1
|
Sandoval L, Labarca M, Retamal C, Sánchez P, Larraín J, González A. Sonic hedgehog is basolaterally sorted from the TGN and transcytosed to the apical domain involving Dispatched-1 at Rab11-ARE. Front Cell Dev Biol 2022; 10:833175. [PMID: 36568977 PMCID: PMC9768590 DOI: 10.3389/fcell.2022.833175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hedgehog proteins (Hhs) secretion from apical and/or basolateral domains occurs in different epithelial cells impacting development and tissue homeostasis. Palmitoylation and cholesteroylation attach Hhs to membranes, and Dispatched-1 (Disp-1) promotes their release. How these lipidated proteins are handled by the complex secretory and endocytic pathways of polarized epithelial cells remains unknown. We show that polarized Madin-Darby canine kidney cells address newly synthesized sonic hedgehog (Shh) from the TGN to the basolateral cell surface and then to the apical domain through a transcytosis pathway that includes Rab11-apical recycling endosomes (Rab11-ARE). Both palmitoylation and cholesteroylation contribute to this sorting behavior, otherwise Shh lacking these lipid modifications is secreted unpolarized. Disp-1 mediates first basolateral secretion from the TGN and then transcytosis from Rab11-ARE. At the steady state, Shh predominates apically and can be basolaterally transcytosed. This Shh trafficking provides several steps for regulation and variation in different epithelia, subordinating the apical to the basolateral secretion.
Collapse
Affiliation(s)
- Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Paula Sánchez
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Alfonso González,
| |
Collapse
|
2
|
Ishimaru T. Enhancement of olfaction by femtomolar concentrations of zinc ions. Neurosci Lett 2022; 788:136837. [PMID: 35963478 DOI: 10.1016/j.neulet.2022.136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Zinc is recognized as an important element for olfaction. Zinc nanoparticles enhance olfaction in response to odors; however, the mechanisms underlying this action remain unknown. Herein, the effect of zinc on olfactory receptors was deduced using electro-olfactogram (EOG) responses recorded from the isolated olfactory mucosae of bullfrogs (Rana catesbeiana) following the administration or chelation of zinc ions. Menthone and n-amyl acetate were used as odorants, whereas forskolin (an adenylate cyclase activator) and cholera toxin (a Gαolf activator) were used as intracellular signal transduction activators. The EOG responses provoked by the odorants and cholera toxin were suppressed by dithizone-mediated zinc ion chelation, and the EOG responses were recovered by administering non-chelated zinc. However, the EOG response to forskolin was not suppressed by dithizone. In contrast, the addition of femtomolar concentrations of zinc ions enhanced the EOG responses. The above-mentioned effects on EOG responses were examined by changing the concentration of zinc ions but not zinc nanoparticles. The results of this study suggest that Gαolf alone or both olfactory receptors and Gαolf likely require zinc ions for their activation.
Collapse
Affiliation(s)
- Tadashi Ishimaru
- Department of Otorhinolaryngology, Hyotan-machi ENT Clinic, Hyotan-machi 2-13, Kanazawa 920-0845, Japan.
| |
Collapse
|
3
|
D'Souza RS, Lim JY, Turgut A, Servage K, Zhang J, Orth K, Sosale NG, Lazzara MJ, Allegood J, Casanova JE. Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex. eLife 2020; 9:54113. [PMID: 32234213 PMCID: PMC7159923 DOI: 10.7554/elife.54113] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Coordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here, we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane (PM) contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Jun Y Lim
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Alper Turgut
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Junmei Zhang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Nisha G Sosale
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, United States
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| |
Collapse
|
4
|
Tenorio MJ, Luchsinger C, Mardones GA. Protein kinase A activity is necessary for fission and fusion of Golgi to endoplasmic reticulum retrograde tubules. PLoS One 2015; 10:e0135260. [PMID: 26258546 PMCID: PMC4530959 DOI: 10.1371/journal.pone.0135260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity.
Collapse
Affiliation(s)
- María J. Tenorio
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
| | - Charlotte Luchsinger
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
5
|
Stenbeck G, Lawrence KM, Albert AP. Hormone-stimulated modulation of endocytic trafficking in osteoclasts. Front Endocrinol (Lausanne) 2012; 3:103. [PMID: 22936925 PMCID: PMC3424527 DOI: 10.3389/fendo.2012.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/05/2012] [Indexed: 11/30/2022] Open
Abstract
A precise control of vesicular trafficking is crucial not only for osteoclastic bone resorption, but also for the crosstalk between osteoclasts and osteoblasts, which regulates bone homeostasis. In addition to the release of growth factors and modulators, such as glutamate, flux through the intracellular trafficking routes could also provide the osteoclast with a monitoring function of its resorption activity. To establish the signaling pathways regulating trafficking events in resorbing osteoclasts, we used the bone conserving hormone calcitonin, which has the unique property of inducing osteoclast quiescence. Calcitonin acts through the calcitonin receptor and activates multiple signaling pathways. By monitoring trafficking of a fluorescent low molecular weight probe in mature, bone resorbing osteoclasts we show for the first time that calcitonin blocks endocytosis from the ruffled border by phospholipase C (PLC) activation. Furthermore, we identify a requirement for polyunsaturated fatty acids in endocytic trafficking in osteoclasts. Inhibition of PLC prior to calcitonin treatment restores endocytosis to 75% of untreated rates. This effect is independent of protein kinase C activation and can be mimicked by an increase in intracellular calcium. We thus define an essential role for intracellular calcium levels in the maintenance of endocytosis in osteoclasts.
Collapse
Affiliation(s)
- Gudrun Stenbeck
- Centre for Cell and Chromosome Biology, School of Health Science and Social Care, Brunel UniversityUxbridge, UK
- *Correspondence: Gudrun Stenbeck, Centre for Cell and Chromosome Biology, School of Health Science and Social Care, Heinz Wolff Building, Brunel University, Uxbridge UB8 3PH, UK. e-mail:
| | - Kevin M. Lawrence
- Pharmacology and Cell Physiology, Biomedical Sciences Research Centre, Division of Biomedical Sciences, St George’s, University of LondonLondon, UK
| | - Anthony P. Albert
- Pharmacology and Cell Physiology, Biomedical Sciences Research Centre, Division of Biomedical Sciences, St George’s, University of LondonLondon, UK
| |
Collapse
|
6
|
Mattaloni SM, Kolobova E, Favre C, Marinelli RA, Goldenring JR, Larocca MC. AKAP350 Is involved in the development of apical "canalicular" structures in hepatic cells HepG2. J Cell Physiol 2011; 227:160-71. [PMID: 21374596 DOI: 10.1002/jcp.22713] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepatocytes are epithelial cells whose apical poles constitute the bile canaliculi. The establishment and maintenance of canalicular poles is a finely regulated process that dictates the efficiency of primary bile secretion. Protein kinase A (PKA) modulates this process at different levels. AKAP350 is an A-kinase anchoring protein that scaffolds protein complexes involved in modulating the dynamic structures of the Golgi apparatus and microtubule cytoskeleton, facilitating microtubule nucleation at this organelle. In this study, we evaluated whether AKAP350 is involved in the development of bile canaliculi-like structures in hepatocyte derived HepG2 cells. We found that AKAP350 recruits PKA to the centrosomes and Golgi apparatus in HepG2 cells. De-localization of AKAP350 from these organelles led to reduced apical cell polarization. A decrease in AKAP350 expression inhibited the formation of canalicular structures and impaired F-actin organization at canalicular poles. Furthermore, loss of AKAP350 expression led to diminished polarized expression of the p-glycoprotein (MDR1/ABCB1) at the apical "canalicular" membrane. AKAP350 knock down effects on canalicular structures formation and actin organization could be mimicked by inhibition of Golgi microtubule nucleation by depletion of CLIP associated proteins (CLASPs). Our data reveal that AKAP350 participates in mechanisms which determine the development of canalicular structures as well as accurate canalicular expression of distinct proteins and actin organization, and provide evidence on the involvement of Golgi microtubule nucleation in hepatocyte apical polarization.
Collapse
Affiliation(s)
- Stella M Mattaloni
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
Flores-Benitez D, Rincon-Heredia R, Razgado LF, Larre I, Cereijido M, Contreras RG. Control of tight junctional sealing: roles of epidermal growth factor and prostaglandin E2. Am J Physiol Cell Physiol 2009; 297:C611-20. [PMID: 19570890 DOI: 10.1152/ajpcell.00622.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelia can adjust the permeability of the paracellular permeation route by regulating the degree of sealing of the tight junction. This is reflected by a transepithelial electrical resistance (TER) ranging from a few tenths to several thousand ohms times square centimeters, depending on the difference in composition between the fluid in the lumen and the interstitial fluid. Although teleologically sound, such correlation requires a physiological explanation. We have previously shown that urine extracts from different animal species increase the TER of Madin-Darby canine kidney (MDCK) monolayers and that these effects are mediated by epidermal growth factor (EGF) contained in the flowing intratubular fluid that eventually reaches the urine. This increase in TER is accompanied by an enhanced expression of claudin-4 (cln-4) and a decrement of cln-2. These changes are transient, peaking at approximately 16 h and returning to control values in approximately 24 h. In the present work we investigated how EGF provokes this transient response, and we found that the activation of extracellular-regulated kinases 1/2 (ERK1/2) by EGF is essential to increase TER and cln-4 content, but it does not appear to participate in cln-2 downregulation. On the other hand, prostaglandin synthesis, stimulated by EGF, functions as a negative feedback, turning off the signal initiated by EGF. Thus, PGE(2) blocks ERK1/2 by a mechanism that involves the G alpha(s) protein, adenylyl cyclase as well as protein kinase A in MDCK cells. In summary, the permeability of a given segment of the nephron depends on the expression of different claudin types, which may be modulated by EGF and prostaglandins.
