1
|
Wang Y, Strauss S, Smith RS, Sampathkumar A. Actin-mediated avoidance of tricellular junction influences global topology at the Arabidopsis shoot apical meristem. Cell Rep 2024; 43:114844. [PMID: 39418163 DOI: 10.1016/j.celrep.2024.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Division plane orientation contributes to cell shape and topological organization, playing a key role in morphogenesis, but the precise physical and molecular mechanism influencing these processes remains largely obscure in plants. In particular, it is less clear how the placement of the new walls occurs in relation to the walls of neighboring cells. Here, we show that genetic perturbation of the actin cytoskeleton results in more rectangular cell shapes and higher incidences of four-way junctions, perturbing the global topology of cells in the shoot apical meristem of Arabidopsis thaliana. Actin mutants also exhibit changes in the expansion rate of the new versus the maternal cell wall after division, affecting the evolution of internal angles at tricellular junctions. Further, the increased width of the preprophase band in the actin mutant contributes to inaccuracy in the placement of the new cell wall. Computational simulation further substantiates this hypothesis and reproduces the observed cell shape defects.
Collapse
Affiliation(s)
- Yang Wang
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany; Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Soeren Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Ln, NR4 7UH Norwich, UK
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
2
|
Bouchez D, Uyttewaal M, Pastuglia M. Spatiotemporal regulation of plant cell division. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102530. [PMID: 38631088 DOI: 10.1016/j.pbi.2024.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Plant morphogenesis largely depends on the orientation and rate of cell division and elongation, and their coordination at all levels of organization. Despite recent progresses in the comprehension of pathways controlling division plane determination in plant cells, many pieces are missing to the puzzle. For example, we have a partial comprehension of formation, function and evolutionary significance of the preprophase band, a plant-specific cytoskeletal array involved in premitotic setup of the division plane, as well as the role of the nucleus and its connection to the preprophase band of microtubules. Likewise, several modeling studies point to a strong relationship between cell shape and division geometry, but the emergence of such geometric rules from the molecular and cellular pathways at play are still obscure. Yet, recent imaging technologies and genetic tools hold a lot of promise to tackle these challenges and to revisit old questions with unprecedented resolution in space and time.
Collapse
Affiliation(s)
- David Bouchez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France.
| | - Magalie Uyttewaal
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| | - Martine Pastuglia
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| |
Collapse
|
3
|
Nan Q, Liang H, Mendoza J, Liu L, Fulzele A, Wright A, Bennett EJ, Rasmussen CG, Facette MR. The OPAQUE1/DISCORDIA2 myosin XI is required for phragmoplast guidance during asymmetric cell division in maize. THE PLANT CELL 2023; 35:2678-2693. [PMID: 37017144 PMCID: PMC10291028 DOI: 10.1093/plcell/koad099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Formative asymmetric divisions produce cells with different fates and are critical for development. We show the maize (Zea mays) myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells before and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 becomes apparent during late cytokinesis, when the phragmoplast forms the nascent cell plate. Initial phragmoplast guidance in o1 is normal; however, as phragmoplast expansion continues o1 phragmoplasts become misguided. To understand how O1 contributes to phragmoplast guidance, we identified O1-interacting proteins. Maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs), which are also required for correct phragmoplast guidance, physically interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Hong Liang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Janette Mendoza
- Department of Botany, University of New Mexico, Albuquerque, NM 87131, USA
| | - Le Liu
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Amit Fulzele
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Amanda Wright
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Eric J Bennett
- Division of Biological Sciences, University of California, Riverside, CA 92093, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Glanc M. Plant cell division from the perspective of polarity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5361-5371. [PMID: 35604840 DOI: 10.1093/jxb/erac227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The orientation of cell division is a major determinant of plant morphogenesis. In spite of considerable efforts over the past decades, the precise mechanism of division plane selection remains elusive. The majority of studies on the topic have addressed division orientation from either a predominantly developmental or a cell biological perspective. Thus, mechanistic insights into the links between developmental and cellular factors affecting division orientation are particularly lacking. Here, I review recent progress in the understanding of cell division orientation in the embryo and primary root meristem of Arabidopsis from both developmental and cell biological standpoints. I offer a view of multilevel polarity as a central aspect of cell division: on the one hand, the division plane is a readout of tissue- and organism-wide polarities; on the other hand, the cortical division zone can be seen as a transient polar subcellular plasma membrane domain. Finally, I argue that a polarity-focused conceptual framework and the integration of developmental and cell biological approaches hold great promise to unravel the mechanistic basis of plant cell division orientation in the near future.
Collapse
Affiliation(s)
- Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
5
|
Lebecq A, Fangain A, Boussaroque A, Caillaud MC. Dynamic apico-basal enrichment of the F-actin during cytokinesis in Arabidopsis cells embedded in their tissues. QUANTITATIVE PLANT BIOLOGY 2022; 3:e4. [PMID: 37077960 PMCID: PMC10095810 DOI: 10.1017/qpb.2022.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 05/03/2023]
Abstract
Cell division is a tightly regulated mechanism, notably in tissues where malfunctions can lead to tumour formation or developmental defects. This is particularly true in land plants, where cells cannot relocate and therefore cytokinesis determines tissue topology. In plants, cell division is executed in radically different manners than in animals, with the appearance of new structures and the disappearance of ancestral mechanisms. Whilst F-actin and microtubules closely co-exist, recent studies mainly focused on the involvement of microtubules in this key process. Here, we used a root tracking system to image the spatio-temporal dynamics of both F-actin reporters and cell division markers in dividing cells embedded in their tissues. In addition to the F-actin accumulation at the phragmoplast, we observed and quantified a dynamic apico-basal enrichment of F-actin from the prophase/metaphase transition until the end of the cytokinesis.
Collapse
Affiliation(s)
- Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Aurélie Fangain
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Alice Boussaroque
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France
- Author for correspondence: M.-C. Caillaud, E-mail:
| |
Collapse
|
6
|
Methods to Visualize the Actin Cytoskeleton During Plant Cell Division. Methods Mol Biol 2021. [PMID: 34705230 DOI: 10.1007/978-1-0716-1744-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Cell division in plants consists of separating the mother cell in two daughter cells by the centrifugal growth of a new wall. This process involves the reorganization of the structural elements of the cell, namely the microtubules and actin cytoskeleton which allow the coordination, the orientation, and the progression of mitosis. In addition to its implication in those plant-specific structures, the actin cytoskeleton, in close association with the plasma membrane, exhibits specific patterning at the cortex of the dividing cells, and might act as a signaling component. This review proposes an overview of the techniques available to visualize the actin cytoskeleton in fixed tissues or living cells during division, including electron, fluorescent, and super-resolution microscopy techniques.
Collapse
|
7
|
Vaškebová L, Šamaj J, Ovečka M. Single-point ACT2 gene mutation in the Arabidopsis root hair mutant der1-3 affects overall actin organization, root growth and plant development. ANNALS OF BOTANY 2018; 122:889-901. [PMID: 29293922 PMCID: PMC6215051 DOI: 10.1093/aob/mcx180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. METHODS Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. KEY RESULTS Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. CONCLUSIONS Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development.
