1
|
Dynamic Behavior of Double-Membrane-Bounded Organelles in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:181-222. [DOI: 10.1016/b978-0-12-385859-7.00004-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
|
3
|
Oma Y, Harata M. Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus 2011; 2:38-46. [PMID: 21647298 PMCID: PMC3104808 DOI: 10.4161/nucl.2.1.14510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022] Open
Abstract
The actin family consists of conventional actin and actin-related proteins (ARPs), and the members show moderate similarity and share the same basal structure. Following the finding of various ARPs in the cytoplasm in the 1990s, multiple subfamilies that are localized predominantly in the nucleus were identified. Consistent with these cytological observations, subsequent biochemical analyses revealed the involvement of the nuclear ARPs in ATP-dependent chromatin-remodeling and histone acetyltransferase complexes. In addition to their contribution to chromatin remodeling, recent studies have shown that nuclear ARPs have roles in the organization of the nucleus that are independent of the activity of the above-mentioned complexes. Therefore, nuclear ARPs are recognized as novel key regulators of genome function, and affect not only the remodeling of chromatin but also the spatial arrangement and dynamics of chromatin within the nucleus.
Collapse
Affiliation(s)
- Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | |
Collapse
|
4
|
Jacquot G, Maidou-Peindara P, Benichou S. Molecular and functional basis for the scaffolding role of the p50/dynamitin subunit of the microtubule-associated dynactin complex. J Biol Chem 2010; 285:23019-31. [PMID: 20463029 PMCID: PMC2906295 DOI: 10.1074/jbc.m110.100602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/29/2010] [Indexed: 11/06/2022] Open
Abstract
p50/dynamitin (DM) is a major subunit of the microtubule-associated dynactin complex that is required for stabilization and attachment of its two distinct structural domains, namely the Arp1 rod and the shoulder/sidearm. Here, we define the determinants of p50/DM required for self-oligomerization of the protein and for interactions with other subunits of the dynactin complex. Whereas the N-terminal 1-91-amino acid region of the protein is required and sufficient for binding to the Arp1 rod, additional determinants contained within the first half of the protein are required for optimal recruitment of the p150(Glued) subunit of the shoulder/sidearm. Overexpression experiments confirmed that the N-terminal 1-91-amino acid region of p50/DM is critical for dynactin functionality, because this fragment acts as a dominant negative to inhibit both dynein-dependent and -independent functions of the complex. Furthermore, the first two predicted coiled-coil motifs of p50/DM contain determinants that mediate self-association of the protein. Interestingly, p50/DM self-association does not contribute to p50/DM-induced disruption of the dynactin complex, but most likely participates in the stabilization of the complex.
Collapse
Affiliation(s)
- Guillaume Jacquot
- From the
Institut Cochin, Université Paris Descartes, CNRS UMR 8104 and
- Inserm U1016, 75014 Paris, France
| | - Priscilla Maidou-Peindara
- From the
Institut Cochin, Université Paris Descartes, CNRS UMR 8104 and
- Inserm U1016, 75014 Paris, France
| | - Serge Benichou
- From the
Institut Cochin, Université Paris Descartes, CNRS UMR 8104 and
- Inserm U1016, 75014 Paris, France
| |
Collapse
|
5
|
Haghnia M, Cavalli V, Shah SB, Schimmelpfeng K, Brusch R, Yang G, Herrera C, Pilling A, Goldstein LS. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell 2007; 18:2081-9. [PMID: 17360970 PMCID: PMC1877108 DOI: 10.1091/mbc.e06-08-0695] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transport of cellular and neuronal vesicles, organelles, and other particles along microtubules requires the molecular motor protein dynein (Mallik and Gross, 2004). Critical to dynein function is dynactin, a multiprotein complex commonly thought to be required for dynein attachment to membrane compartments (Karki and Holzbaur, 1999). Recent work also has found that mutations in dynactin can cause the human motor neuron disease amyotrophic lateral sclerosis (Puls et al., 2003). Thus, it is essential to understand the in vivo function of dynactin. To test directly and rigorously the hypothesis that dynactin is required to attach dynein to membranes, we used both a Drosophila mutant and RNA interference to generate organisms and cells lacking the critical dynactin subunit, actin-related protein 1. Contrary to expectation, we found that apparently normal amounts of dynein associate with membrane compartments in the absence of a fully assembled dynactin complex. In addition, anterograde and retrograde organelle movement in dynactin deficient axons was completely disrupted, resulting in substantial changes in vesicle kinematic properties. Although effects on retrograde transport are predicted by the proposed function of dynactin as a regulator of dynein processivity, the additional effects we observed on anterograde transport also suggest potential roles for dynactin in mediating kinesin-driven transport and in coordinating the activity of opposing motors (King and Schroer, 2000).
Collapse
Affiliation(s)
- Marjan Haghnia
- *Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683
| | - Valeria Cavalli
- *Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683
| | - Sameer B. Shah
- *Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683
| | - Kristina Schimmelpfeng
- *Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683
| | - Richard Brusch
- *Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683
| | - Ge Yang
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Cheryl Herrera
- *Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683
| | - Aaron Pilling
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Lawrence S.B. Goldstein
- *Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683
| |
Collapse
|
6
|
Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 2005; 20:559-91. [PMID: 15473852 DOI: 10.1146/annurev.cellbio.20.010403.103108] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell polarity, as reflected by polarized growth and organelle segregation during cell division in yeast, appears to follow a simple hierarchy. On the basis of physical cues from previous cell cycles or stochastic processes, yeast cells select a site for bud emergence that also defines the axis of cell division. Once polarity is established, rho protein-based signal pathways set up a polarized cytoskeleton by activating localized formins to nucleate and assemble polarized actin cables. These serve as tracks for the transport of secretory vesicles, the segregation of the trans Golgi network, the vacuole, peroxisomes, endoplasmic reticulum, mRNAs for cell fate determination, and microtubules that orient the nucleus in preparation for mitosis, all by myosin-Vs encoded by the MYO2 and MYO4 genes. Most of the proteins participating in these processes in yeast are conserved throughout the kingdoms of life, so the emerging models are likely to be generally applicable. Indeed, several parallels to cellular organization in animals are evident.
Collapse
Affiliation(s)
- David Pruyne
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
7
|
Fant X, Merdes A, Haren L. Cell and molecular biology of spindle poles and NuMA. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:1-57. [PMID: 15364196 DOI: 10.1016/s0074-7696(04)38001-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mitotic and meiotic cells contain a bipolar spindle apparatus of microtubules and associated proteins. To arrange microtubules into focused spindle poles, different mechanisms are used by various organisms. Principally, two major pathways have been characterized: nucleation and anchorage of microtubules at preexisting centers such as centrosomes or spindle pole bodies, or microtubule growth off the surface of chromosomes, followed by sorting and focusing into spindle poles. These two mechanisms can even be found in cells of the same organism: whereas most somatic animal cells utilize the centrosome as an organizing center for spindle microtubules, female meiotic cells build an acentriolar spindle apparatus. Most interestingly, the molecular components that drive acentriolar spindle pole formation are also present in cells containing centrosomes. They include microtubule-dependent motor proteins and a variety of structural proteins that regulate microtubule orientation, anchoring, and stability. The first of these spindle pole proteins, NuMA, had already been identified more than 20 years ago. In addition, several new proteins have been characterized more recently. This review discusses their role during spindle formation and their regulation in the cell cycle.
Collapse
Affiliation(s)
- Xavier Fant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | |
Collapse
|
8
|
Abstract
We present evidence that synapse retraction occurs during normal synaptic growth at the Drosophila neuromuscular junction (NMJ). An RNAi-based screen to identify the molecular mechanisms that regulate synapse retraction identified Arp-1/centractin, a subunit of the dynactin complex. Arp-1 dsRNA enhances synapse retraction, and this effect is phenocopied by a mutation in P150/Glued, also a dynactin component. The Glued protein is enriched within the presynaptic nerve terminal, and presynaptic expression of a dominant-negative Glued transgene enhances retraction. Retraction is associated with a local disruption of the synaptic microtubule cytoskeleton. Electrophysiological, ultrastructural, and immunohistochemical data support a model in which presynaptic retraction precedes disassembly of the postsynaptic apparatus. Our data suggests that dynactin functions locally within the presynaptic arbor to promote synapse stability.
