1
|
Sagar A, Peddada N, Choudhary V, Mir Y, Garg R, Ashish. Visualizing the nucleating and capped states of f-actin by Ca 2+-gelsolin: Saxs data based structures of binary and ternary complexes. Int J Biol Macromol 2024; 278:134556. [PMID: 39128762 DOI: 10.1016/j.ijbiomac.2024.134556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Structural insight eludes on how full-length gelsolin depolymerizes and caps filamentous (F-)actin, while the same entity can nucleate polymerization of G-actins. Analyzing small angle X-ray scattering (SAXS) data, we deciphered assemblies which enable these contrasting processes. Mixing Ca2+-gelsolin with F-actin in high salt F-buffer resulted in depolymerization of ordered F-actin rods to smaller sized species which became monodispersed upon dialysis with low salt G-buffer. These entities were the ternary (GA2) and binary (GA) complexes of gelsolin and actin with radius of gyration and maximum linear dimension of 4.55 and 4.68 nm, and 15 and 16 nm, respectively. Using size exclusion chromatography in-line with SAXS, we confirmed that initially GA and GA2 species are formed as seen upon depolymerization of F-actin followed by dialysis. Interestingly, while GA2 could seed formation of native-like F-actin in both G- and F-buffer, GA failed in G-buffer. Thus, GA2 and GA are the central species formed via depolymerization or towards nucleation. SAXS profile referenced modeling revealed that: 1) in GA, actin is bound to the C-terminal half of gelsolin, and 2) in GA2, second actin binds to the open N-terminal half accompanied by dramatic rearrangements across g1-g2 and g3-g4 linkers.
Collapse
Affiliation(s)
- Amin Sagar
- Csir - Institute Of Microbial Technology, Chandigarh, India
| | - Nagesh Peddada
- Csir - Institute Of Microbial Technology, Chandigarh, India
| | | | - Yawar Mir
- Csir - Institute Of Microbial Technology, Chandigarh, India
| | - Renu Garg
- Csir - Institute Of Microbial Technology, Chandigarh, India
| | - Ashish
- Csir - Institute Of Microbial Technology, Chandigarh, India.
| |
Collapse
|
2
|
Zhao P, Han H, Wu X, Wu J, Ren Z. ARP2/3 Regulates Fatty Acid Synthesis by Modulating Lipid Droplets' Motility. Int J Mol Sci 2022; 23:ijms23158730. [PMID: 35955862 PMCID: PMC9368945 DOI: 10.3390/ijms23158730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The breakdown of lipid droplets (LDs) provides energy and contributes to the proliferation and migration of cancer cells. Recent studies have suggested that motility plays a key role in LD breakdown. However, the molecular mechanisms underlying LD motility were poorly characterized. In this study, we examined the function of microfilament-associated proteins 2 and 3 (ARP2 and ARP3) in regulating LDs’ motility in Hela cells. ARP2/3 mediated the LDs’ physical contact with F-actin and promoted the recruitment of Myosin Heavy Chain 9 (MYH9). MYH9 regulated the LD content by binding with LDs and ARP2/3. The number of LDs and TG content was increased after MYH9 interfered. The genes related to FA-related genes and neutral lipid synthesis-related genes were significantly increased (p < 0.05) when ARP2 and ARP3 were overexpressed. Bioinformatic analysis indicated that the high expression of ARP2/3 was associated with a poorer prognosis in cervical squamous cell carcinoma (CSCC). This study showed the effect of cytoskeletal filaments on LD metabolism in cancer cells.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Han
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
3
|
Rosenbloom AD, Kovar EW, Kovar DR, Loew LM, Pollard TD. Mechanism of actin filament nucleation. Biophys J 2021; 120:4399-4417. [PMID: 34509503 DOI: 10.1016/j.bpj.2021.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
We used computational methods to analyze the mechanism of actin filament nucleation. We assumed a pathway where monomers form dimers, trimers, and tetramers that then elongate to form filaments but also considered other pathways. We aimed to identify the rate constants for these reactions that best fit experimental measurements of polymerization time courses. The analysis showed that the formation of dimers and trimers is unfavorable because the association reactions are orders of magnitude slower than estimated in previous work rather than because of rapid dissociation of dimers and trimers. The 95% confidence intervals calculated for the four rate constants spanned no more than one order of magnitude. Slow nucleation reactions are consistent with published high-resolution structures of actin filaments and molecular dynamics simulations of filament ends. One explanation for slow dimer formation, which we support with computational analysis, is that actin monomers are in a conformational equilibrium with a dominant conformation that cannot participate in the nucleation steps.
Collapse
Affiliation(s)
| | - Elizabeth W Kovar
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois; R. D. Berlin Center for Cell Analysis and Modeling, The University of Connecticut School of Medicine, Farmington, Connecticut
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois; and
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, The University of Connecticut School of Medicine, Farmington, Connecticut
| | - Thomas D Pollard
- Departments of Molecular Cellular and Developmental Biology, of Molecular Biophysics and Biochemistry, and of Cell Biology, Yale University, New Haven, Connecticut.
| |
Collapse
|
4
|
Horan BG, Hall AR, Vavylonis D. Insights into Actin Polymerization and Nucleation Using a Coarse-Grained Model. Biophys J 2020; 119:553-566. [PMID: 32668234 DOI: 10.1016/j.bpj.2020.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
We studied actin filament polymerization and nucleation with molecular dynamics simulations and a previously established coarse-grained model having each residue represented by a single interaction site located at the Cα atom. We approximate each actin protein as a fully or partially rigid unit to identify the equilibrium structural ensemble of interprotein complexes. Monomers in the F-actin configuration bound to both barbed and pointed ends of a short F-actin filament at the anticipated locations for polymerization. Binding at both ends occurred with similar affinity. Contacts between residues of the incoming subunit and the short filament were consistent with expectation from models based on crystallography, x-ray diffraction, and cryo-electron microscopy. Binding at the barbed and pointed end also occurred at an angle with respect to the polymerizable bound structure, and the angle range depended on the flexibility of the D-loop. Additional barbed end bound states were seen when the incoming subunit was in the G-actin form. Consistent with an activation barrier for pointed end polymerization, G-actin did not bind at an F-actin pointed end. In all cases, binding at the barbed end also occurred in a configuration similar to the antiparallel (lower) dimer. Individual monomers bound each other in a short-pitch helix complex in addition to other configurations, with several of them apparently nonproductive for polymerization. Simulations with multiple monomers in the F-actin form show assembly into filaments as well as transient aggregates at the barbed end. We discuss the implications of these observations on the kinetic pathway of actin filament nucleation and polymerization and possibilities for future improvements of the coarse-grained model.
