of the HPA changes in depression/anxiety. We review data demonstrating altered HPA function and increased depression/anxiety in FASD. In the context of the stress-diathesis model, we discuss the hypothesis that fetal programming of the HPA axis by PAE alters neuroadaptive mechanisms that mediate the stress response, thus sensitizing the organism to stressors encountered later in life, and mediating, at least partly, the increased vulnerability to depression/anxiety disorders. Furthermore, we present evidence demonstrating sex-specific alterations in both hormonal and behavioral responsiveness to tasks measuring depressive- and anxiety-like behaviors in PAE offspring. Overall, the research suggests that the stress-diathesis model provides a powerful approach for elucidating mechanisms underlying the increased vulnerability to mental illness among individuals with FASD, and developing appropriate treatments for these individuals. Dr. Seymour Levine's seminal work on the long-term consequences of early life experiences formed a framework for the development of the research described in this review.
Collapse
Affiliation(s)
- Kim G.C. Hellemans
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3
- Department of Psychology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Joanne Sliwowska
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3
| | - Pamela Verma
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3
| |
Collapse
|
35
|
Dunn E, Kapoor A, Leen J, Matthews SG. Prenatal synthetic glucocorticoid exposure alters hypothalamic-pituitary-adrenal regulation and pregnancy outcomes in mature female guinea pigs. J Physiol 2010; 588:887-99. [PMID: 20064858 DOI: 10.1113/jphysiol.2009.182139] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Preterm delivery occurs in approximately 10% of all pregnancies. Prenatal exposure to synthetic glucocorticoids (sGCs) reduces the incidence of respiratory distress syndrome (RDS) in these babies. Therefore, administration of multiple courses of sGCs became common practice. Animal and human studies have demonstrated that multiple courses of sGCs can have long-term effects. While the majority of animal studies have been undertaken in male offspring, it is emerging that there are profound sex differences in the consequences of prenatal sGC exposure. To our knowledge, no studies have determined the effects of prenatal sGC exposure on hypothalamic-pituitary-adrenal (HPA) axis function in female offspring while accounting for reproductive cycle status, or determined if there are effects on pregnancy parameters. Pregnant guinea pigs were administered three courses of betamethasone (Beta), dexamethasone (Dex) or vehicle on gestational days 40/41, 50/51 and 60/61. In adulthood (age range: postnatal days 126-165), basal and activated HPA axis function were assessed at various stages of the reproductive cycle. The female offspring were then mated and underwent an undisturbed pregnancy. Females were killed in the luteal phase of the reproductive cycle following litter weaning, and molecular analysis undertaken. In the luteal phase, Beta-exposed females exhibited significantly lower basal salivary cortisol levels (P < 0.05). Dex-exposed females also exhibited significantly lower basal salivary cortisol levels during the luteal phase (P < 0.05), but increased basal salivary cortisol levels during the ostrous phase (P < 0.01). The Beta-exposed females exhibited increased glucocorticoid receptor (GR) mRNA expression in the CA1/2 region of the hippocampus (P < 0.05) and MC2R mRNA in the adrenal cortex (P < 0.05). The Dex-exposed animals exhibited higher hippocampal GR and mineralocorticoid receptor (MR) mRNA levels (P < 0.05). Beta-exposed females showed reduced fecundity (P < 0.05). In Dex-exposed females there was a lower male to female sex ratio. In conclusion, prenatal sGC exposure affects HPA axis activity, in a cycle-dependent manner, and long-term reproductive success. The clinical implications of the findings on endocrine function and pregnancy in females are profound and further follow-up is warranted in human cohorts. Furthermore, we have shown there are considerable difference in phenotypes between the Beta- and Dex-exposed females and the specific endocrine and maternal outcome is contingent on the specific sGCs administered during pregnancy.