Collapse
Affiliation(s)
- L Vaškebová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - J Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| | - M Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
8
|
Abstract
In animals and fungi, cytoplasmic dynein is a processive minus-end-directed motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1, but not CC2, forms the coiled-coil to enable OsKCH2 dimerization. Instead, our results reveal that removing CC2 renders OsKCH2 a nonprocessive motor. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein. Land plants lack the cytoplasmic dynein motor in fungi and animals that shows processive minus-end-directed motility on microtubules. Here the authors demonstrate that land plants have evolved novel processive minus-end-directed kinesin-14 motors that likely compensate for the absence of dynein.
Collapse
|
9
|
Plant Cytokinesis: Terminology for Structures and Processes. Trends Cell Biol 2017; 27:885-894. [PMID: 28943203 DOI: 10.1016/j.tcb.2017.08.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/22/2022]
Abstract
Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network. Furthermore, the phragmoplast combines plant-specific features with the conserved cytokinetic processes of animals, fungi, and protists. As such, the phragmoplast represents a useful system for understanding both plant cell dynamics and the evolution of cytokinesis. We recognize that future research and knowledge transfer into other fields would benefit from standardized terminology. Here, we propose such a lexicon of terminology for specific structures and processes associated with plant cytokinesis.
Collapse
|
10
|
Takeuchi M, Karahara I, Kajimura N, Takaoka A, Murata K, Misaki K, Yonemura S, Staehelin LA, Mineyuki Y. Single microfilaments mediate the early steps of microtubule bundling during preprophase band formation in onion cotyledon epidermal cells. Mol Biol Cell 2016; 27:1809-20. [PMID: 27053663 PMCID: PMC4884071 DOI: 10.1091/mbc.e15-12-0820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/30/2016] [Indexed: 12/11/2022] Open
Abstract
The preprophase band (PPB) is a cytokinetic apparatus that determines the site of cell division in plants. It originates as a broad band of microtubules (MTs) in G2 and narrows to demarcate the future division site during late prophase. Studies with fluorescent probes have shown that PPBs contain F-actin during early stages of their development but become actin depleted in late prophase. Although this suggests that actins contribute to the early stages of PPB formation, how actins contribute to PPB-MT organization remains unsolved. To address this question, we used electron tomography to investigate the spatial relationship between microfilaments (MFs) and MTs at different stages of PPB assembly in onion cotyledon epidermal cells. We demonstrate that the PPB actins observed by fluorescence microscopy correspond to short, single MFs. A majority of the MFs are bound to MTs, with a subset forming MT-MF-MT bridging structures. During the later stages of PPB assembly, the MF-mediated links between MTs are displaced by MT-MT linkers as the PPB MT arrays mature into tightly packed MT bundles. On the basis of these observations, we propose that the primary function of actins during PPB formation is to mediate the initial bundling of the PPB MTs.
Collapse
Affiliation(s)
- Miyuki Takeuchi
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ichirou Karahara
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Naoko Kajimura
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Akio Takaoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kazuyo Misaki
- RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | | | - L Andrew Staehelin
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347
| | - Yoshinobu Mineyuki
- Graduate School of Life Science, University of Hyogo, Himeji 671-2201, Japan
| |
Collapse
|
11
|
Hepler PK. The Cytoskeleton and Its Regulation by Calcium and Protons. PLANT PHYSIOLOGY 2016; 170:3-22. [PMID: 26722019 PMCID: PMC4704593 DOI: 10.1104/pp.15.01506] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/28/2015] [Indexed: 05/18/2023]
Abstract
Calcium and protons exert control over the formation and activity of the cytoskeleton, usually by modulating an associated motor protein or one that affects the structural organization of the polymer.
Collapse
Affiliation(s)
- Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
12
|
Bednara J, Willemse MTM, Van Lammeren AAM. Organization of the actin cytoskeleton during megasporogenesis inGasteria verrucosavisualized with fluorescent-labelled phalloidin. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/j.1438-8677.1990.tb01444.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Bednara
- Plant Anatomy and Cytology Department; Maria Curie Slodowska University Lublin; Poland
| | - M. T. M. Willemse
- Plant Anatomy and Cytology Department; Maria Curie Slodowska University Lublin; Poland
- Department of Plant Cytology and Morphology; Wageningen Agricultural University; Wageningen The Netherlands
| | - A. A. M. Van Lammeren
- Plant Anatomy and Cytology Department; Maria Curie Slodowska University Lublin; Poland
- Department of Plant Cytology and Morphology; Wageningen Agricultural University; Wageningen The Netherlands
| |
Collapse
|
13
|
Yabuuchi T, Nakai T, Sonobe S, Yamauchi D, Mineyuki Y. Preprophase band formation and cortical division zone establishment: RanGAP behaves differently from microtubules during their band formation. PLANT SIGNALING & BEHAVIOR 2015; 10:e1060385. [PMID: 26237087 PMCID: PMC4883843 DOI: 10.1080/15592324.2015.1060385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Correct positioning of the division plane is a prerequisite for plant morphogenesis. The preprophase band (PPB) is a key intracellular structure of division site determination. PPB forms in G2 phase as a broad band of microtubules (MTs) that narrows in prophase and specializes few-micrometer-wide cortical belt region, named the cortical division zone (CDZ), in late prophase. The PPB comprises several molecules, some of which act as MT band organization and others remain in the CDZ marking the correct insertion of the cell plate in telophase. Ran GTPase-activating protein (RanGAP) is accumulated in the CDZ and forms a RanGAP band in prophase. However, little is known about when and how RanGAPs gather in the CDZ, and especially with regard to their relationships to MT band formation. Here, we examined the spatial and temporal distribution of RanGAPs and MTs in the preprophase of onion root tip cells using confocal laser scanning microscopy and showed that the RanGAP band appeared in mid-prophase as the width of MT band was reduced to nearly 7 µm. Treatments with cytoskeletal inhibitors for 15 min caused thinning or broadening of the MT band but had little effects on RanGAP band in mid-prophase and most of late prophase cells. Detailed image analyses of the spatial distribution of RanGAP band and MT band showed that the RanGAP band positioned slightly beneath the MT band in mid-prophase. These results raise a possibility that RanGAP behaves differently from MTs during their band formation.
Collapse
Affiliation(s)
- Takatoshi Yabuuchi
- Graduate School of Life Science; University of Hyogo; Himeji, Hyogo, Japan
| | - Tomonori Nakai
- Graduate School of Life Science; University of Hyogo; Himeji, Hyogo, Japan
| | - Seiji Sonobe
- Graduate School of Life Science; University of Hyogo; Akou, Hyogo, Japan
| | - Daisuke Yamauchi
- Graduate School of Life Science; University of Hyogo; Himeji, Hyogo, Japan
| | - Yoshinobu Mineyuki
- Graduate School of Life Science; University of Hyogo; Himeji, Hyogo, Japan
- Correspondence to: Yoshinobu Mineyuki;
| |
Collapse
|
14
|
Li S, Sun T, Ren H. The functions of the cytoskeleton and associated proteins during mitosis and cytokinesis in plant cells. FRONTIERS IN PLANT SCIENCE 2015; 6:282. [PMID: 25964792 PMCID: PMC4410512 DOI: 10.3389/fpls.2015.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/08/2015] [Indexed: 05/12/2023]
Abstract
In higher plants, microtubule (MT)-based, and actin filament (AF)-based structures play important roles in mitosis and cytokinesis. Besides the mitotic spindle, the evolution of a band comprising cortical MTs and AFs, namely, the preprophase band (PPB), is evident in plant cells. This band forecasts a specific division plane before the initiation of mitosis. During cytokinesis, another plant-specific cytoskeletal structure called the phragmoplast guides vesicles in the creation of a new cell wall. In addition, a number of cytoskeleton-associated proteins are reportedly involved in the formation and function of the PPB, mitotic spindle, and phragmoplast. This review summarizes current knowledge on the cytoskeleton-associated proteins that mediate the cytoskeletal arrays during mitosis and cytokinesis in plant cells and discusses the interaction between MTs and AFs involved in mitosis and cytokinesis.