Collapse
Affiliation(s)
- Brandon G Horan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Aaron R Hall
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
5
|
Yamashiro S, Watanabe N. Quantitative high-precision imaging of myosin-dependent filamentous actin dynamics. J Muscle Res Cell Motil 2019; 41:163-173. [PMID: 31313218 DOI: 10.1007/s10974-019-09541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Over recent decades, considerable effort has been made to understand how mechanical stress applied to the actin network alters actin assembly and disassembly dynamics. However, there are conflicting reports concerning the issue both in vitro and in cells. In this review, we discuss concerns regarding previous quantitative live-cell experiments that have attempted to evaluate myosin regulation of filamentous actin (F-actin) turnover. In particular, we highlight an error-generating mechanism in quantitative live-cell imaging, namely convection-induced misdistribution of actin-binding probes. Direct observation of actin turnover at the single-molecule level using our improved electroporation-based Single-Molecule Speckle (eSiMS) microscopy technique overcomes these concerns. We introduce our recent single-molecule analysis that unambiguously demonstrates myosin-dependent regulation of F-actin stability in live cells. We also discuss the possible application of eSiMS microscopy in the analysis of actin remodeling in striated muscle cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Hurst V, Shimada K, Gasser SM. Nuclear Actin and Actin-Binding Proteins in DNA Repair. Trends Cell Biol 2019; 29:462-476. [PMID: 30954333 DOI: 10.1016/j.tcb.2019.02.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022]
Abstract
Nuclear actin has been implicated in a variety of DNA-related processes including chromatin remodeling, transcription, replication, and DNA repair. However, the mechanistic understanding of actin in these processes has been limited, largely due to a lack of research tools that address the roles of nuclear actin specifically, that is, distinct from its cytoplasmic functions. Recent findings support a model for homology-directed DNA double-strand break (DSB) repair in which a complex of ARP2 and ARP3 (actin-binding proteins 2 and 3) binds at the break and works with actin to promote DSB clustering and homology-directed repair. Further, it has been reported that relocalization of heterochromatic DSBs to the nuclear periphery in Drosophila is ARP2/3 dependent and actin-myosin driven. Here we provide an overview of the role of nuclear actin and actin-binding proteins in DNA repair, critically evaluating the experimental tools used and potential indirect effects.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, CH-4056 Basel, Switzerland
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, CH-4056 Basel, Switzerland.
| |
Collapse
|
7
|
Sodium fluoride as a nucleating factor for Mg-actin polymerization. Biochem Biophys Res Commun 2016; 479:741-746. [DOI: 10.1016/j.bbrc.2016.09.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022]
|
8
|
Silván U, Hyotyla J, Mannherz HG, Ringler P, Müller SA, Aebi U, Maier T, Schoenenberger CA. Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy. J Struct Biol 2016; 195:159-166. [PMID: 27189866 DOI: 10.1016/j.jsb.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 11/25/2022]
Abstract
Two distinct dimers are formed during the initial steps of actin polymerization. The first one, referred to as the 'lower dimer' (LD) was discovered many years ago by means of chemical crosslinking. Owing to its transient nature, a biological relevance had long been precluded when, using LD-specific antibodies, we detected LD-like contacts in actin assemblies that are associated with the endolysosomal compartment in a number of different cell lines. Moreover, immunofluorescence showed the presence of LD-related structures at the cell periphery of migrating fibroblasts, in the nucleus, and in association with the centrosome of interphase cells. Here, we explore contributions of the LD to the assembly of supramolecular actin structures in real time by total internal reflection fluorescence (TIRF) microscopy. Our data shows that while LD on its own cannot polymerize under filament forming conditions, it is able to incorporate into growing F-actin filaments. This incorporation of LD triggers the formation of X-shaped filament assemblies with barbed ends that are pointing in the same direction in the majority of cases. Similarly, an increased frequency of junction sites was observed when filaments were assembled in the presence of oxidized actin. This data suggests that a disulfide bridge between Cys374 residues might stabilize LD-contacts. Based on our findings, we propose two possible models for the molecular mechanism underlying the supramolecular actin patterning in LD-related structures.
Collapse
Affiliation(s)
- Unai Silván
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Janne Hyotyla
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Hans-Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shirley A Müller
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
9
|
Qu Z, Silvan U, Jockusch BM, Aebi U, Schoenenberger CA, Mannherz HG. Distinct actin oligomers modulate differently the activity of actin nucleators. FEBS J 2015. [DOI: 10.1111/febs.13381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zheng Qu
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| | - Unai Silvan
- Institute for Biomechanics; Balgrist University Hospital; ETH and University of Zürich; Switzerland
| | - Brigitte M. Jockusch
- Department of Cell Biology; Institute of Zoology; Technical University; Braunschweig Germany
| | - Ueli Aebi
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Switzerland
| | | | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| |
Collapse
|
10
|
Yamashiro S, Mizuno H, Watanabe N. An easy-to-use single-molecule speckle microscopy enabling nanometer-scale flow and wide-range lifetime measurement of cellular actin filaments. Methods Cell Biol 2015; 125:43-59. [DOI: 10.1016/bs.mcb.2014.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
Galkin VE, Orlova A, Vos MR, Schröder GF, Egelman EH. Near-atomic resolution for one state of F-actin. Structure 2014; 23:173-182. [PMID: 25533486 DOI: 10.1016/j.str.2014.11.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 01/15/2023]
Abstract
Actin functions as a helical polymer, F-actin, but attempts to build an atomic model for this filament have been hampered by the fact that the filament cannot be crystallized and by structural heterogeneity. We have used a direct electron detector, cryo-electron microscopy, and the forces imposed on actin filaments in thin films to reconstruct one state of the filament at 4.7 Å resolution, which allows for building a reliable pseudo-atomic model of F-actin. We also report a different state of the filament where actin protomers adopt a conformation observed in the crystal structure of the G-actin-profilin complex with an open ATP-binding cleft. Comparison of the two structural states provides insights into ATP-hydrolysis and filament dynamics. The atomic model provides a framework for understanding why every buried residue in actin has been under intense selective pressure.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, 5651 GG Eindhoven, the Netherlands
| | - Gunnar F Schröder
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
12
|
Collins A, Huang R, Jensen MH, Moore JR, Lehman W, Wang CLA. Structural studies on maturing actin filaments. BIOARCHITECTURE 2014; 1:127-133. [PMID: 21922043 DOI: 10.4161/bioa.1.3.16714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 12/29/2022]
Abstract
We have previously reported that actin undergoes a conformational transition (which we named "maturation") during polymerization, and that the actin-binding protein, caldesmon (CaD), when added at an early phase of polymerization, interferes with this process (Huang et al. J Biol Chem 2010; 285:71). The pre-transition filament is characterized by relatively low pyrene-fluorescence intensity when pyrene-labeled actin is used as a reporter of subunit assembly into filaments, whereas the mature filament emits a characteristic enhanced fluorescence. Previously reported co-sedimentation experiments suggest that filament formation is not inhibited by the presence of CaD, despite blocking the transition associated with filament maturation. In this study we visualized structural effects of CaD on the assembly of actin filaments by TIRF and electron microscopy. CaD-free actin forms "rough" filaments with irregular edges and indistinct subunit organization during the initial phase (∼20 min under our conditions) of polymerization as reported previously by others (Steinmetz et al. J Cell Biol 1997; 138:559; Galinska-Rakoczy et al. J Mol Biol 2009; 387:869), which most likely correspond to the pre-transition state preceding the maturation step. Later during the polymerization process "mature" filaments exhibit a smoother F-actin appearance with easily detectible double helically arranged actin subunits. While the inclusion of the actin-binding domain of CaD during actin polymerization does not affect the elongation rate, it is associated with a prolonged pre-transition phase, characterized by a delayed alteration (rough to smooth) of the appearance of filaments, consistent with a later onset of the maturation process.