Collapse
Affiliation(s)
- Benjamin A Eaton
- Department of Biochemistry and Biophysics, San Francisco, California 94143, USA
| | | | | |
Collapse
|
9
|
Schultz N, Onfelt A. Spindle positioning in fibroblasts supports an astral microtubule length dependent force generation at the basal membrane. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:69-88. [PMID: 11746673 DOI: 10.1002/cm.1042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
V79 Chinese hamster fibroblasts that maintain an elongated shape in metaphase occur at a low frequency and often show the spindle asymmetrically positioned. We show here that this aberrant position is corrected in anaphase by an external force, pulling the spindle into place. The force was applied on astral microtubules because spindle motility was hampered when astral microtubules were poorly developed spontaneously, or destroyed by colcemid. Colcemid also abolished the observed downward positioning of centrosomes in anaphase. One pole of the spindle was usually dominant during correction, but occasionally both poles could become subject to pulling making the spindle move perpendicular to the long axis of the cell, which induced reshaping of the cell. The pulling force acted unevenly with short intervals of resting between the pulling. Spindle elongation also varied in rate but showed a different periodicity than translocation of the spindle, and therefore appeared independently regulated. The length of the spindle increased with the length of the cell, and the rate of spindle elongation and pole movement increased with distance moved, indicating that the forces mediated by astral microtubules increase with their length. Arp1/dynactin, not colocalising with tubulin, was more often continuous with microtubules in anaphase B than in metaphase, and was primarily located at the bottom of the cell. Further, shifts in the geometric gravity centre of the cell occurred in the same direction as migration of the spindle. To explain these results, we suggest that astral microtubles transiently anchored at the bottom of the cell are of particular importance for spindle translocation in fibroblasts.
Collapse
Affiliation(s)
- N Schultz
- Genetic and Cellular Toxicology, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
10
|
Caron JM, Vega LR, Fleming J, Bishop R, Solomon F. Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin. Mol Biol Cell 2001; 12:2672-87. [PMID: 11553707 PMCID: PMC59703 DOI: 10.1091/mbc.12.9.2672] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We generated a strain of Saccharomyces cerevisiae in which the sole source of alpha-tubulin protein has a cys-to-ser mutation at cys-377, and then we examined microtubule morphology and nuclear positioning through the cell cycle. During G1 of the cell cycle, microtubules in the C377S alpha-tubulin (C377S tub1) mutant were indistinguishable from those in the control (TUB1) strain. However, mitotic C377S tub1 cells displayed astral microtubules that often appeared excessive in number, abnormally long, and/or misoriented compared with TUB1 cells. Although mitotic spindles were always correctly aligned along the mother-bud axis, translocation of spindles through the bud neck was affected. In late anaphase, spindles were often not laterally centered but instead appeared to rest along the sides of cells. When the doubling time was increased by growing cells at a lower temperature (15 degrees C), we often found abnormally long mitotic spindles. No increase in the number of anucleate or multinucleate C377S mutant cells was found at any temperature, suggesting that, despite the microtubule abnormalities, mitosis proceeded normally. Because cys-377 is a presumptive site of palmitoylation in alpha-tubulin in S. cerevisiae, we next compared in vivo palmitoylation of wild-type and C377S mutant forms of the protein. We detected palmitoylated alpha-tubulin in TUB1 cells, but the cys-377 mutation resulted in approximately a 60% decrease in the level of palmitoylated alpha-tubulin in C377S tub1 cells. Our results suggest that cys-377 of alpha-tubulin, and possibly palmitoylation of this amino acid, plays a role in a subset of astral microtubule functions during nuclear migration in M phase of the cell cycle.
Collapse
Affiliation(s)
- J M Caron
- Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- L M Machesky
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
12
|
Abstract
Accurate distribution of the chromosomes in dividing cells requires coupling of cellular polarity cues with both the orientation of the mitotic spindle and cell cycle progression. Work in budding yeast has demonstrated that cytoplasmic dynein and the kinesin Kip3p define redundant pathways that ensure proper spindle orientation. Furthermore, it has been shown that the Kip3p pathway components Kar9p and Bim1p (Yeb1p) form a complex that provides a molecular link between cortical polarity cues and spindle microtubules. Recently, other studies indicated that the cortical localization of Kar9p depends upon actin cables and Myo2p, a type V myosin. In addition, a BUB2-dependent cell cycle checkpoint has been described that inhibits the mitotic exit network and cytokinesis until proper centrosome position is achieved. Combined, these studies provide molecular insight into how cells link cellular polarity, spindle position and cell cycle progression.
Collapse
Affiliation(s)
- S C Schuyler
- Department of Pediatric Oncology, The Dana-Farber Cancer Institute and Pediatric Hematology, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
13
|
Kini AR, Collins CA. Modulation of cytoplasmic dynein ATPase activity by the accessory subunits. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:52-60. [PMID: 11124710 DOI: 10.1002/1097-0169(200101)48:1<52::aid-cm5>3.0.co;2-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The microtubule-based motor molecule cytoplasmic dynein has been proposed to be regulated by a variety of mechanisms, including phosphorylation and specific interaction with the organelle-associated complex, dynactin. In this study, we examined whether the intermediate chain subunits of cytoplasmic dynein are involved in modulation of ATP hydrolysis, and thereby affect motility. Treatment of testis cytoplasmic dynein under hypertonic salt conditions resulted in separation of the intermediate chains from the remainder of the dynein molecule, and led to a 4-fold enhancement of ATP hydrolysis. This result suggests that the accessory subunits act as negative regulators of dynein heavy chain activity. Comparison of ATPase activities of dyneins with differing intermediate chain isoforms showed significant differences in basal ATP hydrolysis rates, with testis dynein 7-fold more active than dynein from brain. Removal of the intermediate chain subunits led to an equalization of ATPase activity between brain and testis dyneins, suggesting that the accessory subunits are responsible for the observed differences in tissue activity. Finally, our preparative procedures have allowed for the identification and purification of a 1:1 complex of dynein with dynactin. As this interaction is presumed to be mediated by the dynein intermediate chain subunits, we now have defined experimental conditions for further exploration of dynein enzymatic and motility regulation.
Collapse
Affiliation(s)
- A R Kini
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois, USA
| | | |
Collapse
|
14
|
Kumar S, Lee IH, Plamann M. Cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation. J Biol Chem 2000; 275:31798-804. [PMID: 10921911 DOI: 10.1074/jbc.m000449200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic dynein is a microtubule-associated motor that utilizes ATP hydrolysis to conduct minus-end directed transport of various organelles. Dynactin is a multisubunit complex that has been proposed to both link dynein with cargo and activate dynein motor function. The mechanisms by which dynactin regulates dynein activity are not clear. In this study, we examine the role of dynactin in regulating dynein ATPase activity. We show that dynein-microtubule binding and ATP-dependent release of dynein from microtubules are reduced in dynactin null mutants, Deltaro-3 (p150(Glued)) and Deltaro-4 (Arp1), relative to wild-type. The dynein-microtubule binding activity, but not the ATP-dependent release of dynein from microtubules, is restored by in vitro mixing of extracts from dynein and dynactin mutants. Dynein produced in a Deltaro-3 mutant has approximately 8-fold reduced ATPase activity relative to dynein isolated from wild-type. However, dynein ATPase activity from wild-type is not reduced when dynactin is separated from dynein, suggesting that dynein produced in a dynactin mutant is inactivated. Treatment of dynein isolated from the Deltaro-3 mutant with lambda protein phosphatase restores the ATPase activity to near wild-type levels. The reduced dynein ATPase activity observed in dynactin null mutants is mainly due to altered affinity for ATP. Radiolabeling experiments revealed that low molecular mass proteins, particularly 20- and 8-kDa proteins, that immunoprecipitate with dynein heavy chain are hyperphosphorylated in the dynactin mutant and dephosphorylated upon lambda protein phosphatase treatment. The results suggest that cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation of dynein light chains.
