1
|
Guamán SA, Elhadi A, Salama AAK, Manuelian CL, Caja G, Albanell E. Beta-Glucans Improve the Mammary Innate Immune Response to Endotoxin Challenge in Dairy Ewes. Animals (Basel) 2024; 14:3023. [PMID: 39457952 PMCID: PMC11505092 DOI: 10.3390/ani14203023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study evaluated short-term immune responses of dairy ewes supplemented with barley β-glucan (BG) following an intramammary Escherichia coli lipopolysaccharide (LPS) challenge. In the adaptation period, 36 ewes were fed an alfalfa hay diet ad libitum and barley grain cv. Hispanic (3.8% BG). Then, ewes were assigned into three experimental groups: (1) Control (CON), the same previous diet (13.3 g BG/d); (2) high β-glucans barley (HBG), new barley (cv. Annapurna) containing 10% BG (35 g BG/d); (3) intraperitoneally injected (INP) with a 1.4% BG solution dose (2 g BG/ewe). At d 9, all ewes were infused with an E. coli LPS or saline solution in each udder half. After the challenge, rectal temperature (RT), milk yield and composition, somatic cell count (SCC), and plasma interleukins (IL-1α and IL-1β) were monitored daily. The INP treatment revealed a transitory increase in RT and decreased milk yield by 38%. Milk fat, protein, and SCC increased in LPS-treated udders but not by BG treatment. The IL-1α plasma concentration was similar among groups but INP ewes showed a lower IL-1β concentration suggesting a lower inflammatory response. The BG administration appears more effective intraperitoneally than orally, which needs additional study.
Collapse
Affiliation(s)
- Santiago A. Guamán
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
- Sede Orellana, Escuela Superior Politécnica de Chimborazo (ESPOCH), El Coca 220150, Ecuador
| | - Abdelaali Elhadi
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Ahmed A. K. Salama
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Carmen L. Manuelian
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Gerardo Caja
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| | - Elena Albanell
- Ruminant Research Group (G2R), Department of Animal and Food Sciences, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (S.A.G.); (A.E.); (A.A.K.S.); (C.L.M.)
| |
Collapse
|
2
|
Krafft HS, Raak CK, Jenetzky E, Zuzak TJ, Längler A, Martin DD. Warming up for a better fever: a randomized pilot study in pediatric oncology. Pilot Feasibility Stud 2022; 8:183. [PMID: 35974359 PMCID: PMC9380316 DOI: 10.1186/s40814-022-01144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fever in children is a major problem in pediatric oncology. Usual management leads to immediate antibiotic and antipyretic therapy, although there is consensus that antipyretic therapy should not be utilized with the sole aim of reducing body temperature. Increased body temperature during fever appears to be an effective modifier in terms of viral replication and enhanced host defense mechanisms against pathogens. Therefore, it might be beneficial to support febrile patients by applying gentle heat during the onset of fever to help the body to reach its new thermoregulatory set point. METHODS A randomized pilot study over 6 months will be conducted in a pediatric oncology department in an academic hospital in Germany. This study is a preparation for a multicenter clinical trial with two parallel groups concerning the efficacy of heat application vs. treatment as usual. One of the inclusion criteria is body temperatures ≥ 38.0 °C in n = 24 cases of patients receiving chemotherapy aged 18 months to 17 years. The first intervention consists of gentle heat application with hot water bottles at any sign of illness and onset of fever. The aim is to achieve a warm periphery equilibrated to trunk temperature of less than 0.5 °C. The second intervention is the avoidance of antipyretics. The control group receives the standard antipyretic treatment from the participating hospital. The purposes of this pilot study are proof of principle of intervention, evaluation of safety, feasibility, definition of endpoints, and to receive basic data for sample size calculation and needed resources. DISCUSSION The main goal is to improve the care of children with cancer by providing the best possible support for febrile episodes. If fever support by heat reduces discomfort, administration of antipyretics and maybe even antibiotics, this would be an advancement in oncological fever management. This pilot study is intended to provide a basis for a main, multicenter, randomized trial and demonstrate the practicability of heat application in febrile patients in pediatric oncology. TRIAL REGISTRATION German Clinical Trials Register (DRKS), DRKS00028273 . Registered on 14 April 2022.
