1
|
Becher MK, Avdoshina V, Campbell LA, Mocchetti I. Exploring the potential role of microtubule associated proteins-2 in the pathogenesis of HIV associated neurocognitive disorders. Neurotox Res 2025; 43:19. [PMID: 40175790 DOI: 10.1007/s12640-025-00739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 01/28/2025] [Accepted: 03/16/2025] [Indexed: 04/04/2025]
Abstract
HIV-associated neurocognitive disorder (HAND) persists in people living with HIV (PLWH) despite antiretroviral therapy. HAND is characterized by synapto-dendritic damage, yet the cause of this pathology is still under investigation. Various viral proteins, including the envelope protein gp120, have been proposed to be the leading neurotoxic agents underlying HIV-mediated neuronal degeneration. Gp120 has been shown to bind to neuronal microtubules (MTs) and impair their functions. The dynamic properties of MTs are modulated by microtubule-associated proteins (MAP), including MAP2, which is particularly abundant in dendrites. This review article explores how gp120 could be altering the function of the neuronal cytoskeleton by affecting MAP2. These effects may serve as a causal link between viral proteins and HAND pathology.
Collapse
Affiliation(s)
- Melanie K Becher
- Interdisciplinary Program in Neuroscience and Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, WP13 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Valeria Avdoshina
- Interdisciplinary Program in Neuroscience and Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, WP13 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Lee A Campbell
- Interdisciplinary Program in Neuroscience and Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, WP13 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience and Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, WP13 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
2
|
Whim MD. Mouse Adrenal Macrophages Are Associated with Pre- and Postsynaptic Neuronal Elements and Respond to Multiple Neuromodulators. eNeuro 2025; 12:ENEURO.0153-24.2025. [PMID: 39900506 PMCID: PMC11856350 DOI: 10.1523/eneuro.0153-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
The adrenal medulla is packed with chromaffin cells, modified postganglionic sympathetic neurons that secrete the catecholamines, epinephrine and norepinephrine, during the fight-or-flight response. Sometimes overlooked is a population of immune cells that also resides within the gland but whose distribution and function are not clear. Here I examine the location of CD45+ hematopoietic cells in the mouse adrenal medulla and show the majority are F4/80+/Lyz2+ macrophages. These cells are present from early postnatal development and widely distributed. Anatomically they are associated with chromaffin cells, found aligned alongside synapsin-IR neuronal varicosities and juxtaposed to CD31-IR blood vessels. Using Lyz2cre-GCaMP6f mice to quantify calcium signaling in macrophages revealed these cells respond directly and indirectly to a wide variety of neuromodulators, including pre- and postganglionic transmitters and systemic hormones. Purinergic agonists, histamine, acetylcholine, and bradykinin rapidly and reversibly increased intracellular calcium. These results are consistent with a substantial resident population of innate immune cells in the adrenal medulla. Their close association with chromaffin cells and the preganglionic input suggests they may regulate sympatho-adrenal activity and thus the strength of the fight-or-flight response.
Collapse
Affiliation(s)
- Matthew D Whim
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
3
|
Luo J, Lam WH, Yu D, Chao VC, Zopfi MN, Khoo CJ, Zhao C, Yan S, Liu Z, Li XD, Zheng C, Zhai Y, Ti SC. Tubulin acetyltransferases access and modify the microtubule luminal K40 residue through anchors in taxane-binding pockets. Nat Struct Mol Biol 2025; 32:358-368. [PMID: 39496813 DOI: 10.1038/s41594-024-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
Acetylation at α-tubulin K40 is the sole post-translational modification preferred to occur inside the lumen of hollow cylindrical microtubules. However, how tubulin acetyltransferases access the luminal K40 in micrometer-long microtubules remains unknown. Here, we use cryo-electron microscopy and single-molecule reconstitution assays to reveal the enzymatic mechanism for tubulin acetyltransferases to modify K40 in the lumen. One tubulin acetyltransferase spans across the luminal lattice, with the catalytic core docking onto two α-tubulins and the enzyme's C-terminal domain occupying the taxane-binding pockets of two β-tubulins. The luminal accessibility and enzyme processivity of tubulin acetyltransferases are inhibited by paclitaxel, a microtubule-stabilizing chemotherapeutic agent. Characterizations using recombinant tubulins mimicking preacetylated and postacetylated K40 show the crosstalk between microtubule acetylation states and the cofactor acetyl-CoA in enzyme turnover. Our findings provide crucial insights into the conserved multivalent interactions involving α- and β-tubulins to acetylate the confined microtubule lumen.
Collapse
Affiliation(s)
- Jingyi Luo
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Hei Lam
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China.
| | - Daqi Yu
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Victor C Chao
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Marc Nicholas Zopfi
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chen Jing Khoo
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chang Zhao
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shan Yan
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zheng Liu
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Xiang David Li
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanliang Zhai
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China.
| | - Shih-Chieh Ti
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Teoh J, Bartolini F. Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease. Curr Opin Neurobiol 2025; 90:102971. [PMID: 39862522 PMCID: PMC11839326 DOI: 10.1016/j.conb.2025.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function. Recent research has further highlighted that disturbances in tubulin PTMs can lead to neurodegeneration, sparking an emerging field of investigation with numerous questions such as whether and how tubulin PTMs can affect neurotransmission and synaptic plasticity and whether restoring balanced tubulin PTM levels could effectively prevent or mitigate neurodegenerative disease.
Collapse
Affiliation(s)
- JiaJie Teoh
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA.
| |
Collapse
|
5
|
Au NPB, Wu T, Chen X, Gao F, Li YTY, Tam WY, Yu KN, Geschwind DH, Coppola G, Wang X, Ma CHE. Genome-wide study reveals novel roles for formin-2 in axon regeneration as a microtubule dynamics regulator and therapeutic target for nerve repair. Neuron 2023; 111:3970-3987.e8. [PMID: 38086376 DOI: 10.1016/j.neuron.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/02/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
Peripheral nerves regenerate successfully; however, clinical outcome after injury is poor. We demonstrated that low-dose ionizing radiation (LDIR) promoted axon regeneration and function recovery after peripheral nerve injury (PNI). Genome-wide CpG methylation profiling identified LDIR-induced hypermethylation of the Fmn2 promoter, exhibiting injury-induced Fmn2 downregulation in dorsal root ganglia (DRGs). Constitutive knockout or neuronal Fmn2 knockdown accelerated nerve repair and function recovery. Mechanistically, increased microtubule dynamics at growth cones was observed in time-lapse imaging of Fmn2-deficient DRG neurons. Increased HDAC5 phosphorylation and rapid tubulin deacetylation were found in regenerating axons of neuronal Fmn2-knockdown mice after injury. Growth-promoting effect of neuronal Fmn2 knockdown was eliminated by pharmaceutical blockade of HDAC5 or neuronal Hdac5 knockdown, suggesting that Fmn2deletion promotes axon regeneration via microtubule post-translational modification. In silico screening of FDA-approved drugs identified metaxalone, administered either immediately or 24-h post-injury, accelerating function recovery. This work uncovers a novel axon regeneration function of Fmn2 and a small-molecule strategy for PNI.
Collapse
Affiliation(s)
| | - Tan Wu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xinyu Chen
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Feng Gao
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | | | - Wing Yip Tam
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
7
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Aiken J, Holzbaur ELF. Cytoskeletal regulation guides neuronal trafficking to effectively supply the synapse. Curr Biol 2021; 31:R633-R650. [PMID: 34033795 DOI: 10.1016/j.cub.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development and proper function of the brain requires the formation of highly complex neuronal circuitry. These circuits are shaped from synaptic connections between neurons and must be maintained over a lifetime. The formation and continued maintenance of synapses requires accurate trafficking of presynaptic and postsynaptic components along the axon and dendrite, respectively, necessitating deliberate and specialized delivery strategies to replenish essential synaptic components. Maintenance of synaptic transmission also requires readily accessible energy stores, produced in part by localized mitochondria, that are tightly regulated with activity level. In this review, we focus on recent developments in our understanding of the cytoskeletal environment of axons and dendrites, examining how local regulation of cytoskeletal dynamics and organelle trafficking promotes synapse-specific delivery and plasticity. These new insights shed light on the complex and coordinated role that cytoskeletal elements play in establishing and maintaining neuronal circuitry.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Cappelletti G, Calogero AM, Rolando C. Microtubule acetylation: A reading key to neural physiology and degeneration. Neurosci Lett 2021; 755:135900. [PMID: 33878428 DOI: 10.1016/j.neulet.2021.135900] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Neurons are the perfect example of cells where microtubules are essential to achieve an extraordinary degree of morphological and functional complexity. Different tubulin isoforms and associated post-translational modifications are the basis to establish the diversity in biochemical and biophysical properties of microtubules including their stability and the control of intracellular transport. Acetylation is one of the key tubulin modifications and it can influence important structural, mechanical and biological traits of the microtubule network. Here, we present the emerging evidence for the essential role of microtubule acetylation in the control of neuronal and glial function in healthy and degenerative conditions. In particular, we discuss the pathogenic role of tubulin acetylation in neurodegenerative disorders and focus on Parkinson's disease. We also provide a critical analysis about the possibility to target tubulin acetylation as a novel therapeutic intervention for neuroprotective strategies.