Collapse
Affiliation(s)
- S Kumar
- School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
15
|
Miller RK, Cheng SC, Rose MD. Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules. Mol Biol Cell 2000; 11:2949-59. [PMID: 10982392 PMCID: PMC14967 DOI: 10.1091/mbc.11.9.2949] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, positioning of the mitotic spindle depends on the interaction of cytoplasmic microtubules with the cell cortex. In this process, cortical Kar9p in the bud acts as a link between the actin and microtubule cytoskeletons. To identify Kar9p-interacting proteins, a two-hybrid screen was conducted with the use of full-length Kar9p as bait, and three genes were identified: BIM1, STU2, and KAR9 itself. STU2 encodes a component of the spindle pole body. Bim1p is the yeast homologue of the human microtubule-binding protein EB1, which is a binding partner to the adenomatous polyposis coli protein involved in colon cancer. Eighty-nine amino acids within the third quarter of Bim1p was sufficient to confer interaction with Kar9p. The two-hybrid interactions were confirmed with the use of coimmunoprecipitation experiments. Genetic analysis placed Bim1p in the Kar9p pathway for nuclear migration. Bim1p was not required for Kar9p's cortical or spindle pole body localization. However, deletion of BIM1 eliminated Kar9p localization along cytoplasmic microtubules. Furthermore, in the bim1 mutants, the cytoplasmic microtubules no longer intersected the cortical dot of Green Fluorescent Protein-Kar9p. These experiments demonstrate that the interaction of cytoplasmic microtubules with the Kar9p cortical attachment site requires the microtubule-binding protein Bim1p.
Collapse
Affiliation(s)
- R K Miller
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
16
|
Schaerer-Brodbeck C, Riezman H. Interdependence of filamentous actin and microtubules for asymmetric cell division. Biol Chem 2000; 381:815-25. [PMID: 11076014 DOI: 10.1515/bc.2000.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Asymmetric cell divisions are crucial to the generation of cell fate diversity. They contribute to unequal distribution of cellular factors to the daughter cells. Asymmetric divisions are characterized by a 90 degrees rotation of the mitotic spindle. There is increasing evidence that a tight cooperation between cortical, filamentous actin and astral microtubules is indispensable for successful spindle rotation. Over the past years, the dynactin complex has emerged as a key candidate to mediate actin/microtubule interaction at the cortex. This review discusses our current understanding of how spindle rotation is accomplished by the interplay of filamentous actin and microtubules in a variety of experimental systems.
Collapse
|
17
|
Abstract
The actin superfamily of ATPases includes cytoskeletal actins, the stress 70 proteins (e.g. hsc70), sugar kinases, glycerol kinase, and several prokaryotic cell cycle proteins. Although these proteins share limited sequence identity, they all appear to maintain a similar tertiary structure, the "actin fold", which may serve to couple ATP hydrolysis to protein conformational changes. Recently, an actin-related protein (Arp) subfamily has been identified based on sequence homology to conventional actin. Although some Arps are clearly involved in cytoskeletal functions, both actin and/or Arps have been found as stoichiometric subunits of several nuclear chromatin-remodeling enzymes. Here we present two related models in which actin and/or Arps function as conformational switches that control either the activity or the assembly of chromatin-remodeling machines.
Collapse
Affiliation(s)
- L A Boyer
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology University of Massachusetts Medical School, Worcester 01605, USA
| | | |
Collapse
|
18
|
Adames NR, Cooper JA. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 2000; 149:863-74. [PMID: 10811827 PMCID: PMC2174570 DOI: 10.1083/jcb.149.4.863] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During mitosis in budding yeast the nucleus first moves to the mother-bud neck and then into the neck. Both movements depend on interactions of cytoplasmic microtubules with the cortex. We investigated the mechanism of these movements in living cells using video analysis of GFP-labeled microtubules in wild-type cells and in EB1 and Arp1 mutants, which are defective in the first and second steps, respectively. We found that nuclear movement to the neck is largely mediated by the capture of microtubule ends at one cortical region at the incipient bud site or bud tip, followed by microtubule depolymerization. Efficient microtubule interactions with the capture site require that microtubules be sufficiently long and dynamic to probe the cortex. In contrast, spindle movement into the neck is mediated by microtubule sliding along the bud cortex, which requires dynein and dynactin. Free microtubules can also slide along the cortex of both bud and mother. Capture/shrinkage of microtubule ends also contributes to nuclear movement into the neck and can serve as a backup mechanism to move the nucleus into the neck when microtubule sliding is impaired. Conversely, microtubule sliding can move the nucleus into the neck even when capture/shrinkage is impaired.
Collapse
Affiliation(s)
- Neil R. Adames
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John A. Cooper
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
19
|
Jay P, Bergé-Lefranc JL, Massacrier A, Roessler E, Wallis D, Muenke M, Gastaldi M, Taviaux S, Cau P, Berta P. ARP3beta, the gene encoding a new human actin-related protein, is alternatively spliced and predominantly expressed in brain neuronal cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2921-8. [PMID: 10806390 DOI: 10.1046/j.1432-1327.2000.01306.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA encoding a new human actin-related protein (ARP) was cloned. The corresponding protein is highly conserved with the previously described ARP3 protein, suggesting that it represents a second isoform of the human ARP3 subfamily. This new actin-related protein was subsequently named ARP3beta and represents the second example of multiple isoforms of an actin-related protein in a single organism. The ARP3beta gene was mapped to chromosome band 7q34, centromeric to Sonic Hedgehog. Gene structure analysis revealed that at least part of the observed ARP3beta mRNA heterogeneity is caused by alternative splicing resulting in exon skipping. Transcripts produced after exon 2 skipping are predicted to encode truncated products, whose functionality is still unclear. An ARP3beta pseudogene was detected on chromosome 2p11 by database searching. Several ARP3beta mRNA species were detected by Northern blotting and their abundance varied importantly among tissues: the highest expression levels were detected in fetal and adult brain, whereas lower levels were observed in liver, muscle and pancreas. In contrast, ARP3 mRNAs were detected in all tissues tested. Using in situ hybridization, the expression of ARP3beta in brain was shown to be restricted to neurons and epithelial cells from choroid plexus. This suggests a specific function for ARP3beta in the physiology of the development and/or maintenance of distinct subsets of nerve cells.
Collapse
Affiliation(s)
- P Jay
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hoepfner D, Brachat A, Philippsen P. Time-lapse video microscopy analysis reveals astral microtubule detachment in the yeast spindle pole mutant cnm67. Mol Biol Cell 2000; 11:1197-211. [PMID: 10749924 PMCID: PMC14841 DOI: 10.1091/mbc.11.4.1197] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae cnm67Delta cells lack the spindle pole body (SPB) outer plaque, the main attachment site for astral (cytoplasmic) microtubules, leading to frequent nuclear segregation failure. We monitored dynamics of green fluorescent protein-labeled nuclei and microtubules over several cell cycles. Early nuclear migration steps such as nuclear positioning and spindle orientation were slightly affected, but late phases such as rapid oscillations and insertion of the anaphase nucleus into the bud neck were mostly absent. Analyzes of microtubule dynamics revealed normal behavior of the nuclear spindle but frequent detachment of astral microtubules after SPB separation. Concomitantly, Spc72 protein, the cytoplasmic anchor for the gamma-tubulin complex, was partially lost from the SPB region with dynamics similar to those observed for microtubules. We postulate that in cnm67Delta cells Spc72-gamma-tubulin complex-capped astral microtubules are released from the half-bridge upon SPB separation but fail to be anchored to the cytoplasmic side of the SPB because of the absence of an outer plaque. However, successful nuclear segregation in cnm67Delta cells can still be achieved by elongation forces of spindles that were correctly oriented before astral microtubule detachment by action of Kip3/Kar3 motors. Interestingly, the first nuclear segregation in newborn diploid cells never fails, even though astral microtubule detachment occurs.
Collapse
Affiliation(s)
- D Hoepfner
- Abteilung Molekulare Mikrobiologie, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
21
|
Abstract
The budding yeast Saccharomyces cerevisiae provides a unique opportunity for study of the microtubule-based motor proteins that participate in mitotic spindle function. The genome of Saccharomyces encodes a relatively small and genetically tractable set of microtubule-based motor proteins. The single cytoplasmic dynein and five of the six kinesin-related proteins encoded have been implicated in mitotic spindle function. Each motor protein is unique in amino acid sequence. On account of functional overlap, no single motor is uniquely required for cell viability, however. The ability to create and analyze multiple mutants has allowed experimental dissection of the roles performed by each mitotic motor. Some of the motors operate within the nucleus to assemble and elongate the bipolar spindle (kinesin-related Cin8p, Kip1p, Kip3p and Kar3p). Others operate on the cytoplasmic microtubules to effect spindle and nuclear positioning within the cell (dynein and kinesin-related Kip2p, Kip3p and Kar3p). The six motors apparently contribute three fundamental activities to spindle function: motility, microtubule cross-linking and regulation of microtubule dynamics.
