1
|
Li XZ, Yi LT, Sun QY, Xu CL, Yin S. Flavopiridol inhibits oocyte maturation, reduces oocyte quality and blocks cumulus cell function. Toxicol Lett 2024; 401:44-54. [PMID: 39276810 DOI: 10.1016/j.toxlet.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/03/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Flavopiridol (FP) is a plant-derived flavonoidis and used to treat cancers, fungal infections and inflammation-related diseases. However, it is not clear whether it has side effects on the female reproductive system. In this study, we aimed to investigate the toxic effects and potential underlying mechanisms of FP on oocyte maturation and cumulus cell expansion in mice. Cumulus-oocyte complexes (COCs) were cultured in vitro with FP of gradient concentration (50-1000 nM), according to the plasma concentration of FP in the clinical trial. The maturation rate and cumulus expansion index of oocytes were counted and studied by immunofluorescence staining, qRT-PCR, oocyte chromosome preparation and so on. The results showed that the FP-exposed COCs inhibited the oocyte maturation and cumulus cell expansion, leading to cell apoptosis in a dose dependent way. Oocytes exposed to 500 nM FP showed abnormalities in the spindle structure and chromosome arrangement, ultimately leading to the oocyte maturation arrest and aneuploidy. This may be due to the excessive oxidative stress caused by mitochondrial membrane potential damage and mislocalization. Therefore, when FP is used for cancer treatment, its side effects on the female reproductive system should be seriously considered.
Collapse
Affiliation(s)
- Xiao-Zhen Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China; Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Li-Tao Yi
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Chang-Long Xu
- Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi 530031, China.
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Abstract
A central dogma of mammalian reproductive biology is that the size of the primordial follicle pool represents reproductive capacity in females. The assembly of the primordial follicle starts after the primordial germ cells (PGCs)-derived oocyte releases from the synchronously dividing germline cysts. PGCs initiate meiosis during fetal development. However, after synapsis and recombination of homologous chromosomes, they arrest at the diplotene stage of the first meiotic prophase (MI). The diplotene-arrested oocyte, together with the surrounding of a single layer of flattened granulosa cells, forms a basic unit of the ovary, the primordial follicle. At the start of each estrous (animal) or menstrual cycle (human), in response to a surge of luteinizing hormone (LH) from the pituitary gland, a limited number of primordial follicles are triggered to develop into primary follicles, preantral follicles, antral follicles and reach to preovulatory follicle stage. During the transition from the preantral to antral stages, the enclosed oocyte gradually acquires the capacity to resume meiosis. Meiotic resumption from the prophase of MI is morphologically characterized by the dissolution of the oocyte nuclear envelope, which is generally termed the "germinal vesicle breakdown" (GVBD). Following GVBD and completion of MI, the oocyte enters meiosis II without an obvious S-phase and arrests at metaphase phase II (MII) until fertilization. The underlying mechanism of meiotic arrest has been widely explored in numerous studies. Many studies indicated that two cellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) play an essential role in maintaining oocyte meiotic arrest. This review will discuss how these two cyclic nucleotides regulate oocyte maturation by blocking or initiating meiotic processes, and to provide an insight in future research.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Courjaret R, Hodeify R, Hubrack S, Ibrahim A, Dib M, Daas S, Machaca K. The Ca2+-activated Cl- channel Ano1 controls microvilli length and membrane surface area in the oocyte. J Cell Sci 2016; 129:2548-58. [PMID: 27173493 DOI: 10.1242/jcs.188367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022] Open
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) play important physiological functions in epithelia and other tissues. In frog oocytes the CaCC Ano1 regulates resting membrane potential and the block to polyspermy. Here, we show that Ano1 expression increases the oocyte surface, revealing a novel function for Ano1 in regulating cell morphology. Confocal imaging shows that Ano1 increases microvilli length, which requires ERM-protein-dependent linkage to the cytoskeleton. A dominant-negative form of the ERM protein moesin precludes the Ano1-dependent increase in membrane area. Furthermore, both full-length and the truncated dominant-negative forms of moesin co-localize with Ano1 to the microvilli, and the two proteins co-immunoprecipitate. The Ano1-moesin interaction limits Ano1 lateral membrane mobility and contributes to microvilli scaffolding, therefore stabilizing larger membrane structures. Collectively, these results reveal a newly identified role for Ano1 in shaping the plasma membrane during oogenesis, with broad implications for the regulation of microvilli in epithelia.