Collapse
|
13
|
Blache U, Silván U, Plodinec M, Suetterlin R, Jakob R, Klebba I, Bentires-Alj M, Aebi U, Schoenenberger CA. A tumorigenic actin mutant alters fibroblast morphology and multicellular assembly properties. Cytoskeleton (Hoboken) 2013; 70:635-50. [DOI: 10.1002/cm.21120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Ulrich Blache
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Unai Silván
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Marija Plodinec
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Rosmarie Suetterlin
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Roman Jakob
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Ina Klebba
- Mechanisms of Cancer; Friedrich Miescher Institute for Biomedical Research; Basel Switzerland
| | - Mohamed Bentires-Alj
- Mechanisms of Cancer; Friedrich Miescher Institute for Biomedical Research; Basel Switzerland
| | - Ueli Aebi
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| | - Cora-Ann Schoenenberger
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Basel Switzerland
| |
Collapse
|
14
|
Graceffa P, Lee E, Stafford WF. Disulfide cross-linked antiparallel actin dimer. Biochemistry 2013; 52:1082-8. [PMID: 23293916 DOI: 10.1021/bi301208a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidation of actin monomer (G-actin) with copper o-phenanthroline resulted in a rapid, high yield of disulfide cross-linked dimer. The cross-link is due to an intermolecular disulfide bond between actin Cys374 of each molecule, resulting in a tail-to-tail, i.e., antiparallel, actin dimer. Analytical ultracentrifugation profiles of G-actin can be ascribed to the existence of actin monomers with very little, if any, dimer. Thus, actin dimers are not energetically favorable, indicating that cross-linked dimers are formed during random diffusional collisions. On the other hand, a similar oxidation of actin polymer (F-actin) resulted in a much lower yield of the cross-linked actin dimer that showed no sign of leveling off. Therefore, it is proposed that the cross-linked dimer from actin polymer is due to collisional complexes of actin monomers that are in equilibrium with the polymer during actin treadmilling. These results account for the reported observation that during the early stages of actin polymerization (where the actin monomer concentration is high) cross-linked antiparallel actin dimers are formed in relatively high yield whereas none are formed at later stages of polymerization. These findings raise questions concerning the validity of the antiparallel actin dimer model of in vitro actin polymerization that is based on the assumption that the ability to form cross-linked actin dimers implies the existence of stable dimers.
Collapse
Affiliation(s)
- Philip Graceffa
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| | | | | |
Collapse
|
15
|
Kruth KA, Rubenstein PA. Two deafness-causing (DFNA20/26) actin mutations affect Arp2/3-dependent actin regulation. J Biol Chem 2012; 287:27217-26. [PMID: 22718764 DOI: 10.1074/jbc.m112.377283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hearing requires proper function of the auditory hair cell, which is critically dependent upon its actin-based cytoskeletal structure. Currently, ten point mutations in nonmuscle γ-actin have been identified as causing progressive autosomal dominant nonsyndromic hearing loss (DFNA20/26), highlighting these ten residues as functionally important to actin structure and/or regulation. Two of the mutations, K118M and K118N, are located near the putative binding site for the ubiquitously expressed Arp2/3 complex. We therefore hypothesized that these mutations may affect Arp2/3-dependent regulation of the actin cytoskeleton. Using in vitro bulk polymerization assays, we show that the Lys-118 mutations notably reduce actin + Arp2/3 polymerization rates compared with WT. Further in vitro analysis of the K118M mutant using TIRF microscopy indicates the actual number of branches formed per filament is reduced compared with WT and, surprisingly, branch location is altered such that the majority of K118M branches form near the pointed end of the filament. These results highlight a previously unknown role for the Lys-118 residue in the actin-Arp2/3 interaction and also further suggest that Lys-118 may play a more significant role in intra- and intermonomer interactions than was initially hypothesized.
Collapse
Affiliation(s)
- Karina A Kruth
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
16
|
Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat Rev Mol Cell Biol 2011; 12:695-708. [PMID: 21971041 DOI: 10.1038/nrm3207] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the cytosol, actin polymers, intermediate filaments and microtubules can anchor to cell surface adhesions and interlink to form intricate networks. This cytoskeleton is anchored to the nucleus through LINC (links the nucleoskeleton and cytoskeleton) complexes that span the nuclear envelope and in turn anchor to networks of filaments in the nucleus. The metazoan nucleoskeleton includes nuclear pore-linked filaments, A-type and B-type lamin intermediate filaments, nuclear mitotic apparatus (NuMA) networks, spectrins, titin, 'unconventional' polymers of actin and at least ten different myosin and kinesin motors. These elements constitute a poorly understood 'network of networks' that dynamically reorganizes during mitosis and is responsible for genome organization and integrity.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
17
|
Silván U, Boiteux C, Sütterlin R, Schroeder U, Mannherz HG, Jockusch BM, Bernèche S, Aebi U, Schoenenberger CA. An antiparallel actin dimer is associated with the endocytic pathway in mammalian cells. J Struct Biol 2011; 177:70-80. [PMID: 21970948 DOI: 10.1016/j.jsb.2011.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
The dynamic rearrangement of the actin cytoskeleton plays a key role in several cellular processes such as cell motility, endocytosis, RNA processing and chromatin organization. However, the supramolecular actin structures involved in the different processes remain largely unknown. One of the less studied forms of actin is the lower dimer (LD). This unconventional arrangement of two actin molecules in an antiparallel orientation can be detected by chemical crosslinking at the onset of polymerization in vitro. Moreover, evidence for a transient incorporation of LD into growing filaments and its ability to inhibit nucleation of F-actin filament assembly implicate that the LD pathway contributes to supramolecular actin patterning. However, a clear link from this actin species to a specific cellular function has not yet been established. We have developed an antibody that selectively binds to LD configurations in supramolecular actin structures assembled in vitro. This antibody allowed us to unveil the LD in different mammalian cells. In particular, we show an association of the antiparallel actin arrangement with the endocytic compartment at the cellular and ultrastructural level. Taken together, our results strongly support a functional role of LD in the patterning of supramolecular actin assemblies in mammalian cells.
Collapse
Affiliation(s)
- Unai Silván
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schoenenberger CA, Mannherz HG, Jockusch BM. Actin: from structural plasticity to functional diversity. Eur J Cell Biol 2011; 90:797-804. [PMID: 21820202 DOI: 10.1016/j.ejcb.2011.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/03/2011] [Indexed: 11/17/2022] Open
Abstract
This article addresses the multiple activities of actin. Starting out with the history of actin's discovery, purification and structure, it emphasizes the close relation between structure and function. In this context, we also point to unconventional actin conformations. Their existence in living cells is not yet well documented, however, they seem to play a special role in the supramolecular patterning that underlies some of the physiological functions of actin. Conceivably, such conformations may contribute to actin's diverse activities in the nucleus that are poorly understood so far.
Collapse
Affiliation(s)
- Cora-Ann Schoenenberger
- M. E. Mueller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
19
|
Duering M, Karpinska A, Rosner S, Hopfner F, Zechmeister M, Peters N, Kremmer E, Haffner C, Giese A, Dichgans M, Opherk C. Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet 2011; 20:3256-65. [PMID: 21628316 DOI: 10.1093/hmg/ddr237] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is the most common monogenic cause of stroke and vascular dementia. Accumulation and deposition of the NOTCH3 (N3) extracellular domain in small blood vessels has been recognized as a central pathological feature of the disease. Recent experiments suggested enhanced formation of higher order multimers for mutant N3 compared with wild-type (WT). However, the mechanisms and consequences of N3 multimerization are still poorly understood, in part because of the lack of an appropriate in vitro aggregation assay. We therefore developed and validated a robust assay based on recombinant N3 fragments purified from cell culture supernatants. Using single-molecule analysis techniques such as scanning for intensely fluorescent targets and single-particle fluorescence resonance energy transfer, we show that spontaneous aggregation is limited to CADASIL-mutant N3, recapitulating a central aspect of CADASIL pathology in vitro. N3 aggregation requires no co-factor and is facilitated by sulfhydryl crosslinking. Although WT N3 does not exhibit multimerization itself, it can participate in aggregates of mutant N3. Furthermore, we demonstrate that thrombospondin-2, a known interaction partner of N3, co-aggregates with mutant N3. Sequestration of WT N3 and other proteins into aggregates represents a potentially important disease mechanism. These findings in combination with a new assay for single-molecule aggregation analysis provide novel opportunities for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Marco Duering
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Muhlrad A, Grintsevich EE, Reisler E. Polycation induced actin bundles. Biophys Chem 2011; 155:45-51. [PMID: 21411219 DOI: 10.1016/j.bpc.2011.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/18/2011] [Accepted: 02/19/2011] [Indexed: 01/17/2023]
Abstract
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder.