Collapse
Affiliation(s)
- Elizabeth Dunn
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Hewitt AJ, Walker KR, Kobus SM, Poklewska-Koziell M, Reynolds JN, Brien JF. Differential effects of chronic ethanol exposure on cytochrome P450 2E1 and the hypothalamic-pituitary-adrenal axis in the maternal-fetal unit of the guinea pig. Neurotoxicol Teratol 2009; 32:164-70. [PMID: 20006703 DOI: 10.1016/j.ntt.2009.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/07/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ethanol neurobehavioural teratogenicity is a leading cause of developmental mental deficiency, in which the hippocampus is a target site of injury. The multi-faceted mechanism of ethanol teratogenicity is not completely understood. This study tested the hypothesis that chronic ethanol exposure (CEE), via chronic maternal ethanol administration, increases cytochrome P450 2E1 (CYP2E1) expression and alters hypothalamic-pituitary-adrenal (HPA) axis activity in the maternal-fetal unit during the third-trimester-equivalent of gestation. METHODS Pregnant Dunkin-Hartley-strain guinea pigs received daily oral administration of ethanol (4 g ethanol/kg maternal body weight) or isocaloric-sucrose/pair-feeding (control) throughout gestation (term, about gestational day (GD) 68). On GD 45, 55 and 65, pregnant animals were euthanized 2h after the last daily dose. Maternal and fetal body weights and fetal hippocampal brain weight were determined. Maternal and fetal samples were collected for the determination of liver CYP2E1 enzymatic activity and plasma free cortisol and ACTH concentrations. RESULTS CEE, with maternal blood ethanol concentration of 108-124 mg/dl at 2h after the last dose, decreased fetal hippocampal weight only at GD 65 and had no effect on fetal body weight compared with control. CYP2E1 activity increased with gestational age in the fetal liver microsomal and mitochondrial fractions. CEE increased CYP2E1 activity in the microsomal and mitochondrial fractions of maternal liver at the three gestational ages and in both hepatic subcellular fractions of the GD 65 fetus compared with control. There was a gestational-age-dependent increase in maternal and fetal plasma free cortisol concentrations, but no effect of CEE compared with control. Maternal and fetal plasma ACTH concentrations were unaffected by CEE compared with control, and were virtually unchanged during the third-trimester-equivalent that was studied. CONCLUSION These data demonstrate that, in the pregnant guinea pig, this CEE regimen increases liver CYP2E1 activity, without affecting HPA axis function, in the maternal-fetal unit during near-term gestation. The CEE-induced increase in liver CYP2E1 activity and potential oxidative stress in the maternal-fetal unit may play a role in the pathogenesis of ethanol teratogenicity.
Collapse
Affiliation(s)
- Amy J Hewitt
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Adigun AA, Wrench N, Seidler FJ, Slotkin TA. Neonatal dexamethasone treatment leads to alterations in cell signaling cascades controlling hepatic and cardiac function in adulthood. Neurotoxicol Teratol 2009; 32:193-9. [PMID: 19853034 DOI: 10.1016/j.ntt.2009.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
Abstract
Increasing evidence indicates that early-life glucocorticoid exposure, either involving stress or the therapy of preterm labor, contributes to metabolic and cardiovascular disorders in adulthood. We investigated cellular mechanisms underlying these effects by administering dexamethasone (DEX) to neonatal rats on postnatal (PN) days 1-3 or 7-9, using doses spanning the threshold for somatic growth impairment: 0.05, 0.2 and 0.8 mg/kg. In adulthood, we assessed the effects on hepatic and cardiac cell function mediated through the adenylyl cyclase (AC) signaling cascade, which controls neuronal and hormonal inputs that regulate hepatic glucose metabolism and cardiac contractility. Treatment on PN1-3 produced heterologous sensitization of hepatic signaling, with upregulation of AC itself leading to parallel increases in the responses to beta-adrenergic or glucagon receptor stimulation, or to activation of G-proteins by fluoride. The effects were seen at the lowest dose but increasing DEX past the point of somatic growth impairment led to loss of the effect in females. Nonmonotonic effects were also present in the heart, where males showed AC sensitization at the lowest dose, with decreasing effects as the dose was raised; females showed progressive deficits of cardiac AC activity. Shifting the exposure to PN7-9 still elicited AC sensitization but with a greater offsetting contribution at the higher doses. Our findings show that, in contrast to growth restriction, the glucocorticoids associated with stress or the therapy of preterm labor are more sensitive and more important contributors to the cellular abnormalities underlying subsequent metabolic and cardiovascular dysfunction.