Collapse
Affiliation(s)
- Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Satanay Hubrack
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Awab Ibrahim
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Sahar Daas
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| |
Collapse
|
4
|
Boyden PA, Dun W, Stuyvers BD. What is a Ca(2+) wave? Is it like an Electrical Wave? Arrhythm Electrophysiol Rev 2016; 4:35-9. [PMID: 26835097 DOI: 10.15420/aer.2015.4.1.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2015] [Indexed: 11/04/2022] Open
Abstract
Arrhythmia subcellular mechanisms are constantly being explored. Recent knowledge has shown that travelling Ca(2+) waves in cardiac cells are critical for delayed afterdepolarisations and in some cases, early afterdepolarisations. In this review, we comment on the properties of cardiac Ca(2+) waves and abnormal Ca(2+) releases in terms of properties used to describe electrical waves; propagation, excitability and refractoriness.
Collapse
Affiliation(s)
| | - Wen Dun
- Department of Pharmacology, Columbia University, New York
| | - Bruno D Stuyvers
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
5
|
Arellano RO, Robles-Martínez L, Serrano-Flores B, Vázquez-Cuevas F, Garay E. Agonist-activated Ca2+ influx and Ca2+ -dependent Cl- channels in Xenopus ovarian follicular cells: functional heterogeneity within the cell monolayer. J Cell Physiol 2012; 227:3457-70. [PMID: 22213197 DOI: 10.1002/jcp.24046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion-current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage-clamp technique. All agonists elicited Cl(-) currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca(2+) concentration ([Ca(2+) ](i)), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl(-) (F(Cl)) currents, while AII activated an oscillatory response; a robust Ca(2+) influx linked specifically to F(Cl) activation elicited an inward current (I(iw,Ca)) which was carried mainly by Cl(-) ions, through channels with a sequence of permeability of SCN(-) > I(-) > Br(-) > Cl(-). Like F(Cl), I(iw,Ca) was not dependent on oocyte [Ca(2+) ](i) ; instead both were eliminated by preventing [Ca(2+) ](i) increase in the follicular cells, and also by U73122 and 2-APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that F(Cl) and I(iw,Ca) were produced by the expected, PLC-stimulated Ca(2+) -release and Ca(2+) -influx, respectively, and by the opening of I(Cl(Ca)) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca(2+) -influx appeared to be driven through store-operated, calcium-like channels. The AII response, which is also known to require PLC activation, did not activate I(iw,Ca) and was strictly dependent on oocyte [Ca(2+) ](i) increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap-junction channels.
Collapse
Affiliation(s)
- Rogelio O Arellano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, México.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
7
|
Pfarrer CD, Heeb C, Leiser R. Expression of gap junctional connexins 26, 32 and 43 in bovine placentomes during pregnancy. Placenta 2006; 27:79-86. [PMID: 16310041 DOI: 10.1016/j.placenta.2004.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 11/30/2022]
Abstract
Gap junctional connexins (Cx) are induced in the endometrium during implantation in rodents, the human receptive window, and in the decidua Cx26 and Cx43 expression increases in response to trophoblast invasion. In contrast, this gap junctional response and decidualization is absent in non-invasive epitheliochorial placentae of pigs and horses. Bovine (syn)epitheliochorial placentation represents an intermediate type of trophoblast invasion, since it is characterized by the continuous migration and fusion of trophoblast giant cells (TGC) with uterine epithelial cells. Therefore the objective of the present study was to investigate the expression of Cx26, Cx32, and Cx43 in placental tissues during bovine pregnancy, to determine if Cx expression patterns correlate with the depth of trophoblast invasion. Cx26, Cx32, and Cx43 proteins were detected by immunohistochemistry and corresponding specific mRNAs were shown by RT-PCR and localized in tissue sections by in situ hybridization. Cx26 protein was detected at the feto-maternal contact interface and as cytoplasmic staining in TGC. Cx26 mRNA was located in maternal epithelium and in TGC. Cx32 protein expression was observed in the maternal epithelium exclusively on the tips of maternal septa, whereas Cx32 mRNA was detected in all maternal epithelial cells and single TGC. Cx43 protein and mRNA were coexpressed in TGC. Cx43 protein was present in maternal septal stroma and to a lesser extent in chorionic villous mesenchyme, while Cx43 mRNA was associated with the vasculature. In the course of gestation, expression of Cx26, Cx32, and Cx43 did not change. In conclusion, the intermediate invasive status of bovine trophoblast is supported by the fact that TGC coexpress Cx26, Cx32, and Cx43, which may be important for trophoblast migration (invasion), and fusion with maternal epithelial cells. Cx32 could be involved in the control of invasion.