Collapse
Affiliation(s)
- Hanno S. Krafft
- Faculty of Health/School of Medicine, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - Christa K. Raak
- Faculty of Health/School of Medicine, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - Ekkehart Jenetzky
- Faculty of Health/School of Medicine, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz, Germany
| | - Tycho J. Zuzak
- Department of Pediatrics, Gemeinschaftskrankenhaus, Herdecke, Germany
- Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Alfred Längler
- Faculty of Health/School of Medicine, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
- Department of Pediatrics, Gemeinschaftskrankenhaus, Herdecke, Germany
| | - David D. Martin
- Faculty of Health/School of Medicine, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
- Department of Pediatrics, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Lin C, Liu Z, Li Y, Chen J. Protocol for fever-range whole-body hyperthermia (WBH) in mice to study febrile effect on T-cell adhesion and migration. STAR Protoc 2021; 2:100720. [PMID: 34401786 PMCID: PMC8353337 DOI: 10.1016/j.xpro.2021.100720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Fever is a complex physiological response enhancing immune surveillance during infection and inflammation. Fever-range whole-body hyperthermia (WBH) treatment can experimentally mimic the febrile condition in mice. Here, we describe a protocol for the treatment of mice with WBH and normothermia. We describe the isolation of T cells from mouse spleen followed by the evaluation of T-cell adhesion and transmigration. This animal model can be applied to studying the dysfunction of the immune system induced by fever. For complete details on the use and execution of this protocol, please refer to Lin et al. (2019). Whole-body hyperthermia (WBH) can mimic the febrile condition in mice We isolate T cells from WBH- or normothermia-treated mice T-cell adhesion and transmigration assays show dysfunctions caused by fever
Collapse
Affiliation(s)
- ChangDong Lin
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - ZhaoYuan Liu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Lin C, Chen J. Regulation of immune cell trafficking by febrile temperatures. Int J Hyperthermia 2019; 36:17-21. [DOI: 10.1080/02656736.2019.1647357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- ChangDong Lin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - JianFeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Shepard AM, Bharwani A, Durisko Z, Andrews PW. Reverse Engineering the Febrile System. QUARTERLY REVIEW OF BIOLOGY 2018; 91:419-57. [PMID: 29562118 DOI: 10.1086/689482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fever, the elevation of core body temperature by behavioral or physiological means, is one of the most salient aspects of human sickness, yet there is debate regarding its functional role. In this paper, we demonstrate that the febrile system is an evolved adaptation shaped by natural selection to coordinate the immune system to fight pathogens. First, we show that previous arguments in favor of fever being an adaptation are epistemologically inadequate, and we describe how an adaptationist strategy addresses this issue more effectively. Second, we argue that the mechanisms producing fever provide clear indications of adaptation. Third, we demonstrate that there are many beneficial immune system responses activated during fever and that these responses are not mere byproducts of heat on chemical reactions. Rather, we show that natural selection appears to have modified several immune system effects to be coordinated by fever. Fourth, we argue that there are some adaptations that coordinate the febrile system with other important fitness components, particularly growth and reproduction. Finally, we discuss evidence that the febrile system may also have evolved an antitumor function, providing suggestions for future research into this area. This research informs the debate on the functional value of fever and antipyretic use.
Collapse
|
6
|
Soeters PB, De Leeuw PW. Disease or adaptation: another look at the practice of medicine. Postgrad Med 2018; 130:239-243. [PMID: 29369696 DOI: 10.1080/00325481.2018.1433435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The practice of medicine has changed considerably over the past few decades and is now focusing more and more on early intervention strategies. As a result, we tend to consider pre-symptomatic abnormalities, however small, already as a potential target for treatment. In this viewpoint, we argue that we should put more emphasis on pathophysiological thinking as many of the so-called early abnormalities may, in fact, reflect adaptive mechanisms rather than disease. This view should influence medical care and education, emphasizing the importance of knowledge of pathophysiology.
