1
|
Cai SH, Wang B, Zhang J, Guo J, Hu B. Wearable sampling of proteins from human exhaled aerosols for nano-liquid chromatography-tandem mass spectrometry analysis: A pilot study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9737. [PMID: 38533583 DOI: 10.1002/rcm.9737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
RATIONALE Human exhaled breath usually contains unique proteins that may provide clues to characterize individual physiological activities and many diseases. However, the concentration of exhaled proteins in exhaled breath is extremely low and usually does not reach the detection limits of all online breath mass spectrometry instruments. Therefore, developing a new breath sampler for collecting and characterizing exhaled proteins is important. METHODS In this study, a new mask-based wearable sampler was developed by fixing metal materials into the inner surface of the KN95 mask. Human exhaled proteins could be directly adsorbed onto the metal material while wearing the mask. After sampling, the collected proteins were eluted, digested, and identified using nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). RESULTS The adsorption of exhaled proteins was evaluated, showing that modified gold foil is an effective material for collecting exhaled proteins. Various endogenous proteins were successfully identified from exhaled breath, many of which can be potential biomarkers for disease diagnosis. CONCLUSIONS By coupling the newly developed mask sampler with nano-LC-MS/MS, human exhaled proteins were successfully collected and identified. Our results show that the mask sampler is wearable, simple, and convenient, and the method is noninvasive for investigating disease diagnosis and human health.
Collapse
Affiliation(s)
- Shen-Hui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Baixue Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Jiubiao Guo
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Cysteine-Rich Angiogenic Inducer 61: Pro-Survival Function and Role as a Biomarker for Disseminating Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13030563. [PMID: 33540545 PMCID: PMC7867178 DOI: 10.3390/cancers13030563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Metastasis is the leading cause of death in breast cancer, and it can be predicted by the detection of circulating tumor cells in the blood and disseminated tumor cells in the bone marrow, which are usually detected by epithelial marker proteins. However, tumor cells with mesenchymal attributes down-regulate the expression of epithelial marker proteins, and are therefore difficult to detect. Here, we found that the protein-cysteine–rich angiogenetic inducer 61 (Cyr61) is strongly expressed in tumor cells with mesenchymal attributes. Cyr61 expression was undetectable in normal blood cells, suggesting that Cyr61 might represent a tumor-associated protein. Functional experiments showed that the loss of Cyr61 reduces the viability of breast tumor cells. Thus, Cyr61 might represent an interesting anti-metastatic target that needs to be explored in future studies. Abstract (1) Background: the early detection of cancer cells in the blood or bone marrow of breast cancer patients improves the understanding of metastasis. Disseminating tumor cells in the bone marrow with a pronounced manifestation of mesenchymal markers (mDTC) are difficult to detect by epithelial markers, but they are relevant in the initiation of metastasis. (2) Methods: the breast cancer mDTC cell line BC-M1 was analyzed by mass spectrometry, which revealed high levels of the protein-cysteine–rich angiogenic inducer 61 (Cyr61). The function of Cyr61 was investigated using shRNA and hypoxia. Peripheral blood samples from 35 breast cancer patients were investigated for CTCs defined as cytokeratin-positive/CD45-negative cells. (3) Results: the Cyr61 levels are elevated in mDTC lines from breast, lung, and prostate cancer patients. The loss of Cyr61 resulted in the diminished expression of hypoxia-inducible factor 1-alpha, and increased apoptosis. Cyr61 was present in 47 (43%) of the 109 detected circulating tumor cells (CTCs), while the blood and bone marrow cells from healthy controls were Cyr61-negative. (4) Conclusions: Cyr61 is expressed in mDTC lines, supports the viability of cancer cells, and classifies a new subset of cytokeratin-positive CTCs, which deserves further investigation.
Collapse
|
3
|
Kake T, Imai M, Takahashi N. Effects of β‐carotene on oxazolone‐induced atopic dermatitis in hairless mice. Exp Dermatol 2019; 28:1044-1050. [DOI: 10.1111/exd.14003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/01/2019] [Accepted: 07/01/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Takamichi Kake
- Laboratory of Physiological Chemistry Institute of Medicinal Chemistry Hoshi University Shinagawa, Tokyo Japan
| | - Masahiko Imai
- Laboratory of Physiological Chemistry Institute of Medicinal Chemistry Hoshi University Shinagawa, Tokyo Japan
| | - Noriko Takahashi
- Laboratory of Physiological Chemistry Institute of Medicinal Chemistry Hoshi University Shinagawa, Tokyo Japan
| |
Collapse
|
4
|
Vidmar B, Vodovnik M. Microbial Keratinases: Enzymes with Promising Biotechnological Applications. Food Technol Biotechnol 2018; 56:312-328. [PMID: 30510475 PMCID: PMC6233012 DOI: 10.17113/ftb.56.03.18.5658] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Keratin is a complex and structurally stable protein found in human and animal hard tissues, such as feathers, wool, hair, hoof and nails. Some of these, like feathers and wool, represent one of the main sources of protein-rich waste with significant potential to be transformed into value-added products such as feed, fertilizers or bioenergy. A major limitation impeding valorization of keratinous substrates is their recalcitrant structure and resistance to hydrolysis by common proteases. However, specialized keratinolytic enzymes produced by some microorganisms can efficiently degrade these substrates. Keratinases have already found a purpose in pharmaceutical, textile and leather industries. However, their wider implementation in other processes, such as cost-effective (pre)treatment of poultry waste, still requires optimization of production and performance of the available enzymes. Here we present a comprehensive review covering molecular properties and characteristics of keratinases, their classification, traditional and novel approaches in discovery of novel enzymes, production, characterization, improvement and biotechnological applications.
Collapse
Affiliation(s)
- Beti Vidmar
- Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3,
SI-1230 Domžale, Slovenia
| | - Maša Vodovnik
- Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3,
SI-1230 Domžale, Slovenia
| |
Collapse
|
5
|
Analysis of Sera of Recipients with Allograft Rejection Indicates That Keratin 1 Is the Target of Anti-Endothelial Antibodies. J Immunol Res 2017; 2017:8679841. [PMID: 28265584 PMCID: PMC5318619 DOI: 10.1155/2017/8679841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/04/2017] [Indexed: 11/24/2022] Open
Abstract
Anti-endothelial cell antibodies (AECAs) are usually directed against the surface antigens on the vascular endothelial cells. Clinical studies suggest a pathogenic role for nonhuman leukocyte antigen in antibody-mediated rejection; however, the antigens on the donor vascular endothelium that serve as the first-line targets for an immune response during allograft rejection have not been fully identified. Here, we used immunoprecipitation and mass spectrometry to identify antigens from the sera of kidney transplant recipients who were experiencing antibody-mediated rejection. Keratin 1 (KRT1) was identified as a novel antigenic target expressed on endothelial cells. To validate our finding, we produced recombinant proteins representing the three most common alleles of KRT1. The serum used for immunoprecipitation showed a strong reaction to KRT1 recombinants in western blot and ELISA. In the kidney transplant cohort, more AECA-positive recipients than AECA-negative recipients had KRT1 antibodies (32.2% versus 11.9%, p = 0.002). Sera from 255 renal recipients were tested by ELISA. Of the 77 recipients with deteriorating graft function (serum creatinine > 120 μmol/L), 23 had anti-KRT1 antibodies. KRT1-IgG positivity was, therefore, associated with a higher risk of kidney transplant rejection (29.9% (23/77) versus 16.9% (30/178), p = 0.0187). A better understanding of this antigenic target will improve long-term allograft survival.