Collapse
Affiliation(s)
| | | | - Haiyun Ren
- *Correspondence: Haiyun Ren, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, No.19, XinJieKouWai Street, Beijing 100875, China
| |
Collapse
|
15
|
Wu SZ, Bezanilla M. Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. eLife 2014; 3. [PMID: 25247701 PMCID: PMC4171706 DOI: 10.7554/elife.03498] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/28/2014] [Indexed: 11/13/2022] Open
Abstract
Plant cells divide using the phragmoplast, a microtubule-based structure that directs vesicles secretion to the nascent cell plate. The phragmoplast forms at the cell center and expands to reach a specified site at the cell periphery, tens or hundreds of microns distant. The mechanism responsible for guiding the phragmoplast remains largely unknown. Here, using both moss and tobacco, we show that myosin VIII associates with the ends of phragmoplast microtubules and together with actin plays a role in guiding phragmoplast expansion to the cortical division site. Our data lead to a model whereby myosin VIII links phragmoplast microtubules to the cortical division site via actin filaments. Myosin VIII's motor activity along actin provides a molecular mechanism for steering phragmoplast expansion. DOI:http://dx.doi.org/10.7554/eLife.03498.001 Plant cells are surrounded by a membrane, which controls what enters and leaves the cell, and a cell wall, which provides rigidity. When a plant cell is ready to divide, it needs to produce two new cell membranes, with a new cell wall sandwiched between them, to split the cell contents into two daughter cells. During the division process the cell builds a scaffold called the phragmoplast that guides the delivery of the materials that are needed to make the new cell wall and membranes. The phragmoplast—which is made of rod-like proteins called microtubules and actin filaments—starts at the centre of the cell and expands towards a pre-determined site on the existing cell wall. The question is: how does the phragmoplast target this site, which can be tens or hundreds of microns away? Wu and Bezanilla have now found that a protein called myosin VIII has a central role in guiding the growing phragmoplast to the cell wall. Myosin VIII is a motor protein that moves along actin filaments. Wu and Bezanilla propose that myosin VIII can guide the expansion of the phragmoplast by pulling microtubules along the actin filaments. The experiments were carried out on two distantly-related plant species, tobacco and a moss called Physcomitrella patens. Similar results were found in both species so it is possible that myosin VIII may play the same role in cell division in all plants. DOI:http://dx.doi.org/10.7554/eLife.03498.002
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biology, University of Massachusetts, Amherst, Amherst, United States
| | - Magdalena Bezanilla
- Department of Biology, University of Massachusetts, Amherst, Amherst, United States
| |
Collapse
|
16
|
Cleary AL, Mathesius U. Rearrangements of F-actin during Stomatogenesis Visualised by Confocal Microscopy in Fixed and PermeabilisedTradescantiaLeaf Epidermis. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1996.tb00865.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Rasmussen CG, Wright AJ, Müller S. The role of the cytoskeleton and associated proteins in determination of the plant cell division plane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:258-69. [PMID: 23496276 DOI: 10.1111/tpj.12177] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/26/2013] [Accepted: 03/12/2013] [Indexed: 05/08/2023]
Abstract
In plants, as in all eukaryotic organisms, microtubule- and actin-filament based structures play fundamental roles during cell division. In addition to the mitotic spindle, plant cells have evolved a unique cytoskeletal structure that designates a specific division plane before the onset of mitosis via formation of a cortical band of microtubules and actin filaments called the preprophase band. During cytokinesis, a second plant-specific microtubule and actin filament structure called the phragmoplast directs vesicles to create the new cell wall. In response to intrinsic and extrinsic cues, many plant cells form a preprophase band in G2 , then the preprophase band recruits specific proteins to populate the cortical division site prior to disassembly of the preprophase band in prometaphase. These proteins are thought to act as a spatial reminder that actively guides the phragmoplast towards the cortical division site during cytokinesis. A number of proteins involved in determination and maintenance of the plane of cell division have been identified. Our current understanding of the molecular interactions of these proteins and their regulation of microtubules is incomplete, but advanced imaging techniques and computer simulations have validated some early concepts of division site determination.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY, USA.
| | | | | |
Collapse
|
18
|
Control of the mitotic cleavage plane by local epithelial topology. Cell 2011; 144:427-38. [PMID: 21295702 DOI: 10.1016/j.cell.2010.12.035] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/04/2010] [Accepted: 12/15/2010] [Indexed: 02/07/2023]
Abstract
For nearly 150 years, it has been recognized that cell shape strongly influences the orientation of the mitotic cleavage plane (e.g., Hofmeister, 1863). However, we still understand little about the complex interplay between cell shape and cleavage-plane orientation in epithelia, where polygonal cell geometries emerge from multiple factors, including cell packing, cell growth, and cell division itself. Here, using mechanical simulations, we show that the polygonal shapes of individual cells can systematically bias the long-axis orientations of their adjacent mitotic neighbors. Strikingly, analyses of both animal epithelia and plant epidermis confirm a robust and nearly identical correlation between local cell topology and cleavage-plane orientation in vivo. Using simple mathematics, we show that this effect derives from fundamental packing constraints. Our results suggest that local epithelial topology is a key determinant of cleavage-plane orientation, and that cleavage-plane bias may be a widespread property of polygonal cell sheets in plants and animals.