Collapse
Affiliation(s)
- C D Pfarrer
- Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Frankfurter Strasse 98, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
8
|
Boyden PA, ter Keurs H. Would modulation of intracellular Ca2+ be antiarrhythmic? Pharmacol Ther 2005; 108:149-79. [PMID: 16038982 DOI: 10.1016/j.pharmthera.2005.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 01/10/2023]
Abstract
Under several types of conditions, reversal of steps of excitation-contraction coupling (RECC) can give rise to nondriven electrical activity. In this review we explore those conditions for several cardiac cell types (SA, atrial, Purkinje, ventricular cells). We find that abnormal spontaneous Ca2+ release from intracellular Ca2+ stores, aberrant Ca2+ influx from sarcolemmal channels or abnormal Ca2+ surges in nonuniform muscle can be the initiators of the RECC. Often, with such increases in Ca2+, spontaneous Ca2+ waves occur and lead to membrane depolarizations. Because the change in membrane voltage is produced by Ca2+-dependent changes in ion channel function, we also review here what is known about the molecular interaction of Ca2+ and several Ca2+-dependent processes, including the intracellular Ca2+ release channels implicated in the genetic basis of some forms of human arrhythmias. Finally, we review what is known about the effectiveness of several agents in modifying such Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Penelope A Boyden
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, NY 10032, USA.
| | | |
Collapse
|
9
|
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:113-37. [PMID: 15033583 DOI: 10.1016/j.bbamem.2003.10.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 01/25/2023]
Abstract
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Collapse
Affiliation(s)
- Sheriar G Hormuzdi
- Department of Clinical Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
10
|
Betsuyaku T, Kovacs A, Saffitz JE, Yamada KA. Cardiac structure and function in young and senescent mice heterozygous for a connexin43 null mutation. J Mol Cell Cardiol 2002; 34:175-84. [PMID: 11851357 DOI: 10.1006/jmcc.2001.1499] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Downregulation of connexin43 (Cx43) in the failing heart has been implicated not only in arrhythmogenesis but in contractile dysfunction as well. Cx43-deficient mice exhibit reduced baseline conduction velocity and increased arrhythmias in response to ischemia. However, it is not known whether Cx43-deficient mice have any abnormalities in contractile function or, furthermore, whether cardiac dysfunction may be manifested in Cx43-deficient mice with advancing age. Therefore, we analyzed echocardiographic images from young and senescent Cx43-deficient C57BL/6Jx129 mice compared to wild-type littermate controls. Only a few, modest genotype-related differences were observed. LV wall thickness during systole and % fractional shortening were diminished by 8-10% in Cx43-deficient v wild-type mice. Aging alone had a greater effect on cardiac structure and function. LV mass and relative wall thickness were significantly increased in senescent v young mice independent of genotype. Percent fractional shortening and LV internal chamber dimension were significantly reduced in senescent v young mice. Thus, aging in mice, as in humans, is associated with concentric remodeling, mild systolic dysfunction and fibrosis. Although diminished Cx43 expression could contribute to contractile dysfunction in patients with advanced heart failure, genetic deficiency in Cx43 does not appear significantly to alter cardiac structure or function even in aged mice.