Collapse
Affiliation(s)
- Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy; Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| | | | - Chiara Rolando
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
10
|
Hać A, Pierzynowska K, Herman-Antosiewicz A. S6K1 Is Indispensible for Stress-Induced Microtubule Acetylation and Autophagic Flux. Cells 2021; 10:929. [PMID: 33920542 PMCID: PMC8073773 DOI: 10.3390/cells10040929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a specific macromolecule and organelle degradation process. The target macromolecule or organelle is first enclosed in an autophagosome, and then delivered along acetylated microtubules to the lysosome. Autophagy is triggered by stress and largely contributes to cell survival. We have previously shown that S6K1 kinase is essential for autophagic flux under stress conditions. Here, we aimed to elucidate the underlying mechanism of S6K1 involvement in autophagy. We stimulated autophagy in S6K1/2 double-knockout mouse embryonic fibroblasts by exposing them to different stress conditions. Transient gene overexpression or silencing, immunoblotting, immunofluorescence, flow cytometry, and ratiometric fluorescence analyses revealed that the perturbation of autophagic flux in S6K1-deficient cells did not stem from impaired lysosomal function. Instead, the absence of S6K1 abolished stress-induced tubulin acetylation and disrupted the acetylated microtubule network, in turn impairing the autophagosome-lysosome fusion. S6K1 overexpression restored tubulin acetylation and autophagic flux in stressed S6K1/2-deficient cells. Similar effect of S6K1 status was observed in prostate cancer cells. Furthermore, overexpression of an acetylation-mimicking, but not acetylation-resistant, tubulin variant effectively restored autophagic flux in stressed S6K1/2-deficient cells. Collectively, S6K1 controls tubulin acetylation, hence contributing to the autophagic flux induced by different stress conditions and in different cells.
Collapse
Affiliation(s)
- Aleksandra Hać
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
11
|
Boumil EF, Vohnoutka RB, Lee S, Shea TB. Tau interferes with axonal neurite stabilization and cytoskeletal composition independently of its ability to associate with microtubules. Biol Open 2020; 9:9/9/bio052530. [PMID: 32978225 PMCID: PMC7522022 DOI: 10.1242/bio.052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tau impacts overall axonal transport particularly when overexpressed by interfering with translocation of kinesin along microtubules (MTs) and/or as a cargo of kinesin by outcompeting other kinesin cargo. To discern between which of these mechanisms was more robust during axonal outgrowth, we overexpressed phosphomimetic (E18; which is incapable of MT binding), phospho-null (A18) or wild-type (WT) full-length human tau conjugated to EGFP, the latter two of which bind MTs. Expression of WT and A18 displayed increased acetylated MTs and resistance to colchicine, while expression of E18 did not, indicating that E18 did not contribute to MT stabilization. Expression of all tau constructs reduced overall levels of neurofilaments (NFs) within axonal neurites, and distribution of NFs along neurite lengths. Since NFs are another prominent cargo of kinesin during axonal neurite outgrowth, this finding is consistent with WT, A18 and E18 inhibiting NF transport to the same extent by competing as cargo of kinesin. These findings indicate that tau can impair axonal transport independently of association with MTs in growing axonal neurites.
Collapse
Affiliation(s)
- Edward F Boumil
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Rishel B Vohnoutka
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Sangmook Lee
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| |
Collapse
|
12
|
van der Laan S, Lévêque MF, Marcellin G, Vezenkov L, Lannay Y, Dubra G, Bompard G, Ovejero S, Urbach S, Burgess A, Amblard M, Sterkers Y, Bastien P, Rogowski K. Evolutionary Divergence of Enzymatic Mechanisms for Tubulin Detyrosination. Cell Rep 2020; 29:4159-4171.e6. [PMID: 31851940 DOI: 10.1016/j.celrep.2019.11.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/10/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
The two related members of the vasohibin family, VASH1 and VASH2, encode human tubulin detyrosinases. Here we demonstrate that, in contrast to VASH1, which requires binding of small vasohibin binding protein (SVBP), VASH2 has autonomous tubulin detyrosinating activity. Moreover, we demonstrate that SVBP acts as a bona fide activator of both enzymes. Phylogenetic analysis of the vasohibin family revealed that regulatory diversification of VASH-mediated tubulin detyrosination coincided with early vertebrate evolution. Thus, as a model organism for functional analysis, we used Trypanosoma brucei (Tb), an evolutionarily early-branched eukaryote that possesses a single VASH and encodes a terminal tyrosine on both α- and β-tubulin tails, both subject to removal. Remarkably, although detyrosination levels are high in the flagellum, TbVASH knockout parasites did not present any noticeable flagellar abnormalities. In contrast, we observed reduced proliferation associated with profound morphological and mitotic defects, underscoring the importance of tubulin detyrosination in cell division.
Collapse
Affiliation(s)
- Siem van der Laan
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France.
| | - Maude F Lévêque
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France.
| | - Guillaume Marcellin
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Lubomir Vezenkov
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS-Université Montpellier-ENSCM, 34093 Montpellier Cedex 5, France
| | - Yoann Lannay
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Geronimo Dubra
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Guillaume Bompard
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Sara Ovejero
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France
| | - Serge Urbach
- Functional Proteomics Platform (FPP), IGF, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Andrew Burgess
- ANZAC Research Institute, Gate 3 Hospital Rd., Concord, Sydney, NSW 2139, Australia; The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS-Université Montpellier-ENSCM, 34093 Montpellier Cedex 5, France
| | - Yvon Sterkers
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France
| | - Patrick Bastien
- Université Montpellier-CNRS, "MiVEGEC," Faculté de Medicine and Centre Hospitalier Universitaire, 39 avenue Charles Flahault, 34295 Montpellier Cedex 5, France
| | - Krzysztof Rogowski
- Tubulin Code Team, Institute of Human Genetics (IGH), CNRS-Université Montpellier, 141 rue de la Cardonille, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
13
|
Taran AS, Shuvalova LD, Lagarkova MA, Alieva IB. Huntington's Disease-An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells 2020; 9:E1514. [PMID: 32580314 PMCID: PMC7348758 DOI: 10.3390/cells9061514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease is a severe and currently incurable neurodegenerative disease. An autosomal dominant mutation in the Huntingtin gene (HTT) causes an increase in the polyglutamine fragment length at the protein N-terminus. The consequence of the mutation is the death of neurons, mostly striatal neurons, leading to the occurrence of a complex of motor, cognitive and emotional-volitional personality sphere disorders in carriers. Despite intensive studies, the functions of both mutant and wild-type huntingtin remain poorly understood. Surprisingly, there is the selective effect of the mutant form of HTT even on nervous tissue, whereas the protein is expressed ubiquitously. Huntingtin plays a role in cell physiology and affects cell transport, endocytosis, protein degradation and other cellular and molecular processes. Our experimental data mining let us conclude that a significant part of the Huntingtin-involved cellular processes is mediated by microtubules and other cytoskeletal cell structures. The review attempts to look at unresolved issues in the study of the huntingtin and its mutant form, including their functions affecting microtubules and other components of the cell cytoskeleton.