Collapse
|
19
|
The Preprophase Band and Division Site Determination in Land Plants. THE PLANT CYTOSKELETON 2011. [DOI: 10.1007/978-1-4419-0987-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Rasmussen CG, Humphries JA, Smith LG. Determination of symmetric and asymmetric division planes in plant cells. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:387-409. [PMID: 21391814 DOI: 10.1146/annurev-arplant-042110-103802] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cellular organization of plant tissues is determined by patterns of cell division and growth coupled with cellular differentiation. Cells proliferate mainly via symmetric division, whereas asymmetric divisions are associated with initiation of new developmental patterns and cell types. Division planes in both symmetrically and asymmetrically dividing cells are established through the action of a cortical preprophase band (PPB) of cytoskeletal filaments, which is disassembled upon transition to metaphase, leaving behind a cortical division site (CDS) to which the cytokinetic phragmoplast is later guided to position the cell plate. Recent progress has been made in understanding PPB formation and function as well as the nature and function of the CDS. In asymmetrically dividing cells, division plane establishment is governed by cell polarity. Recent work is beginning to shed light on polarization mechanisms in asymmetrically dividing cells, with receptor-like proteins and potential downstream effectors emerging as important players in this process.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
21
|
Rasmussen CG, Sun B, Smith LG. Tangled localization at the cortical division site of plant cells occurs by several mechanisms. J Cell Sci 2010; 124:270-9. [PMID: 21172800 DOI: 10.1242/jcs.073676] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
TANGLED (TAN) is the founding member of a family of plant-specific proteins required for correct orientation of the division plane. Arabidopsis thaliana TAN is localized before prophase until the end of cytokinesis at the cortical division site (CDS), where it appears to help guide the cytokinetic apparatus towards the cortex. We show that TAN is actively recruited to the CDS by distinct mechanisms before and after preprophase band (PPB) disassembly. Colocalization with the PPB is mediated by one region of TAN, whereas another region mediates its recruitment to the CDS during cytokinesis. This second region binds directly to POK1, a kinesin that is required for TAN localization. Although this region of TAN is recruited to the CDS during cytokinesis without first colocalizing with the PPB, pharmacological evidence indicates that the PPB is nevertheless required for both early and late localization of TAN at the CDS. Finally, we show that phosphatase activity is required for maintenance of early but not late TAN localization at the CDS. We propose a new model in which TAN is actively recruited to the CDS by several mechanisms, indicating that the CDS is dynamically modified from prophase through to the completion of cytokinesis.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- University of California, San Diego, Section of Cell and Developmental Biology, 9500 Gilman Dr., La Jolla, CA 92093-0116, USA.
| | | | | |
Collapse
|
22
|
Li Y, Shen Y, Cai C, Zhong C, Zhu L, Yuan M, Ren H. The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. THE PLANT CELL 2010; 22:2710-26. [PMID: 20709814 PMCID: PMC2947165 DOI: 10.1105/tpc.110.075507] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/17/2010] [Accepted: 07/28/2010] [Indexed: 05/18/2023]
Abstract
Formins have long been known to regulate microfilaments but have also recently been shown to associate with microtubules. In this study, Arabidopsis thaliana FORMIN14 (AFH14), a type II formin, was found to regulate both microtubule and microfilament arrays. AFH14 expressed in BY-2 cells was shown to decorate preprophase bands, spindles, and phragmoplasts and to induce coalignment of microtubules with microfilaments. These effects perturbed the process of cell division. Localization of AFH14 to microtubule-based structures was confirmed in Arabidopsis suspension cells. Knockdown of AFH14 in mitotic cells altered interactions between microtubules and microfilaments, resulting in the formation of an abnormal mitotic apparatus. In Arabidopsis afh14 T-DNA insertion mutants, microtubule arrays displayed abnormalities during the meiosis-associated process of microspore formation, which corresponded to altered phenotypes during tetrad formation. In vitro biochemical experiments showed that AFH14 bound directly to either microtubules or microfilaments and that the FH2 domain was essential for cytoskeleton binding and bundling. However, in the presence of both microtubules and microfilaments, AFH14 promoted interactions between microtubules and microfilaments. These results demonstrate that AFH14 is a unique plant formin that functions as a linking protein between microtubules and microfilaments and thus plays important roles in the process of plant cell division.
Collapse
Affiliation(s)
- Yanhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chao Cai
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chenchun Zhong
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094, People's Republic of China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094, People's Republic of China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
23
|
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A. Actin bundling in plants. ACTA ACUST UNITED AC 2009; 66:940-57. [DOI: 10.1002/cm.20389] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Panteris E. Cortical actin filaments at the division site of mitotic plant cells: a reconsideration of the 'actin-depleted zone'. THE NEW PHYTOLOGIST 2008; 179:334-341. [PMID: 19086286 DOI: 10.1111/j.1469-8137.2008.02474.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The preprophase bands of microtubules and F-actin are primary markers of the division site for most plant cells. After preprophase band breakdown, the division site has been considered to be 'negatively' memorized by the local absence of cortical actin filaments. However, there have been reports of cortical F-actin at the division site of mitotic plant cells, calling into question its distribution and possible role there. In this article, previous and recent data on this issue are reviewed. It is proposed that the division site of mitotic plant cells is not devoid of F-actin but is traversed by scarce cortical actin filaments. The description of the division site as an 'actin exclusion zone' might therefore be attributed to a failure to preserve and/or image the notoriously sensitive actin filaments. Accordingly, the 'actin-depleted zone' should be considered as a site with fewer actin filaments than the rest of the cortical cytoplasm. Taking into account recent molecular data on division site components, a possible role for the scarcity of cortical actin filaments in establishing a zone of minimum mobility is also proposed.
Collapse
Affiliation(s)
- Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Macedonia, Greece
| |
Collapse
|
25
|
Van Damme D, Geelen D. Demarcation of the cortical division zone in dividing plant cells. Cell Biol Int 2007; 32:178-87. [PMID: 18083049 DOI: 10.1016/j.cellbi.2007.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/06/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Somatic cytokinesis in higher plants involves, besides the actual construction of a new cell wall, also the determination of a division zone. Several proteins have been shown to play a part in the mechanism that somatic plant cells use to control the positioning of the new cell wall. Plant cells determine the division zone at an early stage of cell division and use a transient microtubular structure, the preprophase band (PPB), during this process. The PPB is formed at the division zone, leaving behind a mark that during cytokinesis is utilized by the phragmoplast to guide the expanding cell plate toward the correct cortical insertion site. This review discusses old and new observations with regard to mechanisms implicated in the orientation of cell division and determination of a cortical division zone.
Collapse
Affiliation(s)
- Daniel Van Damme
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghen University, B-9052 Ghent, Belgium
| | | |
Collapse
|
26
|
Marcus AI, Dixit R, Cyr RJ. Narrowing of the preprophase microtubule band is not required for cell division plane determination in cultured plant cells. PROTOPLASMA 2005; 226:169-74. [PMID: 16333576 DOI: 10.1007/s00709-005-0119-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 04/01/2005] [Indexed: 05/05/2023]
Abstract
In most higher-plant cells, cortical microtubules form a tightly focused preprophase band (PPB) that disappears with the onset of prometaphase, but whose location defines the future location of the cell plate at the end of cytokinesis. It is unclear whether the PPB microtubules themselves designate the precise area where the cell plate will insert, or rather if these microtubules are responding to a hierarchical signal(s). Here we show that narrowing of the microtubules within the PPB zone is not necessary for proper division plane determination. In cultured tobacco BY-2 cells in which PPB microtubules are depolymerized, the phragmoplast can still accurately locate and insert at the proper site. The data do not support a role for PPB microtubule narrowing in focusing the signal that is used later by the phragmoplast to position the cell plate; rather, proper phragmoplast positioning is more likely a consequence of a non-microtubule positional element. Although the PPB microtubules do not directly mark the division site, we show that they are required for accurate spindle positioning, an activity that presets the future growth trajectory of the phragmoplast and is necessary for insuring high-fidelity cell plate positioning.
Collapse
Affiliation(s)
- A I Marcus
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
27
|
Abstract
The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development.