Collapse
Affiliation(s)
- Peter B Soeters
- a Department of Surgery , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Peter W De Leeuw
- b Department of Medicine , Maastricht University Medical Center , Maastricht , The Netherlands.,c Department of Medicine , Zuyderland Medical Center , Geleen/Heerlen , The Netherlands
| |
Collapse
|
7
|
Appenheimer MM, Evans SS. Temperature and adaptive immunity. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:397-415. [DOI: 10.1016/b978-0-444-63912-7.00024-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
8
|
Martin DD. Fever: Views in Anthroposophic Medicine and Their Scientific Validity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3642659. [PMID: 27999605 PMCID: PMC5143743 DOI: 10.1155/2016/3642659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
Objective. To conduct a scoping review to characterize how fever is viewed in anthroposophic medicine (AM) and discuss the scientific validity of these views. Methods. Systematic searches were run in Medline, Embase, CAMbase, and Google Scholar. Material from anthroposophic medical textbooks and articles was also used. Data was extracted and interpreted. Results. Most of the anthroposophic literature on this subject is in the German language. Anthroposophic physicians hold a beneficial view on fever, rarely suppress fever with antipyretics, and often use complementary means of alleviating discomfort. In AM, fever is considered to have the following potential benefits: promoting more complete recovery; preventing infection recurrences and atopic diseases; providing a unique opportunity for caregivers to provide loving care; facilitating individual development and resilience; protecting against cancer and boosting the anticancer effects of mistletoe products. These views are discussed with regard to the available scientific data. Conclusion. AM postulates that fever can be of short-term and long-term benefit in several ways; many of these opinions have become evidence-based (though still often not practiced) while others still need empirical studies to be validated, refuted, or modified.
Collapse
Affiliation(s)
- David D. Martin
- University Children's Hospital, Tübingen, Germany
- Filderklinik, Filderstadt, Germany
| |
Collapse
|
9
|
Dewhirst MW, Lee CT, Ashcraft KA. The future of biology in driving the field of hyperthermia. Int J Hyperthermia 2016; 32:4-13. [DOI: 10.3109/02656736.2015.1091093] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
11
|
Zauner D, Quehenberger F, Hermann J, Dejaco C, Stradner MH, Stojakovic T, Angerer H, Rinner B, Graninger WB. Whole body hyperthermia treatment increases interleukin 10 and toll-like receptor 4 expression in patients with ankylosing spondylitis: A pilot study. Int J Hyperthermia 2014; 30:393-401. [DOI: 10.3109/02656736.2014.956810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Wikan N, Khongwichit S, Phuklia W, Ubol S, Thonsakulprasert T, Thannagith M, Tanramluk D, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR. Comprehensive proteomic analysis of white blood cells from chikungunya fever patients of different severities. J Transl Med 2014; 12:96. [PMID: 24721947 PMCID: PMC4022080 DOI: 10.1186/1479-5876-12-96] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/02/2014] [Indexed: 01/13/2023] Open
Abstract
Background Chikungunya fever (CHIKF) is a recently re-emerged mosquito transmitted viral disease caused by the chikungunya virus (CHIKV), an Alphavirus belonging to the family Togaviridae. Infection of humans with CHIKV can result in CHIKF of variable severity, although the factors mediating disease severity remain poorly defined. Methods White blood cells were isolated from blood samples collected during the 2009-2010 CHIKF outbreak in Thailand. Clinical presentation and viral load data were used to classify samples into three groups, namely non chikungunya fever (non-CHIKF), mild CHIKF, and severe CHIKF. Five samples from each group were analyzed for protein expression by GeLC-MS/MS. Results CHIKV proteins (structural and non-structural) were found only in CHIKF samples. A total of 3505 human proteins were identified, with 68 proteins only present in non-CHIKF samples. A total of 240 proteins were found only in CHIKF samples, of which 65 and 46 were found only in mild and severe CHIKF samples respectively. Proteins with altered expression mapped predominantly to cellular signaling pathways (including toll-like receptor and PI3K-Akt signaling) although many other processes showed altered expression as a result of CHIKV infection. Expression of proteins consistent with the activation of the inflammasome was detected, and quantitation of (pro)-caspase 1 at the protein and RNA levels showed an association with disease severity. Conclusions This study confirms the infection of at least a component of white blood cells by CHIKV, and shows that CHIKV infection results in activation of the inflammasome in a manner that is associated with disease severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus 25/25 Phuttamonthol Sai 4, Nakorn Pathom 73170, Thailand.