Collapse
Affiliation(s)
- Tetsuo Betsuyaku
- Department of Medicine, Cardiovascular Division and Center for Cardiovascular Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
11
|
Fujita R, Kimura S, Kawasaki S, Takashima K, Matsumoto M, Hirano H, Sasaki K. ATP suppresses the K(+) current responses to FSH and adenosine in the follicular cells of Xenopus oocyte. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:491-500. [PMID: 11564286 DOI: 10.2170/jjphysiol.51.491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The application of either follicle-stimulating hormone (FSH) or adenosine (Ade) induces a K(+)-current response in the follicular cells surrounding a Xenopus oocyte under a voltage clamp. These K(+)-current responses are reported to be produced by an increase in intracellular cAMP. A previous application of ATP to the same cells markedly depressed the K(+)-current responses to FSH and Ade. Furthermore, a 2 min application of phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), significantly depressed the K(+)-current responses to FSH and Ade, but it had no significant effect on the Cl(-)-current response to ATP. An application of either ATP or PDBu also depressed the K(+)-current response induced by intracellularly applied cAMP. In contrast to the effect of PDBu, the application of 1-octanol, an inhibitor of gap junction channel, significantly depressed both the Ade- and ATP-induced responses, indicating that the acting site of 1-octanol is different from that of PKC. The results suggest that the depressing effect of ATP on the FSH- and Ade-induced K(+)-current responses might be mediated by PKC activation and that the site of PKC action might be downstream of the cAMP production involved in the K(+) channel opening.
Collapse
Affiliation(s)
- R Fujita
- Department of Chemistry, School of Liberal Arts and Sciences, Iwate Medical University, Morioka, 020-0015, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Røttingen J, Iversen JG. Ruled by waves? Intracellular and intercellular calcium signalling. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:203-19. [PMID: 10886035 DOI: 10.1046/j.1365-201x.2000.00732.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The field of calcium signalling has evolved rapidly the last 20 years. Physiologists had worked with cytosolic Ca2+ as the coupler of excitation and contraction of muscles and as a secretory signal in exocrine glands and in the synapses of the brain for several decades before the discovery of cellular calcium as a second messenger. Development of powerful techniques for measuring the concentration of cytosolic free calcium ions in cell suspensions and later in single cells and even in different cellular compartments, has resulted in an upsurge in the knowledge of the cellular machinery involved in intracellular calcium signalling. However, the focus on intracellular mechanisms might have led this field of study away from physiology. During the last few years there is an increasing evidence for an important role of calcium also as an intercellular signal. Via gap junctions calcium is able to co-ordinate cell populations and even organs like the liver. Here we will give an overview of the general mechanisms of intracellular calcium signalling, and then review the recent data on intercellular calcium signals. A functional coupling of cells in different tissues and organs by the way of calcium might be an important mechanism for controlling and synchronizing physiological responses
Collapse
Affiliation(s)
- J Røttingen
- Laboratory of Intracellular Signalling, Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
13
|
Meda P, Spray DC. Gap junction function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
14
|
Gourdie RG, Lo CW. Chapter 26: Cx43 (α1) Gap Junctions in Cardiac Development and Disease. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
15
|
Zhang Y, McBride DW, Hamill OP. The ion selectivity of a membrane conductance inactivated by extracellular calcium in Xenopus oocytes. J Physiol 1998; 508 ( Pt 3):763-76. [PMID: 9518731 PMCID: PMC2230909 DOI: 10.1111/j.1469-7793.1998.763bp.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/1997] [Accepted: 01/22/1998] [Indexed: 02/06/2023] Open
Abstract