Collapse
Affiliation(s)
- Andras Muhlrad
- Institute of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
21
|
Hubert T, Vandekerckhove J, Gettemans J. Unconventional actin conformations localize on intermediate filaments in mitosis. Biochem Biophys Res Commun 2011; 406:101-6. [PMID: 21295548 DOI: 10.1016/j.bbrc.2011.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel "lower dimer" actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
22
|
Hubert T, Vandekerckhove J, Gettemans J. Actin and Arp2/3 localize at the centrosome of interphase cells. Biochem Biophys Res Commun 2010; 404:153-8. [PMID: 21108927 DOI: 10.1016/j.bbrc.2010.11.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ("lower dimer") actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
23
|
Ujfalusi-Pozsonyi K, Hild G, Gróf P, Gutay-Tóth Z, Bacsó Z, Nyitrai M. The effects of detergents on the polymerization properties of actin. Cytometry A 2010; 77:447-56. [PMID: 20151434 DOI: 10.1002/cyto.a.20855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effects of some detergents-most frequently used in membrane raft studies-on the polymerization properties of actin were examined under in vitro and in vivo conditions, for protein and cellular investigations, respectively. Under in vitro conditions the polymerization rates were measured with pyrene-labeled actin. We found that polymerization rate depended on the detergent concentration by following either biphasic characteristics or only decreasing tendency. The strongest effects were observed at relatively low detergent concentrations. SDS-PAGE electrophoresis and dynamic light-scattering measurements provided further evidences for the size distribution of actin filaments formed under the influence of detergents. Comparing the polymerization rates measured in the presence of different detergents to those obtained with various magnesium and KCl concentrations showed that detergents may influence the actin polymerization at three levels by modifying: (i) the monomer-monomer interaction, (ii) the local ionic strength, and (iii) the affinity of actin for various cations. In vivo studies on NIH 3T3MDR1 cells using TRITC-phalloidin detected fast depolymerization of large extent around the critical micellar concentrations of the detergents. We concluded that microdomain insolubility observed in the presence of detergents is hardly to be the result of the stabilization of the submembrane actin cytoskeleton merely; rather inter-lipid and lipid-protein interactions are also involved within the detergent-resistant membranes.
Collapse
Affiliation(s)
- Kinga Ujfalusi-Pozsonyi
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
Sehring IM, Reiner C, Plattner H. The actin subfamily PtAct4, out of many subfamilies, is differentially localized for specific local functions in Paramecium tetraurelia cells. Eur J Cell Biol 2010; 89:509-24. [DOI: 10.1016/j.ejcb.2010.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/05/2010] [Accepted: 02/09/2010] [Indexed: 11/16/2022] Open
|
25
|
Grintsevich EE, Phillips M, Pavlov D, Phan M, Reisler E, Muhlrad A. Antiparallel dimer and actin assembly. Biochemistry 2010; 49:3919-27. [PMID: 20361759 DOI: 10.1021/bi1002663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antiparallel dimer (APD) is a unique actin species, which can be detected in the early stages of actin polymerization. In this work, we introduce novel tools for examination of the effects of the APD on actin polymerization. We document that bifunctional methanothiosulfonate (MTS) reagents are an attractive alternative to the routinely used p-phenylene maleimide (pPDM) for APD detection, allowing for fast and efficient cross-linking under conditions of actin polymerization at neutral pH. We report also that pyrene-labeled yeast actin mutant A167C/C374A (C167PM) forms significant amounts of stable APD in solution, without chemical cross-linking or polymerization-affecting compounds, and that the kinetics of APD transformation and decay upon actin polymerization can be easily monitored. The dimerization of C167PM has been characterized in sedimentation equilibrium experiments (K(d) approximately 0.3 microM). This new system offers the advantage of assessing the effects of the APD under physiological conditions (pH, ionic strength, and Mg(2+) concentration) and testing for conformational transitions in the APD during nucleation-polymerization reactions or/and in the presence of actin-interacting factors. The results obtained using two different systems (C167PM actin and polylysine-induced polymerization of alpha-actin) show that the APD decays at a rate slower than that at which the filaments elongate, revealing its transient incorporation into filaments, and confirm that it inhibits the nucleation and elongation of actin filaments.
Collapse
Affiliation(s)
- Elena E Grintsevich
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
26
|
Watanabe N. Inside view of cell locomotion through single-molecule: fast F-/G-actin cycle and G-actin regulation of polymer restoration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:62-83. [PMID: 20075609 PMCID: PMC3417570 DOI: 10.2183/pjab.86.62] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/09/2009] [Indexed: 05/28/2023]
Abstract
The actin cytoskeleton drives cell locomotion and tissue remodeling. The invention of live-cell fluorescence single-molecule imaging opened a window for direct viewing of the actin remodeling processes in the cell. Since then, a number of unanticipated molecular functions have been revealed. One is the mechanism of F-actin network breakdown. In lamellipodia, one third of newly polymerized F-actin disassembles within 10 seconds. This fast F-actin turnover is facilitated by the filament severing/disrupting activity involving cofilin and AIP1. Astoundingly fast dissociation kinetics of the barbed end interactors including capping protein suggests that F-actin turnover might proceed through repetitive disruption/reassembly of the filament near the barbed end. The picture of actin polymerization is also being revealed. At the leading edge of the cell, Arp2/3 complex is highly activated in a narrow edge region. In contrast, mDia1 and its related Formin homology proteins display a long-distance directional molecular movement using their processive actin capping ability. Recently, these two independently-developed projects converged into a discovery of the spatiotemporal coupling between mDia1-mediated filament nucleation and actin disassembly. Presumably, the local concentration fluctuation of G-actin regulates the actin nucleation efficiency of specific actin nucleators including mDia1. Pharmacological perturbation and quantitative molecular behavior analysis synergize to reveal hidden molecular linkages in the actin turnover cycle and cell signaling.
Collapse
Affiliation(s)
- Naoki Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
27
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
28
|
Huang R, Grabarek Z, Wang CLA. Differential effects of caldesmon on the intermediate conformational states of polymerizing actin. J Biol Chem 2009; 285:71-9. [PMID: 19889635 DOI: 10.1074/jbc.m109.065078] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The actin-binding protein caldesmon (CaD) reversibly inhibits smooth muscle contraction. In non-muscle cells, a shorter CaD isoform co-exists with microfilaments in the stress fibers at the quiescent state, but the phosphorylated CaD is found at the leading edge of migrating cells where dynamic actin filament remodeling occurs. We have studied the effect of a C-terminal fragment of CaD (H32K) on the kinetics of the in vitro actin polymerization by monitoring the fluorescence of pyrene-labeled actin. Addition of H32K or its phosphorylated form either attenuated or accelerated the pyrene emission enhancement, depending on whether it was added at the early or the late phase of actin polymerization. However, the CaD fragment had no effect on the yield of sedimentable actin, nor did it affect the actin ATPase activity. Our findings can be explained by a model in which nascent actin filaments undergo a maturation process that involves at least two intermediate conformational states. If present at early stages of actin polymerization, CaD stabilizes one of the intermediate states and blocks the subsequent filament maturation. Addition of CaD at a later phase accelerates F-actin formation. The fact that CaD is capable of inhibiting actin filament maturation provides a novel function for CaD and suggests an active role in the dynamic reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Renjian Huang
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | |
Collapse
|
29
|
Pengelly K, Loncar A, Perieteanu AA, Dawson JF. Cysteine engineering of actin self-assembly interfaces. Biochem Cell Biol 2009; 87:663-75. [DOI: 10.1139/o09-012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Holmes model of filamentous actin (F-actin) and recent structural studies suggest specific atomic interactions between F-actin subunits. We tested these interactions through a cysteine-engineering approach with the goal of inhibiting filament formation by introducing chemical groups at sites important for polymerization. We substituted surface amino acids on the actin molecule with cysteine residues and tested the effect of producing these actin mutant proteins in a yeast expression system. The intrinsic folding and polymerization characteristics of the cysteine-engineered actin proteins were measured. The effect of chemical modification of the introduced cysteine residues on the polymerization of the actin mutant proteins was also examined. Modification of cysteine residues with large hydrophobic reagents resulted in polymerization inhibition. We examined the finding that the D288C actin protein does not polymerize under oxidizing conditions and forms protein aggregates when magnesium and EGTA are present. Chemical crosslinking experiments revealed the presence of a lower dimer when only D288C actin was present. When both D288C and A204C actin were present, crosslinking experiments support the proximity of Asp288 on the barbed end of one subunit to Ala204 on the pointed end of a neighboring subunit in the Holmes model of F-actin.