Collapse
Affiliation(s)
- Aleksandra S. Taran
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninsky Gory, 119992 Moscow, Russia; (A.S.T.); (L.D.S.)
| | - Lilia D. Shuvalova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninsky Gory, 119992 Moscow, Russia; (A.S.T.); (L.D.S.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Maria A. Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina B. Alieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninsky Gory, 119992 Moscow, Russia
| |
Collapse
|
14
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
15
|
Coombes CE, Saunders HAJ, Mannava AG, Johnson-Schlitz DM, Reid TA, Parmar S, McClellan M, Yan C, Rogers SL, Parrish JZ, Wagenbach M, Wordeman L, Wildonger J, Gardner MK. Non-enzymatic Activity of the α-Tubulin Acetyltransferase αTAT Limits Synaptic Bouton Growth in Neurons. Curr Biol 2020; 30:610-623.e5. [PMID: 31928876 DOI: 10.1016/j.cub.2019.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/16/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022]
Abstract
Neuronal axons terminate as synaptic boutons that form stable yet plastic connections with their targets. Synaptic bouton development relies on an underlying network of both long-lived and dynamic microtubules that provide structural stability for the boutons while also allowing for their growth and remodeling. However, a molecular-scale mechanism that explains how neurons appropriately balance these two microtubule populations remains a mystery. We hypothesized that α-tubulin acetyltransferase (αTAT), which both stabilizes long-lived microtubules against mechanical stress via acetylation and has been implicated in promoting microtubule dynamics, could play a role in this process. Using the Drosophila neuromuscular junction as a model, we found that non-enzymatic dαTAT activity limits the growth of synaptic boutons by affecting dynamic, but not stable, microtubules. Loss of dαTAT results in the formation of ectopic boutons. These ectopic boutons can be similarly suppressed by resupplying enzyme-inactive dαTAT or by treatment with a low concentration of the microtubule-targeting agent vinblastine, which acts to suppress microtubule dynamics. Biophysical reconstitution experiments revealed that non-enzymatic αTAT1 activity destabilizes dynamic microtubules but does not substantially impact the stability of long-lived microtubules. Further, during microtubule growth, non-enzymatic αTAT1 activity results in increasingly extended tip structures, consistent with an increased rate of acceleration of catastrophe frequency with microtubule age, perhaps via tip structure remodeling. Through these mechanisms, αTAT enriches for stable microtubules at the expense of dynamic ones. We propose that the specific suppression of dynamic microtubules by non-enzymatic αTAT activity regulates the remodeling of microtubule networks during synaptic bouton development.
Collapse
Affiliation(s)
- Courtney E Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Harriet A J Saunders
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anirudh G Mannava
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sneha Parmar
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Connie Yan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Stephen L Rogers
- Department of Biology, Integrative Program for Biological and Genome Sciences, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael Wagenbach
- Department of Physiology and Biophysics, The University of Washington, Seattle, WA 98195, USA
| | - Linda Wordeman
- Department of Physiology and Biophysics, The University of Washington, Seattle, WA 98195, USA
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Afreen S, Ferreira A. Altered Cytoskeletal Composition and Delayed Neurite Elongation in tau 45-230-Expressing Hippocampal Neurons. Neuroscience 2019; 412:1-15. [PMID: 31158440 DOI: 10.1016/j.neuroscience.2019.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Calpain-mediated tau cleavage into the neurotoxic tau45-230 fragment plays an important role in Alzheimer's disease (AD). This tau fragment accumulates mainly in the cytoplasm of degenerating neurons. However, subcellular localization studies indicated that a pool of tau45-230 associates with the cytoskeleton in hippocampal neurons. In the present study, we assessed whether such localization could underlie tau45-230 neurotoxic effects. Quantitative Western blot analysis showed decreased levels of full-length tau bound to microtubules in tau45-230-expressing hippocampal neurons when compared to controls. In addition, the presence of this tau fragment induced a transient increase in tyrosinated tubulin, a marker of unstable microtubules, followed by a significant decrease in the levels of this tubulin isoform. The data obtained also showed a significant reduction in actin filaments in tau45-230-expressing neurons. These changes in microtubules and actin filaments correlated with delayed neurite elongation and axonal differentiation in the presence of this tau fragment. Together, these results suggest that tau45-230 could exert its toxic effects, at least in part, by modifying the composition of the neuronal cytoskeleton and impairing neurite elongation in neurons undergoing degeneration.
Collapse
Affiliation(s)
- Sana Afreen
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Kalinski AL, Kar AN, Craver J, Tosolini AP, Sleigh JN, Lee SJ, Hawthorne A, Brito-Vargas P, Miller-Randolph S, Passino R, Shi L, Wong VSC, Picci C, Smith DS, Willis DE, Havton LA, Schiavo G, Giger RJ, Langley B, Twiss JL. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol 2019; 218:1871-1890. [PMID: 31068376 PMCID: PMC6548128 DOI: 10.1083/jcb.201702187] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/15/2018] [Accepted: 04/15/2019] [Indexed: 02/08/2023] Open
Abstract
Inhibition of histone deacetylase 6 (HDAC6) was shown to support axon growth on the nonpermissive substrates myelin-associated glycoprotein (MAG) and chondroitin sulfate proteoglycans (CSPGs). Though HDAC6 deacetylates α-tubulin, we find that another HDAC6 substrate contributes to this axon growth failure. HDAC6 is known to impact transport of mitochondria, and we show that mitochondria accumulate in distal axons after HDAC6 inhibition. Miro and Milton proteins link mitochondria to motor proteins for axon transport. Exposing neurons to MAG and CSPGs decreases acetylation of Miro1 on Lysine 105 (K105) and decreases axonal mitochondrial transport. HDAC6 inhibition increases acetylated Miro1 in axons, and acetyl-mimetic Miro1 K105Q prevents CSPG-dependent decreases in mitochondrial transport and axon growth. MAG- and CSPG-dependent deacetylation of Miro1 requires RhoA/ROCK activation and downstream intracellular Ca2+ increase, and Miro1 K105Q prevents the decrease in axonal mitochondria seen with activated RhoA and elevated Ca2+ These data point to HDAC6-dependent deacetylation of Miro1 as a mediator of axon growth inhibition through decreased mitochondrial transport.
Collapse
Affiliation(s)
- Ashley L Kalinski
- Department of Biology, Drexel University, Philadelphia, PA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | - John Craver
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | - Andrew P Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | | | - Paul Brito-Vargas
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | | | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Liang Shi
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | | | | | - Deanna S Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| | | | - Leif A Havton
- Departments of Neurology and Neurobiology, University of California, Los Angeles, Los Angeles, CA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK.,Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, UK
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC
| |
Collapse
|
18
|
Wenzel ED, Avdoshina V, Mocchetti I. HIV-associated neurodegeneration: exploitation of the neuronal cytoskeleton. J Neurovirol 2019; 25:301-312. [PMID: 30850975 DOI: 10.1007/s13365-019-00737-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 01/23/2023]
Abstract
Human immunodeficiency virus-1 (HIV) infection of the central nervous system damages synapses and promotes axonal injury, ultimately resulting in HIV-associated neurocognitive disorders (HAND). The mechanisms through which HIV causes damage to neurons are still under investigation. The cytoskeleton and associated proteins are fundamental for axonal and dendritic integrity. In this article, we review evidence that HIV proteins, such as the envelope protein gp120 and transactivator of transcription (Tat), impair the structure and function of the neuronal cytoskeleton. Investigation into the effects of viral proteins on the neuronal cytoskeleton may provide a better understanding of HIV neurotoxicity and suggest new avenues for additional therapies.
Collapse
Affiliation(s)
- Erin D Wenzel
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Department of Pharmacology & Physiology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.
| |
Collapse
|
19
|
Trichostatin A induces Trypanosoma cruzi histone and tubulin acetylation: effects on cell division and microtubule cytoskeleton remodelling. Parasitology 2018; 146:543-552. [PMID: 30421693 DOI: 10.1017/s0031182018001828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.
