1
|
Pricoupenko N, Marsigliesi F, Marcq P, Blanch-Mercader C, Bonnet I. Src kinase slows collective rotation of confined epithelial cell monolayers. SOFT MATTER 2024; 20:9273-9285. [PMID: 39545852 DOI: 10.1039/d4sm00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Collective cell migration is key during development, wound healing, and metastasis and relies on coordinated cell behaviors at the group level. Src kinase is a key signalling protein for the physiological functions of epithelia, as it regulates many cellular processes, including adhesion, motility, and mechanotransduction. Its overactivation is associated with cancer aggressiveness. Here, we take advantage of optogenetics to precisely control Src activation in time and show that its pathological-like activation slows the collective rotation of epithelial cells confined into circular adhesive patches. We interpret velocity, force, and stress data during period of non-activation and period of activation of Src thanks to a hydrodynamic description of the cell assembly as a polar active fluid. Src activation leads to a 2-fold decrease in the ratio of polar angle to friction, which could result from increased adhesiveness at the cell-substrate interface. Measuring internal stress allows us to show that active stresses are subdominant compared to traction forces. Our work reveals the importance of fine-tuning the level of Src activity for coordinated collective behaviors.
Collapse
Affiliation(s)
- Nastassia Pricoupenko
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Flavia Marsigliesi
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Philippe Marcq
- Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, F-75005, France
| | - Carles Blanch-Mercader
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| | - Isabelle Bonnet
- Physics of Cells and Cancer, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005 Paris, France.
| |
Collapse
|
2
|
Arvelo F, Sojo F. Transición epitelio – mesenquima y cáncer. INVESTIGACIÓN CLÍNICA 2023; 64:379-404. [DOI: 10.54817/ic.v64n3a10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer cell migration and invasion are critical components of metastatic disease, the leading cause of death in cancer patients. The epithe-lium-mesenchyme-transition (EMT) and mesenchyme-epithelium-transition (MET) are pathways involved in cancer metastasis. This process involves the degradation of cell-cell and cell-extracellular matrix junctions and the subse-quent loss of regulation of binding proteins such as E-cadherin. Cells undergo a reorganization of the cytoskeleton. These alterations are associated with a change in cell shape from epithelial to mesenchymal morphology. Understand-ing EMT and MET’s molecular and cellular basis provides fundamental insights into cancer etiology and may lead to new therapeutic strategies. In this review, we discuss some of the regulatory mechanisms and pathological role of epitheli-al-mesenchymal plasticity, focusing on the knowledge about the complexity and dynamics of this phenomenon in cancer
Collapse
Affiliation(s)
- Francisco Arvelo
- Fundación Instituto de Estudios Avanzados-IDEA, Area Salud, Caracas-Venezuela. Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Felipe Sojo
- Fundación Instituto de Estudios Avanzados-IDEA, Area Salud, Caracas-Venezuela. Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
3
|
Nasser S, Abdallah DM, Ahmed KA, Abdel-Mottaleb Y, El-Abhar HS. The novel anti-colitic effect of β-adrenergic receptors via modulation of PS1/BACE-1/Aβ axis and NOTCH signaling in an ulcerative colitis model. Front Pharmacol 2022; 13:1008085. [PMID: 36386153 PMCID: PMC9641009 DOI: 10.3389/fphar.2022.1008085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2023] Open
Abstract
Although dysautonomia was documented in inflammatory bowel disease, with activation of the stress-related sympathetic system, the role of agonists/antagonists of the adrenergic receptors is not conclusive. Moreover, ulcerative colitis was recently linked to dementia, but the potential role of the presenilin 1(PS1)/BACE-1/beta-amyloid (Aβ) axis has not been evaluated. Hence, we investigated the impact of mirabegron (β3-agonist) and/or carvedilol (β1/β2 antagonist) on iodoacetamide-induced ulcerative colitis with emphasis on the novel pathomechanism of the PS1/BACE-1/Aβ axis in ulcerative colitis, and its relation to the inflammatory cascade, fibrotic processes, and the gut barrier dysfunction. Ulcerated rats were either left untreated or treated for 8 days with mirabegron and/or carvedilol. Besides minimizing colon edema and weight loss, and improving colon structure, mirabegron and/or carvedilol abated colonic PS1/BACE-1/Aβ axis and the NOTCH1/NICD/HES1 hub besides the inflammatory cascade GSK3-β/NF-κΒ/TNF-α, and the oxidative stress marker malondialdehyde. The anti-fibrotic effect was verified by boosting SMAD-7 and inhibiting TGF-β1, α-SMA immunoexpression, and MTC staining. Moreover, the drugs improved the gut barrier function, attested by the increased goblet cells and expression of E-cadherin, and the inhibited expression of p (Y654)-β-catenin to preserve the E-cadherin/β-catenin adherens junction (AJ). These signaling pathways may be orchestrated by the replenished PPAR-γ, a transcription factor known for its anti-colitic effect. Conclusion: Besides maintaining the gut barrier, mirabegron and/or carvedilol mediated their anti-colitic effect by their anti-oxidant, anti-inflammatory, and anti-fibrotic capacities. The therapeutic effect of these drugs depends partly on suppressing the harmful signaling pathways PS1/BACE-1/Aβ, NOTCH1/NICD/HES1, GSK3-β/NF-κΒ/TNF-α, and TGF-1β/α-SMA while enhancing PPAR-γ, SMAD-7, mucus, and AJ.
Collapse
Affiliation(s)
- Salma Nasser
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| | - Dalaal M. Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yousra Abdel-Mottaleb
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| | - Hanan S. El-Abhar
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), New Cairo, Egypt
| |
Collapse
|
4
|
Protein Tyrosine Kinase 6 regulates activation of SRC kinase. J Biol Chem 2022; 298:102584. [DOI: 10.1016/j.jbc.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
|
5
|
Yoo JY, Cho HJ, Lee JE. Lower dietary calcium intake is associated with a higher risk of mortality in Korean adults. J Acad Nutr Diet 2022; 122:2072-2086. [DOI: 10.1016/j.jand.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/05/2022] [Accepted: 02/20/2022] [Indexed: 11/24/2022]
|
6
|
To Stick or Not to Stick: Adhesions in Orofacial Clefts. BIOLOGY 2022; 11:biology11020153. [PMID: 35205020 PMCID: PMC8869391 DOI: 10.3390/biology11020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Morphogenesis requires a tight coordination between mechanical forces and biochemical signals to inform individual cellular behavior. For these developmental processes to happen correctly the organism requires precise spatial and temporal coordination of the adhesion, migration, growth, differentiation, and apoptosis of cells originating from the three key embryonic layers, namely the ectoderm, mesoderm, and endoderm. The cytoskeleton and its remodeling are essential to organize and amplify many of the signaling pathways required for proper morphogenesis. In particular, the interaction of the cell junctions with the cytoskeleton functions to amplify the behavior of individual cells into collective events that are critical for development. In this review we summarize the key morphogenic events that occur during the formation of the face and the palate, as well as the protein complexes required for cell-to-cell adhesions. We then integrate the current knowledge into a comprehensive review of how mutations in cell-to-cell adhesion genes lead to abnormal craniofacial development, with a particular focus on cleft lip with or without cleft palate.
Collapse
|
7
|
Luo J, Zou H, Guo Y, Tong T, Ye L, Zhu C, Deng L, Wang B, Pan Y, Li P. SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Res 2022; 24:99. [PMID: 36581908 PMCID: PMC9798727 DOI: 10.1186/s13058-022-01596-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Hailin Zou
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yibo Guo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Tongyu Tong
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liping Ye
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Chengming Zhu
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liang Deng
- grid.511083.e0000 0004 7671 2506Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Bo Wang
- grid.511083.e0000 0004 7671 2506Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yihang Pan
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Peng Li
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| |
Collapse
|
8
|
Banerjee M, Li Z, Gao Y, Lai F, Huang M, Zhang Z, Cai L, Sanabria J, Gao T, Xie Z, Pierre SV. Inverse agonism at the Na/K-ATPase receptor reverses EMT in prostate cancer cells. Prostate 2021; 81:667-682. [PMID: 33956349 PMCID: PMC10071553 DOI: 10.1002/pros.24144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
The surface expression of Na/K-ATPase α1 (NKA) is significantly reduced in primary prostate tumors and further decreased in bone metastatic lesions. Here, we show that the loss of cell surface expression of NKA induces epithelial-mesenchymal transition (EMT) and promotes metastatic potential and tumor growth of prostate cancer (PCa) by decreasing the expression of E-cadherin and increasing c-Myc expression via the activation of Src/FAK pathways. Mechanistically, reduced surface expression of NKA in PCa is due to increased endocytosis through the activation of NKA/Src receptor complex. Using a high-throughput NKA ligand-screening platform, we have discovered MB5 as an inverse agonist of the NKA/Src receptor complex, capable of blocking the endocytosis of NKA. MB5 treatment increased NKA expression and E-cadherin in PCa cells, which reversed EMT and consequently decreased the invasion and growth of spheroid models and tumor xenografts. Thus, we have identified a hitherto unrecognized mechanism that regulates EMT and invasiveness of PCa and demonstrated for the first time the feasibility of identifying inverse agonists of receptor NKA/Src complex and their potential utility as anticancer drugs. We, therefore, conclude that cell surface expression of α1 NKA can be targeted for the development of new therapeutics against aggressive PCa and that MB5 may serve as a prototype for drug development against EMT in metastatic PCa.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| | - Zhichuan Li
- Department of Physiology, Pharmacology, and Medicine, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
- Institute of Edible Fungi, Shanghai Academy of Agriculture Science, Shanghai, China
| | - Fangfang Lai
- Department of Physiology, Pharmacology, and Medicine, University of Toledo Health Science Campus, Toledo, Ohio, USA
- Institute of Materia Medica, Peking Union Medical College, Beijing, China
| | - Minqi Huang
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| | - Zhongbing Zhang
- Department of Physiology, Pharmacology, and Medicine, University of Toledo Health Science Campus, Toledo, Ohio, USA
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| | - Juan Sanabria
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
- Department of Surgery, Joan Edwards School of Medicine Marshall University, Huntington, West Virginia, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
9
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
10
|
Ikeuchi M, Yuki R, Saito Y, Nakayama Y. The tumor suppressor LATS2 reduces v-Src-induced membrane blebs in a kinase activity-independent manner. FASEB J 2021; 35:e21242. [PMID: 33368671 DOI: 10.1096/fj.202001909r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
When cells with excess DNA, such as tetraploid cells, undergo cell division, it can contribute to cellular transformation via asymmetrical chromosome segregation-generated genetic diversity. Cell cycle progression of tetraploid cells is suppressed by large tumor suppressor 2 (LATS2) kinase-induced inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP). We recently reported that the oncogene v-Src induces tetraploidy and promotes cell cycle progression of tetraploid cells by suppressing LATS2 activity. We explore here the mechanism by which v-Src suppresses LATS2 activity and the role of LATS2 in v-Src-expressing cells. LATS2 was directly phosphorylated by v-Src and the proto-oncogene c-Src, resulting in decreased LATS2 kinase activity. This kinase-deficient LATS2 accumulated in a YAP transcriptional activity-dependent manner, and knockdown of either LATS2 or the LATS2-binding partner moesin-ezrin-radixin-like protein (Merlin) accelerated v-Src-induced membrane bleb formation. Upon v-Src expression, the interaction of Merlin with LATS2 was increased possibly due to a decrease in Merlin phosphorylation at Ser518, the dephosphorylation of which is required for the open conformation of Merlin and interaction with LATS2. LATS2 was colocalized with Merlin at the plasma membrane in a manner that depends on the Merlin-binding region of LATS2. The bleb formation in v-Src-expressing and LATS2-knockdown cells was rescued by the reexpression of wild-type or kinase-dead LATS2 but not the LATS2 mutant lacking the Merlin-binding region. These results suggest that the kinase-deficient LATS2 plays a role with Merlin at the plasma membrane in the maintenance of cortical rigidity in v-Src-expressing cells, which may cause tumor suppression.