Collapse
MESH Headings
- Adenosine Triphosphate/biosynthesis
- Adenylyl Cyclases/drug effects
- Adenylyl Cyclases/metabolism
- Animals
- Animals, Newborn
- Dexamethasone/toxicity
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Female
- GTP-Binding Proteins/drug effects
- GTP-Binding Proteins/metabolism
- Glucocorticoids/toxicity
- Glucose/metabolism
- Heart/drug effects
- Heart/physiopathology
- Liver/drug effects
- Liver/metabolism
- Liver/physiopathology
- Male
- Pregnancy
- Prenatal Exposure Delayed Effects/etiology
- Prenatal Exposure Delayed Effects/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Glucagon/drug effects
- Receptors, Glucagon/metabolism
- Sex Characteristics
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Time
Collapse
Affiliation(s)
- Abayomi A Adigun
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
38
|
Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 2009; 3:19. [PMID: 19826624 PMCID: PMC2759372 DOI: 10.3389/neuro.08.019.2009] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 08/10/2009] [Indexed: 12/21/2022] Open
Abstract
Numerous clinical studies associate an adverse prenatal environment with the development of cardio-metabolic disorders and neuroendocrine dysfunction, as well as an increased risk of psychiatric diseases in later life. Experimentally, prenatal exposure to stress or excess glucocorticoids in a variety of animal models can malprogram offspring physiology, resulting in a reduction in birth weight and subsequently increasing the likelihood of disorders of cardiovascular function, glucose homeostasis, hypothalamic–pituitary–adrenal (HPA) axis activity and anxiety-related behaviours in adulthood. During fetal development, placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) provides a barrier to maternal glucocorticoids. Reduced placental 11β-HSD2 in human pregnancy correlates with lower birth weight and higher blood pressure in later life. Similarly, in animal models, inhibition or knockout of placental 11β-HSD2 lowers offspring birth weight, in part by reducing glucose delivery to the developing fetus in late gestation. Molecular mechanisms thought to underlie the programming effects of early life stress and glucocorticoids include epigenetic changes in target chromatin, notably affecting tissue-specific expression of the intracellular glucocorticoid receptor (GR). As such, excess glucocorticoids in early life can permanently alter tissue glucocorticoid signalling, effects which may have short-term adaptive benefits but increase the risk of later disease.
Collapse
Affiliation(s)
- Elizabeth C Cottrell
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh Edinburgh, Scotland
| | | |
Collapse
|
39
|
Morelius E, Nelson N, Theodorsson E. Salivary cortisol and administration of concentrated oral glucose in newborn infants: improved detection limit and smaller sample volumes without glucose interference. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 64:113-8. [PMID: 15115248 DOI: 10.1080/00365510410004452] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Newborn infants are subject to repetitive painful and stressful events during neonatal intensive care. When the baby attempts to cope with a stressful situation the hypothalamus-pituitary-adrenal axis is activated, releasing cortisol. The free cortisol response is optimally measured in saliva and saliva samples can be taken easily and without pain. However, saliva is very scarce in infants and saliva stimulants can interfere with analytical methods. Nowadays, sweet solutions are frequently administered to neonates prior to a disturbing procedure in order to reduce pain. The possible interference of sweet solutions with the measurement of salivary cortisol has not yet been documented. The aims of the present study were to further improve the detection limit of the radioimmunoassay used for cortisol analysis and to determine the degree of interference of high concentrations of glucose with the analytical method. By decreasing incubation temperature and prolonging the incubation time it was possible to improve the detection limit of the radio immunoassay (RIA) to 0.5 nmol/L at the same time as the sample volume was decreased to 10 microL saliva. Saliva was collected from full-term and preterm babies and was sufficient for analysis in 113 out of 116 (97%) samples. Glucose in the concentrations and amounts commonly used for pain relief did not interfere with the RIA method. In conclusion, it is feasible to collect microlitre volumes of saliva and analyse even very low concentrations of cortisol in newborns. It is also possible to offer the baby oral glucose prior to a painful procedure and still reliably measure salivary cortisol.