Collapse
|
20
|
Abstract
Each neuron forms a single axon and multiple dendrites, and this configuration is important for wiring the brain. How only a single axon extends from a neuron, however, remains unknown. This study demonstrates that CAMSAP3, a protein that binds the minus-end of microtubules, preferentially localizes along axons in hippocampal neurons. Remarkably, mutations of CAMSAP3 lead to production of multiple axons in these neurons. In attempts to uncover mechanisms underlying this abnormal axon extension, the authors found that CAMSAP3-anchored microtubules escape from acetylation, a process mediated by α-tubulin acetyltransferase-1, and depletion of this enzyme abolishes abnormal axon formation in CAMSAP3 mutants. These findings reveal that CAMSAP3 controls microtubule dynamics, preventing tubulin acetylation; this mechanism is required for single-axon formation. The molecular mechanisms that guide each neuron to become polarized, forming a single axon and multiple dendrites, remain unknown. Here we show that CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a protein that regulates the minus-end dynamics of microtubules, plays a key role in maintaining neuronal polarity. In mouse hippocampal neurons, CAMSAP3 was enriched in axons. Although axonal microtubules were generally acetylated, CAMSAP3 was preferentially localized along a less-acetylated fraction of the microtubules. CAMSAP3-mutated neurons often exhibited supernumerary axons, along with an increased number of neurites having nocodazole-resistant/acetylated microtubules compared with wild-type neurons. Analysis using cell lines showed that CAMSAP3 depletion promoted tubulin acetylation, and conversely, mild overexpression of CAMSAP3 inhibited it, suggesting that CAMSAP3 works to retain nonacetylated microtubules. In contrast, CAMSAP2, a protein related to CAMSAP3, was detected along all neurites, and its loss did not affect neuronal polarity, nor did it cause increased tubulin acetylation. Depletion of α-tubulin acetyltransferase-1 (αTAT1), the key enzyme for tubulin acetylation, abolished CAMSAP3 loss-dependent multiple-axon formation. These observations suggest that CAMSAP3 sustains a nonacetylated pool of microtubules in axons, interfering with the action of αTAT1, and this process is important to maintain neuronal polarity.
Collapse
|
21
|
Blanca Ramírez M, Lara Ordóñez AJ, Fdez E, Madero-Pérez J, Gonnelli A, Drouyer M, Chartier-Harlin MC, Taymans JM, Bubacco L, Greggio E, Hilfiker S. GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. Hum Mol Genet 2018; 26:2747-2767. [PMID: 28453723 PMCID: PMC5886193 DOI: 10.1093/hmg/ddx161] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common cause of familial Parkinson's disease (PD), and sequence variants modify risk for sporadic PD. Previous studies indicate that LRRK2 interacts with microtubules (MTs) and alters MT-mediated vesicular transport processes. However, the molecular determinants within LRRK2 required for such interactions have remained unknown. Here, we report that most pathogenic LRRK2 mutants cause relocalization of LRRK2 to filamentous structures which colocalize with a subset of MTs, and an identical relocalization is seen upon pharmacological LRRK2 kinase inhibition. The pronounced colocalization with MTs does not correlate with alterations in LRRK2 kinase activity, but rather with increased GTP binding. Synthetic mutations which impair GTP binding, as well as LRRK2 GTP-binding inhibitors profoundly interfere with the abnormal localization of both pathogenic mutant as well as kinase-inhibited LRRK2. Conversely, addition of a non-hydrolyzable GTP analog to permeabilized cells enhances the association of pathogenic or kinase-inhibited LRRK2 with MTs. Our data elucidate the mechanism underlying the increased MT association of select pathogenic LRRK2 mutants or of pharmacologically kinase-inhibited LRRK2, with implications for downstream MT-mediated transport events.
Collapse
Affiliation(s)
- Marian Blanca Ramírez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Antonio Jesús Lara Ordóñez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Elena Fdez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Jesús Madero-Pérez
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| | - Adriano Gonnelli
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Matthieu Drouyer
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.,Inserm, UMR-S 1172 Early Stages of Parkinson's Disease Team, F-59000 Lille, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Sabine Hilfiker
- Institute of Parasitology and Biomedicine 'López-Neyra', Consejo Superior de Investigaciones Científicas (CSIC), 18016 Granada, Spain
| |
Collapse
|
22
|
Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, Watson A, Castro VL, Cheung W, Chen SH, Watkins D, Pastinen T, Skovby F, Appel B, Rosenblatt DS, Shaikh TH. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet 2018; 26:2838-2849. [PMID: 28449119 DOI: 10.1093/hmg/ddx157] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/20/2017] [Indexed: 11/14/2022] Open
Abstract
CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Hung-Chun Yu
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alison Brebner
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Elizabeth A Geiger
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Abigail Watson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Victoria L Castro
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Warren Cheung
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Shu-Huang Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Flemming Skovby
- Department of Clinical Genetics, Rigshospitalet, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Bruce Appel
- Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Tamim H Shaikh
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Cirillo L, Gotta M, Meraldi P. The Elephant in the Room: The Role of Microtubules in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:93-124. [DOI: 10.1007/978-3-319-57127-0_5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Post-Translational Tubulin Modifications in Human Astrocyte Cultures. Neurochem Res 2017; 42:2566-2576. [PMID: 28512712 DOI: 10.1007/s11064-017-2290-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
Abstract
The cytoskeletal protein tubulin plays an integral role in the functional specialization of many cell types. In the central nervous system, post-translational modifications and the expression of specific tubulin isotypes in neurons have been analyzed in greater detail than in their astrocytic counterparts. In this study, we characterized post-translational specifications of tubulin in human astrocytes using the normal human astrocyte (NHA; Lonza) commercial cell line of fetal origin. Immunocytochemical techniques were implemented in conjunction with confocal microscopy to image class III β-tubulin (βIII-tubulin), acetylated tubulin, and polyglutamylated tubulin using fluorescent antibody probes. Fluorescent probe intensity differences and colocalization were quantitatively assessed with the 'EBImage' package for the statistical programming language R. Colocalization analysis revealed that, although both acetylated tubulin and polyglutamylated tubulin showed a high degree of correlation with βIII-tubulin, the correlation with acetylated tubulin was stronger. Quantification and statistical analysis of fluorescence intensity demonstrated that the fluorescence probe intensity ratio for acetylated tubulin/βIII-tubulin was greater than the ratio for polyglutamylated tubulin/βIII-tubulin. The open source GEODATA set GSE819950, comprising RNA sequencing data for the NHA cell line, was mined for the expression of enzymes responsible for tubulin modifications. Our analysis uncovered greater expression at the mRNA level for enzymes reported to function in acetylation and deacetylation as compared to enzymes implicated in glutamylation and deglutamylation. Taken together, the results represent a step toward unraveling the tubulin isotypic expression profile and post-translational modification patterns in astrocytes during human brain development.
Collapse
|
25
|
Abstract
Microtubules are key cytoskeletal elements of all eukaryotic cells and are assembled of evolutionarily conserved α-tubulin-β-tubulin heterodimers. Despite their uniform structure, microtubules fulfill a large diversity of functions. A regulatory mechanism to control the specialization of the microtubule cytoskeleton is the 'tubulin code', which is generated by (i) expression of different α- and β-tubulin isotypes, and by (ii) post-translational modifications of tubulin. In this Cell Science at a Glance article and the accompanying poster, we provide a comprehensive overview of the molecular components of the tubulin code, and discuss the mechanisms by which these components contribute to the generation of functionally specialized microtubules.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Kathiresan Natarajan
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| |
Collapse
|
26
|
BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci U S A 2017; 114:E2955-E2964. [PMID: 28320970 DOI: 10.1073/pnas.1616363114] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.
Collapse
|
27
|
Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I, Janke C. Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci 2017; 130:938-949. [PMID: 28104815 DOI: 10.1242/jcs.199091] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Tubulin is subject to a wide variety of posttranslational modifications, which, as part of the tubulin code, are involved in the regulation of microtubule functions. Glycylation has so far predominantly been found in motile cilia and flagella, and absence of this modification leads to ciliary disassembly. Here, we demonstrate that the correct functioning of connecting cilia of photoreceptors, which are non-motile sensory cilia, is also dependent on glycylation. In contrast to many other tissues, only one glycylase, TTLL3, is expressed in retina. Ttll3-/- mice lack glycylation in photoreceptors, which results in shortening of connecting cilia and slow retinal degeneration. Moreover, absence of glycylation results in increased levels of tubulin glutamylation in photoreceptors, and inversely, the hyperglutamylation observed in the Purkinje cell degeneration (pcd) mouse abolishes glycylation. This suggests that both posttranslational modifications compete for modification sites, and that unbalancing the glutamylation-glycylation equilibrium on axonemes of connecting cilia, regardless of the enzymatic mechanism, invariably leads to retinal degeneration.