Collapse
Affiliation(s)
- Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.,DC1, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
11
|
Wu J, Lai X, Cui G, Chen Q, Liu J, Kang Y, Zhang Y, Feng X, Hu C, Shao L. Dual effects of JNK activation in blood-milk barrier damage induced by zinc oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122809. [PMID: 32937690 DOI: 10.1016/j.jhazmat.2020.122809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/10/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have been extensively applied in our daily life. Humans are at high risk of being exposed to ZnO-NPs, which induce potentially adverse health effects. Although a growing number of studies have investigated the toxic effects of ZnO-NPs, the available data concerning ZnO-NP interactions with the blood-milk barrier (BMB) remain highly limited. Herein, we systematically investigated the damage to BMB integrity induced by ZnO-NPs and the mechanisms involved. ZnO-NPs that were intravenously injected into lactating dams accumulated in the mammary gland and entered into the breast milk, inducing disruption to BMB integrity and changes in the tight junction (TJ) and adherens junction (AJ) components. Furthermore, using an in vitro BMB model composed of EpH4-Ev cells, we verified that ZnO-NP-triggered ROS generation and the activation of MKK4 and JNK are the main mechanism of cell-cell junction damage. More interestingly, JNK activation played different roles in inducing changes in the TJ and AJ complex, and these effects did not need to activate the downstream c-Jun. These data provide more information for understanding ZnO-NP interactions with the BMB and raise concern for the daily use and the intravenous use of ZnO-NPs by lactating mothers.
Collapse
Affiliation(s)
- Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangman Cui
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
12
|
Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through Skp2-mediated proteasomal degradation of Tpl2. Oncogene 2020; 39:7034-7050. [PMID: 32989258 PMCID: PMC7680376 DOI: 10.1038/s41388-020-01481-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 01/28/2023]
Abstract
While mechanisms for metastasis were extensively studied in cancer cells from patients with detectable tumors, pathways underlying metastatic dissemination from early lesions before primary tumors appear are poorly understood. Her2 promotes breast cancer early dissemination by suppressing p38, but how Her2 downregulates p38 is unclear. Here, we demonstrate that in early lesion breast cancer models, Her2 inhibits p38 by inducing Skp2 through Akt-mediated phosphorylation, which promotes ubiquitination and proteasomal degradation of Tpl2, a p38 MAP3K. The early disseminating cells are Her2+Skp2highTpl2lowp-p38lowE-cadherinlow in the MMTV-Her2 breast cancer model. In human breast carcinoma, high Skp2 and low Tpl2 expression are associated with the Her2+ status; Tpl2 expression positively correlates with that of activated p38; Skp2 expression negatively correlates with that of Tpl2 and activated p38. Moreover, the Her2-Akt-Skp2-Tpl2-p38 axis plays a key role in the disseminating phenotypes in early lesion breast cancer cells; inhibition of Tpl2 enhances early dissemination in vivo. These findings identify the Her2-Akt-Skp2-Tpl2-p38 cascade as a novel mechanism mediating breast cancer early dissemination and a potential target for novel therapies targeting early metastatic dissemination.
Collapse
|
13
|
de Souza JM, Abd-Elrahman KS, Ribeiro FM, Ferguson SSG. mGluR5 regulates REST/NRSF signaling through N-cadherin/β-catenin complex in Huntington's disease. Mol Brain 2020; 13:118. [PMID: 32859226 PMCID: PMC7456045 DOI: 10.1186/s13041-020-00657-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 03/05/2023] Open
Abstract
Repressor element 1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a transcription repressor and its expression is regulated by the Wnt pathway through β-catenin. Metabotropic glutamate receptor 5 (mGluR5) signaling plays a key role in controlling neuronal gene expression. Interestingly, REST/NRSF nuclear translocation and signaling, as well as mGluR5 signaling are altered in the presence of mutant huntingtin. It remains unclear whether mGluR5 can modulate Wnt and REST/NRSF signaling under physiological conditions and whether this modulation is altered in Huntington's disease (HD). Using primary corticostriatal neurons derived from wild type mouse embryos, we find that targeting mGluR5 using the agonist, DHPG, or the negative allosteric modulator, CTEP, modulates REST/NRSF expression by regulating the assembly of N-cadherin/ β-catenin complex in a Src kinase-dependent manner. We have validated our in vitro findings in vivo using two HD mouse models. Specifically, we show that pharmacological inhibition of mGluR5 in zQ175 mice and genetic ablation of mGluR5 in BACHD mice corrected the pathological activation of Src and rescued REST/NRSF-dependent signaling. Together, our data provide evidence that mGluR5 regulates REST/NRSF expression via the Wnt pathway and highlight the contribution of impaired REST/ NRSF signaling to HD pathology.
Collapse
Affiliation(s)
- Jéssica M. de Souza
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Khaled S. Abd-Elrahman
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521 Egypt
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephen S. G. Ferguson
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
| |
Collapse
|
14
|
Jastania RA, Saeed M, Al-Khalidi H, AlQuthami K, Nageeti TH, Al-Allaf FA, Valerie K, Taher MM. Adamantinomatous Craniopharyngioma in an Adult: A Case Report with NGS Analysis. Int Med Case Rep J 2020; 13:123-137. [PMID: 32368160 PMCID: PMC7183340 DOI: 10.2147/imcrj.s243405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Several recent studies have documented CTNNB1 and BRAF mutations which are mutually exclusive for adamantinomatous craniopharyngioma (ACP) and papillary craniopharyngioma (PCP) tumors. This discovery is helpful in the development of novel targeted therapies in successful clinical trials with BRAF mutations in PCP cases. However, no such targeted therapy is available yet for ACP. Here, we report novel mutations, which are not previously reported, in a case of an adult ACP using NGS analysis. RESULTS Patient DNA was sequenced using Ion PI v3 chip on Ion Proton. A total of 16 variants were identified in this tumor by NGS analysis, out of which four were missense mutations, seven were synonymous mutations, and five were intronic variants. In CTNNB1 gene a known missense mutation in c.101G>T; in TP53 a known missense mutation in c.215C>G; and two known missense variants in PIK3CA, viz., in c.1173A>G; in exon 7, and in c.3128T>C; in exon 21, were found, respectively. Seven synonymous mutations were detected in this tumor, viz., in IDH1 (rs11554137), in FGFR3 (rs7688609), in PDGFRA (rs1873778), in APC (COSM3760869), in EGFR (rs1050171), in MET (rs35775721), and in RET (rs1800861), respectively. Three known, intronic variants were found in genes, such as PIK3CA, KDR, and JAK3, respectively. Also, a 3'-UTR and a splice site acceptor site variant in CSF1R and FLT3 genes were found in this tumor. We have shown allele coverage, allele ratio, and p-value, for all these mutations. The p-values and Phred quality score were significantly high for these variants. CONCLUSION As reported in previous studies, in ACP tumors we found a CTNNB1 mutation by NGS analysis. The PIK3CA variants we detected were not known previously in ACP tumors. Finding the PIK3CA mutations in the ACP tumors may help develop targeted therapy for a subset of craniopharyngiomas with PIK3CA activating mutations. Clinical trials are in progress with specific PIK3CA inhibitors in advanced stages of many cancers.