Collapse
|
6
|
Hayes SA, Haefliger S, Harris B, Pavlakis N, Clarke SJ, Molloy MP, Howell VM. Exhaled breath condensate for lung cancer protein analysis: a review of methods and biomarkers. J Breath Res 2016; 10:034001. [PMID: 27380020 DOI: 10.1088/1752-7155/10/3/034001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide, and is considered one of the most aggressive human cancers, with a 5 year overall survival of 10-15%. Early diagnosis of lung cancer is ideal; however, it is still uncertain as to what technique will prove successful in the systematic screening of high-risk populations, with the strongest evidence currently supporting low dose computed tomography (LDCT). Analysis of exhaled breath condensate (EBC) has recently been proposed as an alternative low risk and non-invasive screening method to investigate early-stage neoplastic processes in the airways. However, there still remains a relative paucity of lung cancer research involving EBC, particularly in the measurement of lung proteins that are centrally linked to pathogenesis. Considering the ease and safety associated with EBC collection, and advances in the area of mass spectrometry based profiling, this technology has potential for use in screening for the early diagnosis of lung cancer. This review will examine proteomics as a method of detecting markers of neoplasia in patient EBC with a particular emphasis on LC, as well as discussing methodological challenges involving in proteomic analysis of EBC specimens.
Collapse
Affiliation(s)
- Sarah A Hayes
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia. Sydney Medical School Northern, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Muccilli V, Saletti R, Cunsolo V, Ho J, Gili E, Conte E, Sichili S, Vancheri C, Foti S. Protein profile of exhaled breath condensate determined by high resolution mass spectrometry. J Pharm Biomed Anal 2014; 105:134-149. [PMID: 25555262 DOI: 10.1016/j.jpba.2014.11.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 11/30/2022]
Abstract
A method based on liquid chromatography/high resolution tandem mass spectrometry coupled with electrophoretic separation, for determination and relative quantification of the protein composition of exhaled breath condensate (EBC), was developed. Application of the procedure to a sample of EBC, pooled from nine healthy subjects, resulted in the identification of 167 unique gene products, 113 of which not previously reported in EBC samples. The abundance of the protein identified was estimated by means of the exponentially modified protein abundance index protocol (emPAI). Cytokeratins were by far the most abundant proteins in EBC samples. Many of the identified proteins were associated with multiple cellular location with cytoplasm constituting the largest group. Cytosol, nucleus, membrane, cytoskeleton and extracellular were other abundantly represented locations. No amylase was detected, suggesting the absence of saliva protein contamination. The profile obtained represents the most comprehensive protein characterization of EBC so far reported and demonstrates that this approach provides a powerful tool for investigating the protein profile of EBC samples. Compared with analogous investigations, this study also shows that the protein profile of EBC is strongly affected by the sampling method adopted.
Collapse
Affiliation(s)
- Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Saletti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Vincenzo Cunsolo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Jenny Ho
- ThermoFisher Scientific, Stafford House, Boundary Way, Hemel Hempstead HP2 7GE, United Kingdom
| | - Elisa Gili
- Department of Clinical and Molecular Biomedicine, University Hospital Policlinico-Vittorio Emanuele, Via Santa Sofia 78, 95123 Catania, Italy
| | - Enrico Conte
- Department of Clinical and Molecular Biomedicine, University Hospital Policlinico-Vittorio Emanuele, Via Santa Sofia 78, 95123 Catania, Italy
| | - Stefania Sichili
- Department of Clinical and Molecular Biomedicine, University Hospital Policlinico-Vittorio Emanuele, Via Santa Sofia 78, 95123 Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Molecular Biomedicine, University Hospital Policlinico-Vittorio Emanuele, Via Santa Sofia 78, 95123 Catania, Italy
| | - Salvatore Foti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
9
|
Sabeti S, Malekzad F, Ashayer M, Fouladi RF, Hesari KK, Toutkaboni MP, Younespour S. The rate and pattern of bcl-2 and cytokeratin 15 expression in trichoepithelioma and nodular Basal cell carcinoma: a comparative study. Indian J Dermatol 2013; 58:331-6. [PMID: 24082173 PMCID: PMC3778768 DOI: 10.4103/0019-5154.117291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Context: Histopathological evaluations can differentiate between clinically resembling trichoepithelioma (TE) and basal cell carcinoma (BCC) unless the biopsy specimens are small or superficial. Previous studies used immunohistochemical evaluation for Bcl-2 and cytokeratin 15 (CK15), in attempts to differentiate between these two entities, with heterogeneous findings. Aims: This study intended to compare the rate and patterns of Bcl-2 and CK15 expressions between specimens of TE and nodular BCC. Settings and Design: Case-series including formalin-fixed, paraffin-embedded cutaneous biopsies. Subjects and Methods: Twenty-two BCC and 12 TE specimens were stained for Bcl-2 and CK15 and examined microscopically. The rate and patterns of expressions were compared between the two groups. Statistical Analysis Used: Statistical analysis was performed using the statistical software (SPSS version 16.0; SPSS Inc., Chicago, IL, USA), Pearson Chi-square, or Fisher's exact tests, wherever appropriate. Results: The two groups were comparable for the expression rate and patterns of Bcl-2 (86.4%: 5 central, 14 diffuse in BCC vs. 83.3%: 2 central, 8 diffuse in TE; P = 0.59 and 0.54 for rate and pattern, respectively). The rate of CK15 expression was significantly higher in TE specimens (66.7%: 4 central, 3 diffuse, 1 peripheral vs. 4.5%: 1 central; P < 0.001). The positive likelihood ratio in distinguishing the two neoplasms was 14.7 (95% confidence interval: 2.1-103.7). Conclusions: CK15 but not Bcl-2 staining may help in differentiating between BCC and TE even in BCCs with follicular differentiation.