1. The ion selectivity of a membrane ion conductance that is inactivated by extracellular calcium (Ca2+o) in Xenopus oocytes has been studied using the voltage-clamp technique. 2. The reversal potential of the Ca2+o-sensitive current (Ic) was measured using voltage ramps (-80 to +40 mV) as a function of the external concentration (12-240 mM) of NaCl or KCl. The direction and amplitude of the shifts in reversal potentials are consistent with permeability ratios of 1:0.99:0.24 for K+:Na+:Cl-. 3. Current-voltage (I-V ) relations of Ic, determined during either voltage ramps of 0.5 s duration or at steady state, displayed pronounced rectification at both hyperpolarized and depolarized potentials. However, instantaneous I-V relations showed less rectification and could be fitted by the constant field equation assuming the above K+:Na+:Cl- permeability ratios. 4. Ion substitution experiments indicated that relatively large organic monovalent cations and anions are permeant through Ic channels with the permeability ratios K+:NMDG+:TEA+:TPA+:TBA+:Gluc- = 1:0.45:0. 35:0.2:0.2:0.2. 5. External amiloride (200 microM), gentamicin (220 microM), flufenamic acid (40 microM), niflumic acid (100 microM), Gd3+ (0.3 microM) or Ca2+ (200 microM) caused reversible block of Ic without changing its reversal potential. 6. Preinjection of oocytes with antisense oligonucleotide against connexin 38, the Xenopus hemi-gap-junctional protein, inhibited Ic by 80 % without affecting its ion selectivity, thus confirming and extending the recent suggestion of Ebihara that Ic represents current carried through hemi-gap-junctional channels. 7. In vitro and in vivo maturation of oocytes resulted in a significant decrease in Ic conductance to 7 % and 2 % of control values, respectively. This developmental downregulation of Ic minimizes any toxic effect Ic activation would have when the mature egg is released into Ca2+o-free pond water. 8. The results of this study are discussed in relation to other Ca2+o-inactivated conductances seen in a wide variety of cell types and which have previously been interpreted as arising either from Ca2+o-masked channels or from changes in the ion selectivity of voltage-gated Ca2+ or K+ channels.
Collapse
Affiliation(s)
- Y Zhang
- Physiology and Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0641, USA
| | | | | |
Collapse
|
16
|
Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M. Intercellular calcium signaling via gap junction in connexin-43-transfected cells. J Biol Chem 1998; 273:1519-28. [PMID: 9430691 DOI: 10.1074/jbc.273.3.1519] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In excitable cells, intracellular Ca2+ is released via the ryanodine receptor from the intracellular Ca2+ storing structure, the sarcoplasmic reticulum. To determine whether this released Ca2+ propagates through gap junctions to neighboring cells and thereby constitutes a long range signaling network, we developed a cell system in which cells expressing both connexin-43 and ryanodine receptor are surrounded by cells expressing only connexin-43. When the ryanodine receptor in cells was activated by caffeine, propagation of Ca2+ from these caffeine-responsive cells to neighboring cells was observed with a Ca2+ imaging system using fura-2/AM. Inhibitors of gap junctional communication rapidly and reversibly abolished this propagation of Ca2+. Together with the electrophysiological analysis of transfected cells, the observed intercellular Ca2+ wave was revealed to be due to the reconstituted gap junction of transfected cells. We next evaluated the functional roles of cysteine residues in the extracellular loops of connexin-43 in gap junctional communication. Mutations of Cys54, Cys187, Cys192, and Cys198 to Ser showed the failure of Ca2+ propagation to neighboring cells in accordance with the electrical uncoupling between transfected cells, whereas mutations of Cys61 and Cys68 to Ser showed the same pattern as the wild type. [14C]Iodoacetamide labeling of free thiols of cysteine residues in mutant connexin-43s showed that two pairs of intramolecular disulfide bonds are formed between Cys54 and Cys192 and between Cys187 and Cys198. These results suggest that intercellular Ca2+ signaling takes place in cultured cells expressing connexin-43, leading to their own synchronization and that the extracellular disulfide bonds of connexin-43 are crucial for this process.
Collapse
Affiliation(s)
- T Toyofuku
- Department of Medicine and Pathophysiology, Osaka University Medical School, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:1-27. [PMID: 8665925 DOI: 10.1111/j.1432-1033.1996.0001q.x] [Citation(s) in RCA: 951] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adjacent cells share ions, second messengers and small metabolites through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult life of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell-to-cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been linked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.