Collapse
Affiliation(s)
- Raid A Jastania
- Department of Pathology, Faculty of Medicine, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Saeed
- Department of Radiology, Faculty of Medicine, Umm-Al-Qura University, Makkah, Saudi Arabia
- Department of Radiology, Al-Noor Specialty Hospital, Makkah, Saudi Arabia
| | | | - Khalid AlQuthami
- Division of Histopathology, Department of Laboratory Medicine and Blood Bank, Al-Noor Specialty Hospital, Makkah, Saudi Arabia
| | - Tahani H Nageeti
- Department of Radiation Oncology, King Abdullah Medical City, Makkah, Saudi Arabia
| | - Faisal A Al-Allaf
- Science and Technology Unit, Umm-Al-Qura University, Makkah, Saudi Arabia
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Kristoffer Valerie
- Department of Radiation Oncology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohiuddin M Taher
- Science and Technology Unit, Umm-Al-Qura University, Makkah, Saudi Arabia
- Department of Medical Genetics, Faculty of Medicine, Umm-Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
15
|
Niño CA, Sala S, Polo S. When ubiquitin meets E-cadherin: Plasticity of the epithelial cellular barrier. Semin Cell Dev Biol 2019; 93:136-144. [DOI: 10.1016/j.semcdb.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/28/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
|
16
|
Yang T, An Z, Zhang C, Wang Z, Wang X, Liu Y, Du E, Liu R, Zhang Z, Xu Y. hnRNPM, a potential mediator of YY1 in promoting the epithelial-mesenchymal transition of prostate cancer cells. Prostate 2019; 79:1199-1210. [PMID: 31251827 DOI: 10.1002/pros.23790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND With the popularity of serum prostate-specific antigen (PSA) screening, the number of newly diagnosed prostate cancer (PCa) patients is increasing. However, indolent or invasive PCa cannot be distinguished by PSA levels. Here, we mainly explored the role of heterogeneous nuclear ribonucleoprotein M (hnRNPM) in the invasiveness of PCa. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis was used to detect the expressions of hnRNPM in PCa and benign prostate hyperplasia (BPH) tissues as well as in PCa cell lines. Immunohistochemistry was applied to detect the hnRNPM or Yin Yang 1 (YY1) expression in BPH, prostate adenocarcinoma (ADENO) and neuroendocrine prostate cancer (NEPC) tissues. After aberrant, the expression of hnRNPM in C4-2 and PC3 cells, the changes of cell migration and invasion were observed through wound-healing and transwell assays. We also predicted the transcription factor of hnRNPM through databases, then verified the association of hnRNPM and YY1 using chromatin immunoprecipitation (ChIP) and luciferase assays. RESULTS The expression level of hnRNPM is gradually reduced in BPH, ADENO, and NEPC tissues and it is less expressed in more aggressive PCa cell lines. Overexpression of hnRNPM can significantly reduce Twist1 expression, which inhibits the migration and invasion of PCa cells in vitro. In PCa cells, overexpression of YY1 can promote epithelial-mesenchymal transition by reducing hnRNPM expression. Furthermore, this effect caused by overexpression of YY1 can be partially attenuated by simultaneous overexpression of hnRNPM. CONCLUSIONS Our study demonstrates that hnRNPM negatively regulated PCa cell migration and invasion, and its expression can be transcriptionally inhibited by YY1. We speculated that hnRNPM may be a biomarker to assist in judging the aggressiveness of PCa.
Collapse
Affiliation(s)
- Tong Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Zesheng An
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Zhen Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Xiaoming Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Yan Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - E Du
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Ranlu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, China
| |
Collapse
|
17
|
Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3583067. [PMID: 31191707 PMCID: PMC6525884 DOI: 10.1155/2019/3583067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Diabetes is a predominant metabolic disease nowadays due to the off-beam lifestyle of diet and reduced physical activity. Complications of the illness include the gene-environment interactions and the downstream genetic and epigenetic consequences, e.g., cardiovascular diseases, tumor progression, retinopathy, nephropathy, neuropathy, polydipsia, polyphagia, polyuria, and weight loss. This review sheds the light on the mechanistic insights of antidiabetic medicinal plants in targeting key organs and tissues involved in regulating blood glucose homeostasis including the pancreas, liver, muscles, adipose tissues, and glucose absorption in the intestine. Diabetes is also involved in modulating major epigenetic pathways such as DNA methylation and histone modification. In this respect, we will discuss the phytochemicals as current and future epigenetic drugs in the treatment of diabetes. In addition, several proteins are common targets for the treatment of diabetes. Some phytochemicals are expected to directly interact with these targets. We lastly uncover modeling studies that predict such plausible interactions. In conclusion, this review article presents the mechanistic insight of phytochemicals in the treatment of diabetes by combining both the cellular systems biology and molecular modeling.
Collapse
|
18
|
Dosch AR, Dai X, Gaidarski Iii AA, Shi C, Castellanos JA, VanSaun MN, Merchant NB, Nagathihalli NS. Src kinase inhibition restores E-cadherin expression in dasatinib-sensitive pancreatic cancer cells. Oncotarget 2019; 10:1056-1069. [PMID: 30800218 PMCID: PMC6383685 DOI: 10.18632/oncotarget.26621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023] Open
Abstract
The Src family of non-receptor tyrosine kinases are frequently activated in pancreatic ductal adenocarcinoma (PDAC), contributing to disease progression through downregulation of E-cadherin and induction of epithelial-to-mesenchymal transition (EMT). The purpose of this study was to examine the efficacy of Src kinase inhibition in restoring E-cadherin levels in PDAC. Immunohistochemical analysis of human PDAC samples showed Src activation is inversely correlated with E-cadherin levels. Protein and mRNA levels of E-cadherin, the gene expression of its various transcriptional repressors (Zeb1, Snail, Slug, LEF-1, TWIST), and changes in sub-cellular localization of E-cadherin/β-catenin in PDAC cells were characterized in response to treatment with the Src inhibitor, dasatinib (DST). DST repressed Slug mRNA expression, promoted E-cadherin transcription, and increased total and membranous E-cadherin/β-catenin levels in drug-sensitive PDAC cells (BxPC3 and SW1990), however no change was observed in drug-resistant PANC1 cells. BxPC3, PANC1, and MiaPaCa-2 flank tumor xenografts were treated with DST to examine changes in E-cadherin levels in vivo. Although DST inhibited Src phosphorylation in all xenograft models, E-cadherin levels were only restored in BxPC3 xenograft tumors. These results suggest that Src kinase inhibition reverses EMT in drug-sensitive PDAC cells through Slug-mediated repression of E-cadherin and identifies E-cadherin as potential biomarker for determining response to DST treatment.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Alexander A Gaidarski Iii
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jason A Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael N VanSaun
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
19
|
Collins RJ, Morgan LD, Owen S, Ruge F, Jiang WG, Sanders AJ. Mechanistic insights of epithelial protein lost in neoplasm in prostate cancer metastasis. Int J Cancer 2018; 143:2537-2550. [PMID: 30098000 DOI: 10.1002/ijc.31786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 01/21/2023]
Abstract
EPLIN is frequently downregulated or lost in various cancers. The purpose of this study was to evaluate the importance of EPLIN in prostate cancer progression, with particular focus on the mechanistic implications to elucidate EPLIN's tumor suppressive function in cancer. EPLIN expression was evaluated in prostate cancer cell lines and tissues. PC-3 and LNCaP EPLINα overexpression models were generated through transfection with EPLINα sequence and EPLIN knockdown was achieved using shRNA in CA-HPV-10 cells. Functional assays were performed to evaluate cellular characteristics and potential mechanisms were evaluated using a protein microarray, and validated using western blot analysis. EPLIN expression was reduced in clinical prostate cancer sections, including hyperplasia (p ≤ 0.001) and adenocarcinoma (p = 0.005), when compared to normal prostate tissue. EPLINα overexpression reduced cell growth, migration and invasion, and influenced transcript, protein and phosphoprotein expression of paxillin, FAK and Src. EPLIN knockdown increased the invasive and migratory nature of CA-HPV-10 cells and also induced changes to FAK and Src total and/or phospho expression. Functional characterization of cellular migration and invasion in addition to FAK and Src inhibition demonstrated differential effects between control and EPLINα overexpression and EPLIN knockdown cell lines. This study highlights that EPLIN expression in prostate cancer is able to influence several aspects of cancer cell characteristics, including cell growth, migration and invasion. The mechanism of the tumor suppressive action of EPLIN remains to be fully elucidated; and this study proposes a role for EPLIN's ability to regulate the aggressive characteristics of prostate cancer cells partially through regulating FAK/Src signaling.
Collapse
Affiliation(s)
- Ross J Collins
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Liam D Morgan
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sioned Owen
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative (CCMRC), Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
20
|
Wang P, Liang J, Shi LZ, Wang Y, Zhang P, Ouyang M, Preece D, Peng Q, Shao L, Fan J, Sun J, Li SS, Berns MW, Zhao H, Wang Y. Visualizing Spatiotemporal Dynamics of Intercellular Mechanotransmission upon Wounding. ACS PHOTONICS 2018; 5:3565-3574. [PMID: 31069245 PMCID: PMC6502247 DOI: 10.1021/acsphotonics.8b00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During cell-to-cell communications, the interplay between physical and biochemical cues is essential for informational exchange and functional coordination, especially in multicellular organisms. However, it remains a challenge to visualize intercellular signaling dynamics in single live cells. Here, we report a photonic approach, based on laser microscissors and Förster resonance energy transfer (FRET) microscopy, to study intercellular signaling transmission. First, using our high-throughput screening platform, we developed a highly sensitive FRET-based biosensor (SCAGE) for Src kinase, a key regulator of intercellular interactions and signaling cascades. Notably, SCAGE showed a more than 40-fold sensitivity enhancement than the original biosensor in live mammalian cells. Next, upon local severance of physical intercellular connections by femtosecond laser pulses, SCAGE enabled the visualization of a transient Src activation across neighboring cells. Lastly, we found that this observed transient Src activation following the loss of cell-cell contacts depends on the passive structural support of cytoskeleton but not on the active actomyosin contractility. Hence, by precisely introducing local physical perturbations and directly visualizing spatiotemporal transmission of ensuing signaling events, our integrated approach could be broadly applied to mimic and investigate the wounding process at single-cell resolutions. This integrated approach with highly sensitive FRET-based biosensors provides a unique system to advance our in-depth understanding of molecular mechanisms underlying the physical-biochemical basis of intercellular coupling and wounding processes.