Collapse
Affiliation(s)
- Shahram Sabeti
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
10
|
Takahashi N, Takasu S. A close relationship between type 1 diabetes and vitamin A-deficiency and matrix metalloproteinase and hyaluronidase activities in skin tissues. Exp Dermatol 2011; 20:899-904. [DOI: 10.1111/j.1600-0625.2011.01351.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Lusiana, Reichl S, Müller-Goymann CC. Keratin film made of human hair as a nail plate model for studying drug permeation. Eur J Pharm Biopharm 2011; 78:432-40. [DOI: 10.1016/j.ejpb.2011.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/19/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
12
|
Schopfer LM, Grigoryan H, Li B, Nachon F, Masson P, Lockridge O. Mass spectral characterization of organophosphate-labeled, tyrosine-containing peptides: characteristic mass fragments and a new binding motif for organophosphates. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1297-311. [PMID: 19762289 PMCID: PMC2860652 DOI: 10.1016/j.jchromb.2009.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 07/11/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
We have identified organophosphorus agent (OP)-tyrosine adducts on 12 different proteins labeled with six different OP. Labeling was achieved by treating pure proteins with up to 40-fold molar excess of OP at pH 8-8.6. OP-treated proteins were digested with trypsin, and peptides were separated by HPLC. Fragmentation patterns for 100 OP-peptides labeled on tyrosine were determined in the mass spectrometer. The goals of the present work were (1) to determine the common features of the OP-reactive tyrosines, and (2) to describe non-sequence MSMS fragments characteristic of OP-tyrosine peptides. Characteristic ions at 272 and 244 amu for tyrosine-OP immonium ions were nearly always present in the MSMS spectrum of peptides labeled on tyrosine by chlorpyrifos-oxon. Characteristic fragments also appeared from the parent ions that had been labeled with diisopropylfluorophosphate (216 amu), sarin (214 amu), soman (214 amu) or FP-biotin (227, 312, 329, 691 and 708 amu). In contrast to OP-reactive serines, which lie in the consensus sequence GXSXG, the OP-reactive tyrosines have no consensus sequence. Their common feature is the presence of nearby positively charged residues that activate the phenolic hydroxyl group. The significance of these findings is the recognition of a new binding motif for OP to proteins that have no active site serine. Modified peptides are difficult to find when the OP bears no radiolabel and no tag. The characteristic MSMS fragment ions are valuable because they are identifiers for OP-tyrosine, independent of the peptide.
Collapse
Affiliation(s)
| | - Hasmik Grigoryan
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Bin Li
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Florian Nachon
- Centre de Recherches du Service de Santé des Armées, Toxicology Dept, BP87, 38702 La Tronche Cedex, France
| | - Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Toxicology Dept, BP87, 38702 La Tronche Cedex, France
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| |
Collapse
|
13
|
Knockdown of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model. J Invest Dermatol 2010; 130:2286-94. [PMID: 20445547 DOI: 10.1038/jid.2010.115] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Loss-of-function mutations in the filaggrin gene are associated with ichthyosis vulgaris and atopic dermatitis. To investigate the impact of filaggrin deficiency on the skin barrier, filaggrin expression was knocked down by small interfering RNA (siRNA) technology in an organotypic skin model in vitro. Three different siRNAs each efficiently suppressed the expression of profilaggrin and the formation of mature filaggrin. Electron microscopy revealed that keratohyalin granules were reduced in number and size and lamellar body formation was disturbed. Expression of keratinocyte differentiation markers and the composition of lipids appeared normal in filaggrin-deficient models. The absence of filaggrin did not render keratins 1, 2, and 10 more susceptible to extraction by urea, arguing against a defect in aggregation. Despite grossly normal stratum corneum morphology, filaggrin-deficient skin models showed a disturbed diffusion barrier function in a dye penetration assay. Moreover, lack of filaggrin led to a reduction in the concentration of urocanic acid, and sensitized the organotypic skin to UVB-induced apoptosis. This study thus demonstrates that knockdown of filaggrin expression in an organotypic skin model reproduces epidermal alterations caused by filaggrin mutations in vivo. In addition, our results challenge the role of filaggrin in intermediate filament aggregation and establish a link between filaggrin and endogenous UVB protection.
Collapse
|
14
|
Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 2010; 214:516-59. [PMID: 19422428 DOI: 10.1111/j.1469-7580.2009.01066.x] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically, the term 'keratin' stood for all of the proteins extracted from skin modifications, such as horns, claws and hooves. Subsequently, it was realized that this keratin is actually a mixture of keratins, keratin filament-associated proteins and other proteins, such as enzymes. Keratins were then defined as certain filament-forming proteins with specific physicochemical properties and extracted from the cornified layer of the epidermis, whereas those filament-forming proteins that were extracted from the living layers of the epidermis were grouped as 'prekeratins' or 'cytokeratins'. Currently, the term 'keratin' covers all intermediate filament-forming proteins with specific physicochemical properties and produced in any vertebrate epithelia. Similarly, the nomenclature of epithelia as cornified, keratinized or non-keratinized is based historically on the notion that only the epidermis of skin modifications such as horns, claws and hooves is cornified, that the non-modified epidermis is a keratinized stratified epithelium, and that all other stratified and non-stratified epithelia are non-keratinized epithelia. At this point in time, the concepts of keratins and of keratinized or cornified epithelia need clarification and revision concerning the structure and function of keratin and keratin filaments in various epithelia of different species, as well as of keratin genes and their modifications, in view of recent research, such as the sequencing of keratin proteins and their genes, cell culture, transfection of epithelial cells, immunohistochemistry and immunoblotting. Recently, new functions of keratins and keratin filaments in cell signaling and intracellular vesicle transport have been discovered. It is currently understood that all stratified epithelia are keratinized and that some of these keratinized stratified epithelia cornify by forming a Stratum corneum. The processes of keratinization and cornification in skin modifications are different especially with respect to the keratins that are produced. Future research in keratins will provide a better understanding of the processes of keratinization and cornification of stratified epithelia, including those of skin modifications, of the adaptability of epithelia in general, of skin diseases, and of the changes in structure and function of epithelia in the course of evolution. This review focuses on keratins and keratin filaments in mammalian tissue but keratins in the tissues of some other vertebrates are also considered.
Collapse
Affiliation(s)
- Hermann H Bragulla
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, 70803, USA.
| | | |
Collapse
|
15
|
Hendrix SW, Miller KH, Youket TE, Adam R, O'Connor RJ, Morel JG, Tepper BE. Optimization of the skin multiple analyte profile bioanalytical method for determination of skin biomarkers from D-Squame tape samples. Skin Res Technol 2007; 13:330-42. [PMID: 17610656 DOI: 10.1111/j.1600-0846.2007.00235.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND/PURPOSE This work was performed to optimize extraction conditions for D-Squame tape skin samples for use in the skin multiple analyte profile (SkinMAP) method, a Linco Research Corporation bead-based assay for skin analytes. The experiments were designed to help identify sources of variability during extraction that may be amenable to further control. METHODS Two experimental designs were used to study factors influencing the extraction of skin samples from D-Squame tapes. Visually healthy skin samples were obtained from both female and male adult volar forearms. Factors studied in two experiments included: four surfactant (SDS) levels (0.02-0.2%), two buffer types [Citrate-phosphate buffered saline at pH 5.5, phosphate-buffered saline (PBS) at pH 7.4], two buffer volumes (1.0, 1.5 mL), two propylene glycol (PG) levels (0.1%, 1.0%), two extraction temperatures (7-10 degrees C, 22-30+ degrees C), two extraction times (30, 60 min), and location in sonication bath (two vectors). The response biomarkers were cortisol, fibronectin, human serum albumin, involucrin, keratin-6 and keratins 1, 10. Skin sampling sites were also evaluated as sources of variation. RESULTS There was no single set of extraction conditions in our experiments that maximized recovery of all the biomarkers. SDS level had the most consistently significant (P<0.05) and directional effects on biomarker recoveries. In general, higher SDS resulted in higher recovery of all biomarkers. There was less consistency and fewer significant results for the other extraction factors. CONCLUSIONS These data enable us to better manage SkinMAP studies and interpret their results. The use of 1.5 mL PBS containing 0.2% SDS and 0.5% PG with 30 min sonication at low (near 4 degrees C) temperature is optimal for the quantitation of a range of SkinMAP analytes. In order to protect researchers from obtaining inflated false positive rates, it is crucial to design such studies and analyze the data using appropriate statistical methodology, especially for those studies involving only a small number of subjects.