Collapse
Affiliation(s)
- E R Hildebrandt
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
22
|
Vallee RB, Faulkner NE, Tai CY. The role of cytoplasmic dynein in the human brain developmental disease lissencephaly. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:89-98. [PMID: 10722879 DOI: 10.1016/s0167-4889(00)00011-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lissencephaly is a brain developmental disorder characterized by disorganization of the cortical regions resulting from defects in neuronal migration. Recent evidence has implicated the human LIS-1 gene in Miller-Dieker lissencephaly and isolated lissencephaly sequence. LIS-1 is homologous to the fungal genes NudF and PAC1, which are involved in cytoplasmic dynein mediated nuclear transport, but it is also almost identical to a subunit of PAF acetylhydrolase, an enzyme which inactivates the lipid mediator platelet activating factor. Recent evidence from our laboratory has revealed that cytoplasmic dynein coimmunoprecipitates with LIS-1 in bovine brain cytosol, supporting a role in the dynein pathway in vertebrates. Overexpression of LIS-1 interferes with cell division, with noteworthy effects on chromosome attachment to the mitotic spindle and on the interaction of astral microtubules with the cell cortex. Other aspects of dynein function, such as the organization of the Golgi apparatus, are not affected. Together, these results suggest a role for LIS-1 in cytoplasmic dynein functions involving microtubule plus-ends. Furthermore, they suggest that mutations in LIS-1 may produce a lissencephalic phenotype either by interfering with the movement of neuronal nuclei within extending processes, or by interference with the division cycle of neuronal progenitor cells in the ventricular and subventricular zones of the developing nervous system.
Collapse
Affiliation(s)
- R B Vallee
- University of Massachusetts Medical School, 377 Plantation Street, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
23
|
Abstract
Actin-related proteins (Arps) participate in a diverse array of cellular processes. They modulate assembly of conventional actin, contribute to microtubule-based motility catalyzed by dynein, and serve as integral components of large protein complexes required for gene expression. We highlight here recent work aimed at understanding the roles played by Arps in each of these processes.
Collapse
Affiliation(s)
- D A Schafer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
24
|
Ma S, Triviños-Lagos L, Gräf R, Chisholm RL. Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J Cell Biol 1999; 147:1261-74. [PMID: 10601339 PMCID: PMC2168085 DOI: 10.1083/jcb.147.6.1261] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 11/05/1999] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic dynein intermediate chain (IC) mediates dynein-dynactin interaction in vitro (Karki, S., and E.L. Holzbaur. 1995. J. Biol. Chem. 270:28806-28811; Vaughan, K.T., and R.B. Vallee. 1995. J. Cell Biol. 131:1507-1516). To investigate the physiological role of IC and dynein-dynactin interaction, we expressed IC truncations in wild-type Dictyostelium cells. ICDeltaC associated with dynactin but not with dynein heavy chain, whereas ICDeltaN truncations bound to dynein but bound dynactin poorly. Both mutations resulted in abnormal localization to the Golgi complex, confirming dynein function was disrupted. Striking disorganization of interphase microtubule (MT) networks was observed when mutant expression was induced. In a majority of cells, the MT networks collapsed into large bundles. We also observed cells with multiple cytoplasmic asters and MTs lacking an organizing center. These cells accumulated abnormal DNA content, suggesting a defect in mitosis. Striking defects in centrosome morphology were also observed in IC mutants, mostly larger than normal centrosomes. Ultrastructural analysis of centrosomes in IC mutants showed interphase accumulation of large centrosomes typical of prophase as well as unusually paired centrosomes, suggesting defects in centrosome replication and separation. These results suggest that dynactin-mediated cytoplasmic dynein function is required for the proper organization of interphase MT network as well as centrosome replication and separation in Dictyostelium.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - Leda Triviños-Lagos
- Department of Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - Ralph Gräf
- Adolf-Butenandt-Institut/Zellbiologie, Universitaet Muenchen, D-80336 Muenchen, Germany
| | - Rex L. Chisholm
- Department of Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
25
|
Clark IB, Meyer DI. Overexpression of normal and mutant Arp1alpha (centractin) differentially affects microtubule organization during mitosis and interphase. J Cell Sci 1999; 112 ( Pt 20):3507-18. [PMID: 10504299 DOI: 10.1242/jcs.112.20.3507] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dynactin is a large multisubunit complex that regulates cytoplasmic dynein-mediated functions. To gain insight into the role of dynactin's most abundant component, Arp1alpha was transiently overexpressed in mammalian cells. Arp1alpha overexpression resulted in a cell cycle delay at prometaphase. Intracellular dynactin, dynein and nuclear/mitotic apparatus (NuMA) protein were recruited to multiple foci associated with ectopic cytoplasmic aggregates of Arp1alpha in transfected cells. These ectopic aggregates nucleated supernumerary microtubule asters at prometaphase. Point mutations were generated in Arp1alpha that identified specific amino acids required for the prometaphase delay and for the formation of supernumerary microtubule asters. The mutant Arp1alpha proteins formed aggregates in cells that colocalized with dynactin and dynein peptides, but in contrast to wild-type Arp1alpha, NuMA localization remained unaffected. Although expression of mutant Arp1alpha proteins had no effect on mitotic cells, in interphase cells expression of the mutants resulted in disruption of the microtubule network. Immunoprecipitation studies demonstrated that overexpressed Arp1alpha interacts with dynactin and NuMA proteins in cell extracts, and that these interactions are destabilized in the Arp1alpha mutants. We conclude that the amino acids altered in the Arp1alpha mutant proteins participate in stabilizing interactions between overexpressed Arp1alpha and components of the endogenous dynactin complex as well as the NuMA protein.
Collapse
Affiliation(s)
- I B Clark
- Department of Biological Chemistry, UCLA School of Medicine and the Molecular Biology Institute, University of California, Los Angeles, California 90024-1737, USA.
| | | |
Collapse
|
26
|
Gönczy P, Pichler S, Kirkham M, Hyman AA. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J Cell Biol 1999; 147:135-50. [PMID: 10508861 PMCID: PMC2164971 DOI: 10.1083/jcb.147.1.135] [Citation(s) in RCA: 360] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/1999] [Accepted: 08/23/1999] [Indexed: 11/22/2022] Open
Abstract
We have investigated the role of cytoplasmic dynein in microtubule organizing center (MTOC) positioning using RNA-mediated interference (RNAi) in Caenorhabditis elegans to deplete the product of the dynein heavy chain gene dhc-1. Analysis with time-lapse differential interference contrast microscopy and indirect immunofluorescence revealed that pronuclear migration and centrosome separation failed in one cell stage dhc-1 (RNAi) embryos. These phenotypes were also observed when the dynactin components p50/dynamitin or p150(Glued) were depleted with RNAi. Moreover, in 15% of dhc-1 (RNAi) embryos, centrosomes failed to remain in proximity of the male pronucleus. When dynein heavy chain function was diminished only partially with RNAi, centrosome separation took place, but orientation of the mitotic spindle was defective. Therefore, cytoplasmic dynein is required for multiple aspects of MTOC positioning in the one cell stage C. elegans embryo. In conjunction with our observation of cytoplasmic dynein distribution at the periphery of nuclei, these results lead us to propose a mechanism in which cytoplasmic dynein anchored on the nucleus drives centrosome separation.