Collapse
Affiliation(s)
- Pengzhi Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jing Liang
- Department of Chemical and Biomolecular Engineering and Carl R. Woese Institute for Genomic Biology
| | - Linda Z. Shi
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Yi Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ping Zhang
- Institute of Mechanobiology and Biomedical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingxing Ouyang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Daryl Preece
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Lunan Shao
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jason Fan
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jie Sun
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shawn S. Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario Canada N6A 5C1
- Children’s Health Research Institute, 800 Commissioners Road East, London, Ontario Canada N6C 2 V5
| | - Michael W. Berns
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92612, United States
- Department of Developmental and Cell Biology, School of Biological Sciences, and Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering and Carl R. Woese Institute for Genomic Biology
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
21
|
Tamura S, Isobe T, Ariyama H, Nakano M, Kikushige Y, Takaishi S, Kusaba H, Takenaka K, Ueki T, Nakamura M, Akashi K, Baba E. E‑cadherin regulates proliferation of colorectal cancer stem cells through NANOG. Oncol Rep 2018; 40:693-703. [PMID: 29845283 PMCID: PMC6072297 DOI: 10.3892/or.2018.6464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer stem cells (CSCs) possess a self-renewal ability and display tumorigenic potential in immunodeficient mice. Colorectal CSCs are thought to be a uniform population and no functionally distinct subpopulations have been identified. Because E-cadherin is an essential molecule for self-renewal of embryonic stem cells, we examined E-cadherin expression, which may play a role in maintaining the properties of CSCs, in EpCAMhigh/CD44+ colorectal CSCs from human primary colorectal cancers. We obtained 18 surgical specimens of human primary colorectal cancer. CD44, EpCAM, and E-cadherin expression were analyzed by fluorescence-activated cell sorting. Sorted EpCAMhigh/CD44+ colorectal CSCs were injected into immunodeficient mice to estimate the tumorigenic potential. Genetic profiles were analyzed by cDNA microarray. Notably, colorectal CSCs could be divided into two populations based on the E-cadherin expression status, and they exhibited different pathological characteristics. Compared to E-cadherin-negative colorectal CSCs, E-cadherin-positive (EC+) colorectal CSCs demonstrated higher tumor growth potential in vivo. EC+ colorectal CSCs revealed a higher expression of the pluripotency factor NANOG, which contributed to the higher tumor growth potential of EC+ colorectal CSCs through control of cyclin D1 expression. These findings are the first demonstration of functionally distinct subpopulations of colorectal CSCs in human clinical samples.
Collapse
Affiliation(s)
- Shingo Tamura
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Taichi Isobe
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hiroshi Ariyama
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Michitaka Nakano
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | | | - Shigeo Takaishi
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Hitoshi Kusaba
- Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Katsuto Takenaka
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Takashi Ueki
- Department of Surgery and Oncology, Kyushu University, Fukuoka 812‑8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University, Fukuoka 812‑8582, Japan
| | - Koichi Akashi
- Department of Medicine, Kyushu University, Fukuoka 812‑8582, Japan
| | - Eishi Baba
- Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
22
|
Wang H, Huang B, Li BM, Cao KY, Mo CQ, Jiang SJ, Pan JC, Wang ZR, Lin HY, Wang DH, Qiu SP. ZEB1-mediated vasculogenic mimicry formation associates with epithelial-mesenchymal transition and cancer stem cell phenotypes in prostate cancer. J Cell Mol Med 2018; 22:3768-3781. [PMID: 29754422 PMCID: PMC6050489 DOI: 10.1111/jcmm.13637] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/10/2018] [Indexed: 01/18/2023] Open
Abstract
The zinc finger E‐box‐binding homeobox 1 (ZEB1) induced the epithelial–mesenchymal transition (EMT) and altered ZEB1 expression could lead to aggressive and cancer stem cell (CSC) phenotypes in various cancers. Tissue specimens from 96 prostate cancer patients were collected for immunohistochemistry and CD34/periodic acid–Schiff double staining. Prostate cancer cells were subjected to ZEB1 knockdown or overexpression and assessment of the effects on vasculogenic mimicry formation in vitro and in vivo. The underlying molecular events of ZEB1‐induced vasculogenic mimicry formation in prostate cancer were then explored. The data showed that the presence of VM and high ZEB1 expression was associated with higher Gleason score, TNM stage, and lymph node and distant metastases as well as with the expression of vimentin and CD133 in prostate cancer tissues. Furthermore, ZEB1 was required for VM formation and altered expression of EMT‐related and CSC‐associated proteins in prostate cancer cells in vitro and in vivo. ZEB1 also facilitated tumour cell migration, invasion and clonogenicity. In addition, the effects of ZEB1 in prostate cancer cells were mediated by Src signalling; that is PP2, a specific inhibitor of the Src signalling, dose dependently reduced the p‐Src527 level but not p‐Src416 level, while ZEB1 knockdown also down‐regulated the level of p‐Src527 in PC3 and DU‐145 cells. PP2 treatment also significantly reduced the expression of VE‐cadherin, vimentin and CD133 in these prostate cancer cells. Src signalling mediated the effects of ZEB1 on VM formation and gene expression.
Collapse
Affiliation(s)
- Hua Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bai Mou Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kai Yuan Cao
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Qiang Mo
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuang Jian Jiang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin Cheng Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zong Ren Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huan Yi Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dao Hu Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shao Peng Qiu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Hui Ya hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
23
|
Khajah MA, Mathew PM, Luqmani YA. Na+/K+ ATPase activity promotes invasion of endocrine resistant breast cancer cells. PLoS One 2018; 13:e0193779. [PMID: 29590154 PMCID: PMC5874017 DOI: 10.1371/journal.pone.0193779] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/17/2018] [Indexed: 01/27/2023] Open
Abstract
Background The Na+/K+-ATPase (NKP) is an important ion transporter also involved in signal transduction. Its expression profile is altered in various tumours including that of the breast. We studied the effect of inhibiting NKP activity in non-tumorigenic breast cell line and in estrogen receptor positive and negative breast cancer cells. Methods Expression and localization of NKP and downstream signaling molecules were determined by RT-PCR, western blotting and immunofluorescence. Cell proliferation, apoptosis and cell cycle stage were determined using MTT, annexin V and flow cytometry. Cell motility and invasion were determined using wound healing and matrigel assays. Total matrix metalloproteinase (MMP) was determined by a fluorescence-based assay. Results NKP was mainly localized on the cell membrane. Its baseline expression and activity were enhanced in breast cancer compared to the non-tumorigenic breast cell line. Ouabain and 3,4,5,6-tetrahydroxyxanthone (TTX) treatment significantly inhibited NKP activity, which significantly reduced cell proliferation, motility, invasion and pH-induced membrane blebbing. EGF stimulation induced internalization of NKP from the cell membrane to the cytoplasm. Ouabain inhibited EGF-induced phosphorylation of Rac/cdc42, profillin, ERK1/2 and P70S6K. Conclusions The NKP may offer a novel therapeutic target in breast cancer patients who have developed metastasis, aiming to improve therapeutic outcomes and enhance survival rate.
Collapse
|
24
|
Di Domenico M, Giordano A. Signal transduction growth factors: the effective governance of transcription and cellular adhesion in cancer invasion. Oncotarget 2018; 8:36869-36884. [PMID: 28415812 PMCID: PMC5482705 DOI: 10.18632/oncotarget.16300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Giulio Bizzozero classified the tissues concerning their capacity to self-renew during the adult life in labile, stable and permanent tissues. In 1940 Viktor Hamburger and Rita Levi Montalcini exposed the possibility to induce the growth of permanent cells thanks to a specific ligand Nerve Growth Factor (NGF). Stanley Cohen purified a protein the Epidermal Growth Factor (EGF), able to induce epidermis proliferation and to elicit precocious eye disclosure and teeth eruption, establishing the “inverse” relationships between the proliferation and differentiation. These two biological effects induced by EGF were according to EGFR signaling is involved in a large array of cellular functions such as proliferation, survival, adhesion, migration and differentiation. This review is focused on the key role of growth factors signaling and their downstream effectors in physiological and in pathological phenomena, the authors highlight the governance of Growth factors during the EMT in cancer invasion.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Italy.,IRCCS Institute of Women's Health Malzoni Clinic, Avellino, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Gayrard C, Bernaudin C, Déjardin T, Seiler C, Borghi N. Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J Cell Biol 2018; 217:1063-1077. [PMID: 29311227 PMCID: PMC5839785 DOI: 10.1083/jcb.201706013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023] Open
Abstract
β-Catenin is a transcription cofactor proposed to be released from E-cadherin upon mechanically induced phosphorylation. However, evidence for this mechanism is lacking. Gayrard et al. show instead that during epithelial-to-mesenchymal transition, Src- and multicellular confinement–dependent FAK-induced cytoskeleton remodeling causes E-cadherin tension relaxation and phosphorylation-independent β-catenin nuclear translocation from the membrane. In epithelia, E-cadherin cytoplasmic tail is under cytoskeleton-generated tension via a link that contains β-catenin. A cotranscription factor, β-catenin, is also active in morphogenetic processes associated with epithelial-to-mesenchymal transition. β-Catenin signaling appears mechanically inducible and was proposed to follow phosphorylation-induced β-catenin release from E-cadherin. Evidence for this mechanism is lacking, and whether E-cadherin tension is involved is unknown. To test this, we combined quantitative fluorescence microscopies with genetic and pharmacological perturbations of epithelial-to-mesenchymal transition–induced cells in culture. We showed that β-catenin nuclear activity follows a substantial release from the membrane specific to migrating cells and requires multicellular deconfinement and Src activity. Selective nuclear translocation occurs downstream of focal adhesion kinase activation, which targets E-cadherin tension relaxation through actomyosin remodeling. In contrast, phosphorylations of the cadherin/catenin complex are not substantially required. These data demonstrate that E-cadherin acts as a sensor of intracellular mechanics in a crosstalk with cell-substrate adhesions that target β-catenin signaling.