Collapse
Affiliation(s)
- R Bruzzone
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
18
|
Arellano RO, Woodward RM, Miledi R. Ion channels and membrane receptors in follicle-enclosed Xenopus oocytes. ION CHANNELS 1996; 4:203-59. [PMID: 8744210 DOI: 10.1007/978-1-4899-1775-1_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R O Arellano
- Department of Psychobiology, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
19
|
Munari-Silem Y, Lebrethon MC, Morand I, Rousset B, Saez JM. Gap junction-mediated cell-to-cell communication in bovine and human adrenal cells. A process whereby cells increase their responsiveness to physiological corticotropin concentrations. J Clin Invest 1995; 95:1429-39. [PMID: 7706446 PMCID: PMC295624 DOI: 10.1172/jci117813] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have studied the role of gap junction-mediated intercellular communication on the steroidogenic response of bovine (BAC) and human (HAC) adrenal fasciculo-reticularis cells in culture to corticotropin (ACTH). Indirect immunofluorescence analyses showed that intact human and bovine adreno-cortical tissue as well as HAC and BAC in culture expressed the gap junction protein connexin43 (also termed alpha 1 connexin). Both HAC and BAC were functionally coupled through gap junctions as demonstrated by microinjection of a low molecular mass fluorescent probe, Lucifer yellow. The cell-to-cell transfer of the probe was blocked by 18 alpha-glycyrrhetinic acid (GA), an inhibitor of gap junction-mediated intercellular communication. GA markedly decreased the steroidogenic response (cortisol production) of both HAC and BAC to low (10 pM) but not to high (5 nM) concentrations of ACTH. GA had no inhibitory effect on the steroidogenic response to 8 Br-cAMP (at either low or high concentrations) and did neither modify the binding of 125I-ACTH to its receptor nor the ACTH-induced cAMP production. BAC cultured at high or low cell densities (2.4 x 10(5) vs. 0.24 x 10(5) cells/cm2) exhibited distinct levels of intercellular communication and were differently responsive to sub-maximal ACTH concentrations. The ACTH ED50 values for cortisol production were 8.5 +/- 1.3 and 45 +/- 14 pM (P < 0.02) for BAC cultured at high and low density, respectively. In the presence of GA, there was a shift of the ACTH concentration-response curves in the two culture conditions. The ACTH ED50 of high density and low density cultured BAC increased 25- and 5-fold, respectively, and became similar (220 +/- 90 and 250 +/- 120 pM). These results demonstrate that gap junction-mediated communication between hormone-responsive and nonresponsive cells is one mechanism by which adrenal cells increase their responsiveness to low ACTH concentrations.
Collapse
Affiliation(s)
- Y Munari-Silem
- INSERM U369, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | | | | | |
Collapse
|
20
|
Missiaen L, Oike M, Bootman MD, De Smedt H, Parys JB, Casteels R. Vasopressin responses in electrically coupled A7r5 cells. Pflugers Arch 1994; 428:283-7. [PMID: 7816550 DOI: 10.1007/bf00724508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in cytosolic Ca2+ concentration ([Ca2+]i) and in membrane potential were monitored in single A7r5 smooth-muscle cells during spontaneous spiking and after arginine vasopressin stimulation. Spontaneous Ca2+ oscillations, which were associated with the occurrence of action potentials, occurred in about 90% of the confluent monolayers investigated. This spontaneous activity was synchronized amongst all the cells of the monolayer, indicating that the cells were electrically coupled. Arginine vasopressin stimulation produced a [Ca2+]i rise that was about 5 times higher than the amplitude of the spontaneous Ca2+ oscillations and resulted in a subsequent cessation of spontaneous electrical activity and associated Ca2+ spiking, which persisted after [Ca2+]i returned to baseline. Individual cells in the monolayer responded to arginine vasopressin with a different latency. Agonist-induced Ca2+ waves within one cell propagated much more slowly than spontaneous [Ca2+]i rises. We conclude that agonist-induced [Ca2+]i increases in an electrically coupled cell monolayer can be asynchronous.