Collapse
Affiliation(s)
- S W Hendrix
- The Procter & Gamble Company, Beauty Care, Sharon Woods Innovation Center, Cincinnati, OH 45241, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Eastwood J, Offutt C, Menon K, Keel M, Hrncirova P, Novotny MV, Arnold R, Foley J. Identification of markers for nipple epidermis: changes in expression during pregnancy and lactation. Differentiation 2007; 75:75-83. [PMID: 17244023 DOI: 10.1111/j.1432-0436.2006.00112.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vertebrates, specific regions of skin crucial for interaction with and manipulation of elements in the environment are characterized by specialized epidermis. Regions of specialized epidermis show distinct patterns of cellular differentiation and express specific keratins that provide an increased ability to withstand mechanical strain. The nipple, which must endure the mechanical strain of nursing, is a type of specialized epidermis. The entire ventral skin of the keratin 14 promoter driven PTHrP mouse provides a model for nipple development. To identify novel markers for this specialized epidermis, we have used two-dimensional (2-D) gels, mass spectrometric protein identification, Western blotting and immunohistochemistry to compare intermediate filament preparations from the nipple-like K14-PTHrP ventral skin to that of wild-type littermates. We identified 64 spots on 2-D gels that were increased in expression in the nipple-like skin of the female K14-PTHrP mouse and 11 spots that were elevated in the wild type. Microsequencing suggested that K17 and epiplakin were among the proteins with the greatest increase in expression in the K14-PTHrP ventral skin. Using Western blots and immunohistochemistry, we evaluated the expression of these proteins as well as K6 in the wild-type nipple, K14-PTHrP ventral skin and wild-type ventral skin. In addition, we found that the expression of K6 was minimally changed in the pregnant and lactating nipple, but the expression of a previously identified marker, K2e, was reduced during lactation. Using a model of the mechanical strain induced by nursing, we found that K2e but not K6 expression was responsive to this condition. The identification of epidermal markers and their expression patterns will provide insight into the cellular differentiation patterns of the nipple and the underlying epidermal-mesenchymal interactions that direct this differentiation.
Collapse
Affiliation(s)
- Jennifer Eastwood
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Friedrich J, Gradišar H, Vrecl M, Pogačnik A. In vitro degradation of porcine skin epidermis by a fungal keratinase of Doratomyces microsporus. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Mahler B, Gocken T, Brojan M, Childress S, Spandau DF, Foley J. Keratin 2e: a marker for murine nipple epidermis. Cells Tissues Organs 2004; 176:169-77. [PMID: 15118396 DOI: 10.1159/000077033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2003] [Indexed: 01/11/2023] Open
Abstract
Mesenchyme-derived signals influence the unique keratinization and appendage formation programs in specialized skin regions. Interactions between primary mammary mesenchyme and epidermal cells result in the formation of the nipple; however, it is unclear whether this represents a site of regionally specialized epidermis. We profiled the ultrastructure and keratin expression of the murine nipple, and the ventral skin of the K14-parathyroid hormone-related protein (PTHrP) transgenic mouse, which models nipple formation. We found the murine nipple and ventral K14-PTHrP epidermis display expanded suprabasal and granular layers, as well as a thickened cornified layer compared to ventral skin of wild-type littermates. We also observed increased levels of filaggrin in extracts from the ventral epidermis of the K14-PTHrP mouse when compared to that of wild-type littermates. Keratin 2e, previously reported to be expressed in various specialized epidermal sites in the mouse, is expressed in the nipple and the ventral skin of the K14-PTHrP mouse. Keratinocytes grown from the ventral epidermis of the K14-PTHrP mouse or wild-type littermates exhibited identical expression of epidermal markers in vitro, suggesting that the modulated differentiation profile observed in the nipple or the ventral K14-PTHrP skin was dependent on interactions with fibroblasts. The lack of appendages, altered stratification pattern and expression of a specialized keratin suggests that the murine nipple is an example of regionally specialized epidermis.
Collapse
Affiliation(s)
- Bryon Mahler
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
19
|
Reichelt J, Furstenberger G, Magin TM. Loss of keratin 10 leads to mitogen-activated protein kinase (MAPK) activation, increased keratinocyte turnover, and decreased tumor formation in mice. J Invest Dermatol 2004; 123:973-81. [PMID: 15482487 DOI: 10.1111/j.0022-202x.2004.23426.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Keratin 10 (K10) is the major protein in the upper epidermis where it maintains keratinocyte integrity. Others have reported that K10 may act as a tumor suppressor upon ectopic expression in mice. Although K10(-/-) mice show significant epidermal hyperproliferation, accompanied by an activation of the mitogen-activated protein kinase (MAPK) pathway, they formed no spontaneous tumors. Here, we report that K10(-/-) mice treated with 7,12-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) developed far less papillomas than wild-type mice. BrdU(5-bromo-2'-deoxyuridine)-labeling revealed a strongly accelerated keratinocyte turnover in K10(-/-) epidermis suggesting an increased elimination of initiated keratinocytes at early stages of developing tumors. This is further supported by the absence of label-retaining cells 18 d after the pulse whereas in wild-type mice label-retaining cells were still present. The concomitant increase in K6, K16, and K17 in K10 null epidermis and the increased motility of keratinocytes is in agreement with the pliability versus resilience hypothesis, stating that K10 and K1 render cells more stable and static. The K10(-/-) knockout represent the first mouse model showing that loss of a keratin, a cytoskeletal protein, reduces tumor formation. This is probably caused by an accelerated turnover of keratinocytes, possibly mediated by activation of MAPK pathways.