Collapse
Affiliation(s)
- Montserrat Bosch Grau
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Christel Masson
- CERTO Centre d'Etudes et de Recherches Thérapeutiques en Ophtalmologie, Université Paris Sud, Université Paris-Saclay, CNRS UMR9197, Orsay F-91405, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Cecilia Rocha
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Olivia Tort
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Patricia Marques Sousa
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Sophie Vacher
- Institut Curie, PSL Research University, Department of Genetics, Paris F-75005, France
| | - Ivan Bieche
- Institut Curie, PSL Research University, Department of Genetics, Paris F-75005, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris F-75005, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| |
Collapse
|
28
|
Horníková L, Fraiberk M, Man P, Janovec V, Forstová J. VP1, the major capsid protein of the mouse polyomavirus, binds microtubules, promotes their acetylation and blocks the host cell cycle. FEBS J 2017; 284:301-323. [PMID: 27885808 DOI: 10.1111/febs.13977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
Abstract
VP1, the major structural protein of the mouse polyomavirus (MPyV), is the major architectural component of the viral capsid. Its pentamers are able to self-assemble into capsid-like particles and to non-specifically bind DNA. Surface loops of the protein interact with sialic acid of ganglioside receptors. Although the replication cycle of the virus, including virion morphogenesis, proceeds in the cell nucleus, a substantial fraction of the protein is detected in the cytoplasm of late-phase MPyV-infected cells. In this work, we detected VP1 mainly in the cytoplasm of mammalian cells transfected with plasmid expressing VP1. In the cytoplasm, VP1-bound microtubules, including the mitotic spindle, and the interaction of VP1 with microtubules resulted in cell cycle block at the G2/M phase. Furthermore, in the late phase of MPyV infection and in cells expressing VP1, microtubules were found to be hyperacetylated. We then sought to understand how VP1 interacts with microtubules. Dynein is not responsible for the VP1-microtubule association, as neither overexpression of p53/dynamitin nor treatment with ciliobrevin-D (an inhibitor of dynein activity) prevented binding of VP1 to microtubules. A pull-down assay for VP1-interacting proteins identified the heat shock protein 90 (Hsp90) chaperone, and Hsp90 was also detected in the VP1-microtubule complexes. Although Hsp90 is known to be associated with acetylated microtubules, it does not mediate the interaction between VP1 and microtubules. Our study provides insight into the role of the major structural protein in MPyV replication, indicating that VP1 is a multifunctional protein that participates in the regulation of cell cycle progression in MPyV-infected cells.
Collapse
Affiliation(s)
- Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Fraiberk
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Man
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, Academy of Science of the Czech Republic, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Václav Janovec
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
29
|
Guardia CM, Farías GG, Jia R, Pu J, Bonifacino JS. BORC Functions Upstream of Kinesins 1 and 3 to Coordinate Regional Movement of Lysosomes along Different Microtubule Tracks. Cell Rep 2016; 17:1950-1961. [PMID: 27851960 PMCID: PMC5136296 DOI: 10.1016/j.celrep.2016.10.062] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/16/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022] Open
Abstract
The multiple functions of lysosomes are critically dependent on their ability to undergo bidirectional movement along microtubules between the center and the periphery of the cell. Centrifugal and centripetal movement of lysosomes is mediated by kinesin and dynein motors, respectively. We recently described a multi-subunit complex named BORC that recruits the small GTPase Arl8 to lysosomes to promote their kinesin-dependent movement toward the cell periphery. Here, we show that BORC and Arl8 function upstream of two structurally distinct kinesin types: kinesin-1 (KIF5B) and kinesin-3 (KIF1Bβ and KIF1A). Remarkably, KIF5B preferentially moves lysosomes on perinuclear tracks enriched in acetylated α-tubulin, whereas KIF1Bβ and KIF1A drive lysosome movement on more rectilinear, peripheral tracks enriched in tyrosinated α-tubulin. These findings establish BORC as a master regulator of lysosome positioning through coupling to different kinesins and microtubule tracks. Common regulation by BORC enables coordinate control of lysosome movement in different regions of the cell.
Collapse
Affiliation(s)
- Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ginny G Farías
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Rui Jia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Jing Pu
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
The growing landscape of tubulin acetylation: lysine 40 and many more. Biochem J 2016; 473:1859-68. [DOI: 10.1042/bcj20160172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Tubulin heterodimers are the building block of microtubules, which are major elements of the cytoskeleton. Several types of post-translational modifications are found on tubulin subunits as well as on the microtubule polymer to regulate the multiple roles of microtubules. Acetylation of lysine 40 (K40) of the α-tubulin subunit is one of these post-translational modifications which has been extensively studied. We summarize the current knowledge about the structural aspects of K40 acetylation, the functional consequences, the enzymes involved and their regulation. Most importantly, we discuss the potential importance of the recently discovered additional acetylation acceptor lysines in tubulin subunits and highlight the urgent need to study tubulin acetylation in a more integrated perspective.
Collapse
|
31
|
TgATAT-Mediated α-Tubulin Acetylation Is Required for Division of the Protozoan Parasite Toxoplasma gondii. mSphere 2016; 1:mSphere00088-15. [PMID: 27303695 PMCID: PMC4863603 DOI: 10.1128/msphere.00088-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/05/2016] [Indexed: 01/05/2023] Open
Abstract
Toxoplasma gondii is an opportunistic parasite that infects at least one-third of the world population. New treatments for the disease (toxoplasmosis) are needed since current drugs are toxic to patients. Microtubules are essential cellular structures built from tubulin that show promise as antimicrobial drug targets. Microtubules can be regulated by chemical modification, such as acetylation on lysine 40 (K40). To determine the role of K40 acetylation in Toxoplasma and whether it is a liability to the parasite, we performed mutational analyses of the α-tubulin gene. Our results indicate that parasites cannot survive without K40 acetylation unless microtubules are stabilized with a secondary mutation. Additionally, we identified the parasite enzyme that acetylates α-tubulin (TgATAT). Genetic disruption of TgATAT caused severe defects in parasite replication, further highlighting the importance of α-tubulin K40 acetylation in Toxoplasma and its promise as a potential new drug target. Toxoplasma gondii is a widespread protozoan parasite that causes potentially life-threatening opportunistic disease. New inhibitors of parasite replication are urgently needed, as the current antifolate treatment is also toxic to patients. Microtubules are essential cytoskeletal components that have been selectively targeted in microbial pathogens; further study of tubulin in Toxoplasma may reveal novel therapeutic opportunities. It has been noted that α-tubulin acetylation at lysine 40 (K40) is enriched during daughter parasite formation, but the impact of this modification on Toxoplasma division and the enzyme mediating its delivery have not been identified. We performed mutational analyses to provide evidence that K40 acetylation stabilizes Toxoplasma microtubules and is required for parasite replication. We also show that an unusual Toxoplasma homologue of α-tubulin acetyltransferase (TgATAT) is expressed in a cell cycle-regulated manner and that its expression peaks during division. Disruption of TgATAT with CRISPR/Cas9 ablates K40 acetylation and induces replication defects; parasites appear to initiate mitosis yet exhibit incomplete or improper nuclear division. Together, these findings establish the importance of tubulin acetylation, exposing a new vulnerability in Toxoplasma that could be pharmacologically targeted. IMPORTANCEToxoplasma gondii is an opportunistic parasite that infects at least one-third of the world population. New treatments for the disease (toxoplasmosis) are needed since current drugs are toxic to patients. Microtubules are essential cellular structures built from tubulin that show promise as antimicrobial drug targets. Microtubules can be regulated by chemical modification, such as acetylation on lysine 40 (K40). To determine the role of K40 acetylation in Toxoplasma and whether it is a liability to the parasite, we performed mutational analyses of the α-tubulin gene. Our results indicate that parasites cannot survive without K40 acetylation unless microtubules are stabilized with a secondary mutation. Additionally, we identified the parasite enzyme that acetylates α-tubulin (TgATAT). Genetic disruption of TgATAT caused severe defects in parasite replication, further highlighting the importance of α-tubulin K40 acetylation in Toxoplasma and its promise as a potential new drug target.
Collapse
|
32
|
Li L, Yang XJ. Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci 2015; 72:4237-55. [PMID: 26227334 PMCID: PMC11113413 DOI: 10.1007/s00018-015-2000-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022]
Abstract
Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function.
Collapse
Affiliation(s)
- Lin Li
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada
- Department of Medicine, Montreal, QC, H3A 1A3, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada.
- Department of Medicine, Montreal, QC, H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada.