Collapse
Affiliation(s)
- E Morelius
- Department of Molecular and Clinical Medicine/Division of Pediatrics, University Hospital, Linkoping, Sweden.
| | | | | |
Collapse
|
40
|
Hellemans KGC, Verma P, Yoon E, Yu W, Weinberg J. Prenatal alcohol exposure increases vulnerability to stress and anxiety-like disorders in adulthood. Ann N Y Acad Sci 2009; 1144:154-75. [PMID: 19076375 DOI: 10.1196/annals.1418.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Children and adults with fetal alcohol spectrum disorder (FASD) have elevated rates of depression and anxiety disorders compared to control populations. The effects of prenatal alcohol exposure (PAE) on anxiety, locomotor activity, and hormonal reactivity in male and female rats tested on the elevated plus maze (EPM), a task commonly used to assess anxiety-like behaviors in rodents, were examined. Pregnant dams were assigned to PAE, pair-fed (PF), or ad libitum-fed control (C) groups. At adulthood, half of all male (N= 60) and female (N= 60) PAE, PF, and C offspring were exposed to 10 days of chronic mild stress (CMS); the other half remained undisturbed. Animals were then tested on the EPM, and blood collected 30 min posttest for analysis of corticosterone (CORT), testosterone, estradiol, and progesterone. Overall, CMS exposure produced a significant anxiogenic profile. Moreover, CMS increased anxiety-like behavior in PAE males and females compared to controls and eliminated the locomotor hyperactivity observed in nonstressed PAE females. CMS also increased post-EPM CORT, testosterone, and progesterone levels in all groups, with CORT and progesterone levels significantly higher in PAE than in C females. By contrast, CMS selectively lowered estradiol levels in PAE and PF, but not C, females. CMS exposure reveals sexually dimorphic behavioral and endocrine alterations in PAE compared to C animals. Together, these data suggest the possibility that fetal reprogramming of hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) systems by alcohol may underlie, at least partly, an enhanced susceptibility of fetal alcohol-exposed offspring to depression/anxiety-like disorders in adulthood.
Collapse
Affiliation(s)
- Kim G C Hellemans
- Department of Psychology, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
41
|
Long-term effects of prenatal stress: Changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 2009; 33:191-203. [DOI: 10.1016/j.neubiorev.2008.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/21/2008] [Accepted: 08/01/2008] [Indexed: 02/06/2023]
|
42
|
Weinberg J, Sliwowska JH, Lan N, Hellemans KGC. Prenatal alcohol exposure: foetal programming, the hypothalamic-pituitary-adrenal axis and sex differences in outcome. J Neuroendocrinol 2008; 20:470-88. [PMID: 18266938 PMCID: PMC8942074 DOI: 10.1111/j.1365-2826.2008.01669.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prenatal exposure to alcohol has adverse effects on offspring neuroendocrine and behavioural functions. Alcohol readily crosses the placenta, thus directly affecting developing foetal endocrine organs. In addition, alcohol-induced changes in maternal endocrine function can disrupt the normal hormonal interactions between the pregnant female and foetal systems, altering the normal hormone balance and, indirectly, affecting the development of foetal metabolic, physiological and endocrine functions. The present review focuses on the adverse effects of prenatal alcohol exposure on offspring neuroendocrine function, with particular emphasis on the hypothalamic-pituitary-adrenal (HPA) axis, a key player in the stress response. The HPA axis is highly susceptible to programming during foetal and neonatal development. Here, we review data demonstrating that alcohol exposure in utero programmes the foetal HPA axis such that HPA tone is increased throughout life. Importantly, we show that, although alterations in HPA responsiveness and regulation are robust phenomena, occurring in both male and female offspring, sexually dimorphic effects of alcohol are frequently observed. We present updated findings on possible mechanisms underlying differential effects of alcohol on male and female offspring, with special emphasis on effects at different levels of the HPA axis, and on modulatory influences of the hypothalamic-pituitary-gonadal hormones and serotonin. Finally, possible mechanisms underlying foetal programming of the HPA axis, and the long-term implications of increased exposure to endogenous glucocorticoids for offspring vulnerability to illnesses or disorders later in life are discussed.