Collapse
Affiliation(s)
- Benedikt Kost
- Laboratory of Plant Cell Biology, Institute of Molecular Biology, National University of Singapore, 1 Research Link, Singapore 117 604
| | | | | |
Collapse
|
28
|
Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D. The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. THE PLANT CELL 2002; 14:833-45. [PMID: 11971138 PMCID: PMC150685 DOI: 10.1105/tpc.010402] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2001] [Accepted: 12/17/2001] [Indexed: 05/17/2023]
Abstract
In Arabidopsis ton2 mutants, abnormalities of the cortical microtubular cytoskeleton, such as disorganization of the interphase microtubule array and lack of the preprophase band before mitosis, markedly affect cell shape and arrangement as well as overall plant morphology. We present the molecular isolation of the TON2 gene, which is highly conserved in higher plants and has a vertebrate homolog of unknown function. It encodes a protein similar in its C-terminal part to B" regulatory subunits of type 2A protein phosphatases (PP2As). We show that the TON2 protein interacts with an Arabidopsis type A subunit of PP2A in the yeast two-hybrid system and thus likely defines a novel subclass of PP2A subunits that are possibly involved in the control of cytoskeletal structures in plants.
Collapse
Affiliation(s)
- Christine Camilleri
- Station de Génétique et Amélioration des Plantes, Centre de Versailles, F78026 Versailles Cedex, France
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Many premitotic plant cells possess a cortical preprophase band of microtubules and actin filaments that encircles the nucleus. In vacuolated cells, the preprophase band is visibly connected to the nucleus by a cytoplasmic raft of actin filaments and microtubules termed the phragmosome. Typically, the location of the preprophase band and phragmosome corresponds to, and thus is thought to influence, the location of the cell division plane. To better understand the function of the preprophase band and phragmosome in orienting division, we used a green fluorescent protein-based microtubule reporter protein to observe mitosis in living tobacco bright yellow 2 cells possessing unusual preprophase bands. Observations of mitosis in these unusual cells support the involvement of the preprophase band/phragmosome in properly positioning the preprophase nucleus, influencing spindle orientation such that the cytokinetic phragmoplast initially grows in an appropriate direction, and delineating a region in the cell cortex that attracts microtubules and directs later stages of phragmoplast growth. Thus, the preprophase band/phragmosome appears to perform several interrelated functions to orient the division plane. However, functional information associated with the preprophase band is not always used or needed and there appears to be an age or distance-dependent character to the information. Cells treated with the anti-actin drug, latrunculin B, are still able to position the preprophase nucleus suggesting that microtubules may play a dominant role in premitotic positioning. Furthermore, in treated cells, spindle location and phragmoplast insertion are frequently abnormal suggesting that actin plays a significant role in nuclear anchoring and phragmoplast guidance. Thus, the microtubule and actin components of the preprophase band/phragmosome execute complementary activities to ensure proper orientation of the division plane.
Collapse
Affiliation(s)
- C Granger
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
30
|
Brown RC, Lemmon BE. The cytoskeleton and spatial control of cytokinesis in the plant life cycle. PROTOPLASMA 2001; 215:35-49. [PMID: 11732063 DOI: 10.1007/bf01280302] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
One of the intriguing aspects of development in plants is the precise control of division plane and subsequent placement of walls resulting in the specific architecture of tissues and organs. The placement of walls can be directed by either of two microtubule cycles. The better known microtubule cycle is associated with control of the future division plane in meristematic growth where new cells become part of tissues. The future daughter domains are determined before the nucleus enters prophase and the future site of cytokinesis is marked by a preprophase band (PPB) of cortical microtubules. The spindle axis is then organized in accordance with the PPB and, following chromosome movement, a phragmoplast is initiated in the interzone and expands to join with parental walls at the site previously occupied by the PPB. The alternative microtubule cycle lacks both the hooplike cortical microtubules of interphase and the PPB. Wall placement is determined by a radial microtubule system that defines a domain of cytoplasm either containing a nucleus or destined to contain a nucleus (the nuclear cytoplasmic domain) and controls wall placement at its perimeter. This more flexible system allows for cytoplasmic polarization and migration of nuclei in coenocytes prior to cellularization. The uncoupling of cytokinesis from karyokinesis is a regular feature of the reproductive phase in plants and results in specific, often unusual, patterns of cells which reflect the position of nuclei at the time of cellularization (e.g., the arrangement of spores in a tetrad, cells of the male and female gametophytes of angiosperms, and the distinctive cellularization of endosperm). Thus, both microtubule cycles are required for completion of plant life cycles from bryophytes to angiosperms. In angiosperm seed development, the two methods of determining the boundaries of domains where walls will be deposited are operative side by side. Whereas the PPB cycle drives embryo development, the radial-microtubule-system cycle drives the common nuclear type of endosperm development from the syncytial stage through cellularization. However, a switch to the PPB cycle can occur in endosperm, as it does in barley, when peripheral cells divide to produce a multilayered aleurone. The triggers for the switch between microtubule cycles, which are currently unknown, are key to understanding plant development.
Collapse
Affiliation(s)
- R C Brown
- Department of Biology, University of Louisiana at Lafayette, LA 70504-2451, USA.
| | | |
Collapse
|
31
|
Abstract
Plant cells are surrounded by walls that define their shapes and fix their positions with tissues. Consequently, establishment of a plant's cellular framework during development depends largely on the positions in which new walls are formed during cytokinesis. Experiments using various approaches are now building on classical studies to shed light on the mechanisms underlying the spatial control of cytokinesis.
Collapse
Affiliation(s)
- L G Smith
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA.
| |
Collapse
|
32
|
Canaday J, Stoppin-Mellet V, Mutterer J, Lambert AM, Schmit AC. Higher plant cells: gamma-tubulin and microtubule nucleation in the absence of centrosomes. Microsc Res Tech 2000; 49:487-95. [PMID: 10842376 DOI: 10.1002/(sici)1097-0029(20000601)49:5<487::aid-jemt11>3.0.co;2-i] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The assembly of the higher plant cytoskeleton poses several fundamental questions. Since different microtubule arrays are successively assembled during the cell cycle in the absence of centrosomes, we can ask how these arrays are assembled and spatially organized. Two hypotheses are under debate. Either multiple nucleation sites are responsible for the assembly and organization of microtubule arrays or microtubule nucleation takes place at one site, the nuclear surface. In the latter case, microtubule nucleation and organization would be two distinct but coregulated processes. During recent years, novel approaches have provided entirely new insights to understand the assembly and dynamics of the plant cytoskeleton. In the present review, we summarize advances made in microscopy and in molecular biology which lead to novel hypotheses and open up new fields of investigation. From the results obtained, it is clear that the higher plant cell is a powerful model system to investigate cytoskeletal organization in acentrosomal eukaryotic cells.
Collapse
Affiliation(s)
- J Canaday
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
33
|
Abstract
Growth and development of all plant cells and organs relies on a fully functional cytoskeleton comprised principally of microtubules and microfilaments. These two polymeric macromolecules, because of their location within the cell, confer structure upon, and convey information to, the peripheral regions of the cytoplasm where much of cellular growth is controlled and the formation of cellular identity takes place. Other ancillary molecules, such as motor proteins, are also important in assisting the cytoskeleton to participate in this front-line work of cellular development. Roots provide not only a ready source of cells for fundamental analyses of the cytoskeleton, but the formative zone at their apices also provides a locale whereby experimental studies can be made of how the cytoskeleton permits cells to communicate between themselves and to cooperate with growth-regulating information supplied from the apoplasm.