- McGill University Health Center, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
33
|
Groebner JL, Tuma PL. The Altered Hepatic Tubulin Code in Alcoholic Liver Disease. Biomolecules 2015; 5:2140-59. [PMID: 26393662 PMCID: PMC4598792 DOI: 10.3390/biom5032140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms that lead to the progression of alcoholic liver disease have been actively examined for decades. Because the hepatic microtubule cytoskeleton supports innumerable cellular processes, it has been the focus of many such mechanistic studies. It has long been appreciated that α-tubulin is a major target for modification by highly reactive ethanol metabolites and reactive oxygen species. It is also now apparent that alcohol exposure induces post-translational modifications that are part of the natural repertoire, mainly acetylation. In this review, the modifications of the "tubulin code" are described as well as those adducts by ethanol metabolites. The potential cellular consequences of microtubule modification are described with a focus on alcohol-induced defects in protein trafficking and enhanced steatosis. Possible mechanisms that can explain hepatic dysfunction are described and how this relates to the onset of liver injury is discussed. Finally, we propose that agents that alter the cellular acetylation state may represent a novel therapeutic strategy for treating liver disease.
Collapse
Affiliation(s)
- Jennifer L Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Pamela L Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
34
|
Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci 2015; 35:4587-98. [PMID: 25788676 DOI: 10.1523/jneurosci.2757-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural microtubule-associated proteins (MAPs) are critical for the organization of neuronal microtubules (MTs). Microtubule-associated protein 1A (MAP1A) is one of the most abundantly expressed MAPs in the mammalian brain. However, its in vivo function remains largely unknown. Here we describe a spontaneous mouse mutation, nm2719, which causes tremors, ataxia, and loss of cerebellar Purkinje neurons in aged homozygous mice. The nm2719 mutation disrupts the Map1a gene. We show that targeted deletion of mouse Map1a gene leads to similar neurodegenerative defects. Before neuron death, Map1a mutant Purkinje cells exhibited abnormal focal swellings of dendritic shafts and disruptions in axon initial segment (AIS) morphology. Furthermore, the MT network was reduced in the somatodendritic and AIS compartments, and both the heavy and light chains of MAP1B, another brain-enriched MAP, was aberrantly distributed in the soma and dendrites of mutant Purkinje cells. MAP1A has been reported to bind to the membrane-associated guanylate kinase (MAGUK) scaffolding proteins, as well as to MTs. Indeed, PSD-93, the MAGUK specifically enriched in Purkinje cells, was reduced in Map1a(-/-) Purkinje cells. These results demonstrate that MAP1A functions to maintain both the neuronal MT network and the level of PSD-93 in neurons of the mammalian brain.
Collapse
|
35
|
Kaul N, Soppina V, Verhey KJ. Effects of α-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys J 2015; 106:2636-43. [PMID: 24940781 DOI: 10.1016/j.bpj.2014.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022] Open
Abstract
Long-range transport in cells is achieved primarily through motor-based transport along a network of microtubule tracks. Targeted transport by kinesin motors can be correlated with posttranslational modifications (PTMs) of the tubulin subunits in specific microtubules. To directly examine the influence of specific PTMs on kinesin-1 motility, we generated tubulin subunits that were either enriched in or lacking acetylation of α-tubulin lysine 40 (K40) or detyrosination of the α-tubulin C-terminal tail. We show that K40 acetylation does not result in significant changes in kinesin-1's landing rate or motility parameters (velocity and run length) across experimental conditions. In contrast, detyrosination causes a moderate increase in kinesin-1's landing rate. The fact that the effects of detyrosination are dampened by prior K40 acetylation indicates that the combination of PTMs may be an important aspect of the functional output of microtubule heterogeneity. Importantly, our results indicate that the moderate influences that single PTMs have on kinesin-1 in vitro do not explain the strong correlation between specific PTMs and kinesin-1 transport in cells. Thus, additional mechanisms for regulating kinesin-1 transport in cells must be explored in future work.
Collapse
Affiliation(s)
- Neha Kaul
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan.
| | - Virupakshi Soppina
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
36
|
Abstract
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.
Collapse
Affiliation(s)
- Carsten Janke
- Institut Curie, 91405 Orsay, France Centre National de la Recherche Scientifique Unité Mixte de Recherche 3306, 91405 Orsay, France Institut National de la Santé et de la Recherche Médicale U1005, 91405 Orsay, France Paris Sciences et Lettres Research University, 75005 Paris, France
| |
Collapse
|
37
|
Wang B, Rao YH, Inoue M, Hao R, Lai CH, Chen D, McDonald SL, Choi MC, Wang Q, Shinohara ML, Yao TP. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat Commun 2014; 5:3479. [PMID: 24632940 PMCID: PMC4000527 DOI: 10.1038/ncomms4479] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/20/2014] [Indexed: 11/24/2022] Open
Abstract
Reversible acetylation of α-tubulin is an evolutionarily conserved modification in microtubule networks. Despite its prevalence, the physiological function and regulation of microtubule acetylation remains poorly understood. Here we report that macrophages challenged by bacterial lipopolysaccharides (LPS) undergo extensive microtubule acetylation. Suppression of LPS-induced microtubule acetylation by inactivating the tubulin acetyltransferase, MEC17, profoundly inhibits the induction of anti-inflammatory interlukin-10 (IL-10), a phenotype effectively reversed by an acetylation-mimicking α-tubulin mutant. Conversely, elevating microtubule acetylation by inhibiting the tubulin deacetylase, HDAC6, or stabilizing microtubules via Taxol, stimulates IL-10 hyper-induction. Supporting the anti-inflammatory function of microtubule acetylation, HDAC6 inhibition significantly protects mice from LPS toxicity. In HDAC6-deficient macrophages challenged by LPS, p38 kinase signaling becomes selectively amplified, leading to SP1-dependent IL-10 transcription. Remarkably, the augmented p38 signaling is suppressed by MEC17 inactivation. Our findings identify reversible microtubule acetylation as a kinase signaling modulator and a key component in the inflammatory response.
Collapse
Affiliation(s)
- Bin Wang
- Department of Pharmacology and Cancer Biology, DUMC, Box 3813, Durham, North Carolina 27710, USA
| | - Yan-Hua Rao
- Department of Pharmacology and Cancer Biology, DUMC, Box 3813, Durham, North Carolina 27710, USA
| | - Makoto Inoue
- Department of Immunology, DUMC, Box 3010, Durham, North Carolina 27710, USA
| | - Rui Hao
- Department of Pharmacology and Cancer Biology, DUMC, Box 3813, Durham, North Carolina 27710, USA
| | - Chun-Hsiang Lai
- Department of Pharmacology and Cancer Biology, DUMC, Box 3813, Durham, North Carolina 27710, USA
| | - David Chen
- Department of Pharmacology and Cancer Biology, DUMC, Box 3813, Durham, North Carolina 27710, USA
| | - Stacey L McDonald
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27710, USA
| | - Moon-Chang Choi
- Department of Pharmacology and Cancer Biology, DUMC, Box 3813, Durham, North Carolina 27710, USA
| | - Qiu Wang
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27710, USA
| | - Mari L Shinohara
- Department of Immunology, DUMC, Box 3010, Durham, North Carolina 27710, USA
| | - Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, DUMC, Box 3813, Durham, North Carolina 27710, USA
| |
Collapse
|
38
|
Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA. αTAT1 is the major α-tubulin acetyltransferase in mice. Nat Commun 2013; 4:1962. [PMID: 23748901 DOI: 10.1038/ncomms2962] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/30/2013] [Indexed: 12/28/2022] Open
Abstract
Post-translational modification of tubulin serves as a powerful means for rapidly adjusting the functional diversity of microtubules. Acetylation of the ε-amino group of K40 in α-tubulin is one such modification that is highly conserved in ciliated organisms. Recently, αTAT1, a Gcn5-related N-acetyltransferase, was identified as an α-tubulin acetyltransferase in Tetrahymena and C. elegans. Here we generate mice with a targeted deletion of Atat1 to determine its function in mammals. Remarkably, we observe a loss of detectable K40 α-tubulin acetylation in these mice across multiple tissues and in cellular structures such as cilia and axons where acetylation is normally enriched. Mice are viable and develop normally, however, the absence of Atat1 impacts upon sperm motility and male mouse fertility, and increases microtubule stability. Thus, αTAT1 has a conserved function as the major α-tubulin acetyltransferase in ciliated organisms and has an important role in regulating subcellular specialization of subsets of microtubules.