| |
Collapse
|
13
|
Andrews PW, Thomson JA, Amstadter A, Neale MC. Primum non nocere: an evolutionary analysis of whether antidepressants do more harm than good. Front Psychol 2012; 3:117. [PMID: 22536191 PMCID: PMC3334530 DOI: 10.3389/fpsyg.2012.00117] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/30/2012] [Indexed: 12/28/2022] Open
Abstract
Antidepressant medications are the first-line treatment for people meeting current diagnostic criteria for major depressive disorder. Most antidepressants are designed to perturb the mechanisms that regulate the neurotransmitter serotonin - an evolutionarily ancient biochemical found in plants, animals, and fungi. Many adaptive processes evolved to be regulated by serotonin, including emotion, development, neuronal growth and death, platelet activation and the clotting process, attention, electrolyte balance, and reproduction. It is a principle of evolutionary medicine that the disruption of evolved adaptations will degrade biological functioning. Because serotonin regulates many adaptive processes, antidepressants could have many adverse health effects. For instance, while antidepressants are modestly effective in reducing depressive symptoms, they increase the brain's susceptibility to future episodes after they have been discontinued. Contrary to a widely held belief in psychiatry, studies that purport to show that antidepressants promote neurogenesis are flawed because they all use a method that cannot, by itself, distinguish between neurogenesis and neuronal death. In fact, antidepressants cause neuronal damage and mature neurons to revert to an immature state, both of which may explain why antidepressants also cause neurons to undergo apoptosis (programmed death). Antidepressants can also cause developmental problems, they have adverse effects on sexual and romantic life, and they increase the risk of hyponatremia (low sodium in the blood plasma), bleeding, stroke, and death in the elderly. Our review supports the conclusion that antidepressants generally do more harm than good by disrupting a number of adaptive processes regulated by serotonin. However, there may be specific conditions for which their use is warranted (e.g., cancer, recovery from stroke). We conclude that altered informed consent practices and greater caution in the prescription of antidepressants are warranted.
Collapse
Affiliation(s)
- Paul W. Andrews
- Department of Psychology, Neuroscience and Behaviour, McMaster UniversityHamilton, ON, Canada
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| | - J. Anderson Thomson
- Counseling and Psychological Services, Student Health, University of VirginiaCharlottesville, VA, USA
- Institute of Law, Psychiatry and Public Policy, University of VirginiaCharlottesville, VA, USA
| | - Ananda Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| |
Collapse
|
14
|
Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Abayaweera G, Dani R, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine 2012; 7:297-306. [PMID: 22287840 PMCID: PMC3265998 DOI: 10.2147/ijn.s28344] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.
Collapse
Affiliation(s)
- Matthew T Basel
- Department of Anatomy and Physiology, College of Veterinary Medicine, Manhattan, KS, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM, Pyle M, Abayaweera G, Dani R, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int J Nanomedicine 2012. [PMID: 22287840 DOI: 10.2147/ijn.s28344.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.
Collapse
Affiliation(s)
- Matthew T Basel
- Department of Anatomy and Physiology, College of Veterinary Medicine, Manhattan, KS, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tulapurkar ME, Hasday JD, Singh IS. Prolonged exposure to hyperthermic stress augments neutrophil recruitment to lung during the post-exposure recovery period. Int J Hyperthermia 2011; 27:717-25. [DOI: 10.3109/02656736.2011.601528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Fisher DT, Vardam TD, Muhitch JB, Evans SS. Fine-tuning immune surveillance by fever-range thermal stress. Immunol Res 2010; 46:177-88. [PMID: 19760057 DOI: 10.1007/s12026-009-8122-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effectively orchestrated immune response to infection and disease depends on efficient trafficking of lymphocytes across vascular beds at distinct tissue sites. Local inflammation and systemic fever increase immune surveillance to immune-relevant sites throughout the body. During the initiation phase of inflammation, this tightly regulated process improves leukocyte trafficking to the secondary lymphoid organs where they undergo activation and expansion in response to cognate antigen. In the resolution phase following the clearance of the invading pathogen, lymphocyte entry is rapidly returned to baseline conditions. Specialized blood vessels termed high endothelial venules (HEVs) have emerged as critical 'hotspots' controlling the rate of lymphocyte entry into lymphoid organs during both phases of inflammation. In this review, we will examine the remarkably tight regulation of lymphocyte trafficking across HEVs conferred by inflammatory cues associated with the thermal element of fever. These studies have revealed a novel role for interleukin-6 (IL-6) trans-signaling in eliciting systemic effects on lymphocyte trafficking patterns to fine-tune immune surveillance.