Collapse
Affiliation(s)
- D Flores-Benitez
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
8
|
Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E. Regulation of aquaporin-2 trafficking. Handb Exp Pharmacol 2009:133-157. [PMID: 19096775 DOI: 10.1007/978-3-540-79885-9_6] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Principal cells lining renal collecting ducts control the fine-tuning of body water homeostasis by regulating water reabsorption through the water channels aquaporin-2 (AQP2), aquaporin-3 (AQP3), and aquaporin-4 (AQP4). While the localization of AQP2 is subject to regulation by arginine-vasopressin (AVP), AQP3 and AQP4 are constitutively expressed in the basolateral plasma membrane. AVP adjusts the amount of AQP2 in the plasma membrane by triggering its redistribution from intracellular vesicles into the plasma membrane. This permits water entry into the cells and water exit through AQP3 and AQP4. The translocation of AQP2 is initiated by an increase in cAMP following V2R activation through AVP. The AVP-induced rise in cAMP activates protein kinase A (PKA), which in turn phosphorylates AQP2, and thereby triggers the redistribution of AQP2. Several proteins participating in the control of cAMP-dependent AQP2 trafficking have been identified; for example, A kinase anchoring proteins (AKAPs) tethering PKA to cellular compartments; phosphodiesterases (PDEs) regulating the local cAMP level; cytoskeletal components such as F-actin and microtubules; small GTPases of the Rho family controlling cytoskeletal dynamics; motor proteins transporting AQP2-bearing vesicles to and from the plasma membrane for exocytic insertion and endocytic retrieval; SNAREs inducing membrane fusions, hsc70, a chaperone, important for endocytic retrieval. In addition, cAMP-independent mechanisms of translocation mainly involving the F-actin cytoskeleton have been uncovered. Defects of AQP2 trafficking cause diseases such as nephrogenic diabetes insipidus (NDI), a disorder characterized by a massive loss of hypoosmotic urine.This review summarizes recent data elucidating molecular mechanisms underlying the trafficking of AQP2. In particular, we focus on proteins involved in the regulation of trafficking, and physiological and pathophysiological stimuli determining the cellular localization of AQP2. The identification of proteins and protein-protein interactions may lead to the development of drugs targeting AQP2 trafficking. Such drugs may be suitable for the treatment of diseases associated with dysregulation of body water homeostasis, including NDI or cardiovascular diseases (e.g., chronic heart failure) where the AVP level is elevated, inducing excessive water retention.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, 13125, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Wojtal KA, Hoekstra D, van Ijzendoorn SCD. cAMP-dependent protein kinase A and the dynamics of epithelial cell surface domains: moving membranes to keep in shape. Bioessays 2008; 30:146-55. [PMID: 18200529 DOI: 10.1002/bies.20705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A (PKA) are evolutionary conserved molecules with a well-established position in the complex network of signal transduction pathways. cAMP/PKA-mediated signaling pathways are implicated in many biological processes that cooperate in organ development including the motility, survival, proliferation and differentiation of epithelial cells. Cell surface polarity, here defined as the anisotropic organisation of cellular membranes, is a critical parameter for most of these processes. Changes in the activity of cAMP/PKA elicit a variety of effects on intracellular membrane dynamics, including membrane sorting and trafficking. One of the most intriguing aspects of cAMP/PKA signaling is its evolutionary conserved abundance on the one hand and its precise spatial-temporal actions on the other. Here, we review recent developments with regard to the role of cAMP/PKA in the regulation of intracellular membrane trafficking in relation to the dynamics of epithelial surface domains.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
10
|
Abstract
BRAG2 is a guanine nucleotide exchange factor for the GTPase Arf6 that cycles between the cytoplasm and nucleus in a CRM1/exportin1-dependent manner. Despite its presence in the nucleus, nuclear functions have not previously been described. Here, we show that depletion of endogenous BRAG2 by RNAi leads to an increased number of Cajal bodies (CBs), and altered structure of nucleoli, as indicated by less focal fibrillarin staining. This result was surprising given that nuclear BRAG2 is diffusely distributed throughout the nucleoplasm and is not concentrated within nucleoli at steady state. However, we found that ectopic expression of the nuclear GTPase PIKE/AGAP2 causes both BRAG2 and the CB marker coilin to accumulate in nucleoli. Neither the GTPase activity of PIKE nor the nucleotide exchange activity of BRAG2 is required for this nucleolar concentration. Increased levels of exogenous BRAG2 in nucleoli result in a redistribution of fibrillarin to the nucleolar periphery, supporting a role for BRAG2 in regulating nucleolar architecture. These observations suggest that, in addition to its role in endocytic regulation at the plasma membrane, BRAG2 also functions within the nucleus.
Collapse
Affiliation(s)
- Jillian L Dunphy
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
11
|
Dunphy JL, Moravec R, Ly K, Lasell TK, Melancon P, Casanova JE. The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of beta1 integrins. Curr Biol 2006; 16:315-20. [PMID: 16461286 PMCID: PMC3600433 DOI: 10.1016/j.cub.2005.12.032] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/16/2005] [Accepted: 12/19/2005] [Indexed: 01/03/2023]
Abstract
The small GTPase Arf6 has been shown to regulate the post-endocytic trafficking of a subset of membrane proteins, including beta1 integrins, and inhibition of Arf6 function impairs both cell adhesion and motility. The activity of Arf GTPases is regulated by a large family of guanine nucleotide exchange factors (GEFs). Arf-GEP100/BRAG2 is a GEF with reported specificity for Arf6 in vitro, but it is otherwise poorly characterized. Here we report that BRAG2 exists in two ubiquitously expressed isoforms, which we call BRAG2a and BRAG2b, both of which can activate Arf6 in vivo. Depletion of endogenous BRAG2 by siRNA leads to dramatic effects in the cell periphery; one such effect is an accumulation of beta1 integrin on the cell surface and a corresponding enhancement of cell attachment and spreading on fibronectin-coated substrates. In contrast, depletion of Arf6 leads to intracellular accumulation of beta1 integrin and reduced adhesion and spreading. These findings suggest that Arf6 regulates both endocytosis and recycling of beta1 integrins and that BRAG2 functions selectively to activate Arf6 during integrin internalization.
Collapse
Affiliation(s)
- Jillian L. Dunphy
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908
| | - Radim Moravec
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908
| | - Kim Ly
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908
| | - Troy K. Lasell
- Department of Cell Biology, University of Alberta, 5-35 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | - Paul Melancon
- Department of Cell Biology, University of Alberta, 5-35 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | - James E. Casanova
- Department of Cell Biology, University of Virginia Health Sciences Center, Box 800732, Charlottesville, Virginia 22908
- Correspondence:
| |
Collapse
|
12
|
Köhler K, Zahraoui A. Tight junction: a co-ordinator of cell signalling and membrane trafficking. Biol Cell 2005; 97:659-65. [PMID: 16033326 DOI: 10.1042/bc20040147] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.
Collapse
Affiliation(s)
- Katja Köhler
- Laboratory of Morphogenesis and Cell Signalling, UMR144 CNRS, Institut Curie, Paris, France
| | | |
Collapse
|
13
|
Shen SS, Steinhardt RA. The mechanisms of cell membrane resealing in rabbit corneal epithelial cells. Curr Eye Res 2005; 30:543-54. [PMID: 16020288 DOI: 10.1080/02713680590968574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine membrane repair mechanisms in rabbit corneal epithelial (RCE) cells. METHODS Microneedle puncture and fluorescent dye loss were used to wound membranes and assay resealing, respectively. Different repair mechanisms were detected pharmacologically and with antisense oligonucleotides. RESULTS The RCE cells rapidly reseal plasma membranes by calcium-dependent exocytotic mechanisms that exhibit both facilitated and potentiated responses to multiple wounding. The facilitated response was inhibited by specific inhibitors of protein kinase C (PKC) and brefeldin A, and the potentiated response was blocked by inhibitors of cAMP-dependent protein kinase (PKA). Reduction of myosin IIA inhibited the facilitated response, and reduction of IIB inhibited the initial resealing. CONCLUSIONS RCE cells rapidly repair plasma membrane disruptions. At a second wound at the same site, PKC stimulated vesicle formation from the Golgi apparatus, resulting in more rapid membrane resealing for a facilitated response. The RCE cell also contains a PKA-dependent global potentiation of membrane resealing.