Collapse
Affiliation(s)
- Nereo Kalebic
- Mouse Biology Unit, EMBL, Via Ramarini 32, Monterotondo 00015, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Esteves AR, Gozes I, Cardoso SM. The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1842:7-21. [PMID: 24120997 DOI: 10.1016/j.bbadis.2013.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022]
Abstract
In Parkinson's disease mitochondrial dysfunction can lead to a deficient ATP supply to microtubule protein motors leading to mitochondrial axonal transport disruption. Compromised axonal transport will then lead to a disorganized distribution of mitochondria and other organelles in the cell, as well as, the accumulation of aggregated proteins like alpha-synuclein. Moreover, axonal transport disruption can trigger synaptic accumulation of autophagosomes packed with damaged mitochondria and protein aggregates promoting synaptic failure. We previously observed that neuronal-like cells with an inherent mitochondrial impairment derived from PD patients contain a disorganized microtubule network, as well as, alpha-synuclein oligomer accumulation. In this work we provide new evidence that an agent that promotes microtubule network assembly, NAP (davunetide), improves microtubule-dependent traffic, restores the autophagic flux and potentiates autophagosome-lysosome fusion leading to autophagic vacuole clearance in Parkinson's disease cells. Moreover, NAP is capable of efficiently reducing alpha-synuclein oligomer content and its sequestration by the mitochondria. Most interestingly, NAP decreases mitochondrial ubiquitination levels, as well as, increases mitochondrial membrane potential indicating a rescue in mitochondrial function. Overall, we demonstrate that by improving microtubule-mediated traffic, we can avoid mitochondrial-induced damage and thus recover cell homeostasis. These results prove that NAP may be a promising therapeutic lead candidate for neurodegenerative diseases that involve axonal transport failure and mitochondrial impairment as hallmarks, like Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- A R Esteves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
40
|
Role of tumor necrosis factor alpha-induced protein 1 in paclitaxel resistance. Oncogene 2013; 33:3246-55. [PMID: 23912453 DOI: 10.1038/onc.2013.299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/08/2022]
Abstract
Paclitaxel has been extensively used as an antitumor drug to treat a broad range of epithelial cancers, including breast and cervical cancers. However, the efficacy of this drug is greatly limited by the development of acquired resistance. Identification of the underlying resistance mechanisms may inform the development of new therapies that elicit long-term response of tumors to paclitaxel treatment. Here we report that increased expression of TNFAIP1 (tumor necrosis factor alpha-induced protein 1) confers acquired resistance to paclitaxel. TNFAIP1 is shown to compete with paclitaxel for binding to β-tubulin, thereby preventing paclitaxel-induced tubulin polymerization, cell cycle arrest and ultimate cell death. We also show that expression of TNFAIP1 is regulated by the transcriptional factor Sp1. In a xenograft mouse model, increased expression of TNFAIP1 decreases, whereas knockdown of TNFAIP1 increases tumor response to paclitaxel. Therefore, these results reveal tnfaip1 as a novel paclitaxel-resistance associated gene and suggest that TNFAIP1 may represent a valuable therapeutic target for the treatment of cancer.
Collapse
|
41
|
Hung FC, Cheng YC, Sun NK, Chao CCK. Identification and functional characterization of zebrafish Gas7 gene in early development. J Neurosci Res 2012; 91:51-61. [PMID: 23086717 DOI: 10.1002/jnr.23145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022]
Abstract
Growth arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in mammals. However, the structure and function of Gas7 homologs have not been studied in nonmammalian vertebrates used as models. In this report, we identify a Gas7 gene in zebrafish that we termed zfGas7. The transcript of this gene was produced by canonical splicing, and its protein product contained a Fes/CIP4 homology and a coiled-coil domain. In early zebrafish embryos, RT-PCR analyses revealed that zfGas7 was initially expressed at 5.3 hr postfertilization (hpf), followed by an increase of expression at 10 hpf and further accumulation during somitogenesis at 48 hpf. Spatiotemporal analyses further showed that Gas7 mRNA was detected in the brain, somite, and posterior presomitic mesoderm regions during somitogenesis. At 36 hpf, zfGas7 mRNA was detected in the brain and somite but was later found only in neuronal clusters of the brain at 52 hpf. Gas7 knockdown with morpholino antisense oligonucleotides (Gas7MO) reduced the number of HuC-positive neurons in the trigeminal and statoacoustic ganglions and produced deformed phenotypes, such as flattening of the top of the head. Notably, the neuron reduction and deformed phenotypes observed in Gas7MO embryos were partially rescued by ectopic expression of Gas7. Because altered somitogenesis and pigmentation were also found in the morphants, the neuronal phenotypes observed likely are due to a general developmental delay of embryogenesis. These results indicate that Gas7 is expressed in neuronal cells but is not specifically required for neuronal development in vertebrates.
Collapse
Affiliation(s)
- Feng-Chun Hung
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taiwan, Republic of China
| | | | | | | |
Collapse
|
42
|
Baltanás FC, Berciano MT, Valero J, Gómez C, Díaz D, Alonso JR, Lafarga M, Weruaga E. Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia 2012; 61:254-72. [PMID: 23047288 DOI: 10.1002/glia.22431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/06/2012] [Indexed: 01/22/2023]
Abstract
Purkinje Cell Degeneration (PCD) mice harbor a nna1 gene mutation which leads to an early and rapid degeneration of Purkinje cells (PC) between the third and fourth week of age. This mutation also underlies the death of mitral cells (MC) in the olfactory bulb (OB), but this process is slower and longer than in PC. No clear interpretations supporting the marked differences in these neurodegenerative processes exist. Growing evidence suggests that either beneficial or detrimental effects of gliosis in damaged regions would underlie these divergences. Here, we examined the gliosis occurring during PC and MC death in the PCD mouse. Our results demonstrated different glial reactions in both affected regions. PC disappearance stimulated a severe gliosis characterized by strong morphological changes, enhanced glial proliferation, as well as the release of pro-inflammatory mediators. By contrast, MC degeneration seems to promote a more attenuated glial response in the PCD OB compared with that of the cerebellum. Strikingly, cerebellar oligodendrocytes died by apoptosis in the PCD, whereas bulbar ones were not affected. Interestingly, the level of nna1 mRNA under normal conditions was higher in the cerebellum than in the OB, probably related to a faster neurodegeneration and stronger glial reaction in its absence. The glial responses may thus influence the neurodegenerative course in the cerebellum and OB of the mutant mouse brain, providing harmful and beneficial microenvironments, respectively.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Laboratory of Neural Plasticity and Neurorepair, Institute for Neuroscience of Castile and León, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jiménez-Rubio G, Ortíz-López L, Benítez-King G. Melatonin modulates cytoskeletal organization in the rat brain hippocampus. Neurosci Lett 2012; 511:47-51. [PMID: 22306093 DOI: 10.1016/j.neulet.2012.01.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
Melatonin concentration in plasma reaches high levels during the night and synchronizes body rhythms with the photoperiod. Previous evidence obtained in cultured cells suggests that melatonin synchronizes cytoskeletal re-arrangements at nocturnal plasma concentration. In this study, we determined the amount of microtubules and microfilaments in the rat hippocampus as an index of cytoskeletal organization in rats submitted to a photoperiodic regime. Additionally, these parameters were determined in control rats, sham rats, pinealectomized rats, and rats that were pinealectomized and treated with melatonin for 1 week. The results showed an increase in both the amount of microfilaments in the hippocampus of rats sacrificed in the dark phase, and in melatonin levels. In addition, a decrease in both microfilament and microtubule amounts occurred in pinealectomized rats. In contrast, melatonin treatment partially reestablished actin and tubulin proportions organized in microfilaments and microtubules, respectively. The results indicate that actin organization in microfilaments was associated with both the photoperiod and with melatonin levels. Together, the data support that cytoskeletal organization is regulated rhythmically by melatonin in synchrony with the photoperiod.
Collapse
Affiliation(s)
- Graciela Jiménez-Rubio
- Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México
| | | | | |
Collapse
|
44
|
Abstract
Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein's move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as "transportopathies". Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases.
Collapse
|
45
|
Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011; 12:773-86. [PMID: 22086369 DOI: 10.1038/nrm3227] [Citation(s) in RCA: 650] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms.