Collapse
Affiliation(s)
- P Gönczy
- European Molecular Biology Laboratory, Heidelberg, D-69117 Germany.
| | | | | | | |
Collapse
|
27
|
Minke PF, Lee IH, Plamann M. Microscopic analysis of Neurospora ropy mutants defective in nuclear distribution. Fungal Genet Biol 1999; 28:55-67. [PMID: 10512672 DOI: 10.1006/fgbi.1999.1160] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Movement and distribution of nuclei in fungi has been shown to be dependent on microtubules and the microtubule-associated motor cytoplasmic dynein. Neurospora crassa mutants known as ropy are defective in nuclear distribution. We have shown that three of the ro genes, ro-1, ro-3, and ro-4, encode subunits of either cytoplasmic dynein or the dynein activator complex, dynactin. Three other ro genes, ro-7, ro-10, and ro-11, are required for the integrity or localization of cytoplasmic dynein or dynactin. In this report, we describe a microscopic analysis of N. crassa ro mutants. Our results reveal that defects in germination of conidia, placement of septa, and mitochondrial morphology are typical of ro mutants. Two classes of cytoplasmic microtubules are identified in wild-type and ro mutants. One class of microtubules has no obvious association with nuclei while the other class of microtubules connects spindle pole bodies of adjacent nuclei. The possible role of internuclear microtubule tracts in the movement and distribution of nuclei is discussed.
Collapse
Affiliation(s)
- P F Minke
- Department of Biology, Texas A&M University, College Station, Texas, 77843-32584, USA
| | | | | |
Collapse
|
28
|
Chadwick BP, Mull J, Helbling LA, Gill S, Leyne M, Robbins CM, Pinkett HW, Makalowska I, Maayan C, Blumenfeld A, Axelrod FB, Brownstein M, Gusella JF, Slaugenhaupt SA. Cloning, mapping, and expression of two novel actin genes, actin-like-7A (ACTL7A) and actin-like-7B (ACTL7B), from the familial dysautonomia candidate region on 9q31. Genomics 1999; 58:302-9. [PMID: 10373328 DOI: 10.1006/geno.1999.5848] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two novel human actin-like genes, ACTL7A and ACTL7B, were identified by cDNA selection and direct genomic sequencing from the familial dysautonomia candidate region on 9q31. ACTL7A encodes a 435-amino-acid protein (predicted molecular mass 48.6 kDa) and ACTL7B encodes a 415-amino-acid protein (predicted molecular mass 45. 2 kDa) that show greater than 65% amino acid identity to each other. Genomic analysis revealed ACTL7A and ACTL7B to be intronless genes contained on a common 8-kb HindIII fragment in a "head-to-head" orientation. The murine homologues were cloned and mapped by linkage analysis to mouse chromosome 4 in a region of gene order conserved with human chromosome 9q31. No recombinants were observed between the two genes, indicating a close physical proximity in mouse. ACTL7A is expressed in a wide variety of adult tissues, while the ACTL7B message was detected only in the testis and, to a lesser extent, in the prostate. No coding sequence mutations, genomic rearrangements, or differences in expression were detected for either gene in familial dysautonomia patients.
Collapse
MESH Headings
- Actins/genetics
- Adult
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosome Mapping
- Chromosomes/genetics
- Chromosomes, Human, Pair 9/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA/isolation & purification
- DNA Mutational Analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Dysautonomia, Familial/genetics
- Female
- Gene Expression
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- B P Chadwick
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Minke PF, Lee IH, Tinsley JH, Bruno KS, Plamann M. Neurospora crassa ro-10 and ro-11 genes encode novel proteins required for nuclear distribution. Mol Microbiol 1999; 32:1065-76. [PMID: 10361308 DOI: 10.1046/j.1365-2958.1999.01421.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement and distribution of nuclei in fungi have been shown to be dependent on cytoplasmic microtubules and the microtubule-associated motor cytoplasmic dynein. We have isolated hundreds of Neurospora crassa mutants, known as ropy, that are defective in nuclear distribution. Three of the ro genes, ro-1, ro-3 and ro-4, have been shown to encode subunits of either cytoplasmic dynein or the dynein activator complex, dynactin. In this report, we describe the isolation and initial characterization of two additional ro genes, ro-10 and ro-11. ro-10 and ro-11 are non-essential genes that encode novel 24 kDa and 75 kDa proteins respectively. Both ro-10 and ro-11 mutants retain the ability to generate long cytoplasmic microtubule tracks, suggesting that the nuclear distribution defect is not caused by a gross defect in the microtubule cytoskeleton. RO10, as well as RO4 (actin-related protein ARP1, the most abundant subunit of dynactin), appears to be required for the stability of RO3 (p150Glued), the largest subunit of dynactin. We propose that ro-10 mutants lack proper nuclear distribution, because RO10 is either a subunit of dynactin and required for dynactin activity or essential for assembly of the dynactin complex. ro-11 mutations have no effect on RO1 or RO3 levels and have only a very slight effect on the localization pattern of cytoplasmic dynein and dynactin. The role of RO11 in the movement and distribution of nuclei in N. crassa hyphae remains unknown.
Collapse
Affiliation(s)
- P F Minke
- Department of Biology, Texas A and M University, College Station, TX 77843-3258, USA
| | | | | | | | | |
Collapse
|
30
|
Vaughan KT, Tynan SH, Faulkner NE, Echeverri CJ, Vallee RB. Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. J Cell Sci 1999; 112 ( Pt 10):1437-47. [PMID: 10212138 DOI: 10.1242/jcs.112.10.1437] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic dynein is a minus end-directed microtubule motor responsible for centripetal organelle movement and several aspects of chromosome segregation. Our search for cytoplasmic dynein-interacting proteins has implicated the dynactin complex as the cytoplasmic dynein ‘receptor’ on organelles and kinetochores. Immunofluorescence microscopy using a total of six antibodies generated against the p150Glued, Arp1 and dynamitin subunits of dynactin revealed a novel fraction of dynactin-positive structures aligned in linear arrays along the distal segments of interphase microtubules. Dynactin staining revealed that these structures colocalized extensively with CLIP-170. Cytoplasmic dynein staining was undetectable, but extensive colocalization with dynactin became evident upon transfer to a lower temperature. Overexpression of the dynamitin subunit of dynactin removed Arp1 from microtubules but did not affect microtubule-associated p150Glued or CLIP-170 staining. Brief acetate treatment, which has been shown to affect lysosomal and endosomal traffic, also dispersed the Golgi apparatus and eliminated the microtubule-associated staining pattern. The effect on dynactin was rapidly reversible and, following acetate washout, punctate dynactin was detected at microtubule ends within 3 minutes. Together, these findings identify a region along the distal segments of microtubules where dynactin and CLIP-170 colocalize. Because CLIP-170 has been reported to mark growing microtubule ends, our results indicate a similar relationship for dynactin. The functional interaction between dynactin and cytoplasmic dynein further suggests that this these regions represent accumulations of cytoplasmic dynein cargo-loading sites involved in the early stages of minus end-directed organelle transport.
Collapse
Affiliation(s)
- K T Vaughan
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
31
|
Lee J, Hwang HS, Kim J, Song K. Ibd1p, a possible spindle pole body associated protein, regulates nuclear division and bud separation in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:239-53. [PMID: 10209303 DOI: 10.1016/s0167-4889(99)00015-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The proper spatial and temporal coordination of mitosis and cytokinesis is essential for maintaining genomic integrity. We describe the identification and characterization of the Saccharomyces cerevisiae IBD1 gene, which encodes a novel protein that regulates the proper nuclear division and bud separation. IBD1 was identified by the limited homology to byr4, a dosage-dependent regulator of cytokinesis in Schizosaccharomyces pombe. IBD1 is not an essential gene, and the knock-out cells show no growth defects except for the reduced mating efficiency [1]. However, upon ectopic expression from an inducible promoter, IBD1 is lethal to the cell and leads to abnormal nuclear division and bud separation. In detail, approximately 90% of the IBD1 overexpressing cells arrest at large bud stages with dividing or divided nuclei. In some IBD1 overexpressing cells, spindle elongation and chromosome separation occur within the mother cell, leading to anucleated and binucleate daughter cells. The anucleated cell can not bud, but the binucleate cell proceeds through another cell cycle(s) to produce a cell with multiple nuclei and multiple buds. Observations of the F-actin and chitin rings in the IBD1 overexpressing cells reveal that these cells lose the polarity for bud site selection and growth or attain the hyper-polarity for growth. Consistent with the phenotypes, the IBD1 overexpressing cells contain a broad range of DNA content, from 2 to 4 N or more. A functional Ibd1p-GFP fusion protein localizes to a single dot at the nuclear DNA boundary in the divided nuclei or to double dots in dividing nuclei, suggesting its localization on the spindle pole body (SPB). The cross-species expressions of IBD1 in S. pombe and byr4 in S. cerevisiae cause defects in shape, implicating the presence of a conserved mechanism for the control of cytokinesis in eukaryotes. We propose that Ibd1p is an SPB associated protein that links proper nuclear division to cytokinesis and bud separation.