Collapse
Affiliation(s)
- Sheldon S Shen
- Department of Genetics, Development and Cellular Biology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
14
|
Carpenter GH, Proctor GB, Garrett JR. Preganglionic parasympathectomy decreases salivary SIgA secretion rates from the rat submandibular gland. J Neuroimmunol 2005; 160:4-11. [PMID: 15710452 DOI: 10.1016/j.jneuroim.2004.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/20/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
Immunoglobulin A (IgA) is transported into saliva by salivary cells expressing the polymeric immunoglobulin receptor (pIgR). In rat salivary glands, autonomic nerves stimulate this process. To examine how nerves affect pIgR-mediated IgA secretion, the chorda-lingual nerve was sectioned. One week after preganglionic parasympathectomy, both the stimulated and unstimulated rates of salivary IgA secretion were reduced, despite similar glandular amounts of IgA. Biochemical analysis of cells from parasympathectomised and control glands indicated reduced membrane expression of pIgR. It appears the removal of long-term parasympathetic input has affected the routing of pIgR within salivary cells and reduced the SIgA transport into saliva.
Collapse
Affiliation(s)
- G H Carpenter
- Salivary Research Group, Division Oral Medicine, Guy's King's and St Thomas' School of Dentistry, United Kingdom.
| | | | | |
Collapse
|
15
|
Burgos PV, Klattenhoff C, de la Fuente E, Rigotti A, González A. Cholesterol depletion induces PKA-mediated basolateral-to-apical transcytosis of the scavenger receptor class B type I in MDCK cells. Proc Natl Acad Sci U S A 2004; 101:3845-50. [PMID: 15007173 PMCID: PMC374332 DOI: 10.1073/pnas.0400295101] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cholesterol-based membrane microdomains, or lipid rafts, are believed to play important, yet poorly defined, roles in protein trafficking and signal transduction. In polarized epithelial cells, the current view is that rafts are involved in apical but not in basolateral protein transport from the trans-Golgi network (TGN). We report here that cholesterol is required in a post-TGN mechanism of basolateral regionalization. Permanently transfected Madin-Darby canine kidney cells segregated the caveolae/raft-associated high-density lipoprotein scavenger receptor class B type I (SR-BI) predominantly to the basolateral domain where it was constitutively internalized and recycled basolaterally. Acute cholesterol depletion did not significantly alter SR-BI internalization, implying a cholesterol depletion-insensitive endocytic process but instead induced its transcytosis through a protein kinase A (PKA)- and microtubule-dependent mechanism. Forskolin also elicited SR-BI transcytosis. The basolateral distribution of endogenous epidermal growth factor receptor remained unaffected. Strikingly, cholesterol depletion induced PKA activity without increasing the cAMP levels. Thus, our results are consistent with a scenario in which cholesterol-based rafts promote internalization and basolateral recycling of internalized SR-BI whereas a PKA pool sensitive to cholesterol depletion mediates SR-BI transcytosis. Regulated transcytosis of SR-BI may provide an additional mechanism to control cholesterol homeostasis. These results disclose relationships between cholesterol-based rafts and PKA activity operating in a post-TGN mechanism of regulated apical-to-basolateral cell surface protein distribution.
Collapse
Affiliation(s)
- Patricia V Burgos
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 6510260, Chile
| | | | | | | | | |
Collapse
|
16
|
Kusner L, Carlin C. Potential role for a novel AP180-related protein during endocytosis in MDCK cells. Am J Physiol Cell Physiol 2003; 285:C995-1008. [PMID: 14532018 DOI: 10.1152/ajpcell.00079.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clathrin assembly protein, AP180, was originally identified as a brain-specific protein localized to the presynaptic junction. AP180 acts to limit vesicle size and maintain a pool of releasable synaptic vesicles during rapid recycling. In this study, we show that polarized epithelial Madin-Darby canine kidney (MDCK) cells express two AP180-related proteins: the ubiquitously expressed 62-kDa clathrin assembly lymphoid myeloid leukemia (CALM, AP180-2) protein and a novel high-molecular-weight homolog that we have named AP180-3. Sequence analysis of AP180-3 expressed in MDCK cells shows high homology to AP180 from rat brain. AP180-3 contains conserved motifs found in brain-specific AP180, including the epsin NH2-terminal homology (ENTH) domain, the binding site for the α-subunit of AP-2, and DLL repeats. Our studies show that AP180-3 from MDCK cells forms complexes with AP-2 and clathrin and that membrane recruitment of these complexes is modulated by phosphorylation. We demonstrate by immunohistochemistry that AP180-3 is localized to cytoplasmic vesicles in MDCK cells and is also present in tubule epithelial cells from mouse kidney. We observed by immunodetection that a high-molecular-weight AP180-related protein is expressed in numerous cells in addition to MDCK cells.
Collapse
Affiliation(s)
- Linda Kusner
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
17
|
Sprong H, Degroote S, Nilsson T, Kawakita M, Ishida N, van der Sluijs P, van Meer G. Association of the Golgi UDP-galactose transporter with UDP-galactose:ceramide galactosyltransferase allows UDP-galactose import in the endoplasmic reticulum. Mol Biol Cell 2003; 14:3482-93. [PMID: 12925779 PMCID: PMC181583 DOI: 10.1091/mbc.e03-03-0130] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose:ceramide galactosyltransferase. It is not known how UDP-galactose is transported from the cytosol into the endoplasmic reticulum. We transfected ceramide galactosyltransferase cDNA into CHOlec8 cells, which have a defective UGT and no endogenous ceramide galactosyltransferase. Cotransfection with the human UGT1 greatly stimulated synthesis of lactosylceramide in the Golgi and of galactosylceramide in the endoplasmic reticulum. UDP-galactose was directly imported into the endoplasmic reticulum because transfection with UGT significantly enhanced synthesis of galactosylceramide in endoplasmic reticulum membranes. Subcellular fractionation and double label immunofluorescence microscopy showed that a sizeable fraction of ectopically expressed UGT and ceramide galactosyltransferase resided in the endoplasmic reticulum of CHOlec8 cells. The same was observed when UGT was expressed in human intestinal cells that have an endogenous ceramide galactosyltransferase. In contrast, in CHOlec8 singly transfected with UGT 1, the transporter localized exclusively to the Golgi complex. UGT and ceramide galactosyltransferase were entirely detergent soluble and form a complex because they could be coimmunoprecipitated. We conclude that the ceramide galactosyltransferase ensures a supply of UDP-galactose in the endoplasmic reticulum lumen by retaining UGT in a molecular complex.
Collapse
Affiliation(s)
- Hein Sprong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Du Z, Patel TB. Albumin: a Galpha(s)-specific guanine nucleotide dissociation inhibitor and GTPase activating protein. Arch Biochem Biophys 2003; 415:221-8. [PMID: 12831845 DOI: 10.1016/s0003-9861(03)00263-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heterotrimeric GTP binding protein (G protein)-mediated signal transduction events are regulated by their effectors and regulators of G protein signaling (RGS) protein family. The latter proteins function as GTPase activating proteins (GAPs) for G protein alpha subunits and terminate signaling events. In a search for proteins that modulate the activity of the stimulatory G protein of adenylyl cyclase (Galpha(s)), we found that bovine serum albumin (BSA) inhibits the steady-state GTPase activity of Galpha(s), but not the inhibitory G protein (Galpha(i1)). This effect of BSA is mediated by decreasing the rate of GDP dissociation from Galpha(s) and decreasing the rate of GTP binding. Thus, BSA functions as a guanine nucleotide dissociation inhibitor for Galpha(s). Moreover, BSA also increased the intrinsic GTPase activity of Galpha(s), but not Galpha(i1), demonstrating that BSA functions as a Galpha(s)-specific GAP. Using mutants of Galpha(s) (Q227L, Q227N, R201C, and R201K), we demonstrate that BSA mediates its GAP function by modulating the ability of R201 to increase GTPase activity. Moreover, using wild-type and Q227N forms of Galpha(s), our studies demonstrate that the GDI function of BSA decreases the ability of Galpha(s) to stimulate adenylyl cyclase. These findings assign a novel function to BSA as a regulator of G protein signaling.
Collapse
Affiliation(s)
- Ziyun Du
- Department of Pharmacology, University of Tennessee, The Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
19
|
Wallrabe H, Elangovan M, Burchard A, Periasamy A, Barroso M. Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes. Biophys J 2003; 85:559-71. [PMID: 12829510 PMCID: PMC1303111 DOI: 10.1016/s0006-3495(03)74500-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The dynamics of protein distribution in endocytic membranes are relevant for many cellular processes, such as protein sorting, organelle and membrane microdomain biogenesis, protein-protein interactions, receptor function, and signal transduction. We have developed an assay based on Fluorescence Resonance Energy Microscopy (FRET) and novel mathematical models to differentiate between clustered and random distributions of fluorophore-bound molecules on the basis of the dependence of FRET intensity on donor and acceptor concentrations. The models are tailored to extended clusters, which may be tightly packed, and account for geometric exclusion effects between membrane-bound proteins. Two main criteria are used to show that labeled polymeric IgA-ligand-receptor complexes are organized in clusters within apical endocytic membranes of polarized MDCK cells: 1), energy transfer efficiency (E%) levels are independent of acceptor levels; and 2), with increasing unquenched donor: acceptor ratio, E% decreases. A quantitative analysis of cluster density indicates that a donor-labeled ligand-receptor complex should have 2.5-3 labeled complexes in its immediate neighborhood and that clustering may occur at a limited number of discrete membrane locations and/or require a specific protein that can be saturated. Here, we present a new sensitive FRET-based method to quantify the co-localization and distribution of ligand-receptor complexes in apical endocytic membranes of polarized cells.