Collapse
Affiliation(s)
- Julia Reichelt
- Institut fuer Physiologische Chemie, Abteilung fuer Zellbiochemie, Bonner Forum Biomedizin and LIMES, Universitaetsklinikum Bonn, Bonn, Germany.
| | | | | |
Collapse
|
20
|
Roberts K, Bhatia K, Stanton P, Lord R. Proteomic analysis of selected prognostic factors of breast cancer. Proteomics 2004; 4:784-92. [PMID: 14997499 DOI: 10.1002/pmic.200300633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Indexed: 11/08/2022]
Abstract
The incidence of breast cancer is on the rise but as yet there is no guaranteed beneficial treatment for many of the sufferers. The treatments specific for breast and other hormone-sensitive cancers work well at times, however, the population of women that they will benefit is relatively small. Many are limited to surgical, chemotherapy, and radiotherapy options. Here, using two-dimensional electrophoresis (2-DE) in conjunction with a silver stain and Western blotting approach, we attempt to locate selected known prognostic markers for breast cancer. With these results, we can exclude these proteins from the future search for potential pharmaceutical targets, using the same techniques. The proteins that were located include the estrogen receptor-alpha, beta-casein, cytokeratin 7, calponin and bax. For each protein an estimated M(r) and pI was gained. Each protein was found in multiple variants. By locating these proteins the number of unknown proteins found on the 2-DE gel has been reduced, helping the future search for novel markers that are shown as being differentially expressed between healthy and cancerous tissue samples.
Collapse
Affiliation(s)
- Kylie Roberts
- Department of Surgery, University of Tasmania, Hobart, Australia
| | | | | | | |
Collapse
|
21
|
Hattori N, Komine M, Yano S, Kaneko T, Hanakawa Y, Hashimoto K, Tamaki K. Interferon-gamma, a strong suppressor of cell proliferation, induces upregulation of keratin K6, one of the inflammatory- and proliferation-associated keratins. J Invest Dermatol 2002; 119:403-10. [PMID: 12190863 DOI: 10.1046/j.1523-1747.2002.01843.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Keratin K6 is known as an inflammatory and hyperproliferative keratin, and is induced by an inflammatory and hyperproliferative agent. In this study, we demonstrated that interferon-gamma, an antiproliferative agent, also induces keratin K6. We used normal human ex vivo skin, normal human cultured keratinocytes, HaCaT keratinocytes, and DJM cells to examine the induction of K6 by interferon-gamma, by immunohistochemical staining, Western blot analysis, promoter chloramphenicol acetyl transferase assay, and reverse transcriptase polymerase chain reaction of mRNA. We succeeded in demonstrating the induction of keratin K6 by interferon-gamma in ex vivo human skin and HaCaT keratinocytes at the protein and message level, and in cultured normal human keratinocytes at the promoter level. The inhibition of the signal transducing activator of transcription 1 pathway by a dominant-negative transfer gene caused the inhibition of K6 induction by interferon-gamma, and the blocking of nuclear factor kappaB using antisense oligonucleotides also inhibited the K6 induction. We also blocked the released interleukin-1alpha from keratinocytes after stimulation with interferon-gamma by neutralizing antibodies, which showed a decrease in the K6 induction. Our results suggest that a small amount of interleukin-1alpha, which cannot induce K6 by itself, is secreted upon stimulation by interferon-gamma, and that the induction of K6 occurs through the synergistic effect of the interferon-gamma/signal transducing activator of transcription 1 and interleukin-1alpha/nuclear factor kappaB pathways. This is the first report to describe K6 induction in epidermal keratinocytes by interferon-gamma and indicate a probable signal transduction pathway, and demonstrates that K6 is a possible partner of K17 in the inflammatory process.
Collapse
Affiliation(s)
- Naoko Hattori
- Department of Dermatology, Faculty of Medicine, University of Tokyo, and University of Ehime, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Schnabel J, Weber K, Hatzfeld M. Protein-protein interactions between keratin polypeptides expressed in the yeast two-hybrid system. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:158-68. [PMID: 9630597 DOI: 10.1016/s0167-4889(98)00036-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Keratin filaments are obligatory heteropolymers of type I and type II keratin polypeptides. Specific type I/type II pairs are coexpressed in vivo. In contrast, all type I/type II pairs assemble into filaments in vitro, but the different pairs have different stabilities as demonstrated by treatment with increasing concentrations of urea. We have used the yeast two-hybrid system to analyse type I/type II interactions in a cellular context. We measured interactions between two different keratin pairs and we confirm the findings that K6+K17 form very stable heterodimers whereas K8+K18 interactions were weaker. The deletion of head domains did not reduce the strength of type I/type II interactions. Rather, the affinities were increased and the differences between the two pairs were retained in headless mutants. These findings argue against a major role of the head domains in directing heterodimer interactions and in defining heterodimer stabilities.
Collapse
Affiliation(s)
- J Schnabel
- Department of Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37070 Göttingen, Germany
| | | | | |
Collapse
|
23
|
Zedda M, Farina V. Basket and basal-duct cells in domestic animals: different cytokeratin expression and shape. Anat Histol Embryol 1996; 25:257-62. [PMID: 9011102 DOI: 10.1111/j.1439-0264.1996.tb00089.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cytokeratins (CKs) are a multigenic family of proteins constituting intermediate filaments in epithelia, indicated in humans by the numbers 1-20. Different cell-types can be immunocytochemically identified on the grounds of their CK expression. This investigation was designed to study CK expression of basket cells (BCs) and basal-duct cells (BDCs) in some domestic animals. Frozen sections of mammary and major salivary glands from cows, sheep, pigs and rabbits were treated using the immunofluorescent method, using as monoclonal antibodies clones CK-E3, CKB1, KS-1A3, and LDS-68, respectively, revealing the human CKs 17, 14, 13, 7. BCs surrounding acini and BDCs were stained by CK 17 antibody only in the rabbit. CK 14 was detectable in both cell types in cows, sheep and pigs, except in the case of bovine salivary BCs. CK 13 was revealed in BCs and BDCs of all mammary glands and also rabbit salivary glands. In the salivary glands of the other species, only BDCs were stained. CK 7 gave unreliable results in all the species and cell types examined. Interestingly, in the rabbit, also BDCs are basket-like in shape. The antibodies employed showed different staining depending on species and gland. On the grounds of immunoreactivity and shape, BCs and BDCs can be considered the same cell type in the rabbit. In the other species, they appear to be different, since BDCs may express additional CKs and are triangular-shaped, whereas BCs are truly basket-like. It is worth noting that clone KS-1A3 in the rabbit and CKB1 in the sheep and pig can be considered markers of the basket/ basal system.
Collapse
Affiliation(s)
- M Zedda
- Institute of Veterinary Anatomy, University of Sassari, Italy
| | | |
Collapse
|
24
|
Tsai JC. Characterization of the pattern of cytokeratin proteins in the epidermal cells of loach,Misgurnus anguillicaudatus (Cyprinformes). FISH PHYSIOLOGY AND BIOCHEMISTRY 1996; 15:307-316. [PMID: 24194249 DOI: 10.1007/bf02112357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/1996] [Indexed: 06/02/2023]
Abstract
The pattern of cytokeratin proteins in the epidermal cells of loach was studied by immunotechniques and partial separation of the epidermal cells. Two monoclonal antibodies, namely 8F7 and 1C45, against the cytokeratin proteins of the loach epidermis were prepared. these two monoclonal antibodies exhibit distinctive results in immunohistochemical staining. The 8F7 monoclonal antibody stains mainly with the epithelial cells, while the 1C45 monoclonal antibody stains specifically with the club cells. The pattern of cytokeratin proteins in the club cells and the epithelial cells of various epidermal layers was further determined by partial separation of these cells. Immunoblotting analysis of the cell fractions confirms the cytokeratin proteins to be differentially expressed in the club cells and the epithelial cells. However, the cytokeratin proteins expressed in the epithelial cells of the basal, middle and outer layers are same. The results indicate that differentiation of the epithelial cells seems limited during their translocation from basal to upper layers, but in those cells that do differentiate into club cells, the cytokeratin pattern changes.