Collapse
Affiliation(s)
- Peter W. Barlow
- IACR-Long Ashton Research Station, Department of Agricultural Sciences, University of Bristol, Long Ashton, Bristol BS41 9AF, United Kingdom; e-mail: , Botanisches Institut, Rheinische Friedrich-Wilhelms-Universitat Bonn, Kirschallee 1, D-53115 Bonn, Germany; e-mail:
| | | |
Collapse
|
34
|
Abstract
The plant actin cytoskeleton is characterized by a high diversity in regard to gene families, isoforms, and degree of polymerization. In addition to the most abundant F-actin assemblies like filaments and their bundles, G-actin obviously assembles in the form of actin oligomers composed of a few actin molecules which can be extensively cross-linked into complex dynamic meshworks. The role of the actomyosin complex as a force generating system - based on principles operating as in muscle cells - is clearly established for long-range mass transport in large algal cells and specialized cell types of higher plants. Extended F-actin networks, mainly composed of F-actin bundles, are the structural basis for this cytoplasmic streaming of high velocities On the other hand, evidence is accumulating that delicate meshworks built of short F-actin oligomers are critical for events occurring at the plasma membrane, e.g., actin interventions into activities of ion channels and hormone carriers, signaling pathways based on phospholipids, and exo- and endocytotic processes. These unique F-actin arrays, constructed by polymerization-depolymerization processes propelled via synergistic actions of actin-binding proteins such as profilin and actin depolymerizing factor (ADF)/cofilin are supposed to be engaged in diverse aspects of plant morphogenesis. Finally, rapid rearrangements of F-actin meshworks interconnecting endocellular membranes turn out to be especially important for perception-signaling purposes of plant cells, e.g., in association with guard cell movements, mechano- and gravity-sensing, plant host-pathogen interactions, and wound-healing.
Collapse
Affiliation(s)
- D Volkmann
- Botany Institute, University of Bonn, Germany.
| | | |
Collapse
|
35
|
Gallagher K, Smith LG. discordia mutations specifically misorient asymmetric cell divisions during development of the maize leaf epidermis. Development 1999; 126:4623-33. [PMID: 10498696 DOI: 10.1242/dev.126.20.4623] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In plant cells, cytokinesis depends on a cytoskeletal structure called a phragmoplast, which directs the formation of a new cell wall between daughter nuclei after mitosis. The orientation of cell division depends on guidance of the phragmoplast during cytokinesis to a cortical site marked throughout prophase by another cytoskeletal structure called a preprophase band. Asymmetrically dividing cells become polarized and form asymmetric preprophase bands prior to mitosis; phragmoplasts are subsequently guided to these asymmetric cortical sites to form daughter cells of different shapes and/or sizes. Here we describe two new recessive mutations, discordia1 (dcd1) and discordia2 (dcd2), which disrupt the spatial regulation of cytokinesis during asymmetric cell divisions. Both mutations disrupt four classes of asymmetric cell divisions during the development of the maize leaf epidermis, without affecting the symmetric divisions through which most epidermal cells arise. The effects of dcd mutations on asymmetric cell division can be mimicked by cytochalasin D treatment, and divisions affected by dcd1 are hypersensitive to the effects of cytochalasin D. Analysis of actin and microtubule organization in these mutants showed no effect of either mutation on cell polarity, or on formation and localization of preprophase bands and spindles. In mutant cells, phragmoplasts in asymmetrically dividing cells are structurally normal and are initiated in the correct location, but often fail to move to the position formerly occupied by the preprophase band. We propose that dcd mutations disrupt an actin-dependent process necessary for the guidance of phragmoplasts during cytokinesis in asymmetrically dividing cells.
Collapse
Affiliation(s)
- K Gallagher
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
36
|
Pickett-Heaps JD, Gunning BE, Brown RC, Lemmon BE, Cleary AL. The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell. AMERICAN JOURNAL OF BOTANY 1999. [PMID: 21680355 DOI: 10.2307/2656933] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The unique cytokinetic apparatus of higher plant cells comprises two cytoskeletal systems: a predictive preprophase band of microtubules (MTs), which defines the future division site, and the phragmoplast, which mediates crosswall formation after mitosis. We review features of plant cell division in an evolutionary context and from the viewpoint that the cell is a domain of cytoplasm (cytoplast) organized around the nucleus by a cytoskeleton consisting of a single "tensegral" unit. The term "tensegrity" is a contraction of "tensional integrity" and the concept proposes that the whole cell is organized by an integrated cytoskeleton of tension elements (e.g., actin fibers) extended over compression-resistant elements (e.g., MTs).During cell division, a primary role of the spindle is seen as generating two cytoplasts from one with separation of chromosomes a later, derived function. The telophase spindle separates the newly forming cytoplasts and the overlap between half spindles (the shared edge of two new domains) dictates the position at which cytokinesis occurs. Wall MTs of higher plant cells, like the MT cytoskeleton in animal and protistan cells, spatially define the interphase cytoplast. Redeployment of actin and MTs into the preprophase band (PPB) is the overt signal that the boundary between two nascent cytoplasts has been delineated. The "actin-depleted zone" that marks the site of the PPB throughout mitosis may be a more persistent manifestation of this delineation of two domains of cortical actin. The growth of the phragmoplast is controlled by these domains, not just by the spindle. These domains play a major role in controlling the path of phragmoplast expansion. Primitive land plants show different morphological changes that reveal that the plane of division, with or without the PPB, has been determined well in advance of mitosis.The green alga Spirogyra suggests how the phragmoplast system might have evolved: cytokinesis starts with cleavage and then actin-related determinants stimulate and positionally control cell-plate formation in a phragmoplast arising from interzonal MTs from the spindle. Actin in the PPB of higher plants may be assembling into a potential furrow, imprinting a cleavage site whose persistent determinants (perhaps actin) align the outgrowing edge of the phragmoplast, as in Spirogyra. Cytochalasin spatially disrupts polarized mitosis and positioning of the phragmoplast. Thus, the tensegral interaction of actin with MTs (at the spindle pole and in the phragmoplast) is critical to morphogenesis, just as they seem to be during division of animal cells. In advanced green plants, intercalary expansion driven by turgor is controlled by MTs, which in conjunction with actin, may act as stress detectors, thereby affecting the plane of division (a response clearly evident after wounding of tissue). The PPB might be one manifestation of this strain detection apparatus.