Collapse
Affiliation(s)
- Horst Wallrabe
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
21
|
Birkeli KA, Llorente A, Torgersen ML, Keryer G, Taskén K, Sandvig K. Endosome-to-Golgi transport is regulated by protein kinase A type II alpha. J Biol Chem 2003; 278:1991-7. [PMID: 12419802 DOI: 10.1074/jbc.m209982200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of RII alpha-deficient B lymphoid cells and stable transfectants expressing the type II alpha regulatory subunit (RII alpha) of cAMP-dependent protein kinase (PKA), which is targeted to the Golgi-centrosomal area, reveal that the presence of a Golgi-associated pool of PKA type II alpha mediates a change in intracellular transport of the plant toxin ricin. The transport of ricin from endosomes to the Golgi apparatus, measured as sulfation of a modified ricin (ricin sulf-1), increased in RII alpha-expressing cells when PKA was activated. However, not only endosome-to-Golgi transport, but also retrograde ricin transport to the endoplasmic reticulum (ER), measured as sulfation and N-glycosylation of another modified ricin (ricin sulf-2), seemed to be increased in cells expressing RII alpha in the presence of a cAMP analog, 8-(4-chlorophenylthio)-cAMP. Thus, PKA type II alpha seems to be involved in both endosome-to-Golgi and Golgi-to-ER transport. Because ricin, after being retrogradely transported to the ER, is translocated to the cytosol, where it inhibits protein synthesis, we also investigated the influence of RII alpha expression on ricin toxicity. In agreement with the other data obtained, 8-(4-chlorophenylthio)-cAMP and RII alpha were found to sensitize cells to ricin, indicating an increased transport of ricin to the cytosol. In conclusion, our results demonstrate that transport of ricin from endosomes to the Golgi apparatus and further to the ER is regulated by PKA type II alpha isozyme.
Collapse
Affiliation(s)
- Kim Are Birkeli
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
22
|
Hui EKW, Nayak DP. Role of G protein and protein kinase signalling in influenza virus budding in MDCK cells. J Gen Virol 2002; 83:3055-3066. [PMID: 12466482 DOI: 10.1099/0022-1317-83-12-3055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, we have shown that influenza virus budding in MDCK cells is regulated by metabolic inhibitors of ATP and ATP analogues (Hui & Nayak, Virology 290, 329-341, 2001 ). In this report, we demonstrate that G protein signalling stimulators such as sodium fluoride, aluminium fluoride, compound 48/80 and mastoparan stimulated the budding and release of influenza virus. In contrast, G protein signalling blockers such as suramin and NF023 inhibited virus budding. Furthermore, in filter-grown lysophosphatidylcholine-permeabilized virus-infected MDCK cells, membrane-impermeable GTP analogues, such as guanosine 5'-O-(3-thiotriphosphate) or 5'-guanylylimidodiphosphate caused an increase in virus budding, which could be competitively inhibited by adding an excess of GTP. These results suggest that the G protein is involved in the regulation of influenza virus budding. We also determined the role of different protein kinases in influenza virus budding. We observed that specific inhibitors or activators of protein kinase A (H-89 and 8-bromoadenosine 3',5'-cyclic monophosphate) or of protein kinase C (bisindolylmaleimide I and Ro-32-0432) or of phosphatidylinositol 3-kinase (LY294002 and wortmannin) did not affect influenza virus budding. However, the casein kinase 2 (CK2) inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole decreased virus budding. We further observed an increase in the CK2 activity during the replication cycle of influenza virus, although Western blot analysis did not reveal any increase in the amount of CK2 protein in virus-infected cells. Also, in digitonin-permeabilized MDCK cells, the introduction of CK2 substrate peptides caused a down-regulation of virus budding. These results suggest that CK2 activity also regulates influenza virus budding.
Collapse
Affiliation(s)
- Eric Ka-Wai Hui
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center (JCCC), UCLA School of Medicine, Los Angeles, CA 90095-1747, USA1
| | - Debi P Nayak
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center (JCCC), UCLA School of Medicine, Los Angeles, CA 90095-1747, USA1
| |
Collapse
|
23
|
Abstract
IgA, IgG and IgM are transported across epithelial cells in a receptor-mediated process known as transcytosis. In addition to neutralizing pathogens in the lumen of the gastrointestinal, respiratory and urogenital tracts, these antibody-receptor complexes are now known to mediate intracellular neutralization of pathogens and might also be important in immune activation and tolerance. Recent studies on the intracellular transport pathways of antibody-receptor complexes and antibody-stimulated receptor-mediated transcytosis are providing new insight into the nature and regulation of endocytic pathways.
Collapse
Affiliation(s)
- Raul Rojas
- Laboratory of Epithelial Cell Biology, Renal Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
24
|
Abstract
All cells experience and respond to mechanical stimuli, such as changes in plasma membrane tension, shear stress, hydrostatic pressure, and compression. This review is an examination of the changes in membrane traffic that occur in response to mechanical forces. The plasma membrane has an associated tension that modulates both exocytosis and endocytosis. As membrane tension increases, exocytosis is stimulated, which acts to decrease membrane tension. In contrast, increased membrane tension slows endocytosis, whereas decreased tension stimulates internalization. In most cases, secretion is stimulated by external mechanical stimuli. However, in some cells mechanical forces block secretion. External stimuli also enhance membrane and fluid endocytosis in several cell types. Transduction of mechanical stimuli into changes in exocytosis/endocytosis may involve the cytoskeleton, stretch-activated channels, integrins, phospholipases, tyrosine kinases, and cAMP.
Collapse
Affiliation(s)
- Gerard Apodaca
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
25
|
Kato T, Kimata M, Tsuji T, Shichijo M, Murata M, Miura T, Serizawa I, Inagaki N, Nagai H. Role of protein kinase A in the inhibition of human mast cell histamine release by β-adrenergic receptor agonists. Allergol Int 2002. [DOI: 10.1046/j.1440-1592.2002.00265.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Sprong H, Degroote S, Claessens T, van Drunen J, Oorschot V, Westerink BH, Hirabayashi Y, Klumperman J, van der Sluijs P, van Meer G. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol 2001; 155:369-80. [PMID: 11673476 PMCID: PMC2150844 DOI: 10.1083/jcb.200106104] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although glycosphingolipids are ubiquitously expressed and essential for multicellular organisms, surprisingly little is known about their intracellular functions. To explore the role of glycosphingolipids in membrane transport, we used the glycosphingolipid-deficient GM95 mouse melanoma cell line. We found that GM95 cells do not make melanin pigment because tyrosinase, the first and rate-limiting enzyme in melanin synthesis, was not targeted to melanosomes but accumulated in the Golgi complex. However, tyrosinase-related protein 1 still reached melanosomal structures via the plasma membrane instead of the direct pathway from the Golgi. Delivery of lysosomal enzymes from the Golgi complex to endosomes was normal, suggesting that this pathway is not affected by the absence of glycosphingolipids. Loss of pigmentation was due to tyrosinase mislocalization, since transfection of tyrosinase with an extended transmembrane domain, which bypassed the transport block, restored pigmentation. Transfection of ceramide glucosyltransferase or addition of glucosylsphingosine restored tyrosinase transport and pigmentation. We conclude that protein transport from Golgi to melanosomes via the direct pathway requires glycosphingolipids.
Collapse
Affiliation(s)
- H Sprong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1100 DE, Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rojas R, Ruiz WG, Leung SM, Jou TS, Apodaca G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin-Darby canine kidney cells. Mol Biol Cell 2001; 12:2257-74. [PMID: 11514615 PMCID: PMC58593 DOI: 10.1091/mbc.12.8.2257] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.
Collapse
Affiliation(s)
- R Rojas
- Renal-Electrolyte Division of the Department of Medicine, Laboratory of Epithelial Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
28
|
Gokay KE, Young RS, Wilson JM. Cytoplasmic signals mediate apical early endosomal targeting of endotubin in MDCK cells. Traffic 2001; 2:487-500. [PMID: 11422942 DOI: 10.1034/j.1600-0854.2001.20706.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endotubin is an integral membrane protein that targets into apical endosomes in polarized epithelial cells. Although the role of cytoplasmic targeting signals as mediators of basolateral targeting and endocytosis is well established, it has been suggested that apical targeting requires either N-glycosylation of the ectoplasmic domains or partitioning of macromolecules into glycolipid-rich rafts. However, we have previously shown that the cytoplasmic portion of endotubin possesses signals that are necessary for its proper sorting into the apical early endosomes. To further define the targeting signals involved in this apically directed event, as well as to determine if the cytoplasmic domain was sufficient to mediate apical endosomal targeting, we generated a panel of endotubin and Tac-antigen chimeras and expressed them in Madin-Darby canine kidney cells. We show that both the apically targeting wild-type endotubin and a basolaterally targeted cytoplasmic domain mutant do not associate with rafts and are TX-100 soluble. The cytoplasmic tail of endotubin is sufficient for apical endosomal targeting, as chimeras with the endotubin cytoplasmic domain and Tac transmembrane and extracellular domains are efficiently targeted to the apical endosomal compartment. Furthermore, we show that overexpression of these chimeras results in their missorting to the basolateral membrane, indicating that the apical sorting process is a saturable event. These results show that cells contain machinery in both the biosynthetic and endosomal compartments that recognize cytoplasmic apical sorting signals.