Collapse
Affiliation(s)
- L Missiaen
- Laboratorium voor Fysiologie, K. U. Leuven Campus Gasthuisberg, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Parker SB, Hertzberg EL, Minkoff R. Modulation of gap junction-mediated intercellular communication in embryonic chick mesenchyme during tissue remodeling in vitro. Cell Tissue Res 1994; 275:215-24. [PMID: 8111835 DOI: 10.1007/bf00319419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gap junction-mediated intercellular communication was analyzed in a model system in which tissue necrosis and remodeling could be modulated. This in vitro system, previously used for analysis of epithelial-mesenchymal tissue interaction, was modified to permit analysis of the presence and extent of intercellular communication by monitoring intercellular transfer of the microinjected fluorescent dye, Lucifer Yellow. Light and transmission electronmicroscopy were employed to correlate the presence and degree of gap junctional communication (coupling) with tissue morphology. Digital image analysis was used to determine cell density and mitotic indices within the outgrowths of explants. Our results indicated that cell communication in outgrowths adjacent to necrotic foci within an explant was minimal or absent. Cell-coupling in outgrowths adjacent to a compartment of viable mesenchyme was significantly higher - equivalent to unseparated control cultures. A time-course study demonstrated correlation of increased levels of cell-coupling in outgrowths with the level of tissue remodeling within an explant. Our conclusions from these studies are that embryonic mesenchymal cell populations may be selectively uncoupled as a result of alterations in the microenvironment produced by a proximate impaired cell population. It is proposed that endogenous factors in the microenvironment ("wound signals"), emanating from impaired cell populations, regulate gap junction-mediated intercellular communication in adjacent viable tissue. Normal, unimpaired populations of cells surrounding an area of injury are thereby isolated from the effects of a potentially toxic environment. This could serve as a protective function in development and may represent, in a more general sense, part of the repertoire of events associated with tissue repair and remodeling.
Collapse
Affiliation(s)
- S B Parker
- Department of Orthodontics, University of Texas-Houston 77225
| | | | | |
Collapse
|
22
|
Sneyd J, Charles AC, Sanderson MJ. A model for the propagation of intercellular calcium waves. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C293-302. [PMID: 8304425 DOI: 10.1152/ajpcell.1994.266.1.c293] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In response to mechanical stimulation of a single cell, intercellular Ca2+ waves propagate through airway epithelial and glial cell cultures, providing a mechanism for intercellular communication. Experiments indicate that intercellular propagation of the Ca2+ wave is mediated by the movement of inositol 1,4,5-trisphosphate (IP3) through gap junctions. To explore the validity of this hypothesis, we have constructed and solved a system of partial differential equations that models the Ca2+ changes induced by the movement of IP3 between cells. The model is in good qualitative agreement with experimental data, including the behavior of the wave in the absence of extracellular Ca2+, the shape of the subsequent asynchronous Ca2+ oscillations, and the passage of a wave through a cell exhibiting Ca2+ oscillations. However, the concentration of IP3 that is required in each cell to propagate the wave may not be achieved by passive diffusion of IP3 through gap junctions from the stimulated cell. We therefore suggest that Ca(2+)-independent regenerative production of IP3 might be necessary for the propagation of intercellular Ca2+ waves.
Collapse
Affiliation(s)
- J Sneyd
- Department of Biomathematics, School of Medicine, University of California, Los Angeles 90024-1766
| | | | | |
Collapse
|
23
|
Abstract
Intercellular Ca2+ waves initiated by mechanical or chemical stimuli propagate between cells via gap junctions. The ability of a wide diversity of cells to display intercellular Ca2+ waves suggests that these Ca2+ waves may represent a general mechanism by which cells communicate. Although Ca2+ may permeate gap junctions, the intercellular movement of Ca2+ is not essential for the propagation of Ca2+ waves. The messenger that moves from one cell to the next through gap junctions appears to be IP3 and a regenerative mechanism for IP3 may be required to effect multicellular communication. Extracellularly mediated Ca2+ signaling also exists and this could be employed to supplement or replace gap junctional communication. The function of intercellular Ca2+ waves may be the coordination of cooperative cellular responses to local stimuli.