Collapse
Affiliation(s)
- J D Pickett-Heaps
- School of Botany, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
37
|
Mineyuki Y. The Preprophase Band of Microtubules: Its Function as a Cytokinetic Apparatus in Higher Plants. INTERNATIONAL REVIEW OF CYTOLOGY 1999. [DOI: 10.1016/s0074-7696(08)62415-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Cleary AL, Smith LG. The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. THE PLANT CELL 1998; 10:1875-88. [PMID: 9811795 PMCID: PMC143953 DOI: 10.1105/tpc.10.11.1875] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cytoskeleton plays a major role in the spatial regulation of plant cell division and morphogenesis. Arrays of microtubules and actin filaments present in the cell cortex during prophase mark sites to which phragmoplasts and associated cell plates are guided during cytokinesis. During interphase, cortical microtubules are believed to influence the orientation of cell expansion by guiding the pattern in which cell wall material is laid down. Little is known about the mechanisms that regulate these cytoskeleton-dependent processes critical for plant development. Previous work showed that the Tangled1 (Tan1) gene of maize is required for spatial regulation of cytokinesis during maize leaf development but not for leaf morphogenesis. Here, we examine the cytoskeletal arrays associated with cell division and morphogenesis during the development of tan1 and wild-type leaves. Our analysis leads to the conclusion that Tan1 is required both for the positioning of cytoskeletal arrays that establish planes of cell division during prophase and for spatial guidance of expanding phragmoplasts toward preestablished cortical division sites during cytokinesis. Observations on the organization of interphase cortical microtubules suggest that regional influences may play a role in coordinating cell expansion patterns among groups of cells during leaf morphogenesis.
Collapse
Affiliation(s)
- A L Cleary
- Plant Cell Biology Group, Research School of Biological Sciences, Australian National University, GPO Box 475, ACT 2601, Canberra, Australia
| | | |
Collapse
|
39
|
Endlé MC, Stoppin V, Lambert AM, Schmit AC. The growing cell plate of higher plants is a site of both actin assembly and vinculin-like antigen recruitment. Eur J Cell Biol 1998; 77:10-8. [PMID: 9808284 DOI: 10.1016/s0171-9335(98)80097-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Compelling evidence supports the idea that actin filaments play an active role in the cytokinetic process of higher plant cells. However, the mechanisms that control the growth of the cell plate and its stabilization remain so far unknown. We show that a novel population of short actin filaments continuously assembles in the phragmoplast at the growing cell plate. Microinjection of rhodamine-phalloidin during these final stages of telophase revealed the dynamic assembly and organization of these actin filaments during vesicle fusion. Comparable data were obtained in endosperm syncytia during the development of the cell plate between non sister nuclei, i.e. independently of the formation of the mitotic phragmoplast. Concomitantly, plant polypeptides sharing epitopes with human vinculin are revealed within the forming cell plate, suggesting their recruitment during cytokinesis-associated actin assembly. These vinculin-like antigens may participate in membrane/F-actin anchorage protein complexes. Our data, in addition to the identification of plant integrin homologues reported by several authors, suggest the existence of a cell wall/extracellular matrix/plasma membrane/actin cytoskeleton continuum. Such an architecture may control cell-cell interactions during cell plate formation and may contribute to the establishment of polarity in higher plants.
Collapse
Affiliation(s)
- M C Endlé
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique UPR 406, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
40
|
Huang S, An YQ, McDowell JM, McKinney EC, Meagher RB. The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. PLANT MOLECULAR BIOLOGY 1997; 33:125-39. [PMID: 9037165 DOI: 10.1023/a:1005741514764] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ACT11 represents a unique and ancient actin subclass in the complex Arabidopsis actin gene family. We have isolated and characterized the Arabidopsis ACT11 actin gene and examined its expression. Southern blotting with a 5' gene-specific probe showed that ACT11 was a single-copy gene in the genome. Northern analysis with a 3' gene-specific probe and reverse transcriptase-mediated PCR (RT-PCR) using gene-specific primers detected ACT11 mRNA at low levels in seedling, root, leaf, and silique tissue; at moderate levels in the inflorescence stem and flower; and at very high levels in pollen. The 5' region of the ACT11 gene, including the promoter region, the 5'-untranslated leader, the intron within the leader, and the first 19 actin codons, was fused to a beta-glucuronidase (GUS) reporter gene. The expression of the ACT11/GUS fusion was examined histochemically in numerous independent transgenic Arabidopsis plants. Strong ACT11/GUS activity was detected in rapidly elongating tissues and organs (e.g., etiolated hypocotyls, expanding leaves, stems) and in floral organ primordia. As the floral buds developed into mature flowers, strong GUS activity was gradually restricted to mature pollen and developing ovules. ACT11 appears to be the only Arabidopsis actin gene expressed at significant levels in ovule, embryo, and endosperm. The unique expression patterns in reproductive organs and the sequence divergence of the ACT11 actin gene suggest that the ACT11 isovariant plays distinct and required roles during Arabidopsis development.
Collapse
Affiliation(s)
- S Huang
- Department of Genetics, University of Georgia, Athens 30602-7223, USA
| | | | | | | | | |
Collapse
|
41
|
An YQ, Huang S, McDowell JM, McKinney EC, Meagher RB. Conserved expression of the Arabidopsis ACT1 and ACT 3 actin subclass in organ primordia and mature pollen. THE PLANT CELL 1996; 8:15-30. [PMID: 8597657 PMCID: PMC161078 DOI: 10.1105/tpc.8.1.15] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have proposed that ancient and divergent classes of plant actin genes have been preserved throughout vascular plant evolution, because they have distinct patterns of gene regulation. The hypothesis was explored for ACT1 and ACT3, which represent one of the six ancient subclasses in the Arabidopsis actin gene family. Comparison of ACT1 and ACT3 cDNA and genomic sequences revealed highly divergent flaking and intron sequences, whereas they encoded nearly identical proteins. Quantification of their level of divergence suggests that they have not shared a common ancestor for 30 to 60 million years. Gene-specific RNA gel blot hybridization and reverse transcriptase-polymerase chain reaction analyses demonstrated that the distribution of ACT1 and ACT3 mRNAs was very similar: both preferentially accumulated at high levels in mature pollen and at very low levels in the other major organs. The 5' flanking regions of both genes, including the promoter, leader exon and intron, and the first 19 condons, were fused to the beta-glucuronidase (GUS) reporter gene. The expression of these reporter fusions was examined in a large number of transgenic Arabidopsis plants. Histochemical assays demonstrated that both ACT1-GUS and ACT3-GUS constructs were expressed preferentially in pollen, pollen tubes, and in all organ primordia, including those in roots shoots, and the inflorescence. Comparison of the 5' flanking regions of ACT1 and ACT3 revealed a number of short conserved sequences, which may direct their common transcriptional and post-transcriptional regulation. The expression patterns observed were distinct from those of any other other Arabidopsis actin subclass. The conservation of their expression pattern and amino acid sequences suggests that this actin subclass plays a distinct and required role in the plant cytoskeleton.