Collapse
Affiliation(s)
- K E Gokay
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
29
|
Wolfgang WJ, Hoskote A, Roberts IJ, Jackson S, Forte M. Genetic analysis of the Drosophila Gs(alpha) gene. Genetics 2001; 158:1189-201. [PMID: 11454767 PMCID: PMC1461724 DOI: 10.1093/genetics/158.3.1189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One of the best understood signal transduction pathways activated by receptors containing seven transmembrane domains involves activation of heterotrimeric G-protein complexes containing Gs(alpha), the subsequent stimulation of adenylyl cyclase, production of cAMP, activation of protein kinase A (PKA), and the phosphorylation of substrates that control a wide variety of cellular responses. Here, we report the identification of "loss-of-function" mutations in the Drosophila Gs(alpha) gene (dgs). Seven mutants have been identified that are either complemented by transgenes representing the wild-type dgs gene or contain nucleotide sequence changes resulting in the production of altered Gs(alpha) protein. Examination of mutant alleles representing loss-of-Gs(alpha) function indicates that the phenotypes generated do not mimic those created by mutational elimination of PKA. These results are consistent with the conclusion reached in previous studies that activation of PKA, at least in these developmental contexts, does not depend on receptor-mediated increases in intracellular cAMP, in contrast to the predictions of models developed primarily on the basis of studies in cultured cells.
Collapse
Affiliation(s)
- W J Wolfgang
- Vollum Institute, L474 Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
30
|
Huang AY, Castle AM, Hinton BT, Castle JD. Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J Biol Chem 2001; 276:22296-306. [PMID: 11301325 DOI: 10.1074/jbc.m100211200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resting secretion of salivary proteins by the parotid gland is sustained in situ between periods of eating by parasympathetic stimulation and has been assumed to involve low level granule exocytosis. By using parotid lobules from ad libitum fed rats stimulated with low doses of carbachol as an in vitro analog of resting secretion, we deduce from the composition of discharged proteins that secretion does not involve granule exocytosis. Rather, it derives from two other acinar export routes, the constitutive-like (stimulus-independent) pathway and the minor regulated pathway, which responds to low doses of cholinergic or beta-adrenergic agonists (Castle, J. D., and Castle, A. M. (1996) J. Cell Sci. 109, 2591-2599). The protein composition collected in vitro mimics that collected from cannulated ducts of glands given low level stimulation in situ. Analysis of secretory trafficking along the two pathways of resting secretion has indicated that the constitutive-like pathway may pass through endosomes after diverging from the minor regulated pathway at a brefeldin A-sensitive branch point. The branch point is deduced to be distal to a common vesicular budding event by which both pathways originate from immature granules. Detectable perturbation of neither pathway in lobules was observed by wortmannin addition, and neither serves as a significant export route for lysosomal procathepsin B. These findings show that parotid acinar cells use low capacity, high sensitivity secretory pathways for resting secretion and reserve granule exocytosis, a high capacity, low sensitivity pathway, for massive salivary protein export during meals. An analogous strategy may be employed in other secretory cell types.
Collapse
Affiliation(s)
- A Y Huang
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
31
|
Yu RK, Bieberich E. Regulation of glycosyltransferases in ganglioside biosynthesis by phosphorylation and dephosphorylation. Mol Cell Endocrinol 2001; 177:19-24. [PMID: 11377816 DOI: 10.1016/s0303-7207(01)00457-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The biosynthesis of gangliosides is known to be under strict metabolic control. One level of control is through post-translational modification of the glycosyltransferases responsible for their biosynthesis. Thus, the activities of several sialyltransferases have been demonstrated to be downregulated by the action of protein kinase C (PKC) in cell-free and intact cell systems. This modulatory effect can be reversed at least in part by the action of membrane-bound phosphatases. In contrast, the activity of N-acetylgalactosaminyltransferase can be upregulated by the action of protein kinase A (PKA) in cultured cells. In addition, studies from several laboratories have demonstrated that phosphorylation of certain glycosyltransferases can affect their intracellular processing and translocation. Thus, modulation of glycosyltransferases by phosphorylation and dephosphorylation should represent an important regulatory mechanism for ganglioside biosynthesis.
Collapse
Affiliation(s)
- R K Yu
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
32
|
Hansen SH, Zegers MM, Woodrow M, Rodriguez-Viciana P, Chardin P, Mostov KE, McMahon M. Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf-MEK-extracellular signal-regulated kinase pathway. Mol Cell Biol 2000; 20:9364-75. [PMID: 11094087 PMCID: PMC102193 DOI: 10.1128/mcb.20.24.9364-9375.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2000] [Accepted: 09/20/2000] [Indexed: 11/20/2022] Open
Abstract
Madin-Darby canine kidney (MDCK) epithelial cells transformed by oncogenic Ras and Raf exhibit cell multilayering and alterations in the actin cytoskeleton. The changes in the actin cytoskeleton comprise a loss of actin stress fibers and enhanced cortical actin. Using MDCK cells expressing a conditionally active form of Raf, we have explored the molecular mechanisms that underlie these observations. Raf activation elicited a robust increase in Rac1 activity consistent with the observed increase in cortical actin. Loss of actin stress fibers is indicative of attenuated Rho function, but no change in Rho-GTP levels was detected following Raf activation. However, the loss of actin stress fibers in Raf-transformed cells was preceded by the induced expression of Rnd3, an endogenous inhibitor of Rho protein function. Expression of Rnd3 alone at levels equivalent to those observed following Raf transformation led to a substantial loss of actin stress fibers. Moreover, cells expressing activated RhoA failed to multilayer in response to Raf. Pharmacological inhibition of MEK activation prevented all of the biological and biochemical changes described above. Consequently, the data are consistent with a role for induced Rnd3 expression downstream of the Raf-MEK-extracellular signal-regulated kinase pathway in epithelial oncogenesis.
Collapse
Affiliation(s)
- S H Hansen
- Cancer Research Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco Cancer Center, San Francisco, California 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Van Dyke RW. Effect of cholera toxin and cyclic adenosine monophosphate on fluid-phase endocytosis, distribution, and trafficking of endosomes in rat liver. Hepatology 2000; 32:1357-69. [PMID: 11093743 DOI: 10.1053/jhep.2000.19790] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In prior studies, we showed that cholera (CTX) and pertussis toxins (PTX) increase rat liver endosome acidification. This study was performed to characterize the effects of these toxins and cyclic adenosine monophosphate (cAMP) on endosome ion transport, fluid-phase endocytosis (FPE), and endosome trafficking in liver. In control liver, more mature populations of endosomes acidified progressively more slowly, but both toxins and cAMP caused retention of an early endosome acidification profile in maturing endosomes. CTX caused a density shift in endosomes, and all agents increased net FPE at time points from 5 to 60 minutes. By confocal microscopy, fluorescent dextrans first appeared in small vesicles at the hepatocyte sinusoidal membrane and trafficked rapidly to the pericanalicular area, near lysosomes and the trans-Golgi network (TGN). Prolonged exposure to these agents caused redistribution of many labeled vesicles to the perinuclear region, colocalized with markers of both early (EEA1 and transferrin receptor) and late (LAMP1) endosomes. We conclude that cAMP is the common agent that disrupted normal maturation and trafficking of endosomes and increased net FPE, in part via decreased diacytosis.
Collapse
Affiliation(s)
- R W Van Dyke
- Department of Medicine, University of Michigan Medical School and Veterans' Administration Hospital, Ann Arbor, MI 48109-0682, USA.
| |
Collapse
|
34
|
Gibson GA, Hill WG, Weisz OA. Evidence against the acidification hypothesis in cystic fibrosis. Am J Physiol Cell Physiol 2000; 279:C1088-99. [PMID: 11003589 DOI: 10.1152/ajpcell.2000.279.4.c1088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pleiotropic effects of cystic fibrosis (CF) result from the mislocalization or inactivity of an apical membrane chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR may also modulate intracellular chloride conductances and thus affect organelle pH. To test the role of CFTR in organelle pH regulation, we developed a model system to selectively perturb the pH of a subset of acidified compartments in polarized cells and determined the effects on various protein trafficking steps. We then tested whether these effects were observed in cells lacking wild-type CFTR and whether reintroduction of CFTR affected trafficking in these cells. Our model system involves adenovirus-mediated expression of the influenza virus M2 protein, an acid-activated ion channel. M2 expression selectively slows traffic through the trans-Golgi network (TGN) and apical endocytic compartments in polarized Madin-Darby canine kidney (MDCK) cells. Expression of M2 or treatment with other pH perturbants also slowed protein traffic in the CF cell line CFPAC, suggesting that the TGN in this cell line is normally acidified. Expression of functional CFTR had no effect on traffic and failed to rescue the effect of M2. Our results argue against a role for CFTR in the regulation of organelle pH and protein trafficking in epithelial cells.