Collapse
Affiliation(s)
- J C Tsai
- Department of Zoology, National Taiwan University, Taipei, Taiwan R.O.C
| |
Collapse
|
25
|
Bachant JB, Klymkowsky MW. A nontetrameric species is the major soluble form of keratin in Xenopus oocytes and rabbit reticulocyte lysates. J Cell Biol 1996; 132:153-65. [PMID: 8567720 PMCID: PMC2120706 DOI: 10.1083/jcb.132.1.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Inside the interphase cell, approximately 5% of the total intermediate filament protein exists in a soluble form. Past studies using velocity gradient sedimentation (VGS) indicate that soluble intermediate filament protein exists as an approximately 7 S tetrameric species. While studying intermediate filament assembly dynamics in the Xenopus oocyte, we used both VGS and size-exclusion chromatography (SEC) to analyze the soluble form of keratin. Previous studies (Coulombe, P. A., and E. Fuchs. 1990. J. Cell Biol. 111:153) report that tetrameric keratins migrate on SEC with an apparent molecular weight of approximately 150,000; the major soluble form of keratin in the oocyte, in contrast, migrates with an apparent molecular weight of approximately 750,000. During oocyte maturation, the keratin system disassembles into a soluble form (Klymkowsky, M. W., L. A. Maynell, and C. Nislow. 1991. J. Cell Biol. 114:787) and the amount of the 750-kD keratin complex increases dramatically. Immunoprecipitation analysis of soluble keratin from matured oocytes revealed the presence of type I and type II keratins, but no other stoichiometrically associated polypeptides, suggesting that the 750-kD keratin complex is composed solely of keratin. To further study the formation of the 750-kD keratin complex, we used rabbit reticulocyte lysates (RRL). The 750-kD keratin complex was formed in RRLs contranslating type I and type II Xenopus keratins, but not when lysates translated type I or type II keratin RNAs alone. The 750-kD keratin complex could be formed posttranslationally in an ATP-independent manner when type I and type II keratin translation reactions were mixed. Under conditions of prolonged incubation, such as occur during VGS analysis, the 750-kD keratin complex disassembled into a 7 S (by VGS), 150-kD (by SEC) form. In urea denaturation studies, the 7 S/150-kD form could be further disassembled into an 80-kD species that consists of cofractionating dimeric and monomeric keratin. Based on these results, the 750-kD species appears to be a supratetrameric complex of keratins and is the major, soluble form of keratin in both prophase and M-phase oocytes, and RRL reactions.
Collapse
Affiliation(s)
- J B Bachant
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | |
Collapse
|
26
|
Schmid HR, Schmitter D, Blum P, Miller M, Vonderschmitt D. Lung tumor cells: a multivariate approach to cell classification using two-dimensional protein pattern. Electrophoresis 1995; 16:1961-8. [PMID: 8586071 DOI: 10.1002/elps.11501601322] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
High resolution two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is a powerful research tool for the analytical separation of cellular proteins. The qualitative and quantitative pattern of polypeptides synthesized by a cell represents its phenotype and thus defines characteristics such as the morphology and the biological behavior of the cell. By analyzing and comparing the protein patterns of different cells it is possible to recognize the cell type and also to identify the most typical features of these cells. In applied pathology it is often difficult to identify the tissue of origin and the stage or grade of a neoplasia by cellular morphology analyzed by classical or immunostaining procedures. The protein pattern itself is the most characteristic feature of a cell and should therefore contribute to the identification of the cell type. For this reason we separated protein fractions originating from different lung tumor cell lines using 2-D PAGE and we compared the resulting patterns on a multivariate statistical level using correspondence analysis (CA) and ascendant hierarchical clustering (AHC). The results indicate that (i) protein patterns are highly typical for cells and that (ii) the comparison of the protein patterns of a set of interesting cell types allows the identification of potentially new marker proteins. 2-D PAGE is thus a unique and powerful tool for molecular cytology or histopathology, unveiling the protein expression level of tissues or cells.
Collapse
Affiliation(s)
- H R Schmid
- Institute for Clinical Chemistry, University Hospital, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Rungger-Brändle E, Alliod C, Fouquet B, Messerli MM. Behaviour of macroglial cells, as identified by their intermediate filament complement, during optic nerve regeneration of Xenopus tadpole. Glia 1995; 13:255-71. [PMID: 7542224 DOI: 10.1002/glia.440130403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Assessment of glial cell behaviour during optic nerve (ON) regeneration in Xenopus tadpoles is hampered by the lack of classical cellular markers that distinguish different glial cells in mammals. We thus have characterized the intermediate filament (IF) complement of tadpole glial cells and used it to follow the fate of glial cell subsets during the first 10 days after ON crush. Glial cells synthesize a restricted number of cytokeratin (CK) species and vimentin. This pattern remains essentially unchanged during metamorphosis and regeneration. However, vimentin turnover is specifically enhanced after injury. The expression of CKs and vimentin has been followed immunocytochemically in situ and in isolated cells recovered from dissociated ON segments. In the normal nerve, 79% of ramified glial cells express both CK and vimentin, 1% CK and 4% vimentin only, whereas 16% express neither IF protein. We tentatively classified CK expressing cells as mature astrocytes and those without IF proteins as oligodendrocytes. In the regenerating ON, the relative number of oligodendrocytes is decreased, while the astrocytic subset becomes accordingly larger but is decreased by day 10 already in favour of cells expressing vimentin only. Astrocytes invade the lesion site soon after crush, arrange into a central core within the distal nerve segment and establish a peripheral scaffold that is readily crossed by axons. Unlike mammalian astrocytes that remain absent from the lesion site but form a scar at some distance to it, amphibian astrocytes appear to provide active guidance to axons growing through the lesion site.