Collapse
Affiliation(s)
- Charlène Gayrard
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Clément Bernaudin
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Théophile Déjardin
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Cynthia Seiler
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Nicolas Borghi
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| |
Collapse
|
26
|
Des Marteaux LE, Stinziano JR, Sinclair BJ. Effects of cold acclimation on rectal macromorphology, ultrastructure, and cytoskeletal stability in Gryllus pennsylvanicus crickets. JOURNAL OF INSECT PHYSIOLOGY 2018; 104:15-24. [PMID: 29133228 DOI: 10.1016/j.jinsphys.2017.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Cold-acclimated insects maintain ion and water balance in the cold, potentially by reducing permeability or increasing diffusion distance across ionoregulatory epithelia such as the rectum. We explored whether cold acclimation induces structural modifications that minimize water and ion diffusion across the rectum and maintain rectal cell integrity. We investigated rectal structure and cytoskeletal stability in chill-susceptible adult Gryllus pennsylvanicus crickets acclimated for one week to either warm (25 °C) or cold (12 °C) conditions. After acclimation, we used light and transmission electron microscopy to examine rectal macromorphology and rectal pad paracellular ultrastructure. We also used fluorescence microscopy and a filamentous-actin (F-actin) specific phalloidin stain to compare the polymerization state of the actin cytoskeleton for each of the acclimation groups before and after a cold shock (1 h at -4 °C). Cold acclimation did not alter rectal pad cell density, or the thickness of the rectal pads, muscle, or cuticle. The tortuosity and width of the rectal pad paracellular channels also did not differ between warm- and cold-acclimated crickets. Rectal pad cells had clear basal and apical regions with differing densities of F-actin. Cold shock reduced the density of F-actin in warm-acclimated crickets, whereas cold-acclimated crickets appeared to have unchanged (basal) or enhanced (apical) F-actin density after cold shock. This suggests that while cold acclimation does not modify rectal permeability through structural modifications to increase diffusion distance for water and ions, cold-acclimated crickets have a modified cytoskeleton that resists the depolymerising effects of cold shock.
Collapse
Affiliation(s)
| | - Joseph R Stinziano
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
27
|
Short SP, Kondo J, Smalley-Freed WG, Takeda H, Dohn MR, Powell AE, Carnahan RH, Washington MK, Tripathi M, Payne DM, Jenkins NA, Copeland NG, Coffey RJ, Reynolds AB. p120-Catenin is an obligate haploinsufficient tumor suppressor in intestinal neoplasia. J Clin Invest 2017; 127:4462-4476. [PMID: 29130932 PMCID: PMC5707165 DOI: 10.1172/jci77217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/03/2017] [Indexed: 11/17/2022] Open
Abstract
p120-Catenin (p120) functions as a tumor suppressor in intestinal cancer, but the mechanism is unclear. Here, using conditional p120 knockout in Apc-sensitized mouse models of intestinal cancer, we have identified p120 as an "obligatory" haploinsufficient tumor suppressor. Whereas monoallelic loss of p120 was associated with a significant increase in tumor multiplicity, loss of both alleles was never observed in tumors from these mice. Moreover, forced ablation of the second allele did not further enhance tumorigenesis, but instead induced synthetic lethality in combination with Apc loss of heterozygosity. In tumor-derived organoid cultures, elimination of both p120 alleles resulted in caspase-3-dependent apoptosis that was blocked by inhibition of Rho kinase (ROCK). With ROCK inhibition, however, p120-ablated organoids exhibited a branching phenotype and a substantial increase in cell proliferation. Access to data from Sleeping Beauty mutagenesis screens afforded an opportunity to directly assess the tumorigenic impact of p120 haploinsufficiency relative to other candidate drivers. Remarkably, p120 ranked third among the 919 drivers identified. Cofactors α-catenin and epithelial cadherin (E-cadherin) were also among the highest scoring candidates, indicating a mechanism at the level of the intact complex that may play an important role at very early stages of of intestinal tumorigenesis while simultaneously restricting outright loss via synthetic lethality.
Collapse
Affiliation(s)
| | - Jumpei Kondo
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | | | - Haruna Takeda
- Division of Genetics and Genomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Oncologic Pathology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Michael R. Dohn
- Department of Cancer Biology, and
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Anne E. Powell
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | | | - Mary K. Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - D. Michael Payne
- CU Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nancy A. Jenkins
- Division of Genetics and Genomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Neal G. Copeland
- Division of Genetics and Genomics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Cancer Research Program, The Methodist Hospital Research Institute, Houston, Texas, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee, USA
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | | |
Collapse
|
28
|
Capra J, Eskelinen S. Correlation between E-cadherin interactions, survivin expression, and apoptosis in MDCK and ts-Src MDCK cell culture models. J Transl Med 2017; 97:1453-1470. [PMID: 28892098 DOI: 10.1038/labinvest.2017.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Survivin, a member of inhibitor of apoptosis (IAP) protein family, is a multifunctional protein expressed in most cancers. In addition to inhibition of apoptosis, it regulates proliferation and promotes migration. Its presence and function in cells is strongly regulated via transcription factors, intracellular localization, and degradation. We analyzed the presence of survivin at protein level in various culture environments and under activation of Src tyrosine kinase in epithelial canine kidney MDCK cells in order to elucidate factors controlling survivin 'lifespan'. We used untransformed and temperature sensitive ts-Src MDCK cells as a model and forced them to grow in suspension (1D), in 2D on hard and soft surfaces and in soft 3D Matrigel environment with or without EGTA. In addition, we tested the effect of stressful conditions by cultivating the cells in the presence of an anti-cancer drug and a generator of reactive oxygen species (ROS), piperlongumine (PL) with or without an antioxidant, N-acetylcysteine (NAC). We could confirm that inhibition of apoptosis and simultaneous downregulation of survivin in MDCK cells required both intact cell-cell junctions, trans-interactions of E-cadherin and soft 3D matrix environment. In ts-Src-transformed MDCK cells, survivin was upregulated as soon as the cell-cell junctions were disintegrated. ROS generation with PL-induced cell death of ts-Src MDCK cells concomitantly with survivin downregulation. NAC rescued the ts-Src MDCK cells from ROS-induced apoptosis without upregulation of survivin resulting in a situation resembling untransformed MDCK cells in 3D environment and E-cadherin delineating the lateral cell walls.
Collapse
Affiliation(s)
- Janne Capra
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Sinikka Eskelinen
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| |
Collapse
|
29
|
Hou J, Wang F, Liu X, Song M, Yin X. Tumor-derived exosomes enhance invasion and metastasis of salivary adenoid cystic carcinoma cells. J Oral Pathol Med 2017; 47:144-151. [PMID: 29057556 DOI: 10.1111/jop.12654] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Tumor-derived exosomes (TDE) have been shown to participate in different steps of the dissemination of cancer cells. However, the role of salivary adenoid cystic carcinoma-derived (SACC-derived) exosomes had not been documented in SACC. The study aims to explore the functions of SACC-derived TDE in SACC progression and investigate potential mechanisms. METHODS Salivary adenoid cystic carcinoma cell line SACC-83 was used to generate TDE. Afterward, SACC-83 or HUVECs were cocultured with or without TDE. Tumor migration, tumor invasion, and endothelial permeability were examined by wound healing assay, tumor invasion assay, endothelial permeability assay, and tumor cell transendothelial migration assay, respectively. Moreover, the expression levels of cell junction-related proteins were examined by qRT-PCR and Western blot. RESULTS Salivary adenoid cystic carcinoma -83-derived exosomes were taken up by their host cells. Meanwhile, TDE increased migration and invasion capacity of SACC-83 cells and enhanced endothelial cell permeability. Furthermore, we demonstrated that the expression of cell junction-related proteins (Claudins and ZO-1) was downregulated, which is presumably involved in the TDE-mediated promotion of migration, invasion, and metastasis. CONCLUSION The results suggested that SACC cell-derived exosomes were loaded with individual components that could enhance invasiveness and induce microenvironment changes, thus promoting SACC aggression.
Collapse
Affiliation(s)
- Jin Hou
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangyuan Wang
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohao Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyang Song
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuemin Yin
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Lee HW, Arif E, Altintas MM, Quick K, Maheshwari S, Plezia A, Mahmood A, Reiser J, Nihalani D, Gupta V. High-content screening assay-based discovery of paullones as novel podocyte-protective agents. Am J Physiol Renal Physiol 2017; 314:F280-F292. [PMID: 29046299 DOI: 10.1152/ajprenal.00338.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Podocyte dysfunction and loss is an early event and a hallmark of proteinuric kidney diseases. A podocyte's normal function is maintained via its unique cellular architecture that relies on an intracellular network of filaments, including filamentous actin (F-actin) and microtubules, that provides mechanical support. Damage to this filamentous network leads to changes in cellular morphology and results in podocyte injury, dysfunction, and death. Conversely, stabilization of this network protects podocytes and ameliorates proteinuria. This suggests that stabilization of podocyte architecture via its filamentous network could be a key therapeutic strategy for proteinuric kidney diseases. However, development of podocyte-directed therapeutics, especially those that target the cell's filamentous network, is still lacking, partly because of unavailability of appropriate cellular assays for use in a drug discovery environment. Here, we describe a new high-content screening-based methodology and its implementation on podocytes to identify paullone derivatives as a novel group of podocyte-protective compounds. We find that three compounds, i.e., kenpaullone, 1-azakenpaullone, and alsterpaullone, dose dependently protect podocytes from puromycin aminonucleoside (PAN)-mediated injury in vitro by reducing PAN-induced changes in both the filamentous actin and microtubules, with alsterpaullone providing maximal protection. Mechanistic studies further show that alsterpaullone suppressed PAN-induced activation of signaling downstream of GSK3β and p38 mitogen-activated protein kinase. In vivo it reduced ADR-induced glomerular injury in a zebrafish model. Together, these results identify paullone derivatives as novel podocyte-protective agents for future therapeutic development.