Collapse
Affiliation(s)
- M J Sanderson
- Department of Anatomy and Cell Biology, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
24
|
Bolander FF. G Proteins and Cyclic Nucleotides. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Ji H, Sandberg K, Bonner TI, Catt KJ. Differential activation of inositol 1,4,5-trisphosphate-sensitive calcium pools by muscarinic receptors in Xenopus laevis oocytes. Cell Calcium 1993; 14:649-62. [PMID: 8242720 DOI: 10.1016/0143-4160(93)90090-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Muscarinic acetylcholine (ACh) receptors activate the phospholipase C signal transduction pathway to promote the formation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and the consequent elevation of cytoplasmic calcium (Ca2+). The inositol phosphate and Ca(2+)-mobilization responses to ACh were analyzed in Xenopus oocytes possessing endogenous receptors, and in oocytes expressing exogenous receptors from injected muscarinic RNA transcripts, to evaluate the patterns of signal transduction mediated by native and expressed receptors. Activation of native ACh receptors elicited dose- and time-dependent increases in Ins(1,4,5)P3 and inositol bisphosphate (InsP2) production. ACh-induced Ins(1,4,5)P3 production increased rapidly within the first 2 min and continued to rise over the next 20 min. ACh was a much more effective stimulus of inositol phosphate production at native (up to 35-fold) than at expressed receptors (less than 2-fold). In contrast, measurements of Ca(2+)-mobilization in oocytes injected with the Ca(2+)-specific photoprotein, aequorin, revealed that ACh stimulation of expressed receptors evoked up to 200-fold increase in light emission, whereas ACh stimulation of native receptors elicited less than a 2-fold response. These observations indicate that the oocyte possesses functionally distinct agonist-sensitive Ca2+ pools which differ markedly in their sensitivity to Ins(1,4,5)P3 production and suggest that these pools are mobilized by different effector mechanisms. The finding that the magnitude of the intra-oocyte Ca2+ response is not necessarily determined by the degree of Ins(1,4,5)P3 production, but rather by another aspect of the signal transduction pathway (e.g. the nature and/or location of the Ins(1,4,5)P3 releasable Ca2+ pool), reveals an additional level of complexity in the transduction mechanisms responsible for intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- H Ji
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | | | | | | |
Collapse
|
26
|
Abstract
Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium/physiology
- Calcium Channels
- Cell Cycle
- Cell Division
- Cell Transformation, Neoplastic
- Female
- Fertilization
- GTP-Binding Proteins/physiology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Male
- Models, Biological
- Neuronal Plasticity
- Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Cholinergic/physiology
- Receptors, Cytoplasmic and Nuclear
- Ryanodine/pharmacology
- Ryanodine Receptor Calcium Release Channel
- Second Messenger Systems
- Signal Transduction
- Synapses/physiology
Collapse
Affiliation(s)
- M J Berridge
- AFRC Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| |
Collapse
|
27
|
Boitano S, Dirksen ER, Sanderson MJ. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 1992; 258:292-5. [PMID: 1411526 DOI: 10.1126/science.1411526] [Citation(s) in RCA: 386] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two types of calcium (Ca2+) signaling-propagating intercellular Ca2+ waves of increasing intracellular Ca2+ concentration ([Ca2+]i) and nonpropagating oscillations in [Ca2+]i-co-exist in a variety of cell types. To investigate this difference in Ca2+ signaling, airway epithelial cells were loaded with heparin, an inositol 1,4,5-triphosphate (IP3) receptor antagonist, by pulsed, high-frequency electroporation. Heparin inhibited propagation of intercellular Ca2+ waves but not oscillations of [Ca2+]i. In heparin-free cells, Ca2+ waves propagated through cells displaying [Ca2+]i oscillations. Depletion of intracellular Ca2+ pools with the Ca2+-pump inhibitor thapsigargin also inhibited the propagation of Ca2+ waves. These studies demonstrate that the release of Ca2+ by IP3 is necessary for the propagation of intercellular Ca2+ waves and suggest that IP3 moves through gap junctions to communicate intercellular Ca2+ waves.
Collapse
Affiliation(s)
- S Boitano
- Department of Anatomy, UCLA School of Medicine, CA 90024
| | | | | |
Collapse
|