Collapse
Affiliation(s)
- Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
18
|
Evans SS, Fisher DT, Skitzki JJ, Chen Q. Targeted regulation of a lymphocyte-endothelial-interleukin-6 axis by thermal stress. Int J Hyperthermia 2009; 24:67-78. [DOI: 10.1080/02656730701772498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
Soeters PB, Grimble RF. Dangers, and benefits of the cytokine mediated response to injury and infection. Clin Nutr 2009; 28:583-96. [PMID: 19556039 DOI: 10.1016/j.clnu.2009.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/06/2009] [Accepted: 05/15/2009] [Indexed: 12/15/2022]
Abstract
The inflammatory response is essential for survival in an environment where continuous exposure to noxious events threaten the integrity of the organism. However, the beneficial effects of the response are influenced by factors, which disadvantage individuals within a population. These factors include malnutrition, infection, genotype, gender, pre-existing inflammation, and chronic intoxication. Although the inflammatory response is generally successful in dealing with noxious events, life-long exposure to these events takes its toll on the integrity of the body and becomes apparent as chronic disease, atherosclerosis, organ failure, and frailty. Progress in ameliorating the consequences of lifetime exposure to inflammatory events can only occur if a fuller understanding can be obtained of the factors, which influence the persistence and outcome of the inflammatory response at an individual level. A multitude of studies has shown that specific nutrients, diets, and dietary restriction are able to modulate the inflammatory response in the population as a whole. To advance in this area, precise knowledge is needed of how the disadvantageous factors, mentioned above, affect the individual's response to anti-inflammatory nutrients.
Collapse
Affiliation(s)
- Peter B Soeters
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands.
| | | |
Collapse
|
20
|
Chen Q, Appenheimer MM, Muhitch JB, Fisher DT, Clancy KA, Miecznikowski JC, Wang WC, Evans SS. Thermal facilitation of lymphocyte trafficking involves temporal induction of intravascular ICAM-1. Microcirculation 2008; 16:143-158. [PMID: 19031292 DOI: 10.1080/10739680802353850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Fever is associated with improved survival, although its beneficial mechanisms are poorly understood. Previous studies indicate that the thermal element of fever augments lymphocyte migration across high endothelial venules (HEVs) of lymphoid organs by increasing the intravascular display of a gatekeeper trafficking molecule, intercellular adhesion molecule-1 (ICAM-1). Here, we evaluated the spatio-temporal relationship between the thermal induction of intravascular ICAM-1 and lymphocyte trafficking. METHODS Intravascular ICAM-1 density was quantified by immunofluorescence staining in mice exposed to fever-range whole-body hyperthermia (39.5+/-0.5 degrees C). ICAM-1-dependent lymphocyte trafficking was measured in short-term homing assays. RESULTS A linear relationship was observed between the duration of heat treatment and intravascular ICAM-1 density in HEVs with maximal responses requiring sustained (i.e., five hours) thermal stress. Circulating lymphocytes were found to sense incremental changes in ICAM-1 on HEVs, such that trafficking is proportional to the intravascular density of ICAM-1. We further identified a hydroxamate-sensitive shedding mechanism that restores ICAM-1 expression to homeostatic levels following the cessation of thermal stress. CONCLUSIONS The time-dependent response to thermal stress indicates that ICAM-1 density governs the efficiency of lymphocyte interactions with HEVs in vivo. These studies highlight the dynamic role of the microcirculation in promoting immune surveillance during febrile inflammatory responses.