Collapse
Affiliation(s)
- J Lee
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, South Korea
| | | | | | | |
Collapse
|
32
|
Miller RK, Matheos D, Rose MD. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J Cell Biol 1999; 144:963-75. [PMID: 10085294 PMCID: PMC2148208 DOI: 10.1083/jcb.144.5.963] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1998] [Revised: 02/03/1999] [Indexed: 11/22/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, positioning of the mitotic spindle requires both the cytoplasmic microtubules and actin. Kar9p is a novel cortical protein that is required for the correct position of the mitotic spindle and the orientation of the cytoplasmic microtubules. Green fluorescent protein (GFP)- Kar9p localizes to a single spot at the tip of the growing bud and the mating projection. However, the cortical localization of Kar9p does not require microtubules (Miller, R.K., and M.D. Rose. 1998. J. Cell Biol. 140: 377), suggesting that Kar9p interacts with other proteins at the cortex. To investigate Kar9p's cortical interactions, we treated cells with the actin-depolymerizing drug, latrunculin-A. In both shmoos and mitotic cells, Kar9p's cortical localization was completely dependent on polymerized actin. Kar9p localization was also altered by mutations in four genes, spa2Delta, pea2Delta, bud6Delta, and bni1Delta, required for normal polarization and actin cytoskeleton functions and, of these, bni1Delta affected Kar9p localization most severely. Like kar9Delta, bni1Delta mutants exhibited nuclear positioning defects during mitosis and in shmoos. Furthermore, like kar9Delta, the bni1Delta mutant exhibited misoriented cytoplasmic microtubules in shmoos. Genetic analysis placed BNI1 in the KAR9 pathway for nuclear migration. However, analysis of kar9Delta bni1Delta double mutants suggested that Kar9p retained some function in bni1Delta mitotic cells. Unlike the polarization mutants, kar9Delta shmoos had a normal morphology and diploids budded in the correct bipolar pattern. Furthermore, Bni1p localized normally in kar9Delta. We conclude that Kar9p's function is specific for cytoplasmic microtubule orientation and that Kar9p's role in nuclear positioning is to coordinate the interactions between the actin and microtubule networks.
Collapse
Affiliation(s)
- R K Miller
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
33
|
Karki S, Holzbaur EL. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 1999; 11:45-53. [PMID: 10047518 DOI: 10.1016/s0955-0674(99)80006-4] [Citation(s) in RCA: 385] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the initial discovery of cytoplasmic dynein, it has become apparent that this microtubule-based motor is involved in several cellular functions including cell division and intracellular transport. Another multisubunit complex, dynactin, may be required for most, if not all, cytoplasmic dynein-driven activities and may provide clues to dynein's functional diversity. Recent genetic and biochemical findings have illuminated the cellular roles of dynein and dynactin and provided insight into the functional mechanism of this complex motor.
Collapse
Affiliation(s)
- S Karki
- University of Pennsylvania Department of Animal Biology 143 Rosenthal Building 3800 Spruce Street Philadelphia PA 19104-6046 USA.
| | | |
Collapse
|
34
|
Huang ME, Souciet JL, Chuat JC, Galibert F. Identification of ACT4, a novel essential actin-related gene in the yeast Saccharomyces cerevisiae. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199607)12:9<839::aid-yea982>3.0.co;2-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Karki S, LaMonte B, Holzbaur EL. Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells. J Cell Biol 1998; 142:1023-34. [PMID: 9722614 PMCID: PMC2132867 DOI: 10.1083/jcb.142.4.1023] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dynactin, a multisubunit complex that binds to the microtubule motor cytoplasmic dynein, may provide a link between dynein and its cargo. Many subunits of dynactin have been characterized, elucidating the multifunctional nature of this complex. Using a dynein affinity column, p22, the smallest dynactin subunit, was isolated and microsequenced. The peptide sequences were used to clone a full-length human cDNA. Database searches with the predicted amino acid sequence of p22 indicate that this polypeptide is novel. We have characterized p22 as an integral component of dynactin by biochemical and immunocytochemical methods. Affinity chromatography experiments indicate that p22 binds directly to the p150(Glued) subunit of dynactin. Immunocytochemistry with antibodies to p22 demonstrates that this polypeptide localizes to punctate cytoplasmic structures and to the centrosome during interphase, and to kinetochores and to spindle poles throughout mitosis. Antibodies to p22, as well as to other dynactin subunits, also revealed a novel localization for dynactin to the cleavage furrow and to the midbodies of dividing cells; cytoplasmic dynein was also localized to these structures. We therefore propose that dynein/dynactin complexes may have a novel function during cytokinesis.
Collapse
Affiliation(s)
- S Karki
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
36
|
Miller RK, Heller KK, Frisèn L, Wallack DL, Loayza D, Gammie AE, Rose MD. The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol Biol Cell 1998; 9:2051-68. [PMID: 9693366 PMCID: PMC25458 DOI: 10.1091/mbc.9.8.2051] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/1998] [Accepted: 04/30/1998] [Indexed: 11/11/2022] Open
Abstract
The roles of two kinesin-related proteins, Kip2p and Kip3p, in microtubule function and nuclear migration were investigated. Deletion of either gene resulted in nuclear migration defects similar to those described for dynein and kar9 mutants. By indirect immunofluorescence, the cytoplasmic microtubules in kip2Delta were consistently short or absent throughout the cell cycle. In contrast, in kip3Delta strains, the cytoplasmic microtubules were significantly longer than wild type at telophase. Furthermore, in the kip3Delta cells with nuclear positioning defects, the cytoplasmic microtubules were misoriented and failed to extend into the bud. Localization studies found Kip2p exclusively on cytoplasmic microtubules throughout the cell cycle, whereas GFP-Kip3p localized to both spindle and cytoplasmic microtubules. Genetic analysis demonstrated that the kip2Delta kar9Delta double mutants were synthetically lethal, whereas kip3Delta kar9Delta double mutants were viable. Conversely, kip3Delta dhc1Delta double mutants were synthetically lethal, whereas kip2Delta dhc1Delta double mutants were viable. We suggest that the kinesin-related proteins, Kip2p and Kip3p, function in nuclear migration and that they do so by different mechanisms. We propose that Kip2p stabilizes microtubules and is required as part of the dynein-mediated pathway in nuclear migration. Furthermore, we propose that Kip3p functions, in part, by depolymerizing microtubules and is required for the Kar9p-dependent orientation of the cytoplasmic microtubules.
Collapse
Affiliation(s)
- R K Miller
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Kopecká M, Gabriel M. The aberrant positioning of nuclei and the microtubular cytoskeleton in Saccharomyces cerevisiae due to improper actin function. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1783-1797. [PMID: 9695911 DOI: 10.1099/00221287-144-7-1783] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An excentric position of the nuclei, random orientation of mitoses, and multinuclear budding cells were identified in part of a population of temperature-sensitive (ts) Saccharomyces cerevisiae actin mutants at the permissive temperature of 23 degrees C by fluorescence and electron microscopy. The phenotype resembled that of mutants in beta-tubulin, dynein, JNM1, NUM1, ACT3, ACT5, myosins, profilin, tropomyosin 1, SLA2 and other genes. The question was addressed whether the cause was (i) defects in cell polarity in some ts actin mutants, manifested by lack of asymmetry of actin cortical patches, or (ii) lack of cytoplasmic or astral microtubules. The results indicated that in the cells with the nuclear defects, actin cortical patches showed the normal asymmetric distribution typical of undisturbed polarity. Cytoplasmic astral and spindle microtubules were also preserved. The principal difference found between the wild-type and actin mutant cells was in actin cables, which in the actin mutants were developed insufficiently. It is suggested that actin cables serve as a 'suspensory apparatus' and/or 'intracellular corridor', predetermining: the location of the nucleus in the central position in interphase; the axis of nuclear movement to the bud neck before mitosis; the direction of the elongating nucleus during mitosis; and the motion of each nucleus from an excentric to a central position during cytokinesis, in cooperation with the above-mentioned and other gene products.