Collapse
Affiliation(s)
- Ha Won Lee
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Mehmet M Altintas
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Kevin Quick
- PerkinElmer Life Sciences, Waltham, Massachusetts
| | - Shrey Maheshwari
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Alexandra Plezia
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Aqsa Mahmood
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Jochen Reiser
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| |
Collapse
|
31
|
Des Marteaux LE, McKinnon AH, Udaka H, Toxopeus J, Sinclair BJ. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues. BMC Genomics 2017; 18:357. [PMID: 28482796 PMCID: PMC5422886 DOI: 10.1186/s12864-017-3711-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 04/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. Results We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na+-K+ ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. Conclusions This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the cold by 1) decreasing primary urine production via reduced expression of carbonic anhydrase and V-ATPase in the Malpighian tubules and 2) by increasing Na+ (and therefore water) reabsorption across the hindgut via increase in Na+-K+ ATPase expression. Cold acclimation may reduce chilling injury by remodeling and stabilizing the hindgut epithelial cytoskeleton and cell-to-cell junctions, and by increasing the expression of genes involved in DNA repair, detoxification, and protein chaperones. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3711-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Alexander H McKinnon
- Department of Biology, The University of Western Ontario, London, ON, Canada.,Present Address: Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hiroko Udaka
- Department of Biology, The University of Western Ontario, London, ON, Canada.,Present Address: Graduate School of Science, Biological Sciences, Kyoto University, Kyoto, Japan
| | - Jantina Toxopeus
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Brent J Sinclair
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
32
|
Brüser L, Bogdan S. Adherens Junctions on the Move-Membrane Trafficking of E-Cadherin. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029140. [PMID: 28096264 DOI: 10.1101/cshperspect.a029140] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherin-based adherens junctions are conserved structures that mediate epithelial cell-cell adhesion in invertebrates and vertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and undergoes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed conserved, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling.
Collapse
Affiliation(s)
- Lena Brüser
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
33
|
Abstract
The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers.
Collapse
Affiliation(s)
- Mark R Morris
- Brain Tumour Research Centre, Wolverhampton School of Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Farida Latif
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
34
|
Kim JG, Kim MJ, Choi WJ, Moon MY, Kim HJ, Lee JY, Kim J, Kim SC, Kang SG, Seo GY, Kim PH, Park JB. Wnt3A Induces GSK-3β Phosphorylation and β-Catenin Accumulation Through RhoA/ROCK. J Cell Physiol 2016; 232:1104-1113. [DOI: 10.1002/jcp.25572] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Myoung-Ju Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Won-Ji Choi
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Mi-Young Moon
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Hee-Jun Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Jae-Yong Lee
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
- Institute of Cell Differentiation and Aging; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
- Institute of Cell Differentiation and Aging; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Sung-Chan Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
- Institute of Cell Differentiation and Aging; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence; School of Biomedical Science and Institute of Bioscience and Biotechnology; Kangwon National University; Chuncheon Kangwon-do Republic of Korea
| | - Goo-Young Seo
- Department of Molecular Bioscience; School of Biomedical Science and Institute of Bioscience and Biotechnology; Kangwon National University; Chuncheon Kangwon-do Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience; School of Biomedical Science and Institute of Bioscience and Biotechnology; Kangwon National University; Chuncheon Kangwon-do Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
- Institute of Cell Differentiation and Aging; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| |
Collapse
|
35
|
Coopman P, Djiane A. Adherens Junction and E-Cadherin complex regulation by epithelial polarity. Cell Mol Life Sci 2016; 73:3535-53. [PMID: 27151512 PMCID: PMC11108514 DOI: 10.1007/s00018-016-2260-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
Abstract
E-Cadherin-based Adherens Junctions (AJs) are a defining feature of all epithelial sheets. Through the homophilic association of E-Cadherin molecules expressed on neighboring cells, they ensure intercellular adhesion amongst epithelial cells, and regulate many key aspects of epithelial biology. While their adhesive role requires these structures to remain stable, AJs are also extremely plastic. This plasticity allows for the adaptation of the cell to its changing environment: changes in neighbors after cell division, cell death, or cell movement, and changes in cell shape during differentiation. In this review we focus on the recent advances highlighting the critical role of the apico-basal polarity machinery, and in particular of the Par3/Bazooka scaffold, in the regulation and remodeling of AJs. We propose that by regulating key phosphorylation events on the core E-Cadherin complex components, Par3 and epithelial polarity promote meta-stable protein complexes governing the correct formation, localization, and functioning of AJ.
Collapse
Affiliation(s)
- Peter Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- IRCM, INSERM U1194, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34090, France
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Alexandre Djiane
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.
- IRCM, INSERM U1194, Montpellier, F-34298, France.
- Université de Montpellier, Montpellier, F-34090, France.
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
36
|
Law ME, Ferreira RB, Davis BJ, Higgins PJ, Kim JS, Castellano RK, Chen S, Luesch H, Law BK. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res 2016; 18:80. [PMID: 27495374 PMCID: PMC4974783 DOI: 10.1186/s13058-016-0741-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023] Open
Abstract
Background While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Methods Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. Results This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Conclusions Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0741-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary E Law
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA.,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Paul J Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, 12208, USA
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | | | - Sixue Chen
- Department of Biology, Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, FL, 32611, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida, Acad. Res. Bldg., Room R5-210, 1200 Newell Drive, P.O. Box 100267, Gainesville, FL, 32610, USA. .,UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA. .,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
37
|
Veracini L, Grall D, Schaub S, Beghelli-de la Forest Divonne S, Etienne-Grimaldi MC, Milano G, Bozec A, Babin E, Sudaka A, Thariat J, Van Obberghen-Schilling E. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas. Oncotarget 2016; 6:7570-83. [PMID: 25779657 PMCID: PMC4480700 DOI: 10.18632/oncotarget.3071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/23/2014] [Indexed: 11/25/2022] Open
Abstract
EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread.
Collapse
Affiliation(s)
- Laurence Veracini
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France.,CNRS, UMR7277, Nice, France.,Inserm, U1091, Nice, France
| | - Dominique Grall
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France.,CNRS, UMR7277, Nice, France.,Inserm, U1091, Nice, France
| | - Sébastien Schaub
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France.,CNRS, UMR7277, Nice, France.,Inserm, U1091, Nice, France
| | - Stéphanie Beghelli-de la Forest Divonne
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France.,CNRS, UMR7277, Nice, France.,Inserm, U1091, Nice, France.,Department of Pathology, Centre Antoine Lacassagne, Nice, France
| | | | - Gérard Milano
- Laboratory of Oncopharmacology, Centre Antoine Lacassagne, Nice, France
| | - Alexandre Bozec
- Department of Otorhinolaryngology, Centre Antoine Lacassagne, Nice, France
| | - Emmanuel Babin
- Department of Otorhinolaryngology and Cervicofacial Surgery, CHU, Caen, France
| | - Anne Sudaka
- Department of Pathology, Centre Antoine Lacassagne, Nice, France
| | - Juliette Thariat
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France.,CNRS, UMR7277, Nice, France.,Inserm, U1091, Nice, France.,Laboratory of Oncopharmacology, Centre Antoine Lacassagne, Nice, France
| | - Ellen Van Obberghen-Schilling
- University of Nice Sophia Antipolis, UFR Sciences, Nice, France.,CNRS, UMR7277, Nice, France.,Inserm, U1091, Nice, France.,Department of Pathology, Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
38
|
Khalfaoui-Bendriss G, Dussault N, Fernandez-Sauze S, Berenguer-Daizé C, Sigaud R, Delfino C, Cayol M, Metellus P, Chinot O, Mabrouk K, Martin PM, Ouafik L. Adrenomedullin blockade induces regression of tumor neovessels through interference with vascular endothelial-cadherin signalling. Oncotarget 2016; 6:7536-53. [PMID: 25924235 PMCID: PMC4480698 DOI: 10.18632/oncotarget.3167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/19/2015] [Indexed: 11/25/2022] Open
Abstract
The cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-specific junctional molecules vascular endothelial-cadherin (VE-cadherin)/β-catenin complex. AM blockade increases endothelial cell permeability by inhibiting cell-cell contacts predominantly through disruption of VE-cadherin/β-catenin/Akt signalling pathway, thereby leading to vascular collapse and regression of tumor neovessels. At a molecular level, we show that AM blockade induces tyrosine phosphorylation of VE-cadherin at a critical tyrosine, Tyr731, which is sufficient to prevent the binding of β-catenin to the cytoplasmic tail of VE-cadherin leading to the inhibition of cell barrier function. Furthermore, we demonstrate activation of Src kinase by phosphorylation on Tyr416, supporting a role of Src to phosphorylate Tyr731-VE-cadherin. In this model, Src inhibition impairs αAM and αAMR-induced Tyr731-VE-cadherin phosphorylation in a dose-dependent manner, indicating that Tyr731-VE-cadherin phosphorylation state is dependent on Src activation. We found that AM blockade induces β-catenin phosphorylation on Ser33/Ser37/Thr41 sites in both ECs and VSMCs both in vitro and in vivo in mice. These data suggest that AM blockade selectively induces regression of unstable tumor neovessels, through disruption of VE-cadherin signalling. Targeting AM system may present a novel therapeutic target to selectively disrupt assembly and induce regression of nascent tumor neovessels, without affecting normal stabilized vasculature.