Collapse
Affiliation(s)
- Y Q An
- Department of Genetics, University of Georgia 30602-7223, USA
| | | | | | | | | |
Collapse
|
42
|
The plant cytoskeleton. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-6020(96)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
43
|
Sawitzky H, Grolig F. Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast. J Biophys Biochem Cytol 1995; 130:1359-71. [PMID: 7559758 PMCID: PMC2120580 DOI: 10.1083/jcb.130.6.1359] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cytokinesis in the green alga Spirogyra (Zygnemataceae) is characterized by centripetal growth of a septum, which impinges on a persistent, centrifugally expanding telophase spindle, leading to a phragmoplast-like structure of potential phylogenetic significance (Fowke, L. C., and J. D. Pickett-Heaps. 1969. J. Phycol. 5:273-281). Combining fluorescent tagging of the cytoskeleton in situ and video-enhanced differential interference contrast microscopy of live cells, the process of cytokinesis was investigated with emphasis on cytoskeletal reorganization and concomitant redistribution of organelles. Based on a sequence of cytoskeletal arrangements and the effects of cytoskeletal inhibitors thereon, cytokinetic progression could be divided into three functional stages with respect to the contribution of microfilaments (MFs) and microtubules (MTs): (1) Initiation: in early prophase, a cross wall initial was formed independently of MFs and MTs at the presumptive site of wall growth. (2) Septum ingrowth: numerous organelles accumulated at the cross wall initial concomitant with reorganization of the extensive peripheral interphase MF array into a distinct circumferential MF array. This array guided the ingrowing septum until it contacted the expanding interzonal MT array. (3) Cross wall closure: MFs at the growing edge of the septum coaligned with and extended along the interzonal MTs toward the daughter nuclei. Thus, actin-based transportation of small organelles during this third stage occurred, in part, along a scaffold previously deployed in space by MTs. Displacement of the nuclei-associated interzonal MT array by centrifugation and depolymerization of the phragmoplast-like structure showed that the success of cytokinesis at the third stage depends on the interaction of both MF and MT cytoskeletons. Important features of the phragmoplast-like structure in Spirogyra were different from the higher plant phragmoplast: in particular, MFs were responsible for the positioning of organelles at the fusion site, contrary to the proposed role of MTs in the higher plant phragmoplast.
Collapse
Affiliation(s)
- H Sawitzky
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Federal Republic of Germany
| | | |
Collapse
|
44
|
Olsen OA, Brown RC, Lemmon BE. Pattern and process of wall formation in developing endosperm. Bioessays 1995. [DOI: 10.1002/bies.950170910] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
|
46
|
Colasanti J, Cho SO, Wick S, Sundaresan V. Localization of the Functional p34cdc2 Homolog of Maize in Root Tip and Stomatal Complex Cells: Association with Predicted Division Sites. THE PLANT CELL 1993; 5:1101-1111. [PMID: 12271098 PMCID: PMC160344 DOI: 10.1105/tpc.5.9.1101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have used an antibody against the functional homolog of the cdc2 kinase of maize to localize the p34cdc2 protein within dividing cells of the root apex and the stomatal complex of leaf epidermis. The microtubule cytoskeletal structure of plant cells was visualized concomitantly with a monoclonal antibody specific for [alpha]-tubulin. We found that the cdc2 protein is localized mainly to the nucleus in plant cells at interphase and early prophase. This finding contrasts markedly with the predominantly cytoplasmic staining obtained using antibody to the PSTAIRE motif, which is common to cdc2 and numerous cdc2-like proteins. In a subpopulation of root cells at early prophase, the p34cdc2 protein is also distributed in a band bisecting the nucleus. Double labeling with the maize p34cdc2Zm antibody and tubulin antibody revealed that this band colocalizes with the preprophase band (PPB) of microtubules, which predicts the future division site. Root cells in which microtubules had been disrupted with oryzalin did not contain this band of p34cdc2 protein, suggesting that formation of the microtubule PPB is necessary for localization of the p34cdc2 kinase to the plane of the PPB. The p34cdc2 protein is also localized to the nucleus and PPB in cells that give rise to the stomatal complex, including those cells preparing for the highly asymmetrical divisions that produce subsidiary cells. Association of the p34cdc2 protein with the PPB suggests that the cdc2 kinase has a role in establishing the division site of plant cells and, therefore, a role in plant morphogenesis.
Collapse
Affiliation(s)
- J. Colasanti
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724
| | | | | | | |
Collapse
|
47
|
Cleary A, Gunning B, Wasteneys G, Hepler P. Microtubule and F-actin dynamics at the division site in living Tradescantia stamen hair cells. J Cell Sci 1992. [DOI: 10.1242/jcs.103.4.977] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have visualised F-actin and microtubules in living Tradescantia virginiana stamen hair cells by confocal laser scanning microscopy after microinjecting rhodamine-phalloidin or carboxyfluorescein-labelled brain tubulin. We monitored these components of the cytoskeleton as the cells prepared for division at preprophase and progressed through mitosis to cytokinesis. Reorganisation of the interphase cortical cytoskeleton results in preprophase bands of both F-actin and microtubules that coexist in the cell cortex, centred on the site at which the future cell plate will fuse with the parent cell wall. The preprophase band of microtubules is formed from microtubules that polymerise and incorporate tubulin during prophase. The preprophase band of actin may form either by reorganisation of pre-existing filaments or by de novo polymerisation. Both cytoskeletal components disappear from the future division site approximately five minutes prior to the breakdown of the nuclear envelope. Cortical microtubules are undetectable throughout mitosis and cytokinesis, whereas cortical F-actin remains abundant, although it is notably excluded from the division site. The phragmoplast, containing both F-actin and microtubules, expands towards the cortical actin exclusion-zone through a region that has no detectable microtubules or F-actin. The phragmoplast comes to rest in the predefined region of the cortex that is devoid of F-actin. It is proposed that cortical F-actin may act as a “negative” template which could position the phragmoplast and cell plate correctly. This is the first in vivo documentation of F- actin dynamics at the division site in living plant cells.
Collapse
|
48
|
Eleftheriou E, Palevitz B. The effect of cytochalasin D on preprophase band organization in root tip cells of Allium. J Cell Sci 1992. [DOI: 10.1242/jcs.103.4.989] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between microfilaments (Mfs) and microtubules (Mts) in the organization of the preprophase band (PPB) was investigated in Allium root tip cells subjected to treatment with cytochalasin D (CD). Mts and Mfs were visualized by indirect immunofluorescence and various parameters such as PPB width were analyzed quantitatively. In control samples, the PPB first appears as a wide Mt band that progressively narrows to an average width of 4 micrometre in mid-prophase. Randomly oriented Mfs are present throughout the cytoplasm of most interphase control cells. Preprophase and prophase cells, however, contain cortical Mfs arranged parallel to the PPB. The Mfs initially occupy much of the cortex but in most cells they progressively become restricted to an area wider than the PPB. In the presence of CD, the PPB fails to narrow and remains at least two-fold wider than in control cells. PPB width expressed as a percentage of nuclear or cell length also increases compared to controls. Widening is concentration dependent, and the effect of 10 micromolar CD is near maximal only 15 min after application of the drug. This rapid response suggests that a rebroadening of already condensed PPBs takes place. After as little as 15 min in CD, Mfs are replaced by many small specks and rods. Dual localizations of both Mts and Mfs show that prophase cells contain broad PPBs without Mfs. The rapid disorganization of Mfs, by CD, therefore coincides with the rebroadening of PPBs. CD-treated cells in metaphase, anaphase and telophase contain larger actin aggregates at the poles, as previously reported. The results indicate that Mfs play an important role in the narrowing of the PPB, which in turn is essential for determination of the exact position of the plane of division. They also indicate that movement of intact Mts is important in PPB organization.
Collapse
|
49
|
Liu B, Palevitz BA. Organization of cortical microfilaments in dividing root cells. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/cm.970230405] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Cleary AL, Brown RC, Lemmon BE. Establishment of division plane and mitosis in monoplastidic guard mother cells ofSelaginella. ACTA ACUST UNITED AC 1992. [DOI: 10.1002/cm.970230202] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|