Collapse
Affiliation(s)
- Kate Pengelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ana Loncar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alex A. Perieteanu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John F. Dawson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
30
|
Galińska-Rakoczy A, Wawro B, Strzelecka-Gołaszewska H. New aspects of the spontaneous polymerization of actin in the presence of salts. J Mol Biol 2009; 387:869-82. [PMID: 19340945 DOI: 10.1016/j.jmb.2009.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanism of salt-induced actin polymerization involves the energetically unfavorable nucleation step, followed by filament elongation by the addition of monomers. The use of a bifunctional cross-linker, N,N'-(1,4-phenylene)dimaleimide, revealed rapid formation of the so-called lower dimers (LD) in which actin monomers are arranged in an antiparallel fashion. The filament elongation phase is characterized by a gradual LD decay and an increase in the yield of "upper dimers" (UD) characteristic of F-actin. Here we have used 90 degrees light scattering, electron microscopy, and N, N'-(1,4-phenylene)dimaleimide cross-linking to reinvestigate relationships between changes in filament morphology, LD decay, and increase in the yield of UD during filament growth in a wide range of conditions influencing the rate of the nucleation reaction. The results show irregularity and instability of filaments at early stages of polymerization under all conditions used, and suggest that an earlier documented coassembling of LD with monomeric actin contributes to the initial disordering of the filaments rather than to the nucleation of polymerization. The effects of the type of G-actin-bound divalent cation (Ca2+/Mg2+), nucleotide (ATP/ADP), and polymerizing salt on the relation between changes in filament morphology and progress in G-actin-to-F-actin transformation show that ligand-dependent alterations in G-actin conformation determine not only the nucleation rate but also the kinetics of ordering of the filament structure in the elongation phase. The time courses of changes in the yield of UD suggest that filament maturation involves cooperative propagation of "proper" interprotomer contacts. Acceleration of this process by the initially bound MgATP supports the view that the filament-destabilizing conformational changes triggered by ATP hydrolysis and Pi liberation during polymerization are constrained by the intermolecular contacts established between MgATP monomers prior to ATP hydrolysis. An important role of contacts involving the DNase-I-binding loop and the C-terminus of actin is proposed.
Collapse
|
31
|
Connecting actin monomers by iso-peptide bond is a toxicity mechanism of the Vibrio cholerae MARTX toxin. Proc Natl Acad Sci U S A 2008; 105:18537-42. [PMID: 19015515 DOI: 10.1073/pnas.0808082105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae is the causative agent of a severe diarrheal disease that afflicts three to five million persons annually, causing up to 200,000 deaths. Nearly all V. cholerae strains produce a large multifunctional-autoprocessing RTX toxin (MARTX(Vc)), which contributes significantly to the pathogenesis of cholera in model systems. The actin cross-linking domain (ACD) of MARTX(Vc) directly catalyzes a covalent cross-linking of monomeric G-actin into oligomeric chains and causes cell rounding, but the nature of the cross-linked bond and the mechanism of the actin cytoskeleton disruption remained elusive. To elucidate the mechanism of ACD action and effect on actin, we identified the covalent cross-link bond between actin protomers using limited proteolysis, X-ray crystallography, and mass spectrometry. We report here that ACD catalyzes the formation of an intermolecular iso-peptide bond between residues E270 and K50 located in the hydrophobic and the DNaseI-binding loops of actin, respectively. Mutagenesis studies confirm that no other residues on actin can be cross-linked by ACD both in vitro and in vivo. This cross-linking locks actin protomers into an orientation different from that of F-actin, resulting in strong inhibition of actin polymerization. This report describes a microbial toxin mechanism acting via iso-peptide bond cross-linking between host proteins and is, to the best of our knowledge, the only known example of a peptide linkage between nonterminal glutamate and lysine side chains.
Collapse
|
32
|
Higashida C, Suetsugu S, Tsuji T, Monypenny J, Narumiya S, Watanabe N. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers. J Cell Sci 2008; 121:3403-12. [DOI: 10.1242/jcs.030940] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.
Collapse
Affiliation(s)
- Chiharu Higashida
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyoku, Tokyo 113-0032, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Takahiro Tsuji
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - James Monypenny
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
Abstract
In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin.
Collapse
|
34
|
Sawaya MR, Kudryashov DS, Pashkov I, Adisetiyo H, Reisler E, Yeates TO. Multiple crystal structures of actin dimers and their implications for interactions in the actin filament. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:454-65. [PMID: 18391412 PMCID: PMC2631129 DOI: 10.1107/s0907444908003351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 01/30/2008] [Indexed: 01/04/2023]
Abstract
Multiple crystal structures are reported of cross-linked actin dimers. Interactions that are conserved across crystal structures suggest detailed interactions that are likely to be present in F-actin filaments. The structure of actin in its monomeric form is known at high resolution, while the structure of filamentous F-actin is only understood at considerably lower resolution. Knowing precisely how the monomers of actin fit together would lead to a deeper understanding of the dynamic behavior of the actin filament. Here, a series of crystal structures of actin dimers are reported which were prepared by cross-linking in either the longitudinal or the lateral direction in the filament state. Laterally cross-linked dimers, comprised of monomers belonging to different protofilaments, are found to adopt configurations in crystals that are not related to the native structure of filamentous actin. In contrast, multiple structures of longitudinal dimers consistently reveal the same interface between monomers within a single protofilament. The reappearance of the same longitudinal interface in multiple crystal structures adds weight to arguments that the interface visualized is similar to that in actin filaments. Highly conserved atomic interactions involving residues 199–205 and 287–291 are highlighted.
Collapse
Affiliation(s)
- Michael R Sawaya
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
35
|
Lee SH, Hayes DB, Rebowski G, Tardieux I, Dominguez R. Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer. Proc Natl Acad Sci U S A 2007; 104:16122-7. [PMID: 17911258 PMCID: PMC2042172 DOI: 10.1073/pnas.0705794104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many human pathogens exploit the actin cytoskeleton during infection, including Toxoplasma gondii, an apicomplexan parasite related to Plasmodium, the agent of malaria. One of the most abundantly expressed proteins of T. gondii is toxofilin, a monomeric actin-binding protein (ABP) involved in invasion. Toxofilin is found in rhoptry and presents an N-terminal signal sequence, consistent with its being secreted during invasion. We report the structure of toxofilin amino acids 69-196 in complex with the host mammalian actin. Toxofilin presents an extended conformation and interacts with an antiparallel actin dimer, in which one of the actins is related by crystal symmetry. Consistent with this observation, analytical ultracentrifugation analysis shows that toxofilin binds two actins in solution. Toxofilin folds into five consecutive helices, which form three relatively independent actin-binding sites. Helices 1 and 2 bind the symmetry-related actin molecule and cover its nucleotide-binding cleft. Helices 3-5 bind the other actin and constitute the primary actin-binding region. Helix 3 interacts in the cleft between subdomains 1 and 3, a common binding site for most ABPs. Helices 4 and 5 wrap around actin subdomain 4, and residue Gln-134 of helix 4 makes a hydrogen-bonding contact with the nucleotide in actin, both of which are unique features among ABPs. Toxofilin dramatically inhibits nucleotide exchange on two actin molecules simultaneously. This effect is linked to the formation of the antiparallel actin dimer because a construct lacking helices 1 and 2 binds only one actin and inhibits nucleotide exchange less potently.