Collapse
Affiliation(s)
- Qing Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Jason B Muhitch
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kristen A Clancy
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Wan-Chao Wang
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
21
|
Kitaya K. Accumulation of uterine CD16(-) natural killer (NK) cells: friends, foes, or Jekyll-and-Hyde relationship for the conceptus? Immunol Invest 2008; 37:467-81. [PMID: 18716934 DOI: 10.1080/08820130802191292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human cycling endometrium and early pregnant decidua are infiltrated by a unique lymphocyte subset of CD16(-) natural killer (NK) cells, which are minor cells in circulating blood and other organs. The number of uterine (u) CD16(-) NK cells rises sharply after ovulation. If pregnancy occurs, uCD16(-) NK cells increase further in number, but are shed during the menstrual period. uCD16(-) NK cells have the potential to produce cytokines and growth factors that play important roles in embryo implantation and placentation, but they are armed with cytolytic cytoplasmic granules. In the mid-secretory phase endometrium of women with recurrent miscarriages, dense accumulations of uCD16(-) NK cells also occur, like those seen in first-trimester decidua of uncomplicated pregnancies. This finding complicates understanding the exact roles of these NK cells at implantation sites. uCD16(-) NK cells are likely to be a mixture of indigenous endometrial NK cells and immigrant NK cells from the circulation. However, it is not yet known if NK cells from these two different origins display similar or unique characteristics. In this review, the potential underlying mechanisms for accumulation of uCD16(-) NK cells in uncomplicated pregnancies and in pathological pregnancies, especially recurrent miscarriages, are discussed.
Collapse
Affiliation(s)
- Kotaro Kitaya
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan.
| |
Collapse
|
22
|
Sheeja K, Kuttan G. Effect ofAndrographis paniculataas an Adjuvant in Combined Chemo-Radio and Whole Body Hyperthermia Treatment—A Preliminary Study. Immunopharmacol Immunotoxicol 2008; 30:181-94. [DOI: 10.1080/08923970701692916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Tan C, Zhu WY. Lichen planus runs along cutaneous superficial veins on the forearms: supravenous lichen planus? J Eur Acad Dermatol Venereol 2008; 23:342-4. [PMID: 18624882 DOI: 10.1111/j.1468-3083.2008.02843.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Appenheimer MM, Girard RA, Chen Q, Wang WC, Bankert KC, Hardison J, Bain MD, Ridgley F, Sarcione EJ, Buitrago S, Kothlow S, Kaspers B, Robert J, Rose-John S, Baumann H, Evans SS. Conservation of IL-6 trans-signaling mechanisms controlling L-selectin adhesion by fever-range thermal stress. Eur J Immunol 2007; 37:2856-67. [PMID: 17823890 DOI: 10.1002/eji.200636421] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fever is associated with improved survival during infection in endothermic and ectothermic species although the protective mechanisms are largely undefined. Previous studies indicate that fever-range thermal stress increases the binding activity of the L-selectin homing receptor in human or mouse leukocytes, thereby promoting trafficking to lymphoid tissues across high endothelial venules (HEV). Here, we examined the evolutionary conservation of thermal regulation of L-selectin-like adhesion. Leukocytes from animals representing four taxa of vertebrates (mammals, avians, amphibians, teleosts) were shown to mediate L-selectin-like adhesion under shear to MECA-79-reactive ligands on mouse HEV in cross-species in vitro adherence assays. L-selectin-like binding activity was markedly increased by fever-range thermal stress in leukocytes of all species examined. Comparable increases in L-selectin-like adhesion were induced by thermal stress, IL-6, or the IL-6/soluble IL-6 receptor fusion protein, hyper-IL-6. Analysis of the molecular basis of thermal regulation of L-selectin-like adhesion identified a common IL-6 trans-signaling mechanism in endotherms and ectotherms that resulted in activation of JAK/STAT signaling and was inhibited by IL-6 neutralizing antibodies or recombinant soluble gp130. Conservation of IL-6-dependent mechanisms controlling L-selectin adhesion over hundreds of millions of years of vertebrate evolution strongly suggests that this is a beneficial focal point regulating immune surveillance during febrile inflammatory responses.