Collapse
Affiliation(s)
- Ghizlane Khalfaoui-Bendriss
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Nadège Dussault
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Samantha Fernandez-Sauze
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Romain Sigaud
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Christine Delfino
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Mylène Cayol
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Philippe Metellus
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Olivier Chinot
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Kamel Mabrouk
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire (ICR) Marseille, France
| | - Pierre-Marie Martin
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France.,AP-HM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - L'Houcine Ouafik
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France.,AP-HM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| |
Collapse
|
39
|
Smith YE, Vellanki SH, Hopkins AM. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk. World J Biol Chem 2016; 7:64-77. [PMID: 26981196 PMCID: PMC4768125 DOI: 10.4331/wjbc.v7.i1.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/22/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology.
Collapse
|
40
|
Choe JY, Hun Kim J, Park KY, Choi CH, Kim SK. Activation of dickkopf-1 and focal adhesion kinase pathway by tumour necrosis factor α induces enhanced migration of fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatology (Oxford) 2015; 55:928-38. [PMID: 26715774 DOI: 10.1093/rheumatology/kev422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE The objective of this study was to investigate the roles of dickkopf-1 (DKK-1) and integrin-related focal adhesion kinase (FAK) by TNF-α on the migration of fibroblast-like synoviocytes (FLSs) in RA. METHODS Wound scratch assays were performed to assess FLS migration. Western blotting was used to measure the levels of DKK-1, Wnt signalling molecules and FAK signalling molecules. Quantitative real-time PCR was used to measure the expression levels of DKK-1, integrin αv, laminin, fibronectin, E-cadherin, MMP-8 and MMP-13. The concentrations of DKK-1, TNF-α and GSK-3β were measured by ELISA. Genetic silencing of TNF-α was achieved by the transfection of small interfering RNA into cells. RESULTS Migrating RA FLSs exhibited higher levels of DKK-1 and TNF-α expression compared with those in OA FLSs and/or stationary RA FLSs. Moreover, migrating FLSs exhibited significantly higher levels of FAK, p-JNK, paxillin and cdc42 expression, whereas the level of cytosolic β-catenin was lower. WAY-262611, Wnt pathway agonist via inhibition of DKK-1, markedly inhibited cell migration of RA FLSs through the accumulation of cytosolic β-catenin and suppression of FAK-related signalling pathways. TNF-α treatment to RA FLSs up-regulated expression of DKK-1, integrin αv, fibronectin, laminin and MMP-13. TNF-α stimulation also suppressed cytosolic β-catenin and E-cadherin expression in a time-dependent manner. Moreover, TNF-α small interfering RNA-transfected migrating FLSs exhibited decreased activation of integrin-related FAK, paxillin, p-JNK and cdc42 signalling pathways. CONCLUSION This study demonstrates that the activation of DKK-1 and the integrin-related FAK signalling pathway stimulated by TNF-α induces the dissociation of β-catenin/E-cadherin, thus promoting RA FLS migration.
Collapse
Affiliation(s)
- Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu
| | - Ji Hun Kim
- Department of Rheumatology, Pohang Semyung Christianity Hospital, Pohang and
| | - Ki-Yeun Park
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu
| | - Chang-Hyuk Choi
- Department of Orthopedic Surgery, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu,
| |
Collapse
|
41
|
Vlahov N, Scrace S, Soto MS, Grawenda AM, Bradley L, Pankova D, Papaspyropoulos A, Yee KS, Buffa F, Goding CR, Timpson P, Sibson N, O'Neill E. Alternate RASSF1 Transcripts Control SRC Activity, E-Cadherin Contacts, and YAP-Mediated Invasion. Curr Biol 2015; 25:3019-34. [PMID: 26549256 PMCID: PMC4683097 DOI: 10.1016/j.cub.2015.09.072] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/23/2015] [Accepted: 09/25/2015] [Indexed: 01/22/2023]
Abstract
Tumor progression to invasive carcinoma is associated with activation of SRC family kinase (SRC, YES, FYN) activity and loss of cellular cohesion. The hippo pathway-regulated cofactor YAP1 supports the tumorigenicity of RAS mutations but requires both inactivation of hippo signaling and YES-mediated phosphorylation of YAP1 for oncogenic activity. Exactly how SRC kinases are activated and hippo signaling is lost in sporadic human malignancies remains unknown. Here, we provide evidence that hippo-mediated inhibition of YAP1 is lost upon promoter methylation of the RAS effector and hippo kinase scaffold RASSF1A. We find that RASSF1A promoter methylation reduces YAP phospho-S127, which derepresses YAP1, and actively supports YAP1 activation by switching RASSF1 transcription to the independently transcribed RASSF1C isoform that promotes Tyr kinase activity. Using affinity proteomics, proximity ligation, and real-time molecular visualization, we find that RASSF1C targets SRC/YES to epithelial cell-cell junctions and promotes tyrosine phosphorylation of E-cadherin, β-catenin, and YAP1. RASSF1A restricts SRC activity, preventing motility, invasion, and tumorigenesis in vitro and in vivo, with epigenetic inactivation correlating with increased inhibitory pY527-SRC in breast tumors. These data imply that distinct RASSF1 isoforms have opposing functions, which provide a biomarker for YAP1 activation and explain correlations of RASSF1 methylation with advanced invasive disease in humans. The ablation of epithelial integrity together with subsequent YAP1 nuclear localization allows transcriptional activation of β-catenin/TBX-YAP/TEAD target genes, including Myc, and an invasive phenotype. These findings define gene transcript switching as a tumor suppressor mechanism under epigenetic control.
Collapse
Affiliation(s)
- Nikola Vlahov
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon Scrace
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Manuel Sarmiento Soto
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anna M Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Leanne Bradley
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Daniela Pankova
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Karen S Yee
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Francesca Buffa
- Applied Computational Genomics Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Colin R Goding
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Paul Timpson
- Faculty of Medicine, Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Nicola Sibson
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Eric O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
42
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
43
|
Phosphoregulation of the C. elegans cadherin-catenin complex. Biochem J 2015; 472:339-52. [PMID: 26443865 DOI: 10.1042/bj20150410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022]
Abstract
Adherens junctions play key roles in mediating cell-cell contacts during tissue development. In Caenorhabditis elegans embryos, the cadherin-catenin complex (CCC), composed of the classical cadherin HMR-1 and members of three catenin families, HMP-1, HMP-2 and JAC-1, is necessary for normal blastomere adhesion, gastrulation, ventral enclosure of the epidermis and embryo elongation. Disruption of CCC assembly or function results in embryonic lethality. Previous work suggests that components of the CCC are subject to phosphorylation. However, the identity of phosphorylated residues in CCC components and their contributions to CCC stability and function in a living organism remain speculative. Using mass spectrometry, we systematically identify phosphorylated residues in the essential CCC subunits HMR-1, HMP-1 and HMP-2 in vivo. We demonstrate that HMR-1/cadherin phosphorylation occurs on three sites within its β-catenin binding domain that each contributes to CCC assembly on lipid bilayers. In contrast, phosphorylation of HMP-2/β-catenin inhibits its association with HMR-1/cadherin in vitro, suggesting a role in CCC disassembly. Although HMP-1/α-catenin is also phosphorylated in vivo, phosphomimetic mutations do not affect its ability to associate with other CCC components or interact with actin in vitro. Collectively, our findings support a model in which distinct phosphorylation events contribute to rapid CCC assembly and disassembly, both of which are essential for morphogenetic rearrangements during development.
Collapse
|
44
|
Yao L, Zhao H, Tang H, Song J, Dong H, Zou F, Cai S. Phosphatidylinositol 3-Kinase Mediates β-Catenin Dysfunction of Airway Epithelium in a Toluene Diisocyanate-Induced Murine Asthma Model. Toxicol Sci 2015; 147:168-77. [PMID: 26089345 DOI: 10.1093/toxsci/kfv120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell-cell junctions are critical for the maintenance of cellular as well as tissue polarity and integrity. Yet the role of phosphatidylinositol 3-kinase (PI3K) in dysregulation of airway epithelial adherens junctions in toluene diisocyanate (TDI)-induced asthma has not been addressed. Male BALB/c mice were first dermally sensitized and then challenged with TDI by means of compressed air nebulization. The mice were treated intratracheally with PI3K inhibitor LY294002. Levels of phospho-Akt in airway epithelium and whole lung tissues were markedly increased in TDI group compared with control mice, which decreased after administration of LY294002. The dilated intercellular spaces of airway epithelium induced by TDI were partially recovered by LY294002. Both the protein expression and distribution of adherens junction proteins E-cadherin and β-catenin were altered by TDI. Treatment with LY294002 rescued the distribution of E-cadherin and β-catenin at cell-cell membranes, restored total β-catenin pool, but had no effect on protein level of E-cadherin. At the same time, LY294002 also inhibited phosphorylation of ERK, glycogen synthase kinase3β and tyrosine 654 of β-catenin induced by TDI. In summary, our results showed that the PI3K pathway mediates β-catenin dysregulation in a TDI-induced murine asthma model, which may be associated with increased tyrosine phosphorylation of β-catenin.