Collapse
|
28
|
Hisanaga S, Matsuoka Y, Nishizawa K, Saito T, Inagaki M, Hirokawa N. Phosphorylation of native and reassembled neurofilaments composed of NF-L, NF-M, and NF-H by the catalytic subunit of cAMP-dependent protein kinase. Mol Biol Cell 1994; 5:161-72. [PMID: 8019002 PMCID: PMC301022 DOI: 10.1091/mbc.5.2.161] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphorylation of neurofilament-L protein (NF-L) by the catalytic subunit of cAMP-dependent protein kinase (A-kinase) inhibits the reassembly of NF-L and disassembles filamentous NF-L. The effects of phosphorylation by A-kinase on native neurofilaments (NF) composed of three distinct subunits: NF-L, NF-M, and NF-H, however, have not yet been described. In this paper, we examined the effects of phosphorylation of NF proteins by A-kinase on both native and reassembled filaments containing all three NF subunits. In the native NF, A-kinase phosphorylated each NF subunit with stoichiometries of 4 mol/mol for NF-L, 6 mol/mol for NF-M, and 4 mol/mol for NF-H. The extent of NF-L phosphorylation in the native NF was nearly the same as that of purified NF-L. However, phosphorylation did not cause the native NFs to disassemble into oligomers, as was the case for purified NF-L. Instead, partial fragmentation was detected in sedimentation experiments and by electron microscopic observations. This is probably not due to the presence of the three NF subunits in NF or to differences in phosphorylation sites because reassembled NF containing all three NF subunits were disassembled into oligomeric forms by phosphorylation with A-kinase and the phosphorylation by A-kinase occurred at the head domain of NF-L whether NF were native or reassembled. Disassembling intermediates of reassembled NF containing all three NF subunits were somewhat different from disassembling intermediates of NF-L. Thinning and loosening of filaments was frequently observed preceding complete disassembly. From the fact that the thinning was also observed in the native filaments phosphorylated by A-kinase, it is reasonable to propose the native NF is fragmented through a process of thinning that is stimulated by phosphorylation in the head domain of the NF subunits.
Collapse
Affiliation(s)
- S Hisanaga
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Langbein L, Heid HW, Moll I, Franke WW. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression. Differentiation 1993; 55:57-71. [PMID: 7507869 DOI: 10.1111/j.1432-0436.1993.tb00033.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Differentiation of human plantar and palmar epidermis is characterized by the suprabasal synthesis of a major special intermediate-sized filament (IF) protein, the type I (acidic) cytokeratin 9 (CK 9). Using partial amino acid (aa) sequence information obtained by direct Edman sequencing of peptides resulting from proteolytic digestion of purified CK 9, we synthesized several redundant primers by 'back-translation'. Amplification by polymerase chain reaction (PCR) of cDNAs obtained by reverse transcription of mRNAs from human foot sole epidermis, including 5'-primer extension, resulted in multiple overlapping cDNA clones, from which the complete cDNA (2353 bp) could be constructed. This cDNA encoded the CK 9 polypeptide with a calculated molecular weight of 61,987 and an isoelectric point at about pH 5.0. The aa sequence deduced from cDNA was verified in several parts by comparison with the peptide sequences and showed the typical structure of type I CKs, with a head (153 aa), and alpha-helical coiled-coil-forming rod (306 aa), and a tail (163 aa) domain. The protein displayed the highest homology to human CK 10, not only in the highly conserved rod domain but also in large parts of the head and the tail domains. On the other hand, the aa sequence revealed some remarkable differences from CK 10 and other CKs, even in the most conserved segments of the rod domain. The nuclease digestion pattern seen on Southern blot analysis of human genomic DNA indicated the existence of a unique CK 9 gene. Using CK 9-specific riboprobes for hybridization on Northern blots of RNAs from various epithelia, a mRNA of about 2.4 kb in length could be identified only in foot sole epidermis, and a weaker cross-hybridization signal was seen in RNA from bovine heel pad epidermis at about 2.0 kb. A large number of tissues and cell cultures were examined by PCR of mRNA-derived cDNAs, using CK 9-specific primers. But even with this very sensitive signal amplification, only palmar/plantar epidermis was found positive. By in situ hybridization and immunolocalization we further showed that CK 9 is only expressed in the suprabasal cell layers of this special epidermal tissue. We discuss the molecular properties of CK 9 and its cell type- and body site-specific expression in relation to the special differentiation of palmar/plantar epidermis and to diseases specific for this body site.
Collapse
Affiliation(s)
- L Langbein
- Division of Cell Biology, German Cancer Research Center, Heidelberg
| | | | | | | |
Collapse
|
30
|
Blessing M, Rüther U, Franke WW. Ectopic synthesis of epidermal cytokeratins in pancreatic islet cells of transgenic mice interferes with cytoskeletal order and insulin production. J Cell Biol 1993; 120:743-55. [PMID: 7678835 PMCID: PMC2119549 DOI: 10.1083/jcb.120.3.743] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The members of the multigene family of intermediate filament (IF) proteins are expressed in various combinations and amounts that are specific for a given pathway or state of differentiation. Previous experiments in which the cell type-specific IF cytoskeleton was altered by introducing foreign IF proteins into cultured cells or certain tissues of transgenic animals have shown a remarkable tolerance, without detectable interference with cell functions. To examine the importance of the cell type-specific cytokeratin (CK) IF pattern, we have studied the ectopic expression of CK genes in different epithelia of transgenic mice. Here we report changes observed in the beta cells of pancreatic islets expressing the genes for human epidermal CKs 1 and/or 10 brought under control of the rat insulin promoter. Both genes were efficiently expressed, resulting in the appearance of numerous and massive bundles of aggregated IFs, resembling those of epidermal keratinocytes. While the synthesis of epidermal CK 10 was readily accommodated and compatible with cell function, mice expressing CK 1 in their beta cells, alone or in combination with CK 10, developed a special form of diabetes characterized by a drastic reduction of insulin-secretory vesicles and of insulin-and CK 1-producing cells. In many CK 1-producing cells, accumulations of fibrous or granular material containing CK 1 were also seen in the nucleus. This demonstration of functional importance of the specific CK-complement in an epithelial cell indicates a contribution of cell type-specific factors to cytoplasmic IF compartmentalization and that the specific CK complement can be crucial for functions and longevity of a given kind of epithelium.
Collapse
Affiliation(s)
- M Blessing
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
31
|
Katagata Y, Yoshida T. Confirmation and an unusual quality of the differentiated keratin peptide (K1) in cultured human squamous cell carcinomas. FEBS Lett 1993; 316:5-11. [PMID: 7678555 DOI: 10.1016/0014-5793(93)81725-f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recently K1 keratin peptide (K1, 68 kDa) was found to be present in two kinds of cultured human squamous cell carcinomas (HSCs) using a low-salt aqueous solution, rather than the high-salt solution containing Triton X-100 employed by many researchers up until now. To confirm whether this phenomenon is universal in cultured HSCs we analyzed K1 peptide in four other kinds of HSCs using the same procedures. Moreover, the K1 peptide detected was a little unusual with respect to solubility versus urea concentration. Epidermal K1 peptide is usually solubilized by 6-8 M urea and reductant; however, the K1 peptide in cultured HSCs was about 80-90% extracted by 1-2 M urea in a stepwise extraction procedure. This finding may have important implications regarding evaluation of keratin extracted from normal epidermal and cultured keratinocytes.