Collapse
|
25
|
Vardam TD, Zhou L, Appenheimer MM, Chen Q, Wang WC, Baumann H, Evans SS. Regulation of a lymphocyte-endothelial-IL-6 trans-signaling axis by fever-range thermal stress: hot spot of immune surveillance. Cytokine 2007; 39:84-96. [PMID: 17903700 PMCID: PMC2756671 DOI: 10.1016/j.cyto.2007.07.184] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 07/13/2007] [Accepted: 07/17/2007] [Indexed: 12/25/2022]
Abstract
The pleiotropic cytokine, interleukin-6 (IL-6), has emerged in recent years as a key regulator of the transition from innate to adaptive immunity through its ability to modulate leukocyte recruitment at inflammatory sites. This review highlights a newly identified role for IL-6 trans-signaling, initiated by an agonistic complex of IL-6 and a soluble form of IL-6 receptor alpha, in heightening immune surveillance of peripheral lymphoid organs during febrile inflammatory responses. Inflammatory cues provided by the thermal component of fever trigger IL-6 trans-signaling to act at discrete levels in the multistep adhesion cascade that governs the entry of blood-borne lymphocytes across 'gatekeeper' high endothelial venules (HEVs) in lymph nodes and Peyer patches. IL-6 trans-signaling-dependent mechanisms have been elucidated during thermal stimulation of primary tethering and rolling of lymphocytes along the lumenal surface of HEVs as well as during secondary firm arrest of lymphocytes in HEVs prior to their migration into the underlying parenchyma. These mechanisms profoundly increase the probability that lymphocytes that continuously patrol the body will engage in productive encounters with target antigens sequestered within lymphoid organs. Findings that the lymphocyte-HEV-IL-6 trans-signaling biological axis functions as a thermally-sensitive alert system that promotes immune surveillance provide insight into one of the unresolved mysteries in immunology regarding the benefits of mounting a febrile reaction during inflammation.
Collapse
Affiliation(s)
- Trupti D. Vardam
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Lei Zhou
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Michelle M. Appenheimer
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Qing Chen
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Wang-Chao Wang
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Heinz Baumann
- Department of Molecular and Cellular Biology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Sharon S. Evans
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
- Corresponding author. Tel.: 716-845-3421; Fax: 716-845-8906
| |
Collapse
|
26
|
Zhao W, An H, Zhou J, Xu H, Yu Y, Cao X. Hyperthermia differentially regulates TLR4 and TLR2-mediated innate immune response. Immunol Lett 2007; 108:137-42. [PMID: 17196259 DOI: 10.1016/j.imlet.2006.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 11/23/2006] [Accepted: 11/27/2006] [Indexed: 11/22/2022]
Abstract
Fever influences multiple parameters of the immune response. However, the mechanisms by which fever manipulates immune response remain undefined. Here we present the evidences that fever range hyperthermia differentially regulates immune response to lipopolysaccharide (LPS) and lipoteichoic acids (LTA) through modulating Toll-like receptor (TLR) signaling. Pretreatment with 39.5 degrees C temperature enhanced LPS, but not LTA, induced NF-kappaB activation and TNF-alpha, IL-6 production in human macrophages. Consistently, expression of TLR4, but not TLR2, was up-regulated by 39.5 degrees C treatment. The increase in LPS-induced cytokine production was inhibited by TLR4-blocking antibody, indicating the enhancement of LPS-induced cytokine production by 39.5 degrees C pretreatment was TLR4-dependent. Pretreatment of mice with 39.5 degrees C temperature also enhanced LPS, but not LTA, induced TNF-alpha and IL-6 production in vivo. These results support the concept that fever range hyperthermia might activate innate immune response by promoting TLR4 expression and signaling, providing a possible mechanistic explanation for the function of fever in regulating innate immune responses.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Immunology and State Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
27
|
TERUNUMA HIROSHI, WADA AYANO, DENG XUEWEN, YASUMA YOSHIHIDE, ONISHI TETSURO, TOKI ATSUSHI, ABE HIROYUKI. Mild Hyperthermia Modulates the Relative Frequency of Lymphocyte Cell Subpopulations: an Increase in a Cytolytic NK Cell Subset and a Decrease in a Regulatory T Cell Subset. ACTA ACUST UNITED AC 2007. [DOI: 10.3191/thermalmedicine.23.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Chen Q, Fisher DT, Clancy KA, Gauguet JMM, Wang WC, Unger E, Rose-John S, von Andrian UH, Baumann H, Evans SS. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 2006; 7:1299-308. [PMID: 17086187 DOI: 10.1038/ni1406] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 10/04/2006] [Indexed: 12/25/2022]
Abstract
Fever is an evolutionarily conserved response during acute inflammation, although its physiological benefit is poorly understood. Here we show thermal stress in the range of fever temperatures increased the intravascular display of two 'gatekeeper' homing molecules, intercellular adhesion molecule 1 (ICAM-1) and CCL21 chemokine, exclusively in high endothelial venules (HEVs) that are chief portals for the entry of blood-borne lymphocytes into lymphoid organs. Enhanced endothelial expression of ICAM-1 and CCL21 was linked to increased lymphocyte trafficking across HEVs. A bifurcation in the mechanisms controlling HEV adhesion was demonstrated by evidence that the thermal induction of ICAM-1 but not of CCL21 involved an interleukin 6 trans-signaling pathway. Our findings identify the 'HEV axis' as a thermally sensitive alert system that heightens immune surveillance during inflammation by amplifying lymphocyte trafficking to lymphoid organs.