Collapse
|
38
|
Kahana JA, Schlenstedt G, Evanchuk DM, Geiser JR, Hoyt MA, Silver PA. The yeast dynactin complex is involved in partitioning the mitotic spindle between mother and daughter cells during anaphase B. Mol Biol Cell 1998; 9:1741-56. [PMID: 9658168 PMCID: PMC25412 DOI: 10.1091/mbc.9.7.1741] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although vertebrate cytoplasmic dynein can move to the minus ends of microtubules in vitro, its ability to translocate purified vesicles on microtubules depends on the presence of an accessory complex known as dynactin. We have cloned and characterized a novel gene, NIP100, which encodes the yeast homologue of the vertebrate dynactin complex protein p150(glued). Like strains lacking the cytoplasmic dynein heavy chain Dyn1p or the centractin homologue Act5p, nip100Delta strains are viable but undergo a significant number of failed mitoses in which the mitotic spindle does not properly partition into the daughter cell. Analysis of spindle dynamics by time-lapse digital microscopy indicates that the precise role of Nip100p during anaphase is to promote the translocation of the partially elongated mitotic spindle through the bud neck. Consistent with the presence of a true dynactin complex in yeast, Nip100p exists in a stable complex with Act5p as well as Jnm1p, another protein required for proper spindle partitioning during anaphase. Moreover, genetic depletion experiments indicate that the binding of Nip100p to Act5p is dependent on the presence of Jnm1p. Finally, we find that a fusion of Nip100p to the green fluorescent protein localizes to the spindle poles throughout the cell cycle. Taken together, these results suggest that the yeast dynactin complex and cytoplasmic dynein together define a physiological pathway that is responsible for spindle translocation late in anaphase.
Collapse
Affiliation(s)
- J A Kahana
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
39
|
May KM, Hyams JS. The yeast cytoskeleton: the closer We look, the more We See. Fungal Genet Biol 1998; 24:110-22. [PMID: 9742197 DOI: 10.1006/fgbi.1998.1073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
May, K. M., and Hyams, J. S. 1998. The yeast cytoskeleton: The closer we look, the more we see. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- KM May
- Department of Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | |
Collapse
|
40
|
Dujardin D, Wacker UI, Moreau A, Schroer TA, Rickard JE, De Mey JR. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J Cell Biol 1998; 141:849-62. [PMID: 9585405 PMCID: PMC2132766 DOI: 10.1083/jcb.141.4.849] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CLIPs (cytoplasmic linker proteins) are a class of proteins believed to mediate the initial, static interaction of organelles with microtubules. CLIP-170, the CLIP best characterized to date, is required for in vitro binding of endocytic transport vesicles to microtubules. We report here that CLIP-170 transiently associates with prometaphase chromosome kinetochores and codistributes with dynein and dynactin at kinetochores, but not polar regions, during mitosis. Like dynein and dynactin, a fraction of the total CLIP-170 pool can be detected on kinetochores of unattached chromosomes but not on those that have become aligned at the metaphase plate. The COOH-terminal domain of CLIP-170, when transiently overexpressed, localizes to kinetochores and causes endogenous full-length CLIP-170 to be lost from the kinetochores, resulting in a delay in prometaphase. Overexpression of the dynactin subunit, dynamitin, strongly reduces the amount of CLIP-170 at kinetochores suggesting that CLIP-170 targeting may involve the dynein/dynactin complex. Thus, CLIP-170 may be a linker for cargo in mitosis as well as interphase. However, dynein and dynactin staining at kinetochores are unaffected by this treatment and further overexpression studies indicate that neither CLIP-170 nor dynein and dynactin are required for the formation of kinetochore fibers. Nevertheless, these results strongly suggest that CLIP-170 contributes in some way to kinetochore function in vivo.
Collapse
Affiliation(s)
- D Dujardin
- Institut Jacques Monod, Department of Supramolecular and Cellular Biology, CNRS-University of Paris VI & VII, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
41
|
Brachat A, Kilmartin JV, Wach A, Philippsen P. Saccharomyces cerevisiae cells with defective spindle pole body outer plaques accomplish nuclear migration via half-bridge-organized microtubules. Mol Biol Cell 1998; 9:977-91. [PMID: 9571234 PMCID: PMC25323 DOI: 10.1091/mbc.9.5.977] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Delta1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Delta1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.
Collapse
Affiliation(s)
- A Brachat
- Lehrstuhl für Angewandte Mikrobiologie, Biozentrum, Universität Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
42
|
Venkatesh B, Brenner S. Genomic structure and sequence of the pufferfish (Fugu rubripes) gene encoding an actin-related protein. Gene X 1998; 211:169-75. [PMID: 9573354 DOI: 10.1016/s0378-1119(98)00096-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Using a polymerase chain reaction (PCR)-generated gene fragment as a probe, we isolated and sequenced a gene encoding an actin-related protein belonging to the Arp3 family from the pufferfish, Fugu rubripes. The Fugu Arp3 gene spans 3.7kb from the transcription start site to the polyadenylation signal. This is the first report of the genomic sequence of a vertebrate Arp3 gene. The Fugu Arp3 gene consists of 12 exons and 11 introns compared to Drosophila homologue, which has six exons and five introns. The protein sequence encoded by the Fugu gene is 97% and 80% identical to bovine and Drosophila homologues, respectively. The Fugu Arp3 gene is expressed in a wide range of tissues, with higher levels detected in the gills, kidney, ovary, skin and testis. Three different size transcripts of the Arp3 gene (1.4kb, 1.8kb and 2.2kb) were identified in various tissues.
Collapse
Affiliation(s)
- B Venkatesh
- Institute of Molecular, Cell Biology, 30 Medical Drive, ????, Singapore.
| | | |
Collapse
|
43
|
Holleran EA, Karki S, Holzbaur EL. The role of the dynactin complex in intracellular motility. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 182:69-109. [PMID: 9522459 DOI: 10.1016/s0074-7696(08)62168-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynactin is a multisubunit complex that binds to the minus-end-directed microtubule motor cytoplasmic dynein and may provide a link between the motor and its cargo. Results from genetic studies in Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans, and Drosophila have suggested that cytoplasmic dynein and dynactin function in the same cellular pathways. p150Glued, a vertebrate homologue of the Drosophila gene Glued, is the largest polypeptide in the dynactin complex with multiple protein interactions. Centractin, the most abundant dynactin subunit polypeptide, forms an actin-like filament at the base of the complex. Studies on dynamitin, the 50-kDa dynactin subunit, predict a role for dynactin in mitotic spindle assembly. Other subunits of dynactin have also been cloned and characterized; these studies have provided insight into the role of the complex in essential cellular processes.
Collapse
Affiliation(s)
- E A Holleran
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
44
|
Miller RK, Rose MD. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J Cell Biol 1998; 140:377-90. [PMID: 9442113 PMCID: PMC2132572 DOI: 10.1083/jcb.140.2.377] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1997] [Revised: 11/20/1997] [Indexed: 02/05/2023] Open
Abstract
kar9 was originally identified as a bilateral karyogamy mutant, in which the two zygotic nuclei remained widely separated and the cytoplasmic microtubules were misoriented (Kurihara, L.J., C.T. Beh, M. Latterich, R. Schekman, and M.D. Rose. 1994. J. Cell Biol. 126:911-923.). We now report a general defect in nuclear migration and microtubule orientation in kar9 mutants. KAR9 encodes a novel 74-kD protein that is not essential for life. The kar9 mitotic defect was similar to mutations in dhc1/dyn1 (dynein heavy chain gene), jnm1, and act5. kar9Delta dhc1Delta, kar9Delta jnm1Delta, and kar9Delta act5Delta double mutants were synthetically lethal, suggesting that these genes function in partially redundant pathways to carry out nuclear migration. A functional GFP-Kar9p fusion protein localized to a single dot at the tip of the shmoo projection. In mitotic cells, GFP-Kar9p localized to a cortical dot with both mother-daughter asymmetry and cell cycle dependence. In small-budded cells through anaphase, GFP-Kar9p was found at the tip of the growing bud. In telophase and G1 unbudded cells, no localization was observed. By indirect immunofluorescence, cytoplasmic microtubules intersected the GFP-Kar9p dot. Nocodazole experiments demonstrated that Kar9p's cortical localization was microtubule independent. We propose that Kar9p is a component of a cortical adaptor complex that orients cytoplasmic microtubules.