Collapse
Affiliation(s)
- Sung Haeng Lee
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085
| | - David B. Hayes
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472; and
| | - Grzegorz Rebowski
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085
| | - Isabelle Tardieux
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Institut Cochin, 75014 Paris, France
| | - Roberto Dominguez
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Norman AI, Ivkov R, Forbes JG, Greer SC. The polymerization of actin: structural changes from small-angle neutron scattering. J Chem Phys 2007; 123:154904. [PMID: 16252969 DOI: 10.1063/1.2039088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new analysis of small-angle neutron-scattering data from rabbit muscle actin in the course of the polymerization from G-actin to F-actin as a function of temperature. The data, from Ivkov et al. [J. Chem. Phys. 108, 5599 (1998)], were taken in D2O buffer with Ca2+ as the divalent cation on the G-actin in the presence of ATP and with KCl as the initiating salt. The new analysis of the data using modeling and the method of generalized indirect fourier transform (O. Glatter, GIFT, University of Graz, Austria, http://physchem.kfunigraz.ac.at/sm/) provide shapes and dimensions of the G-actin monomer and of the growing actin oligomer in solution as a function of temperature and salt concentration. This analysis indicates that the G-actin monomer, under the conditions given above, is a sphere 50-54 A in diameter as opposed to the oblate ellipsoid seen by x-ray crystallography. The F-actin dimensions are consistent with x-ray crystal structure determinations.
Collapse
Affiliation(s)
- Alexander I Norman
- Department of Chemistry and Biochemistry, The University of Maryland College Park, College Park, Maryland 20742, USA.
| | | | | | | |
Collapse
|
37
|
Lassing I, Schmitzberger F, Björnstedt M, Holmgren A, Nordlund P, Schutt CE, Lindberg U. Molecular and structural basis for redox regulation of beta-actin. J Mol Biol 2007; 370:331-48. [PMID: 17521670 DOI: 10.1016/j.jmb.2007.04.056] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 12/20/2022]
Abstract
An essential consequence of growth factor-mediated signal transduction is the generation of intracellular H(2)O(2). It operates as a second messenger in the control of actin microfilament dynamics, causing rapid and dramatic changes in the morphology and motile activity of stimulated cells. Little is understood about the molecular mechanisms causing these changes in the actin system. Here, it is shown that H(2)O(2) acts directly upon several levels of this system, and some of the mechanistic effects are detailed. We describe the impact of oxidation on the polymerizability of non-muscle beta/gamma-actin and compare with that of muscle alpha-actin. Oxidation of beta/gamma-actin can cause a complete loss of polymerizability, crucially, reversible by the thioredoxin system. Further, oxidation of the actin impedes its interaction with profilin and causes depolymerization of filamentous actin. The effects of oxidation are critically dependent on the nucleotide state and the concentration of Ca(2+). We have determined the crystal structure of oxidized beta-actin to a resolution of 2.6 A. The arrangement in the crystal implies an antiparallel homodimer connected by an intermolecular disulfide bond involving cysteine 374. Our data indicate that this dimer forms under non-polymerizing and oxidizing conditions. We identify oxidation of cysteine 272 in the crystallized actin dimer, likely to a cysteine sulfinic acid. In beta/gamma-actin, this is the cysteine residue most reactive towards H(2)O(2) in solution, and we suggest plausible structural determinants for its reactivity. No other oxidative modification was obvious in the structure, highlighting the specificity of the oxidation by H(2)O(2). Possible consequences of the observed effects in a cellular context and their potential relevance are discussed.
Collapse
Affiliation(s)
- Ingrid Lassing
- Department of Microbiology, Tumor Biology, and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
38
|
Lee PA, Orriss GL, Buchanan G, Greene NP, Bond PJ, Punginelli C, Jack RL, Sansom MSP, Berks BC, Palmer T. Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J Biol Chem 2006; 281:34072-85. [PMID: 16973610 DOI: 10.1074/jbc.m607295200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic membrane protein TatB is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. Together with the TatC component it forms a complex that functions as a membrane receptor for substrate proteins. Structural predictions suggest that TatB is anchored to the membrane via an N-terminal transmembrane alpha-helix that precedes an amphipathic alpha-helical section of the protein. From truncation analysis it is known that both these regions of the protein are essential for function. Here we construct 31 unique cysteine substitutions in the first 42 residues of TatB. Each of the substitutions results in a TatB protein that is competent to support Tat-dependent protein translocation. Oxidant-induced disulfide cross-linking shows that both the N-terminal and amphipathic helices form contacts with at least one other TatB protomer. For the transmembrane helix these contacts are localized to one face of the helix. Molecular modeling and molecular dynamics simulations provide insight into the possible structural basis of the transmembrane helix interactions. Using variants with double cysteine substitutions in the transmembrane helix, we were able to detect cross-links between up to five TatB molecules. Protein purification showed that species containing at least four cross-linked TatB molecules are found in correctly assembled TatBC complexes. Our results suggest that the transmembrane helices of TatB protomers are in the center rather than the periphery of the TatBC complex.
Collapse
Affiliation(s)
- Philip A Lee
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kreplak L, Aebi U. From the Polymorphism of Amyloid Fibrils to their Assembly Mechanism and Cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:217-33. [PMID: 17190615 DOI: 10.1016/s0065-3233(06)73007-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Extracellular amyloid deposits are present in a variety of diseases. They contain amyloid fibrils that arise from the association of proteins or peptides. At the molecular level, all these fibrils share a common assembly principle based on a conformational change of the protein precursor leading to the formation of a cross-beta sheet structure. The smallest observed fibrils in vitro, often called protofibrils, are 4-5 nm in diameter. An amyloid fibril is generally composed of several of these protofibrils and may adopt different morphologies such as ribbons, sheets, or multistranded cables. This polymorphism was observed with many different amyloid-forming peptides and proteins using electron microscopy. The need to understand the molecular origin of this effect as well as the desire to find inhibitors of fibril formation has driven researchers toward the dissection of amyloid fibril assembly pathways. We review the current knowledge on amyloid polymorphism and discuss recent findings in the field concerning amyloid fibril assembly pathways and cytotoxicity mechanisms.