Collapse
Affiliation(s)
- Lihong Yao
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Haijin Zhao
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Haixiong Tang
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Jiafu Song
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Hangming Dong
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- *Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; and
| |
Collapse
|
45
|
Mao MG, Li X, Perálvarez-Marín A, Jiang JL, Jiang ZQ, Wen SH, Lü HQ. Transcriptomic analysis and biomarkers (Rag1 and Igμ) for probing the immune system development in Pacific cod, Gadus macrocephalus. FISH & SHELLFISH IMMUNOLOGY 2015; 44:622-632. [PMID: 25842179 DOI: 10.1016/j.fsi.2015.03.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/21/2015] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
Mortality (>90%) is a big concern in larval rearing facilities of Pacific cod, Gadus macrocephalus, limiting its culture presently still in the experimental stages. Understanding the immune system development of G. macrocephalus is crucial to optimize the aquaculture of this species, to improve the use of economic resources and to avoid abuse of antibiotics. For the transcriptome analysis, using an Illumina sequencing platform, 61,775,698 raw reads were acquired. After a de novo assembly, 77,561 unigenes were obtained. We have classified functionally these transcripts by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). 27 genes mainly related to hematopoietic or lymphoid organ development and somatic diversification of immune receptors have been reported for the first time in Pacific cod, and 14 Ig heavy chain (μ chain) locuses were assembled using Trinity. Based on our previous achievement, we have chosen Rag1 and Igμ as immune system development biomarkers. Full length cDNA of Rag1 and Igμ as biomarkers were obtained respectively using RACE PCR. Concerning Rag1, the deduced amino acid of Rag1 and protein immunodetection revealed a Rag1 isoform of 69 kDa, significantly different from other fish orthologs, such as Oncorhynchus mykiss (121 kDa). Phylogenetic analysis reveals a unique immune system for the Gadus genre, not exclusive for Atlantic cod, among vertebrates. Meanwhile, full length cDNA of Igμ included an ORF of 1710 bp and the deduced amino acid was composed of a leader peptide, a variable domain, CH1, CH2, Hinge, CH3, CH4 and C-terminus, which was in accordance with most teleost. Absolute quantification PCR revealed that significant expression of Rag1 appeared earlier than Igμ, 61 and 95 dph compared to 95 dph, respectively. Here we report the first transcriptomic analysis of G. macrocephalus as the starting point for genetic research on immune system development towards improving the Pacific cod aquaculture.
Collapse
Affiliation(s)
- Ming-Guang Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Xing Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Alejandro Perálvarez-Marín
- Centre d'Estudis en Biofísica, Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallés 08193, Spain
| | - Jie-Lan Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Zhi-Qiang Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Shi-Hui Wen
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Hui-Qian Lü
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
46
|
Monga SP. β-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis. Gastroenterology 2015; 148:1294-310. [PMID: 25747274 PMCID: PMC4494085 DOI: 10.1053/j.gastro.2015.02.056] [Citation(s) in RCA: 394] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
β-catenin (encoded by CTNNB1) is a subunit of the cell surface cadherin protein complex that acts as an intracellular signal transducer in the WNT signaling pathway; alterations in its activity have been associated with the development of hepatocellular carcinoma and other liver diseases. Other than WNT, additional signaling pathways also can converge at β-catenin. β-catenin also interacts with transcription factors such as T-cell factor, forkhead box protein O, and hypoxia inducible factor 1α to regulate the expression of target genes. We discuss the role of β-catenin in metabolic zonation of the adult liver. β-catenin also regulates the expression of genes that control metabolism of glucose, nutrients, and xenobiotics; alterations in its activity may contribute to the pathogenesis of nonalcoholic steatohepatitis. Alterations in β-catenin signaling may lead to activation of hepatic stellate cells, which is required for fibrosis. Many hepatic tumors such as hepatocellular adenomas, hepatocellular cancers, and hepatoblastomas have mutations in CTNNB1 that result in constitutive activation of β-catenin, so this molecule could be a therapeutic target. We discuss how alterations in β-catenin activity contribute to liver disease and how these might be used in diagnosis and prognosis, as well as in the development of therapeutics.
Collapse
Affiliation(s)
- Satdarshan Pal Monga
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
47
|
Cao HJ, Zheng LZ, Wang N, Wang LY, Li Y, Li D, Lai YX, Wang XL, Qin L. Src blockage by siRNA inhibits VEGF-induced vascular hyperpemeability and osteoclast activity - an in vitro mechanism study for preventing destructive repair of osteonecrosis. Bone 2015; 74:58-68. [PMID: 25554601 DOI: 10.1016/j.bone.2014.12.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/08/2014] [Accepted: 12/23/2014] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Destructive repair is the pathological feature of ONFH characterized with the elevated vascular permeability and persistent bone resorption, which is associated with higher VEGF expression, activated c-Src, and vascular leakage. Activated c-Src also participates in mediating endothelial permeability and osteoclasts activity. However, the molecular mechanism of the VEGF and c-Src contributing to the destructive repair process remains unknown. The purpose of this study is to delineate the role of VEGF and c-Src in triggering destructive repair of osteonecrosis in vitro, as well as to elucidate if VEGF mediating vascular permeability and osteoclastic bone resorption are Src dependent. METHODS We employed pharmacological VEGF to induce higher endothelial permeability and osteoclasts activity for simulating related pathological features of destructive repair in vitro. Src specific pp60(c-src)siRNA was used for determining the contribution of VEGF and Src to destructive repair. The primary endothelial cells and osteoclasts were treated with 50ng/ml VEGF and/or transfected with the pp60(c-src)siRNA, while equivalent PBS and non-targeting siRNA were treated in the control groups. RESULTS VEGF enhanced Src bioactivity through promoting dephosphorylation of Src at Y527 and phosphorylation of Src at Y416. Meanwhile, Src specific pp60(c-src)siRNA significantly reduced Src expression in both cells. VEGF destroyed the junctional integrity of endothelial cells resulting in higher endothelial permeability. However, Src blockade significantly relieved VEGF induced actin stress and inhibited caveolae and VVOs formation, meanwhile further stabilized the complex β-catenin/VE-cadherin/Flk-1 through decreasing phosphorylation of VE-cadherin, ultimately decreasing VEGF-mediating higher vascular permeability. In addition, VEGF promoted osteoclasts formation and function without affecting the adhesion activity and cytoskeleton. We further found that Src blockade significantly impaired cytoskeleton resulting in a lower adhesion activity through down-regulation of phosphorylation of Src, Pyk2 and Cbl, and ultimately inhibited osteoclasts formation and function. CONCLUSIONS These findings provide a new insight into VEGF and c-Src mode of reaction in triggering destructive repair of osteonecrosis and further indicate that VEGF mediating vascular permeability and osteoclasts activity are Src-dependent. Blockade of Src may have great potential as an effective therapy targeting destructive repair in osteonecrosis.
Collapse
Affiliation(s)
- Hui-Juan Cao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen, PR China.
| | - Li-Zhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | - Nan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen, PR China.
| | - Lin-Ying Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen, PR China; Nano Science and Technology Institute, The University of Science and Technology of China, Suzhou, PR China.
| | - Ye Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen, PR China.
| | - Dan Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen, PR China.
| | - Yu-Xiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen, PR China.
| | - Xin-Luan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen, PR China.
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Shenzhen Bioactive Materials Engineering Lab for Medicine, Shenzhen, PR China.
| |
Collapse
|
48
|
Abstract
Knowledge of the molecular events that contribute to prostate cancer progression has created opportunities to develop novel therapy strategies. It is now well established that c-Src, a non-receptor tyrosine kinase, regulates a complex signaling network that drives the development of castrate-resistance and bone metastases, events that signal the lethal phenotype of advanced disease. Preclinical studies have established a role for c-Src and Src Family Kinases (SFKs) in proliferation, angiogenesis, invasion and bone metabolism, thus implicating Src signaling in both epithelial and stromal mechanisms of disease progression. A number of small molecule inhibitors of SFK now exist, many of which have demonstrated efficacy in preclinical models and several that have been tested in patients with metastatic castrate-resistant prostate cancer. These agents have demonstrated provocative clinic activity, particularly in modulating the bone microenvironment in a therapeutically favorable manner. Here, we review the discovery and basic biology of c-Src and further discuss the role of SFK inhibitors in the treatment of advanced prostate cancer.
Collapse
|
49
|
Vitamin A, cancer treatment and prevention: the new role of cellular retinol binding proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:624627. [PMID: 25879031 PMCID: PMC4387950 DOI: 10.1155/2015/624627] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022]
Abstract
Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy.
Collapse
|
50
|
Wang W, Li F, Sun Y, Lei L, Zhou H, Lei T, Xia Y, Verkman AS, Yang B. Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling. FASEB J 2015; 29:1551-63. [PMID: 25573755 DOI: 10.1096/fj.14-260828] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/15/2014] [Indexed: 01/04/2023]
Abstract
Water channel aquaporin-1 (AQP1) is expressed at epithelial cell plasma membranes in renal proximal tubules and thin descending limb of Henle. Recently, AQP1 was reported to interact with β-catenin. Here we investigated the relationship between AQP1 and Wnt signaling in in vitro and in vivo models of autosomal dominant polycystic kidney disease (PKD). AQP1 overexpression decreased β-catenin and cyclinD1 expression, suggesting down-regulation of Wnt signaling, and coimmunoprecipitation showed AQP1 interaction with β-catenin, glycogen synthase kinase 3β, LRP6, and Axin1. AQP1 inhibited cyst development and promoted branching in matrix-grown MDCK cells. In embryonic kidney cultures, AQP1 deletion increased cyst development by up to ∼ 40%. Kidney size and cyst number were significantly greater in AQP1-null PKD mice than in AQP1-expressing PKD mice, with the difference mainly attributed to a greater number of proximal tubule cysts. Biochemical analysis revealed decreased β-catenin phosphorylation and increased β-catenin expression in AQP1-null PKD mice, suggesting enhanced Wnt signaling. These results implicate AQP1 as a novel determinant in renal cyst development that may involve inhibition of Wnt signaling by an AQP1-macromolecular signaling complex.
Collapse
Affiliation(s)
- Weiling Wang
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Fei Li
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Yi Sun
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Lei Lei
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Hong Zhou
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Tianluo Lei
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Yin Xia
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - A S Verkman
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| | - Baoxue Yang
- *Department of Pharmacology, School of Basic Medical Sciences, Peking University, and State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California USA
| |
Collapse
|