Collapse
Affiliation(s)
- G A Gibson
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
35
|
Proctor GB, Carpenter GH, Garrett JR. Sympathetic decentralization abolishes increased secretion of immunoglobulin A evoked by parasympathetic stimulation of rat submandibular glands. J Neuroimmunol 2000; 109:147-54. [PMID: 10996216 DOI: 10.1016/s0165-5728(00)00316-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Salivary secretion of immunoglobulin A (IgA) in response to electrical stimulation of the parasympathetic nerve supply was assessed bilaterally in the submandibular glands of anaesthetized rats 1 week following unilateral pre-ganglionic sympathectomy (decentralization). Nerve-mediated stimulation on the non-denervated side increased IgA secretion several fold above an unstimulated rate of secretion whereas sympathetic decentralization reduced the parasympathetically stimulated secretion of IgA without affecting the basal rate. Glandular levels of IgA were increased following decentralization compared to the control glands. Salivary levels of free secretory component (FSC), the cleaved polymeric immunoglobulin receptor (plgR), were increased by parasympathetic stimulation and reduced by sympathectomy, though not as much as IgA. The decreased secretion of FSC suggests a reduced production of plgR and may account in part, for reduced IgA secretion following long-term removal of sympathetic nerve impulses.
Collapse
Affiliation(s)
- G B Proctor
- Secretory and Soft Tissue Research Unit, Guy's, King's and St Thomas' School of Dentistry, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU, London, UK.
| | | | | |
Collapse
|
36
|
Wang X, Kumar R, Navarre J, Casanova JE, Goldenring JR. Regulation of vesicle trafficking in madin-darby canine kidney cells by Rab11a and Rab25. J Biol Chem 2000; 275:29138-46. [PMID: 10869360 DOI: 10.1074/jbc.m004410200] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polarized epithelial cells maintain the polarized distribution of basolateral and apical membrane proteins through a process of receptor-mediated endocytosis, sorting, and then recycling to the appropriate membrane domain. We have previously shown that the small GTP-binding proteins, Rab11a and Rab25, are associated with the apical recycling system of Madin-Darby canine kidney cells. Here we have utilized inducible expression of wild-type, dominant negative, and constitutively active mutants to directly compare the functions of Rab25 and Rab11a in postendocytic vesicular transport. We found that a Rab11a mutant deficient in GTP binding, Rab11aS25N, potently inhibited both transcytosis and apical recycling yet failed to inhibit transferrin recycling. Similarly, expression of either wild type Rab25 or the active mutant Rab25S21V inhibited both apical recycling and transcytosis of IgA by greater than 50% but had no effect on basolateral recycling of transferrin. Interestingly, the GTPase-deficient mutant Rab11aS20V inhibited basolateral to apical transcytosis of IgA, but had no effect on either apical or basolateral recycling. These results indicate that neither Rab11a nor Rab25 function in the basolateral recycling of transferrin in polarized Madin-Darby canine kidney cells cells, consistent with recent morphological observations by others. Thus, transferrin receptors must be recycled to the plasma membrane prior to sorting of apically directed cargoes into Rab11a/Rab25-positive apical recycling endosomes.
Collapse
Affiliation(s)
- X Wang
- Institute for Molecular Medicine and Genetics, Departments of Medicine, Surgery and Cellular Biology and Anatomy, Medical College of Georgia and the Augusta Veterans Affairs Medical Center, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
37
|
Paulson AF, Lampe PD, Meyer RA, TenBroek E, Atkinson MM, Walseth TF, Johnson RG. Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J Cell Sci 2000; 113 ( Pt 17):3037-49. [PMID: 10934042 DOI: 10.1242/jcs.113.17.3037] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given the rapid turnover of connexin proteins, gap junction (GJ) assembly represents an important means of regulating the extent of GJ communication between cells. This report describes an increase in the level of GJ assembly within one hour following treatment with cAMP-elevating reagents or low density lipoprotein (LDL). Dye transfer methods and freeze-fracture with electron microscopy were used to assay junctional permeability and structure, respectively, subsequent to the dissociation, recovery and reaggregation of Novikoff hepatoma cells. Reaggregating cells in the presence of agents that increase cAMP levels (8-Br-cAMP, forskolin and IBMX) enhanced both dye transfer rates between cells and the extent of GJ formation 2- to 3-fold. These data and studies with the protein kinase A inhibitor, H-89, indicate that cAMP signaling plays a key role in enhanced assembly. The response to LDL parallels that to cAMP and relies on the activity of both adenylyl cyclase and protein kinase A. Immunoblot analysis revealed no change in the level of connexin43 (Cx43) or its phosphorylation states over a period of 2.5 hours. However, three agents (brefeldin A, monensin and nocodazole), that inhibit intracellular membrane trafficking by different mechanisms, all blocked the enhanced assembly of GJs when triggered by either elevated cAMP or exposure to LDL. Related studies, which employed trafficking inhibitors at different stages in GJ assembly, suggested that Cx43 trafficking during enhanced assembly is regulated, in part, by cell contact. Intracellular sources of Cx43 were characterized by colabeling for several markers of cytoplasmic membrane systems. We conclude that an increase in GJ assembly: (i) occurs rapidly in the presence of elevated cAMP or LDL, (ii) does not require an increase in Cx43 levels or major changes in Cx43 phosphorylation and (iii) is dependent upon the trafficking of Cx43 from intracellular storage sites.
Collapse
Affiliation(s)
- A F Paulson
- Department of Genetics, Cell Biology and Development, University of Minnesota, St Paul MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Van Dyke RW, Ervin LL, Lewis MR, Wang X. Effect of cholera toxin on rat liver lysosome acidification. Biochem Biophys Res Commun 2000; 274:717-21. [PMID: 10924342 DOI: 10.1006/bbrc.2000.3196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that cholera toxin and cAMP greatly increase both acidification rates of liver endosomes and the liver and endosome content of fluid-phase endocytosis probes. In this study lysosomes were purified from control and cholera toxin-treated livers that were pulsed with fluorescein conjugated dextran and chased overnight. Cholera toxin-treated livers weighed less, contained less protein and exhibited higher contents of lysosomal marker enzymes, consistent with the catabolic effects of this agent. By contrast to its effects on endosomes, cholera toxin had no consistent or significant effect on lysosome acidification rates, steady-state internal pH or potassium content, proton leak rates or fluorescein-dextran content. We conclude that cholera toxin and cAMP predominantly alter earlier steps of endocytosis but may also increase transfer of probes from lysosomes to bile.
Collapse
Affiliation(s)
- R W Van Dyke
- Department of Medicine, University of Michigan Medical School and Veterans' Administration Hospital, Ann Arbor, Michigan, 48109-0682, USA
| | | | | | | |
Collapse
|
39
|
Howard M, Jiang X, Stolz DB, Hill WG, Johnson JA, Watkins SC, Frizzell RA, Bruton CM, Robbins PD, Weisz OA. Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells. Am J Physiol Cell Physiol 2000; 279:C375-82. [PMID: 10913004 DOI: 10.1152/ajpcell.2000.279.2.c375] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Channel gating of the cystic fibrosis transmembrane conductance regulator (CFTR) is activated in response to cAMP stimulation. In addition, CFTR activation may also involve rapid insertion of a subapical pool of CFTR into the plasma membrane (PM). However, this issue has been controversial, in part because of the difficulty in distinguishing cell surface vs. intracellular CFTR. Recently, a fully functional, epitope-tagged form of CFTR (M2-901/CFTR) that can be detected immunologically in nonpermeabilized cells was characterized (Howard M, Duvall MD, Devor DC, Dong J-Y, Henze K, and Frizzell RA. Am J Physiol Cell Physiol 269: C1565-C1576, 1995; and Schultz BD, Takahashi A, Liu C, Frizzell RA, and Howard M. Am J Physiol Cell Physiol 273: C2080-C2089, 1997). We have developed replication-defective recombinant adenoviruses that express M2-901/CFTR and used them to probe cell surface CFTR in forskolin (FSK)-stimulated polarized Madin-Darby canine kidney (MDCK) cells. Virally expressed M2-901/CFTR was functional and was readily detected on the apical surface of FSK-stimulated polarized MDCK cells. Interestingly, at low multiplicity of infection, we observed FSK-stimulated insertion of M2901/CFTR into the apical PM, whereas at higher M2-901/CFTR expression levels, no increase in surface expression was detected using indirect immunofluorescence. Immunoelectron microscopy of unstimulated and FSK-stimulated cells confirmed the M2-901/CFTR redistribution to the PM upon FSK stimulation and demonstrates that the apically inserted M2-901/CFTR originates from a population of subapical vesicles. Our observations may reconcile previous conflicting reports regarding the effect of cAMP stimulation on CFTR trafficking.