Collapse
Affiliation(s)
- Laurent Kreplak
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | | |
Collapse
|
40
|
Schoenenberger CA, Buchmeier S, Boerries M, Sütterlin R, Aebi U, Jockusch BM. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J Struct Biol 2005; 152:157-68. [PMID: 16297639 DOI: 10.1016/j.jsb.2005.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/02/2005] [Accepted: 09/20/2005] [Indexed: 11/22/2022]
Abstract
For many years the existence of actin in the nucleus has been doubted because of the lack of phalloidin staining as well as the failure to document nuclear actin filaments by electron microscopy. More recent findings reveal actin to be a component of chromatin remodeling complexes and of the machinery involved in RNA synthesis and transport. With distinct functions for nuclear actin emerging, the quest for its conformation and oligomeric/polymeric structure in the nucleus has resumed importance. We used chemically cross-linked 'lower dimer' (LD) to generate mouse monoclonal antibodies specific for different actin conformations. One of the resulting antibodies, termed 1C7, recognizes an epitope that is buried in the F-actin filament, but is surface-exposed in G-actin as well as in the LD. In immunofluorescence studies with different cell lines, 1C7 selectively reacts with non-filamentous actin in the cytoplasm. In addition, it detects a discrete form of actin in the nucleus, which is different from the nuclear actin revealed by the previously described 2G2 [Gonsior, S.M., Platz, S., Buchmeier, S., Scheer, U., Jockusch, B.M., Hinssen, H., 1999. J. Cell Sci. 112, 797]. Upon latrunculin-induced disassembly of the filamentous cytoskeleton in Rat2 fibroblasts, we observed a perinuclear accumulation of the 1C7-reactive actin conformation. In addition, latrunculin treatment led to the assembly of phalloidin-staining actin structures in chromatin-free regions of the nucleus in these cells. Our results indicate that distinct actin conformations and/or structures are present in the nucleus and the cytoplasm of different cell types and that their distribution varies in response to external signals.
Collapse
Affiliation(s)
- C-A Schoenenberger
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Within the past two years, actin has been implicated in eukaryotic gene transcription by all three classes of RNA polymerase. Moreover, within just the past year, actin has been identified as a constituent of filaments attached to the nuclear pore complexes and extending into the nucleus. This review summarizes these and other very recent advances in the nuclear actin field and emphasizes the key present issues. On the one hand, we are confronted with a body of evidence for a role of actin in gene transcription but with no known structural basis; on the other hand, there is now evidence for polymeric actin--not likely in the classical F-actin conformation--in the nuclear periphery with no known function. In addition, numerous proteins that interact with either G- or F-actin are increasingly being detected in the nucleus, suggesting that both monomeric and oligomeric or polymeric forms of actin are at play and raising the possibility that the equilibrium between them, perhaps differentially regulated at various intranuclear sites, may be a major determinant of nuclear function.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
42
|
Conlon KA, Zharkov DO, Berrios M. Cell cycle regulation of the murine 8-oxoguanine DNA glycosylase (mOGG1): mOGG1 associates with microtubules during interphase and mitosis. DNA Repair (Amst) 2004; 3:1601-15. [PMID: 15474421 DOI: 10.1016/j.dnarep.2004.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
8-Oxoguanine DNA glycosylase (OGG1) is a major DNA repair enzyme in mammalian cells. OGG1 participates in the repair of 8-oxoG, the most abundant known DNA lesion induced by endogenous reactive oxygen species in aerobic organisms. In this study, antibodies directed against purified recombinant human OGG1 (hOGG1) or murine (mOGG1) protein were chemically conjugated to either the photosensitizer Rose Bengal or the fluorescent dye Texas red. These dye-protein conjugates, in combination with binding assays, were used to identify associations between mOGG1 and the cytoskeleton of NIH3T3 fibroblasts. Results from these binding studies showed that mOGG1 associates with the cytoskeleton by specifically binding to the centriole and microtubules radiating from the centrosome at interphase and the spindle assembly at mitosis. Similar results were obtained with hOGG1. Together results reported in this study suggest that OGG1 is a microtubule-associated protein itself or that OGG1 utilizes yet to be identified motor proteins to ride on microtubules as tracks facilitating the movement and redistribution of cytoplasmic OGG1 pools during interphase and mitosis and in response to oxidative DNA damage.
Collapse
Affiliation(s)
- Kimberly A Conlon
- Department of Pharmacological Sciences, School of Medicine, University Hospital and Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
43
|
Dafforn TR, Rajendra J, Halsall DJ, Serpell LC, Rodger A. Protein fiber linear dichroism for structure determination and kinetics in a low-volume, low-wavelength couette flow cell. Biophys J 2004; 86:404-10. [PMID: 14695282 PMCID: PMC1303805 DOI: 10.1016/s0006-3495(04)74116-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-resolution structure determination of soluble globular proteins relies heavily on x-ray crystallography techniques. Such an approach is often ineffective for investigations into the structure of fibrous proteins as these proteins generally do not crystallize. Thus investigations into fibrous protein structure have relied on less direct methods such as x-ray fiber diffraction and circular dichroism. Ultraviolet linear dichroism has the potential to provide additional information on the structure of such biomolecular systems. However, existing systems are not optimized for the requirements of fibrous proteins. We have designed and built a low-volume (200 microL), low-wavelength (down to 180 nm), low-pathlength (100 microm), high-alignment flow-alignment system (couette) to perform ultraviolet linear dichroism studies on the fibers formed by a range of biomolecules. The apparatus has been tested using a number of proteins for which longer wavelength linear dichroism spectra had already been measured. The new couette cell has also been used to obtain data on two medically important protein fibers, the all-beta-sheet amyloid fibers of the Alzheimer's derived protein Abeta and the long-chain assemblies of alpha1-antitrypsin polymers.
Collapse
Affiliation(s)
- Timothy R Dafforn
- Department of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Reutzel R, Yoshioka C, Govindasamy L, Yarmola EG, Agbandje-McKenna M, Bubb MR, McKenna R. Actin crystal dynamics: structural implications for F-actin nucleation, polymerization, and branching mediated by the anti-parallel dimer. J Struct Biol 2004; 146:291-301. [PMID: 15099571 DOI: 10.1016/j.jsb.2003.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Actin filament nucleation, polymerization, and branching are crucial steps in many forms of cell motility, cell shape, and intracellular organelle movements in a wide range of organisms. Previous biochemical data suggests that an anti-parallel actin dimer can incorporate itself into growing filamentous actin (F-actin) and has a role in branching. Furthermore, it is a widespread belief that nucleation is spawned from an actin trimer complex. Here we present the structures of actin dimers and trimers in two tetragonal crystal systems P4(3)2(1)2 and P4(3). Both crystal systems formed by an induced condensation transformation of a previously reported orthorhombic crystal system P2(1)2(1)2(1). Comparison between the three crystal systems demonstrates the dynamics and flexibility of actin-actin interactions. The dimer and trimer actin rearrangements observed between the three crystal systems may provide insight to in vivo actin-actin interactions that occur during the nucleation, polymerization, and branching of F-actin.
Collapse
Affiliation(s)
- Robbie Reutzel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Dawson JF, Sablin EP, Spudich JA, Fletterick RJ. Structure of an F-actin trimer disrupted by gelsolin and implications for the mechanism of severing. J Biol Chem 2003; 278:1229-38. [PMID: 12356759 DOI: 10.1074/jbc.m209160200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stable oligomers of filamentous actin were obtained by cross-linking F-actin with 1,4-N,N'-phenylenedimaleimide and depolymerization with excess segment-1 of gelsolin. Segment-1-bound and cross-linked actin oligomers containing either two or three actin subunits were purified and shown to nucleate actin assembly. Kinetic assembly data from mixtures of monomeric actin and the actin oligomers fit a nucleation model where cross-linked actin dimer or trimer reacts with an actin monomer to produce a competent nucleus for filament assembly. We report the three-dimensional structure of the segment-1-actin hexamer containing three actin subunits, each with a tightly bound ATP. Comparative analysis of this structure with twelve other actin structures provides an atomic level explanation for the preferential binding of ATP by the segment-1-complexed actin. Although the structure of segment-1-bound actin trimer is topologically similar to the helical model of F-actin (1), it has a distorted symmetry compared with that of the helical model. This distortion results from intercalation of segment-1 between actin protomers that increase the rise per subunit and rotate each of the actin subunits relative to their positions in F-actin. We also show that segment-1 of gelsolin is able to sever actin filaments, although the severing activity of segment-1 is significantly lower than full-length gelsolin.