Collapse
Affiliation(s)
- J Weinberg
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
43
|
Slotkin TA, Seidler FJ, Wood CR, Lau C. Development of glucocorticoid receptor regulation in the rat forebrain: implications for adverse effects of glucocorticoids in preterm infants. Brain Res Bull 2008; 76:531-5. [PMID: 18534262 DOI: 10.1016/j.brainresbull.2008.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/12/2008] [Accepted: 03/07/2008] [Indexed: 11/18/2022]
Abstract
Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoid-induced disruption in the fetus than in the neonate. Feedback regulation of glucocorticoid receptors (GRs) is an essential homeostatic mechanism and we therefore examined the development of GR downregulation in the perinatal period. Pregnant rats or newborn pups were given dexamethasone daily (gestational days 17-19, postnatal days 1-3, or postnatal days 7-9), ranging from doses below that recommended for use in preterm infants (0.05 mg/kg) to therapeutic doses (0.2 or 0.8 mg/kg). Twenty-four hours after the last injection, we determined forebrain GR protein by Western blotting. Although postnatal dexamethasone treatment downregulated GRs at all doses, the fetal forebrain failed to show any decrement and instead exhibited slight GR upregulation. In controls, forebrain GR levels also showed a large increment over the course from late gestation through the second postnatal week, despite the fact that circulating glucocorticoid levels increase substantially during this period. Our results suggest that GR homeostasis develops primarily postnatally and that fetal inability to downregulate GRs in the face of exogenous glucocorticoid administration plays a role in the vulnerability of key neural circuits to developmental disruption. Since this developmental phase in the rat corresponds to the critical period in which glucocorticoids are used in preterm infants, adverse effects on brain development may be inescapable.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
44
|
Fujinaka Y, Takane K, Yamashita H, Vasavada RC. Lactogens promote beta cell survival through JAK2/STAT5 activation and Bcl-XL upregulation. J Biol Chem 2007; 282:30707-17. [PMID: 17728251 DOI: 10.1074/jbc.m702607200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the goals in the treatment for diabetes is to enhance pancreatic beta cell function, proliferation, and survival. This study explores the role of lactogenic hormones, prolactin (PRL) and placental lactogen (PL), in beta cell survival. We have previously shown that transgenic mice expressing mouse placental lactogen-1 (mPL1) in beta cells under the rat insulin II promoter (RIP) are resistant to the diabetogenic and cytotoxic effects of streptozotocin (STZ) in vivo. The current study demonstrates that lactogens protect rat insulinoma (INS-1) cells and primary mouse beta cells against two distinct beta cell death inducers, STZ and dexamethasone (DEX), in vitro. Further, we identify the mechanism through which lactogens protect beta cells against DEX-induced death. The signaling pathway mediating this protective effect is the janus-activated-kinase-2/signal transducer and activator of transcription-5 (JAK2/STAT5) pathway. This is demonstrated in INS-1 cells and primary mouse beta cells using three separate approaches, pharmacological inhibitors, JAK2-specific siRNAs and a dominant-negative STAT5 mutant. Furthermore, lactogens specifically and significantly increase the anti-apoptotic protein Bcl-XL in insulinoma cells and mouse islets. Bcl-XL-specific siRNA significantly inhibits lactogen-mediated protection against DEX-induced beta cell death. We believe this is the first direct demonstration of lactogens mediating their protective effect through the JAK2/STAT5 pathway in the beta cell and through Bcl-XL in any cell type.
Collapse
Affiliation(s)
- Yuichi Fujinaka
- Division of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
45
|
Knight BS, Pennell CE, Adamson SL, Lye SJ. The impact of murine strain and sex on postnatal development after maternal dietary restriction during pregnancy. J Physiol 2007; 581:873-81. [PMID: 17347274 PMCID: PMC2075185 DOI: 10.1113/jphysiol.2006.126573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The objective of this study was to characterize offspring responses to maternal dietary restriction (DR) in two phylogenetically distant strains of mice: A/J and C57BL/6J (B6). Pregnant mice were fed 100% or 70% of ad libitum between 6.5 and 17.5 days (d) gestation. Offspring were fed 100% ad libitum postweaning. All comparisons were made to strain and sex matched controls. Male DR-B6 offspring initially grew slower than controls; however, by 77 d and 182 d they were significantly heavier (P<0.05). Further, they had an increase percentage fat mass (+70%, P<0.01) by 182 d and were glucose intolerant at both 80 d (P<0.001) and 186 d (P<0.05). In contrast, weight, %Fat mass and glucose tolerance in DR-A/J males during postnatal life were not different from controls. Female DR-B6 mice showed catch-up growth during the first 77 d of life; however, their weight, %Fat mass and glucose tolerance were not different from controls at 80 d and 186 d. Although female DR-A/J were heavier than controls at 182 d (P<0.05), their %Fat mass and glucose tolerance were not different from controls at 182 d and 186 d. The observed strain and sex differences offer a unique opportunity to begin to define gene-environment interactions that contribute to developmental origins of health and disease.