Collapse
Affiliation(s)
- M Howard
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pennsylvania 15213-2500, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee TH, Linstedt AD. Potential role for protein kinases in regulation of bidirectional endoplasmic reticulum-to-Golgi transport revealed by protein kinase inhibitor H89. Mol Biol Cell 2000; 11:2577-90. [PMID: 10930455 PMCID: PMC14941 DOI: 10.1091/mbc.11.8.2577] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent evidence suggests a regulatory connection between cell volume, endoplasmic reticulum (ER) export, and stimulated Golgi-to-ER transport. To investigate the potential role of protein kinases we tested a panel of protein kinase inhibitors for their effect on these steps. One inhibitor, H89, an isoquinolinesulfonamide that is commonly used as a selective protein kinase A inhibitor, blocked both ER export and hypo-osmotic-, brefeldin A-, or nocodazole-induced Golgi-to-ER transport. In contrast, H89 did not block the constitutive ER Golgi-intermediate compartment (ERGIC)-to-ER and Golgi-to-ER traffic that underlies redistribution of ERGIC and Golgi proteins into the ER after ER export arrest. Surprisingly, other protein kinase A inhibitors, KT5720 and H8, as well as a set of protein kinase C inhibitors, had no effect on these transport processes. To test whether H89 might act at the level of either the coatomer protein (COP)I or the COPII coat protein complex we examined the localization of betaCOP and Sec13 in H89-treated cells. H89 treatment led to a rapid loss of Sec13-labeled ER export sites but betaCOP localization to the Golgi was unaffected. To further investigate the effect of H89 on COPII we developed a COPII recruitment assay with permeabilized cells and found that H89 potently inhibited binding of exogenous Sec13 to ER export sites. This block occurred in the presence of guanosine-5'-O-(3-thio)triphosphate, suggesting that Sec13 recruitment is inhibited at a step independent of the activation of the GTPase Sar1. These results identify a requirement for an H89-sensitive factor(s), potentially a novel protein kinase, in recruitment of COPII to ER export sites, as well as in stimulated but not constitutive Golgi-to-ER transport.
Collapse
Affiliation(s)
- T H Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
41
|
Van IJzendoorn SC, Maier O, Van Der Wouden JM, Hoekstra D. The subapical compartment and its role in intracellular trafficking and cell polarity. J Cell Physiol 2000; 184:151-60. [PMID: 10867639 DOI: 10.1002/1097-4652(200008)184:2<151::aid-jcp2>3.0.co;2-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In polarized epithelial cells and hepatocytes, apical and basolateral plasma membrane surfaces are maintained, each displaying a distinct molecular composition. In recent years, it has become apparent that a subapical compartment, referred to as SAC, plays a prominent if not crucial role in the domain-specific sorting and targeting of proteins and lipids that are in dynamic transit between these plasma membrane domains. Although the molecular identity of the traffic-regulating devices is still obscure, the organization of SAC in distinct subcompartments and/or subdomains may well be instrumental to such functions. In this review, we will focus on the potential subcompartmentalization of the SAC in terms of regulation of membrane traffic, on how SAC relates to the endosomal system, and on how this compartment may operate in the context of other intracellular sorting organelles such as the Golgi complex, in generating and maintaining cell polarity.
Collapse
Affiliation(s)
- S C Van IJzendoorn
- Department of Physiological Chemistry, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Martin ME, Hidalgo J, Rosa JL, Crottet P, Velasco A. Effect of protein kinase A activity on the association of ADP-ribosylation factor 1 to golgi membranes. J Biol Chem 2000; 275:19050-9. [PMID: 10858454 DOI: 10.1074/jbc.275.25.19050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein ADP-ribosylation factor 1 (ARF1) is an essential component of the molecular machinery that catalyzes the formation of membrane-bound transport intermediates. By using an in vitro assay that reproduces recruitment of cytosolic proteins onto purified, high salt-washed Golgi membranes, we have analyzed the role of cAMP-dependent protein kinase A (PKA) on ARF1 incorporation. Addition to this assay of either pure catalytic subunits of PKA (C-PKA) or cAMP increased ARF1 binding. By contrast, ARF1 association was inhibited following C-PKA inactivation with either PKA inhibitory peptide or RIIalpha as well as after cytosol depletion of C-PKA. C-PKA also stimulated recruitment and activation of a recombinant form of human ARF1 in the absence of additional cytosolic components. The binding step could be dissociated from the activation reaction and found to be independent of guanine nucleotides and saturable. This step was stimulated by C-PKA in an ATP-dependent manner. Dephosphorylated Golgi membranes exhibited a decreased ability to recruit ARF1, and this effect was reverted by addition of C-PKA. Following an increase in the intracellular level of cAMP, ARF proteins redistributed from cytosol to the perinuclear Golgi region of intact cells. Collectively, the results show that PKA exerts a key regulatory role in the recruitment of ARF1 onto Golgi membranes. In contrast, PKA modulators did not affect recruitment of beta-COP onto Golgi membranes containing prebound ARF1.
Collapse
Affiliation(s)
- M E Martin
- Department of Cell Biology, University of Seville, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
43
|
Nevrivy DJ, Peterson VJ, Avram D, Ishmael JE, Hansen SG, Dowell P, Hruby DE, Dawson MI, Leid M. Interaction of GRASP, a protein encoded by a novel retinoic acid-induced gene, with members of the cytohesin family of guanine nucleotide exchange factors. J Biol Chem 2000; 275:16827-36. [PMID: 10828067 DOI: 10.1074/jbc.275.22.16827] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel, retinoic acid-induced gene, GRP1-associated scaffold protein (GRASP), was isolated from P19 embryonal carcinoma cells using a subtractive screening strategy. GRASP was found to be highly expressed in brain and exhibited lower levels of expression in lung, heart, embryo, kidney, and ovary. The predicted amino acid sequence of GRASP is characterized by several putative protein-protein interaction motifs, suggesting that GRASP may be a component of a larger protein complex in the cell. Although GRASP does not harbor a predicted membrane spanning domain(s), the protein was observed to be associated with the plasma membrane of transiently transfected mammalian cells. Yeast two-hybrid screening revealed that GRASP interacted strongly with the General Receptor for Phosphoinositides 1 (GRP1), a brefeldin A-insensitive guanine nucleotide exchange factor for the ADP-ribosylation factor family of proteins. GRASP. GRP1 interactions were also demonstrated in vitro and in mammalian cells in which GRASP was shown to enhance GRP1 association with the plasma membrane. Furthermore, GRASP colocalized with endogenous ADP-ribosylation factors at the plasma membrane in transfected cells, suggesting that GRASP may modulate signaling by this family of small GTPases.
Collapse
Affiliation(s)
- D J Nevrivy
- Program in Molecular Biology, Laboratory of Molecular Pharmacology, College of Pharmacy, Environmental Health Sciences Center, Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hileman SM, Tornøe J, Flier JS, Bjørbaek C. Transcellular transport of leptin by the short leptin receptor isoform ObRa in Madin-Darby Canine Kidney cells. Endocrinology 2000; 141:1955-61. [PMID: 10830277 DOI: 10.1210/endo.141.6.7450] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin is an adipocyte-derived hormone that acts in specific regions of the brain to regulate body weight and neuroendocrine function. The mechanism by which leptin enters the brain is unknown. We previously reported that rat brain microvessels, which constitute the blood-brain barrier, contain large amounts of messenger RNA encoding a short form of the leptin receptor (ObRa), suggesting that this site may be important for receptor-mediated transport of leptin into the brain. The purpose of this study was to determine whether ObRa is capable of transcellular transport of intact leptin. A transwell system in which Madin-Darby Canine Kidney (MDCK) cells stably expressing ObRa are grown in a monolayer was used to determine receptor distribution on apical or basolateral cell surfaces and the capacity for directional transport of 125I-leptin. Binding of 125I-leptin was greater on the apical vs. the basolateral cell surface and transport of 125I-leptin occurred only in the apical to basolateral direction. 11% of transported radioactivity appearing in the basolateral chamber represented intact leptin as assessed by TCA precipitation analysis and by SDS-PAGE. Parental MDCK cells did not express leptin receptors and did not bind or transport 125I-leptin. Epidermal growth factor (EGF) binding and transport via endogenous EGF receptors in MDCK cells also was assessed. In contrast to leptin, specific binding of 125I-EGF occurred primarily on the basolateral cell surface and transport of 125I-EGF occurred predominantly in the basolateral to apical direction. These data show that ObRa is preferentially targeted to the apical cell membrane in MDCK cells and that leptin transport occurs, albeit at a low rate, in a unidirectional manner in the apical to basolateral direction. These findings may be relevant to the putative role of ObRa in receptor-mediated transport of leptin from the circulation into the brain.
Collapse
Affiliation(s)
- S M Hileman
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
45
|
van IJzendoorn SC, Hoekstra D. Polarized sphingolipid transport from the subapical compartment changes during cell polarity development. Mol Biol Cell 2000; 11:1093-101. [PMID: 10712522 PMCID: PMC14833 DOI: 10.1091/mbc.11.3.1093] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The subapical compartment (SAC) plays an important role in the polarized transport of proteins and lipids. In hepatoma-derived HepG2 cells, fluorescent analogues of sphingomyelin and glucosylceramide are sorted in the SAC. Here, evidence is provided that shows that polarity development is regulated by a transient activation of endogenous protein kinase A and involves a transient activation of a specific membrane transport pathway, marked by the trafficking of the labeled sphingomyelin, from the SAC to the apical membrane. This protein kinase A-regulated pathway differs from the apical recycling pathway, which also traverses SAC. After reaching optimal polarity, the direction of the apically activated pathway switches to one in the basolateral direction, without affecting the apical recycling pathway.