Collapse
Affiliation(s)
- R K Miller
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
45
|
Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 1997; 139:469-84. [PMID: 9334349 PMCID: PMC2139801 DOI: 10.1083/jcb.139.2.469] [Citation(s) in RCA: 531] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1997] [Revised: 07/31/1997] [Indexed: 02/05/2023] Open
Abstract
Dynactin is a multisubunit complex that plays an accessory role in cytoplasmic dynein function. Overexpression in mammalian cells of one dynactin subunit, dynamitin, disrupts the complex, resulting in dissociation of cytoplasmic dynein from prometaphase kinetochores, with consequent perturbation of mitosis (Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. J. Cell Biol. 132:617-634). Based on these results, dynactin was proposed to play a role in linking cytoplasmic dynein to kinetochores and, potentially, to membrane organelles. The current study reports on the dynamitin interphase phenotype. In dynamitin-overexpressing cells, early endosomes (labeled with antitransferrin receptor), as well as late endosomes and lysosomes (labeled with anti-lysosome-associated membrane protein-1 [LAMP-1]), were redistributed to the cell periphery. This redistribution was disrupted by nocodazole, implicating an underlying plus end-directed microtubule motor activity. The Golgi stack, monitored using sialyltransferase, galactosyltransferase, and N-acetylglucosaminyltransferase I, was dramatically disrupted into scattered structures that colocalized with components of the intermediate compartment (ERGIC-53 and ERD-2). The disrupted Golgi elements were revealed by EM to represent short stacks similar to those formed by microtubule-depolymerizing agents. Golgi-to-ER traffic of stack markers induced by brefeldin A was not inhibited by dynamitin overexpression. Time-lapse observations of dynamitin-overexpressing cells recovering from brefeldin A treatment revealed that the scattered Golgi elements do not undergo microtubule-based transport as seen in control cells, but rather, remain stationary at or near their ER exit sites. These results indicate that dynactin is specifically required for ongoing centripetal movement of endocytic organelles and components of the intermediate compartment. Results similar to those of dynamitin overexpression were obtained by microinjection with antidynein intermediate chain antibody, consistent with a role for dynactin in mediating interactions of cytoplasmic dynein with specific membrane organelles. These results suggest that dynamitin plays a pivotal role in regulating organelle movement at the level of motor-cargo binding.
Collapse
Affiliation(s)
- J K Burkhardt
- The University of Chicago, Department of Pathology, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
46
|
Guimera J, Pucharcós C, Domènech A, Casas C, Solans A, Gallardo T, Ashley J, Lovett M, Estivill X, Pritchard M. Cosmid contig and transcriptional map of three regions of human chromosome 21q22: identification of 37 novel transcripts by direct selection. Genomics 1997; 45:59-67. [PMID: 9339361 DOI: 10.1006/geno.1997.4861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human chromosome 21 is associated with many disorders, including Down syndrome (DS). In an effort to identify genes involved in brain development or function and therefore implicated in the mental retardation associated with DS, we chose YACs from three regions of chromosome 21: a region within the so-called "Down syndrome critical region," a region proximal to it, and one distal to it. We made cosmid libraries from these YACs and generated high-resolution physical maps by constructing cosmid contigs. These are the first cosmid contigs on chromosome 21 outside the critical region. The cosmids were used for direct selection of cDNAs to isolate chromosome 21 expressed sequences. We have isolated 45 nonredundant partial cDNAs and mapped these back to the cosmid contigs. We isolated 3 nonoverlapping portions of DSCR1 and a part of GIRK2 and identified 3 nonoverlapping partial cDNAs with similarity to the rat Dyrk gene, which turned out to be the human homologue (MNB) of the Drosophila minibrain gene. Twelve sequences had matches with either STS or EST entries in the databases, including a chromosome 21 EST, a chromosome 21 STS, and 6 unmapped expressed sequence entries. Only 1 sequence resulted in a match with a protein entry. The remaining 25 sequences revealed no similarity to any database entry. All of these partial cDNAs are expressed as determined by Northern blotting or by RT-PCR.
Collapse
Affiliation(s)
- J Guimera
- Molecular Genetics Department, Cancer Research Institute, Hospital Duran i Reynals, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Poch O, Winsor B. Who's who among the Saccharomyces cerevisiae actin-related proteins? A classification and nomenclature proposal for a large family. Yeast 1997; 13:1053-8. [PMID: 9290209 DOI: 10.1002/(sici)1097-0061(19970915)13:11<1053::aid-yea164>3.0.co;2-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inspection of the complete Saccharomyces cerevisiae genome sequence and analysis of the actin-related proteins (ARPs) found therein revealed seven proteins, in addition to the previously designated actin-related proteins Arp1, Arp2 and Arp3, which contained substantial blocks of conservation relative to a chosen sub-set of actins. We have ordered the new ARPs relative to this group of actins and propose to name the more distantly related ARP members, according to their amino acid identity and similarity, Arp4-Arp10. Most of these proteins appear to represent the first example of new classes of ARPs, each of which may have specific localization(s) and cellular function(s). Recently reported ARPs from other species have also been included in the phylogenetic tree derived from the overall alignment of 29 actins and 28 ARPs.
Collapse
Affiliation(s)
- O Poch
- UPR 9005 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | |
Collapse
|
48
|
Stearns T. Motoring to the finish: kinesin and dynein work together to orient the yeast mitotic spindle. J Biophys Biochem Cytol 1997; 138:957-60. [PMID: 9281575 PMCID: PMC2136760 DOI: 10.1083/jcb.138.5.957] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- T Stearns
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
49
|
Chiu YH, Xiang X, Dawe AL, Morris NR. Deletion of nudC, a nuclear migration gene of Aspergillus nidulans, causes morphological and cell wall abnormalities and is lethal. Mol Biol Cell 1997; 8:1735-49. [PMID: 9307970 PMCID: PMC305733 DOI: 10.1091/mbc.8.9.1735] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nuclear migration is required for normal development in both higher and lower eukaryotes. In fungi this process is mediated by cytoplasmic dynein. It is believed that this motor protein is anchored to the cell membrane and moves nuclei by capturing and pulling on spindle pole body microtubules. To date, four genes have been identified and shown to be required for this process in Aspergillus nidulans. The nudA and nudG genes, respectively, encode the heavy and light chains of cytoplasmic dynein, and the nudF and nudC gene products encode proteins of 49 and 22 kDa. The precise biochemical functions of the nudF and nudC genes have not yet been identified. In this report we further investigate NUDC protein function by deleting the nudC gene. Surprisingly, although deletion of nudA and nudF affect nuclear migration, deletion of nudC profoundly affected the morphology and composition of the cell wall. Spores of the strain deleted for nudC grew spherically and lysed. The thickness of the cell wall was increased in the deletion mutant and wall polymer composition was abnormal. This phenotype could be repressed by growth on osmotically buffered medium at low temperature. Similar, but less severe, effects were also noted in a strain depleted for NUDC by down-regulation. These results suggest a possible relationship between fungal cell wall biosynthesis and nuclear migration.
Collapse
Affiliation(s)
- Y H Chiu
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854-5635, USA
| | | | | | | |
Collapse
|
50
|
Carminati JL, Stearns T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Biophys Biochem Cytol 1997; 138:629-41. [PMID: 9245791 PMCID: PMC2141630 DOI: 10.1083/jcb.138.3.629] [Citation(s) in RCA: 379] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)-tubulin fusion protein to observe microtubules in living yeast cells. GFP-tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not interfere with normal microtubule function. Microtubules in yeast cells exhibit dynamic instability, although they grow and shrink more slowly than microtubules in animal cells. The dynamic properties of yeast microtubules are modulated during the cell cycle. The behavior of cytoplasmic microtubules revealed distinct interactions with the cell cortex that result in associated spindle movement and orientation. Dynein-mutant cells had defects in these cortical interactions, resulting in misoriented spindles. In addition, microtubule dynamics were altered in the absence of dynein. These results indicate that microtubules and dynein interact to produce dynamic cortical interactions, and that these interactions result in the force driving spindle orientation.
Collapse
Affiliation(s)
- J L Carminati
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | |
Collapse
|