Collapse
Affiliation(s)
- Qing Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fisher DT, Chen Q, Appenheimer MM, Skitzki J, Wang WC, Odunsi K, Evans SS. Hurdles to lymphocyte trafficking in the tumor microenvironment: implications for effective immunotherapy. Immunol Invest 2006; 35:251-77. [PMID: 16916754 DOI: 10.1080/08820130600745430] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An important consideration in the development of T cell-based cancer immunotherapy is that effector T cells must efficiently traffic to the tumor microenvironment in order to control malignant progression. T cell trafficking to target tissues is orchestrated by dynamic interactions between circulating lymphocytes and endothelial cells lining blood vessels. It is informative, in this regard, to compare and contrast the molecular mechanisms governing lymphocyte extravasation at distinct vascular sites: (1) high endothelial venules (HEV) of secondary lymphoid organs, which are portals for efficient trafficking of naive and central memory T lymphocytes; (2) non-activated endothelium of normal tissues that mediate relatively low basal levels of trafficking but are rapidly transformed into HEV-like vessels in response to local inflammatory stimuli; and (3) vessels within the intratumoral region and the surrounding peritumoral areas. These vessels can be distinguished by differential expression of hallmark trafficking molecules that function as molecular beacons directing lymphocyte migration across vascular barriers. This article reviews evidence that recruitment of effector T cells to the intratumoral microenvironment is impeded by sub-threshold expression of trafficking molecules on tumor microvessels. Emerging data support the thesis that when considered from the perspective of extravasation, vessels embedded within the intratumoral microenvironment of established tumors do not exhibit stereotypical characteristics of a chronic inflammatory state. A major challenge will be to develop therapeutic approaches to improve trafficking of effector T lymphocytes to tumor sites without skewing the balance in favor of a chronic inflammatory milieu that facilitates tumor maintenance and progression.
Collapse
Affiliation(s)
- Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263-0001, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen Q, Fisher DT, Kucinska SA, Wang WC, Evans SS. Dynamic control of lymphocyte trafficking by fever-range thermal stress. Cancer Immunol Immunother 2006; 55:299-311. [PMID: 16044255 PMCID: PMC11030888 DOI: 10.1007/s00262-005-0022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 03/24/2005] [Indexed: 12/17/2022]
Abstract
Migration of blood-borne lymphocytes into tissues involves a tightly orchestrated sequence of adhesion events. Adhesion molecules and chemokine receptors on the surface of circulating lymphocytes initiate contact with specialized endothelial cells under hemodynamic shear prior to extravasation across the vascular barrier into tissues. Lymphocyte-endothelial adhesion occurs preferentially in high endothelial venules (HEV) of peripheral lymphoid organs. The continuous recirculation of naïve and central memory lymphocytes across lymph node and Peyer's patch HEV underlies immune surveillance and immune homeostasis. Lymphocyte-endothelial interactions are markedly enhanced in HEV-like vessels of extralymphoid organs during physiological responses associated with acute and chronic inflammation. Similar adhesive mechanisms must be invoked for efficient trafficking of immune effector cells to tumor sites in order for the immune system to have an impact on tumor progression. Here we discuss recent evidence for the role of fever-range thermal stress in promoting lymphocyte-endothelial adhesion and trafficking across HEV in peripheral lymphoid organs. Findings are also presented that support the hypothesis that lymphocyte-endothelial interactions are limited within tumor microenvironments. Further understanding of the molecular mechanisms that dynamically promote lymphocyte trafficking in HEV may provide the basis for novel approaches to improve recruitment of immune effector cells to tumor sites.
Collapse
Affiliation(s)
- Qing Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263-0001 USA
| | - Daniel T. Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263-0001 USA
| | - Sylvia A. Kucinska
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263-0001 USA
| | - Wan-Chao Wang
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263-0001 USA
| | - Sharon S. Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263-0001 USA
| |
Collapse
|