Collapse
Affiliation(s)
- S C van IJzendoorn
- Department of Physiological Chemistry, University of Groningen, Groningen, the Netherlands
| | | |
Collapse
|
46
|
Jou TS, Leung SM, Fung LM, Ruiz WG, Nelson WJ, Apodaca G. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol Biol Cell 2000; 11:287-304. [PMID: 10637309 PMCID: PMC14775 DOI: 10.1091/mbc.11.1.287] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Madin-Darby canine kidney (MDCK) cells expressing constitutively active Rac1 (Rac1V12) accumulate a large central aggregate of membranes beneath the apical membrane that contains filamentous actin, Rac1V12, rab11, and the resident apical membrane protein GP-135. To examine the roles of Rac1 in membrane traffic and the formation of this aggregate, we analyzed endocytic and biosynthetic trafficking pathways in MDCK cells expressing Rac1V12 and dominant inactive Rac1 (Rac1N17). Rac1V12 expression decreased the rates of apical and basolateral endocytosis, whereas Rac1N17 expression increased those rates from both membrane domains. Basolateral-to-apical transcytosis of immunoglobulin A (IgA) (a ligand for the polymeric immunoglobulin receptor [pIgR]), apical recycling of pIgR-IgA, and accumulation of newly synthesized GP-135 at the apical plasma membrane were all decreased in cells expressing Rac1V12. These effects of Rac1V12 on trafficking pathways to the apical membrane were the result of the delivery and trapping of these proteins in the central aggregate. In contrast to abnormalities in apical trafficking events, basolateral recycling of transferrin, degradation of EGF internalized from the basolateral membrane, and delivery of newly synthesized pIgR from the Golgi to the basolateral membrane were all relatively unaffected by Rac1V12 expression. Rac1N17 expression had little or no effect on these postendocytic or biosynthetic trafficking pathways. These results show that in polarized MDCK cells activated Rac1 may regulate the rate of endocytosis from both membrane domains and that expression of dominant active Rac1V12 specifically alters postendocytic and biosynthetic membrane traffic directed to the apical, but not the basolateral, membrane.
Collapse
Affiliation(s)
- T S Jou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345, USA
| | | | | | | | | | | |
Collapse
|
47
|
Martín ME, Hidalgo J, Vega FM, Velasco A. Trimeric G proteins modulate the dynamic interaction of PKAII with the Golgi complex. J Cell Sci 1999; 112 ( Pt 22):3869-78. [PMID: 10547348 DOI: 10.1242/jcs.112.22.3869] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex represents a major subcellular location of protein kinase A (PKA) concentration in mammalian cells where it has been previously shown to be involved in vesicle-mediated protein transport processes. We have studied the factors that influence the interaction of PKA typeII subunits with the Golgi complex. In addition to the cytosol, both the catalytic (Calpha) and regulatory (RIIalpha) subunits of PKAII were detected at both sides of the Golgi stack, particularly in elements of the cis- and trans-Golgi networks. PKAII subunits, in contrast, were practically absent from the middle Golgi cisternae. Cell treatment with either brefeldin A, AlF(4-) or at low temperature induced PKAII dissociation from the Golgi complex and redistribution to the cytosol. This suggested the existence of a cycle of association/dissociation of PKAII holoenzyme to the Golgi. The interaction of purified RIIalpha with Golgi membranes was studied in vitro and found not to be affected by brefeldin A while it was sensitive to modulators of heterotrimeric G proteins such as AlF(4-), GTPgammaS, beta(gamma) subunits and mastoparan. RII(alphaa) binding was stimulated by recombinant, myristoylated Galpha(i3) subunit and inhibited by cAMP. Pretreatment of Golgi membranes with bacterial toxins known to catalyze ADP-ribosylation of selected Galpha subunits also modified RIIalpha binding. Taken together the data support a regulatory role for Golgi-associated Galpha proteins in PKAII recruitment from the cytosol.
Collapse
Affiliation(s)
- M E Martín
- Department of Cell Biology, Faculty of Biology, University of Seville, Spain
| | | | | | | |
Collapse
|
48
|
Auger R, Robin P, Camier B, Vial G, Rossignol B, Tenu JP, Raymond MN. Relationship between phosphatidic acid level and regulation of protein transit in colonic epithelial cell line HT29-cl19A. J Biol Chem 1999; 274:28652-9. [PMID: 10497234 DOI: 10.1074/jbc.274.40.28652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colonic epithelial HT29-cl19A cells are polarized and secrete proteins among which alpha(1)-antitrypsin represents about 95%. Secretion occurs via a constitutive pathway, so that the rates of secretion directly reflect the rates of protein transit. In this paper we have demonstrated that: 1) in resting cells phospholipase D (PLD) is implicated in the control of apical protein transit; 2) phorbol esters stimulate apical protein transit (stimulation factor 2.2), which is correlated with a PLD-catalyzed production of phosphatidic acid (PA) (2.45-fold increase); 3) the stimulation of cholinergic receptors by carbachol results in an increase (stimulation factor 1.45) of apical protein transit which is independent of protein kinase C and PLD activities, but related to PA formation (1.7-fold increase) via phospholipase(s) C and diacylglycerol kinase activation; 4) an elevation of the cAMP level enhances apical protein transit by a PA-independent mechanism; 5) a trans-Golgi network or post-trans-Golgi network step of the transit is the target for the regulatory events. In conclusion, we have shown that PA can be produced by two independent signaling pathways; whatever the pathway followed, a close relationship between the amount of PA and the level of secretion was observed.
Collapse
Affiliation(s)
- R Auger
- Laboratoire de Biochimie des Transports Cellulaires, CNRS, Unité Mixte de Recherche 8619, Bâtiment 432, Université Paris XI, 91 405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Douziech M, Laberge G, Grondin G, Daigle N, Blouin R. Localization of the mixed-lineage kinase DLK/MUK/ZPK to the Golgi apparatus in NIH 3T3 cells. J Histochem Cytochem 1999; 47:1287-96. [PMID: 10490457 DOI: 10.1177/002215549904701008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
DLK/MUK/ZPK is a serine/threonine kinase that belongs to the mixed-lineage (MLK) subfamily of protein kinases. As is the case for most members of this family, relatively little is known about the physiological role of DLK/MUK/ZPK in mammalian cells. Because analysis of subcellular distribution may provide important clues concerning the potential in vivo function of a protein, an antiserum was generated against the amino terminal region of murine DLK/MUK/ZPK and used for localization studies in wild-type NIH 3T3 cells. Light microscopic immunocytochemistry experiments performed with the antiserum revealed that DLK/MUK/ZPK was specifically localized in a juxtanuclear structure characteristic of the Golgi complex. In support of this, treatment of cells with brefeldin A, a drug known to disintegrate the Golgi apparatus, caused disruption of DLK/MUK/ZPK perinuclear staining. Ultrastructural observation of NIH 3T3 cells also confirmed this localization, showing that most of the immunoreactivity was detected on membranes of the stacked Golgi cisternae. Consistent with localization studies, biochemical analyses revealed that DLK/MUK/ZPK was predominantly associated with Golgi membranes on fractionation of cellular extracts and was entirely partitioned into the aqueous phase when membranes were subjected to Triton X-114 extraction. On the basis of these findings, we suggest that DLK/MUK/ZPK is a peripheral membrane protein tightly associated with the cytoplasmic face of the Golgi apparatus. (J Histochem Cytochem 47:1287-1296, 1999)
Collapse
Affiliation(s)
- M Douziech
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
50
|
van IJzendoorn SC, Hoekstra D. Polarized sphingolipid transport from the subapical compartment: evidence for distinct sphingolipid domains. Mol Biol Cell 1999; 10:3449-61. [PMID: 10512879 PMCID: PMC25614 DOI: 10.1091/mbc.10.10.3449] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In polarized HepG2 cells, the sphingolipids glucosylceramide and sphingomyelin (SM), transported along the reverse transcytotic pathway, are sorted in subapical compartments (SACs), and subsequently targeted to either apical or basolateral plasma membrane domains, respectively. In the present study, evidence is provided that demonstrates that these sphingolipids constitute separate membrane domains at the luminal side of the SAC membrane. Furthermore, as revealed by the use of various modulators of membrane trafficking, such as calmodulin antagonists and dibutyryl-cAMP, it is shown that the fate of these separate sphingolipid domains is regulated by different signals, including those that govern cell polarity development. Thus under conditions that stimulate apical plasma membrane biogenesis, SM is rerouted from a SAC-to-basolateral to a SAC-to-apical pathway. The latter pathway represents the final leg in the transcytotic pathway, followed by the transcytotic pIgR-dIgA protein complex. Interestingly, this pathway is clearly different from the apical recycling pathway followed by glucosylceramide, further indicating that randomization of these pathways, which are both bound for the apical membrane, does not occur. The consequence of the potential coexistence of separate sphingolipid domains within the same compartment in terms of "raft" formation and apical targeting is discussed.
Collapse
Affiliation(s)
- S C van IJzendoorn
- Department of Physiological Chemistry, Faculty of Medical Sciences, University of Groningen, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|