Collapse
Affiliation(s)
- Carsten Janke
- Department of Signalling, Neurobiology and Cancer, Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay Cedex, France.
| | | |
Collapse
|
46
|
Akisaka T, Yoshida H, Takigawa T. Differential distribution of posttranslationally modified microtubules in osteoclasts. J Histochem Cytochem 2011; 59:630-8. [PMID: 21421796 DOI: 10.1369/0022155411405334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The differential distribution of microtubules in osteoclasts in culture was examined by using antibodies against acetylated, tyrosinated, or detyrosinated tubulins. Tyrosinated tubulin was found throughout the cytoplasmic microtubules in all cells examined. An expanding protrusion that contained tyrosinated tubulin but none of the detyrosinated or acetylated form was seen in the immature osteoclasts. Detyrosinated or acetylated tubulin was detectable in the peripheral cytoplasm of the mature osteoclasts displaying the loss of the expanding protrusion. Although most of the microtubules were derived from the centrosome, noncentrosomal microtubules were distributed in the expanding protrusion, which was predominantly positive for tyrosinated tubulin. By tracing single microtubules, the authors found that their growing ends were always rich in tyrosinated tubulin subunits. End binding protein 1 bound preferentially to the microtubule ends. Both acetylated and tyrosinated microtubules were shown to be closely associated with podosomes. Microtubules appeared to grow over or into the podosomes; in addition, the growing ends of single microtubules could be observed to target the podosomes. Moreover, a microtubule-associated histone deacetylase 6 was localized in the podosomes of the osteoclast. On the basis of these results, the authors conclude that posttranslational modifications of microtubules may correlate with characteristic changes in podosome dynamics in osteoclasts.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Division of Oral Anatomy, Asahi University School of Dentistry, Mizuho, Gifu, Japan. mail:
| | | | | |
Collapse
|
47
|
Sudo H, Baas PW. Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet 2010; 20:763-78. [PMID: 21118899 DOI: 10.1093/hmg/ddq521] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is commonly stated that microtubules gradually disintegrate as tau becomes dissociated from them in tauopathies such as Alzheimer's disease. However, there has been no compelling evidence to date that such disintegration is due to depolymerization of microtubules from their ends. In recent studies, we have shown that neurons contain sufficient levels of the microtubule-severing protein termed katanin to completely break down the axonal microtubule array if not somehow attenuated. The presence of tau on axonal microtubules renders them notably less sensitive to katanin, prompting us to posit that microtubule disintegration in tauopathies may result from elevated severing of the microtubules as they lose tau. In support of this hypothesis, we demonstrate here that pathogenic tau mutants that bind less strongly to microtubules than wild-type tau provide correspondingly less protection against katanin-based severing. Using cultured rat hippocampal neurons, we pursued two potential therapies for fortifying axonal microtubules against excess severing by katanin, under conditions of tau depletion. We found that either deacetylating the microtubules via overexpression of HDAC6 or treating the neurons with NAP, a microtubule-interacting neuroprotective peptide, resulted in notable protection of the microtubules against katanin-based loss. In both cases, we found that these treatments also diminished the characteristic increase in axonal branching that normally accompanies tau depletion, an effect that is also known to be directly related to the severing of microtubules. These observations may be useful in developing therapeutic regimes for preserving microtubules against loss in the axons of patients suffering from tauopathies.
Collapse
Affiliation(s)
- Haruka Sudo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
48
|
Perdiz D, Mackeh R, Poüs C, Baillet A. The ins and outs of tubulin acetylation: more than just a post-translational modification? Cell Signal 2010; 23:763-71. [PMID: 20940043 DOI: 10.1016/j.cellsig.2010.10.014] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/01/2010] [Indexed: 11/17/2022]
Abstract
Microtubules are highly dynamic polymers of α/β tubulin heterodimers that play key roles in cell division and in organizing cell cytoplasm. Although they have been discovered more than two decades ago, tubulin post-translational modifications recently gained a new interest as their role was increasingly highlighted in neuron differentiation and neurodegenerative disorders. Here, we specifically focus on tubulin acetylation from its discovery to recent studies that provide new insights into how it is regulated in health and disease and how it impacts microtubule functions. Even though new mechanisms involving tubulin acetylation are regularly being uncovered, the molecular links between its location inside the microtubule lumen and its regulators and effectors is still poorly understood. This review highlights the emerging roles of tubulin acetylation in multiple cellular functions, ranging from cell motility, cell cycle progression or cell differentiation to intracellular trafficking and signalling. It also points out that tubulin acetylation should no longer be seen as a passive marker of microtubule stability, but as a broad regulator of microtubule functions.
Collapse
Affiliation(s)
- Daniel Perdiz
- Univ. Paris Sud-11, UPRES EA4530 IFR IPSIT, Faculté de Pharmacie, 5 rue JB Clément 92296 Châtenay-Malabry, France
| | | | | | | |
Collapse
|
49
|
Wang YH, Yan ZQ, Qi YX, Cheng BB, Wang XD, Zhao D, Shen BR, Jiang ZL. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng 2010; 38:729-37. [PMID: 20069369 DOI: 10.1007/s10439-009-9896-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 12/29/2009] [Indexed: 12/27/2022]
Abstract
Endothelial cells (ECs) line the innermost of the blood vessel wall and are constantly subjected to shear stress imposed by blood flow. ECs were also influenced by the neighboring vascular smooth muscle cells (VSMCs). The bidirectional communication between ECs and VSMCs modulates vascular homeostasis. In this study, the involvement of histone deacetylase 6 (HDAC6) in modulating migration of ECs co-cultured with VSMCs by the normal level of laminar shear stress (NSS) was investigated. ECs was either cultured alone or co-cultured with VSMCs under static conditions or subjected to NSS of 15 dyne/cm2 by using a parallel-plate co-culture flow chamber system. It was demonstrated that both NSS and VSMCs could increase EC migration. The migration level of ECs co-cultured with VSMCs under NSS was not higher than that under the static condition. The process of EC migration regulated by VSMCs and NSS was associated with the increased expression of HDAC6 and low level of acetylated tubulin. The increase in HDAC6 expression was accompanied by a time-dependent decrease in the acetylation of tubulin in ECs co-cultured with VSMCs. Inhibition of the HDAC6 by siRNA or tributyrin, an inhibitor of HDACs, induced a parallel alteration in the migration and the acetylated tubulin of ECs co-cultured with VSMCs. It was observed by immunofluorescence staining that the acetylated tubulin was distributed mostly around the cell nucleus in ECs co-cultured with VSMCs. The results suggest that the NSS may display a protective function on the vascular homeostasis by modulating EC migration to a normal level in a VSMC-dependent manner. This modulation process involves the down-regulation of acetylated tubulin which results from increased HDAC6 activity in ECs.
Collapse
Affiliation(s)
- Yan-Hua Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sudo H, Baas PW. Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J Neurosci 2010; 30:7215-26. [PMID: 20505088 PMCID: PMC2891103 DOI: 10.1523/jneurosci.0048-10.2010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 01/16/2023] Open
Abstract
Here we investigated whether the sensitivity of microtubules to severing by katanin is regulated by acetylation of the microtubules. During interphase, fibroblasts display long microtubules with discrete regions rich in acetylated tubulin. Overexpression of katanin for short periods of time produced breaks preferentially in these regions. In fibroblasts with experimentally enhanced or diminished microtubule acetylation, the sensitivity of the microtubules to severing by katanin was increased or decreased, respectively. In neurons, microtubules are notably more acetylated in axons than in dendrites. Experimental manipulation of microtubule acetylation in neurons yielded similar results on dendrites as observed on fibroblasts. However, under these experimental conditions, axonal microtubules were not appreciably altered with regard to their sensitivity to katanin. We hypothesized that this may be attributable to the effects of tau on the axonal microtubules, and this was validated by studies in which overexpression of tau caused microtubules in dendrites and fibroblasts to be more resistant to severing by katanin in a manner that was not dependent on the acetylation state of the microtubules. Interestingly, none of these various findings apply to spastin, because the severing of microtubules by spastin does not appear to be strongly influenced by either the acetylation state of the microtubules or tau. We conclude that sensitivity to microtubule severing by katanin is regulated by a balance of factors, including the acetylation state of the microtubules and the binding of tau to the microtubules. In the neuron, this contributes to regional differences in the microtubule arrays of axons and dendrites.
Collapse
Affiliation(s)
- Haruka Sudo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Peter W. Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|