Collapse
Affiliation(s)
- John F Dawson
- Department of Biochemistry, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Actin, through its various forms of assembly, provides the basic framework for cell motility, cell shape and intracellular organization in all eukaryotic cells. Many other cellular processes, for example endocytosis and cytokinesis, are also associated with dynamic changes of the actin cytoskeleton. Important prerequisites for actin's functional diversity are its intrinsic ability to rapidly assemble and disassemble filaments and its spatially and temporally well-controlled supramolecular organization. A large number of proteins that interact with actin, collectively referred to as actin-binding proteins (ABPs), carefully orchestrate different scenarios. Since its isolation in 1994 [Machesky, L.M. et al. (1994) J. Cell Biol. 127, 107-115], the Arp2/3 complex containing the actin-related proteins Arp2 and Arp3 has evolved to be one of the main players in the assembly and maintenance of many actin-based structures in the cell (for review see [Borths, E.L. and Welch, M.D. (2002) Structure 10, 131-135; May, R.C. (2001) Cell Mol. Life Sci. 58, 1607-1626; Pollard, T.D. et al. (2000) Rev. Biophys. Biomol. Struct. 29, 545-576; Welch, M.D. (1999) Trends Cell Biol. 11, 423-427]). In particular, when it comes to the assembly of the intricate branched actin network at the leading edge of lamellipodia, the Arp2/3 complex seems to have received all the attention in recent years. In parallel, but not so much in the spotlight, several reports showed that actin on its own can assume different conformations [Bubb, M.R. et al. (2002) J. Biol. Chem. 277, 20999-21006; Schoenenberger, C.-A. et al. (1999) Microsc. Res. Tech. 47, 38-50; Steinmetz, M.O. et al. (1998) J. Mol. Biol. 278, 793-811; Steinmetz, M.O. et al. (1997) J. Cell Biol. 138, 559-574; Millonig, R., Salvo, H. and Aebi, U. (1988) J. Cell Biol. 106, 785-796] through which it drives its supramolecular patterning, and which ultimately generate its functional diversity.
Collapse
Affiliation(s)
- Cora-Ann Schoenenberger
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| | | | | | | |
Collapse
|
47
|
Buch S, Gremm D, Wegner A, Mannherz HG. Binding of a C-terminal fragment (residues 369 to 435) of vitamin D-binding protein to actin. Biol Chem 2002; 383:1621-31. [PMID: 12452439 DOI: 10.1515/bc.2002.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The vitamin D-binding protein (DBP) binds to monomeric actin with high affinity. The variation in DBP isoforms is due to genetic polymorphism and varying glycosylation. To obtain a homogeneous preparation, the cDNA for human DBP and truncations thereof were cloned and various systems were applied for heterologous bacterial and yeast expression. The full-length protein and the N- and C-terminal halves of DBP remained insoluble probably because the protein did not fold to its native three-dimensional structure due to formation of accidental intra- and inter-molecular disulfide bonds during expression in bacteria or yeast. This problem was overcome by cloning of a C-terminal fragment comprising residues 369 to 435 that did not contain disulfide bonds and was completely soluble. Binding of the C-terminal fragment to monomeric actin was demonstrated by comigration with actin during native polyacrylamide gel electrophoresis and surface plasmon resonance, however, at considerably lower affinity than full-length DBP. This suggests that in addition to the C-terminal amino acid sequence other parts (amino acid residues or sugar moieties) of DBP participate in actin binding. The C-terminal fragment was found to inhibit denaturation of actin and to decrease the rate of actin polymerisation both at the barbed and at the pointed end in a concentration-dependent manner. According to a quantitative analysis of the polymerisation kinetics, association of actin monomers to nucleate filaments was not prevented by binding of the C-terminal fragment to actin. These data suggest that the sites on the surface of actin that are involved in actin nucleation and elongation are different.
Collapse
Affiliation(s)
- Stefan Buch
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
48
|
Abstract
Actin is an abundant protein in most nonmuscle cells. It has often been observed in isolated nuclei, yet cytoplasmic contamination was of course initially regarded as the most plausible origin. Numerous studies on nuclear actin appeared in the 1970s and 1980s, but the picture remained rather muddy. The viewpoint at that time was that actin-shown to move freely between cytoplasm and nucleus-was a mere "thermodynamic wanderer," transiently occupying the nucleus. More recently, evidence has been mounting that actin's presence in the nucleus is not simply governed by the laws of diffusion. The same holds true for the finding of various actin-related proteins in the nucleus, and the case for nuclear myosin, specifically myosin I, is now quite convincing. Moreover, the first intimations of functional roles of nuclear actin are now emerging. Here we examine the overall subject from cell biological and chemical perspectives. The major issue is no longer the presence of actin in the nucleus but rather its supramolecular organization, intranuclear locations, and, of course, functions. These issues interface with recent findings that reveal a surprisingly diverse repertoire of actin conformations and oligomer and polymer forms beyond monomeric G-actin and polymeric F-actin. We present ideas for advancing the nuclear actin field and call for a renewed attack on this major problem in cell biology.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605-2300, USA.
| | | |
Collapse
|
49
|
Bubb MR, Govindasamy L, Yarmola EG, Vorobiev SM, Almo SC, Somasundaram T, Chapman MS, Agbandje-McKenna M, McKenna R. Polylysine induces an antiparallel actin dimer that nucleates filament assembly: crystal structure at 3.5-A resolution. J Biol Chem 2002; 277:20999-1006. [PMID: 11932258 DOI: 10.1074/jbc.m201371200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An antiparallel actin dimer has been proposed to be an intermediate species during actin filament nucleation. We now show that latrunculin A, a marine natural product that inhibits actin polymerization, arrests polylysine-induced nucleation at the level of an antiparallel dimer, resulting in its accumulation. These dimers, when composed of pyrene-labeled actin subunits, give rise to a fluorescent excimer, permitting detection during polymerization in vitro. We report the crystallographic structure of the polylysine-actin-latrunculin A complex at 3.5-A resolution. The non-crystallographic contact is consistent with a dimeric structure and confirms the antiparallel orientation of its subunits. The crystallographic contacts reveal that the mobile DNase I binding loop of one subunit of a symmetry-related antiparallel actin dimer is partially stabilized in the interface between the two subunits of a second antiparallel dimer. These results provide a potential explanation for the paradoxical nucleation of actin filaments that have exclusively parallel subunits by a dimer containing antiparallel subunits.
Collapse
Affiliation(s)
- Michael R Bubb
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center and the University of Florida College of Medicine, Gainesville, Florida 32608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ballweber E, Galla M, Aktories K, Yeoh S, Weeds AG, Mannherz HG. Interaction of ADP-ribosylated actin with actin binding proteins. FEBS Lett 2001; 508:131-5. [PMID: 11707283 DOI: 10.1016/s0014-5793(01)03040-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Actin ADP-ribosylated at Arg177 was previously shown not to polymerise after increasing the ionic strength, but to cap the barbed ends of filaments. Here we confirm that the polymerisation of ADP-ribosylated actin is inhibited, however, under specific conditions the modified actin copolymerises with native actin, indicating that its ability to take part in normal subunit interactions within filaments is not fully eliminated. We also show that ADP-ribosylated actin forms antiparallel but not parallel dimers: the former are not able to form filaments. ADP-ribosylated actin interacts with deoxyribonuclease I, vitamin D binding protein, thymosin beta(4), cofilin and gelsolin segment 1 like native actin. Interaction with myosin subfragment 1 revealed that the potential of the modified actin to aggregate into oligomers or short filaments is not fully eliminated.
Collapse
Affiliation(s)
- E Ballweber
- Department of Anatomy and Cell Biology, Ruhr-University, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|