Collapse
Affiliation(s)
- Y Katagata
- Department of Dermatology, Yamagata University School of Medicine, Japan
| | | |
Collapse
|
32
|
Keratin metabolism in the epidermis and hair of mice with experimental diabetes. Bull Exp Biol Med 1992. [DOI: 10.1007/bf00800069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Ishida-Yamamoto A, McGrath JA, Judge MR, Leigh IM, Lane EB, Eady RA. Selective involvement of keratins K1 and K10 in the cytoskeletal abnormality of epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma). J Invest Dermatol 1992; 99:19-26. [PMID: 1376754 DOI: 10.1111/1523-1747.ep12611391] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aggregation of tonofilaments within epidermal keratinocytes is a characteristic histologic feature of epidermolytic hyperkeratosis including the generalized form known as bullous congenital ichthyosiform erythroderma. The histologic distribution and the keratin composition of the altered tonofilaments were investigated to determine whether the aggregation was specific to any particular keratin(s). Skin samples from seven patients and one mid-trimester fetus with generalized epidermolytic hyperkeratosis, and from one patient with a localized or "nevoid" form of epidermolytic hyperkeratosis, were analyzed by using various microscopical and immunocytochemical methods. A conjunctival sample and cultured epidermal keratinocytes from one patient with generalized epidermolytic hyperkeratosis were also examined by electron microscopy and immunocytochemistry. Ultrastructurally, tonofilament aggregates were distributed within the suprabasal stratified epithelial cell layers of the epidermis, of the infundibular part of outer root sheaths, and of the sebaceous ducts and sweat ducts, selectively following the known distribution pattern of keratins K1 and K10. The abnormal tonofilaments were not found in any other cutaneous epithelia, in conjunctival epithelium, or in cultured keratinocytes, where K1 and K10 are absent or only minimally expressed. Immunoelectron microscopy showed that among the keratins detected in suprabasal epidermolytic hyperkeratosis epidermis (K1/K5/K10/K14/K16), the aggregated tonofilaments predominantly expressed K1 and K10 rather than other keratins. These results suggest that the keratin filament abnormality in epidermolytic hyperkeratosis principally involves K1 and K10 and raise the question whether epidermolytic hyperkeratosis might be primarily a disorder of one or both of these keratins.
Collapse
Affiliation(s)
- A Ishida-Yamamoto
- Department of Cell Pathology, St. John's Institute of Dermatology, United Medical School, St. Thomas's Hospital, London, U.K
| | | | | | | | | | | |
Collapse
|
34
|
Albers K, Fuchs E. The molecular biology of intermediate filament proteins. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 134:243-79. [PMID: 1374743 DOI: 10.1016/s0074-7696(08)62030-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- K Albers
- Howard Hughes Medical Institute, University of Chicago, Illinois 60637
| | | |
Collapse
|
35
|
Steinert PM. Organization of coiled-coil molecules in native mouse keratin 1/keratin 10 intermediate filaments: evidence for alternating rows of antiparallel in-register and antiparallel staggered molecules. J Struct Biol 1991; 107:157-74. [PMID: 1725489 DOI: 10.1016/1047-8477(91)90019-s] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is considerable diversity of opinion in the literature concerning the organization of two-chain coiled-coil molecules in intermediate filaments. I have reexplored this issue using the limited proteolysis paradigm with native mouse epidermal keratin intermediate filaments (KIF), consisting of keratins 1 and 10. KIF were harvested as cytoskeletal pellets, dissociated into subfilamentous forms at pH 9.8, 9.0, or 2.6, and were subjected to limited proteolytic digestion to recover alpha-helix-enriched particles that derived from the rod domains of the constituent chains, using conditions that do not promote reorganization of the constituent protein chains or coiled-coil molecules. The multichain particles were subjected to physicochemical analyses, amino acid sequencing, and electron microscopy in order to determine their composition, structure, and organization within the intact KIF. The results predict two principal modes of alignment: neighboring molecules may be aligned in register and antiparallel or staggered and antiparallel. From known structural constraints, this permits construction of a two-dimensional surface lattice for KIF which consists of alternating antiparallel rows of in-register and staggered molecules. These data establish the level of hierarchy at which the well-known antiparallelity and staggered features of KIF are introduced. This model supports the proposals of KIF structure based on theoretical considerations of ionic interactions scores (Crewther et al., 1983). When the KIF are dissociated at extremes of pH, this structural model allows for disruption along alternate axes; the in-register antiparallel alignment is seen only when KIF are dissociated at high pH values; below pH 9, only the staggered antiparallel alignment is seen. The process of molecule realignment especially in concentrated urea solutions indicates that the staggered antiparallel alignment is the more thermodynamically stable form in solution.
Collapse
Affiliation(s)
- P M Steinert
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
36
|
Steinert PM. Analysis of the mechanism of assembly of mouse keratin 1/keratin 10 intermediate filaments in vitro suggests that intermediate filaments are built from multiple oligomeric units rather than a unique tetrameric building block. J Struct Biol 1991; 107:175-88. [PMID: 1725490 DOI: 10.1016/1047-8477(91)90020-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The question as to whether keratin intermediate filaments (KIF) are built from a unique "building block" consisting of a pair of coiled-coil molecules has been studied by examining the earliest stages of reassembly of mouse K1/K10 KIF in vitro. Particles formed in protein solutions of about 45 micrograms/ml (near or below the critical concentration for assembly) or 0.5-1.65 mg/ml were monitored by turbidity, visualized by electron microscopy, and their structures resolved biochemically using crosslinking, limited proteolysis, and amino acid sequencing. The rate of KIF reassembly in vitro is limited by an initial slow step involving the formation of a three- or four-molecule oligomer. At 2 min, the particles in solution are about 65 nm long and consist of two molecules aligned antiparallel and staggered. A few minutes later, a three- and/or four-molecule species appears that may be the rate-limiting particle(s). It is also 65 nm long, but contains one or two additional molecules aligned in register but antiparallel with respect to one of the molecules on the two-molecule particle. The present data cannot establish whether the rate-limiting particle contains three or four molecules, or in fact consists of a mixture of both. Below the critical concentration for KIF assembly, it exists in solution in rapid exchange with particles containing one and two molecules. In solutions above the critical concentration for assembly, once this oligomer has formed in sufficient quantity, further assembly into KIF occurs rapidly; 90, 110, and 130-nm particles soon appear by apparent addition of a single molecule or oligomers containing two, three, four, or even several molecules. Within about 20 min short KIF about 200-500 nm long appear which later elongate to long (greater than 1 micron) KIF. These data suggest that KIF assembly requires the initial correct alignment of three or four molecules which, once formed, provides a template for further rapid addition of molecules leading to KIF assembly. Furthermore, the data establish that KIF are built from alternating rows of in-register and staggered antiparallel molecules. The present data confirm independently the observations of the previous paper and do not support earlier notions that IF are built from a tetrameric building block consisting of a pair of in-register molecules. Finally, the data suggest that the mechanism of assembly in vitro and the dynamic in vivo assembly-disassembly characteristics of KIF in particular and IF in general are mediated through a variety of small oligomeric species ranging in size from one to several molecules.
Collapse
Affiliation(s)
- P M Steinert
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
37
|
Skalli O, Goldman RD. Recent insights into the assembly, dynamics, and function of intermediate filament networks. CELL MOTILITY AND THE CYTOSKELETON 1991; 19:67-79. [PMID: 1878980 DOI: 10.1002/cm.970190202] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- O Skalli
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, IL 60611
| | | |
Collapse
|