Collapse
Affiliation(s)
- Brian S Knight
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
46
|
Mörelius E, Nelson N, Gustafsson PA. Salivary cortisol response in mother-infant dyads at high psychosocial risk. Child Care Health Dev 2007; 33:128-36. [PMID: 17291316 DOI: 10.1111/j.1365-2214.2006.00637.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the adrenocortical response to diaper change in mother-infant dyads with psychosocial risk factors. MATERIAL AND METHODS Twenty-two mother-infant pairs with well-defined psychosocial problems were included. The mother-infant pairs were treated for 6 weeks in a daycare programme to improve attachment. Salivary cortisol was measured before and after a diaper change during the first and last weeks of enrollment in the programme. Mothers' sensitivity towards their infants' signals was measured using a scale from 1 (highly insensitive) to 9 (highly sensitive) according to Ainsworth. RESULTS Median salivary cortisol increased in 15 out of 22 infants after the first diaper change. The increase was most pronounced in the group of infants below 3 months of age (n = 15) where median salivary cortisol increased 170% after the first diaper change (P < 0.05) and decreased 19% after the last diaper change (not significant). Out of these 15 infants, 11 showed an increase in salivary cortisol in response to the first diaper change while four out of 15 did so in response to the last diaper change (P < 0.05). The salivary cortisol response did not change over time in infants aged 3 months or above. A mother's sensitivity to her child increased significantly (P < 0.001) from the first to the last week. In mothers, median salivary cortisol decreased 38% after the first diaper change (P < 0.05) and 57% after the last diaper change (P = 0.001). DISCUSSION A diaper change is normally not perceived as stressful. The stress response caused by a diaper change may illustrate an insufficiency in the mother-infant relationship before treatment. Professional support improved the mothers' sensitivity and stabilized the stress response to diaper change in the youngest infants.
Collapse
Affiliation(s)
- E Mörelius
- Department of Molecular and Clinical Medicine/Division of Paediatrics, Linköping University Hospital, Linköping, Sweden.
| | | | | |
Collapse
|
47
|
Wilcoxon JS, Redei EE. Maternal glucocorticoid deficit affects hypothalamic-pituitary-adrenal function and behavior of rat offspring. Horm Behav 2007; 51:321-7. [PMID: 17275820 PMCID: PMC1865577 DOI: 10.1016/j.yhbeh.2006.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
Detrimental consequences of prenatal stress include increased hypothalamic-pituitary-adrenal (HPA) function, anxiety and depression-like behavior in adult offspring. To identify the role of maternal corticosterone milieu in the fetal programming of adult function, we measured these same behavioral and hormonal endpoints after maternal adrenalectomy (ADX) and replacement with normal or moderately high levels of corticosterone (CORT). Adult male and female offspring exhibited differing HPA responses to maternal ADX. In female offspring of ADX mothers, exaggerated plasma ACTH stress responses were reversed by the higher, but not the lower, dose of maternal CORT. In contrast, male offspring of both ADX and ADX dams with higher CORT replacement showed exaggerated ACTH stress responses. Hypothalamic glucocorticoid receptor (GR) expression was decreased in these latter groups, while hippocampal GR increased only in the ADX offspring. Activity of young offspring of ADX dams replaced with the higher dose of CORT decreased in the open field test of exploration/anxiety, while immobility behavior of adult offspring in the forced swim test of depression increased following maternal ADX or higher levels of CORT replacement. Interestingly, for some measures, none or moderately high CORT replacement resulted in similar deficits in this study. These findings are in accord with consequences of prenatal stress or prenatal dexamethasone exposure, suggesting that a common mechanism may underlie the effects of too low or too high maternal glucocorticoids on adult HPA function and behavior.
Collapse
Affiliation(s)
- Jennifer Slone Wilcoxon
- Northwestern University Feinberg School of Medicine, The Asher Center, Department of Psychiatry and Behavioral Sciences Chicago, IL 60611, USA.
| | | |
Collapse
|
48
|
Picone O, Servely JL, Chavatte-Palmer P. [Developmental origin of human adult disease: which importance for obstetrical practice?]. ACTA ACUST UNITED AC 2007; 36:338-43. [PMID: 17321694 DOI: 10.1016/j.jgyn.2007.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/18/2007] [Accepted: 01/22/2007] [Indexed: 10/28/2022]
Abstract
The Developmental Origins of Human Adult Disease are thought to be secondary to a perturbation of the embryonic or fetal development, which leads to metabolic disorders such as diabetes or hypertension at adulthood. Maternal undernutrition or overnutrition, repeated glucocorticosteroids administered to the mother, or placental dysfunction are the most frequently considered causal factors. Therefore, it is necessary that the obstetrician is aware of these phenomena, as this knowledge may contribute to the prevention of adult diseases. Little is known yet, on the pathophysiological or epigenetic mechanisms that lead to theses observations, and more studies are needed both in humans and animal models.
Collapse
Affiliation(s)
- O Picone
- Service de gynécologie obstétrique, hôpital Antoine-Béclère, 157, rue de la Porte-de-Trivaux, 92141 Clamart, France.
| | | | | |
Collapse
|
49
|
Jameson RR, Seidler FJ, Qiao D, Slotkin TA. Adverse neurodevelopmental effects of dexamethasone modeled in PC12 cells: identifying the critical stages and concentration thresholds for the targeting of cell acquisition, differentiation and viability. Neuropsychopharmacology 2006; 31:1647-58. [PMID: 16319912 DOI: 10.1038/sj.npp.1300967] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The use of dexamethasone (DEX) to prevent respiratory distress in preterm infants is suspected to produce neurobehavioral deficits. We used PC12 cells to model the effects of DEX on different stages of neuronal development, utilizing exposures from 24 h up to 11 days and concentrations from 0.01 to 10 microM, simulating subtherapeutic, therapeutic, and high-dose regimens. In undifferentiated cells, even at the lowest concentration, DEX inhibited DNA synthesis and produced a progressive deficit in the number of cells as evaluated by DNA content, whereas cell growth (evaluated by the total protein to DNA ratio) and cell viability (Trypan blue exclusion) were promoted. When cell differentiation was initiated with nerve growth factor, the simultaneous inclusion of DEX still produced a progressive deficit in cell numbers and promoted cell growth and viability while retarding the development of neuritic projections as monitored by the membrane/total protein ratio. Again, even 0.01 microM DEX was effective. We next assessed effects at mid-differentiation by introducing nerve growth factor for 4 days followed by coexposure to DEX. Although effects on cell number, growth, and neurite extension were still detectable, the outcomes were generally less notable. DEX also shifted the fate of PC12 cells away from the cholinergic phenotype and toward the adrenergic phenotype, with the maximum effect achieved at the outset of differentiation. Our results indicate that DEX directly disrupts neuronal cell replication, differentiation, and phenotype at concentrations below those required for the therapy of preterm infants, providing a mechanistic link between glucocorticoid use and neurodevelopmental sequelae.
Collapse
Affiliation(s)
- Ruth R Jameson
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
50
|
Lewis-Tuffin LJ, Cidlowski JA. The Physiology of Human Glucocorticoid Receptor beta (hGRbeta) and Glucocorticoid Resistance. Ann N Y Acad Sci 2006; 1069:1-9. [PMID: 16855130 DOI: 10.1196/annals.1351.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of glucocorticoid (GC) resistance is a serious problem that complicates the treatment of immune-related diseases, such as asthma, ulcerative colitis, and hematologic cancers. hGRalpha and hGRbeta are two isoforms of the human glucocorticoid receptor, which differ in the structural composition of the carboxy-terminal end of the ligand-binding domain and therefore in their ability to bind glucocorticoid ligand and in their physiological function. hGRalpha is the classically functional GR, while hGRbeta seems to act mainly as a dominant negative to the function of hGRalpha. Because of the ability of hGRbeta to antagonize the action of hGRalpha, it has been hypothesized that changes in the expression of hGRbeta may underlie the development of glucocorticoid resistance. In this article we review what is known about the expression and physiological action of hGRbeta in normal cells and tissue as well as in several disease states. Taken together, the evidence suggests that the ratio of hGRalpha:hGRbeta expression is indeed critical to the glucocorticoid responsiveness of various cells. This ratio can be altered by changing the expression level of hGRalpha, hGRbeta, or both receptors simultaneously. Higher ratios correlate with glucocorticoid sensitivity, while lower ratios correlate with glucocorticoid resistance. Thus hGRbeta can be an important modulator of glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Laura J Lewis-Tuffin
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|