1
|
Dorn JF, Zhang L, Phi TT, Lacroix B, Maddox PS, Liu J, Maddox AS. A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing. Mol Biol Cell 2016; 27:1286-99. [PMID: 26912796 PMCID: PMC4831882 DOI: 10.1091/mbc.e15-06-0374] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/16/2016] [Indexed: 11/11/2022] Open
Abstract
Furrow ingression is asymmetric in cytokinesis in the Caenorhabditis elegans zygote. A combination of quantitative high-resolution live-cell microscopy and theoretical modeling revealed a mechanistic basis for asymmetry: feedback among membrane curvature, cytoskeletal alignment, and contractility. The model also suggests that asymmetry promotes energy efficiency. During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in the Caenorhabditis elegans zygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane–cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity.
Collapse
Affiliation(s)
- Jonas F Dorn
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Li Zhang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Tan-Trao Phi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | | | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jian Liu
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
2
|
Billington N, Wang A, Mao J, Adelstein RS, Sellers JR. Characterization of three full-length human nonmuscle myosin II paralogs. J Biol Chem 2013; 288:33398-410. [PMID: 24072716 DOI: 10.1074/jbc.m113.499848] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nonmuscle myosin IIs (NM IIs) are a group of molecular motors involved in a wide variety of cellular processes including cytokinesis, migration, and control of cell morphology. There are three paralogs of the NM II heavy chain in humans (IIA, IIB, and IIC), each encoded by a separate gene. These paralogs are expressed at different levels according to cell type and have different roles and intracellular distributions in vivo. Most previous studies on NM II used tissue-purified protein or expressed fragments of the molecule, which presents potential drawbacks for characterizing individual paralogs of the intact protein in vitro. To circumvent current limitations and approach their native properties, we have successfully expressed and purified the three full-length human NM II proteins with their light chains, using the baculovirus/Sf9 system. The enzymatic and structural properties of the three paralogs were characterized. Although each NM II is capable of forming bipolar filaments, those formed by IIC tend to contain fewer constituent molecules than those of IIA and IIB. All paralogs adopt the compact conformation in the presence of ATP. Phosphorylation of the regulatory light chain leads to assembly into filaments, which bind to actin in the presence of ATP. The nature of interactions with actin filaments is shown with different paralogs exhibiting different actin binding behaviors under equivalent conditions. The data show that although NM IIA and IIB form filaments with similar properties, NM IIC forms filaments that are less well suited to roles such as tension maintenance within the cell.
Collapse
|
3
|
Franke JD, Montague RA, Kiehart DP. Nonmuscle myosin II is required for cell proliferation, cell sheet adhesion and wing hair morphology during wing morphogenesis. Dev Biol 2010; 345:117-32. [PMID: 20599890 DOI: 10.1016/j.ydbio.2010.06.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/19/2010] [Accepted: 06/21/2010] [Indexed: 01/22/2023]
Abstract
Metazoan development involves a myriad of dynamic cellular processes that require cytoskeletal function. Nonmuscle myosin II plays essential roles in embryonic development; however, knowledge of its role in post-embryonic development, even in model organisms such as Drosophila melanogaster, is only recently being revealed. In this study, truncation alleles were generated and enable the conditional perturbation, in a graded fashion, of nonmuscle myosin II function. During wing development they demonstrate novel roles for nonmuscle myosin II, including in adhesion between the dorsal and ventral wing epithelial sheets; in the formation of a single actin-based wing hair from the distal vertex of each cell; in forming unbranched wing hairs; and in the correct positioning of veins and crossveins. Many of these phenotypes overlap with those observed when clonal mosaic analysis was performed in the wing using loss of function alleles. Additional requirements for nonmuscle myosin II are in the correct formation of other actin-based cellular protrusions (microchaetae and macrochaetae). We confirm and extend genetic interaction studies to show that nonmuscle myosin II and an unconventional myosin, encoded by crinkled (ck/MyoVIIA), act antagonistically in multiple processes necessary for wing development. Lastly, we demonstrate that truncation alleles can perturb nonmuscle myosin II function via two distinct mechanisms--by titrating light chains away from endogenous heavy chains or by recruiting endogenous heavy chains into intracellular aggregates. By allowing myosin II function to be perturbed in a controlled manner, these novel tools enable the elucidation of post-embryonic roles for nonmuscle myosin II during targeted stages of fly development.
Collapse
Affiliation(s)
- Josef D Franke
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
4
|
Lusche DF, Wessels D, Soll DR. The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. ACTA ACUST UNITED AC 2009; 66:567-87. [PMID: 19363786 DOI: 10.1002/cm.20367] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular Ca(++), a ubiquitous cation in the soluble environment of cells both free living and within the human body, regulates most aspects of amoeboid cell motility, including shape, uropod formation, pseudopod formation, velocity, and turning in Dictyostelium discoideum. Hence it affects the efficiency of both basic motile behavior and chemotaxis. Extracellular Ca(++) is optimal at 10 mM. A gradient of the chemoattractant cAMP generated in the absence of added Ca(++) only affects turning, but in combination with extracellular Ca(++), enhances the effects of extracellular Ca(++). Potassium, at 40 mM, can partially substitute for Ca(++). Mg(++), Mn(++), Zn(++), and Na(+) cannot. Extracellular Ca(++), or K(+), also induce the cortical localization of myosin II in a polar fashion. The effects of Ca(++), K(+) or a cAMP gradient do not appear to be similarly mediated by an increase in the general pool of free cytosolic Ca(++). These results suggest a model, in which each agent functioning through different signaling systems, converge to affect the cortical localization of myosin II, which in turn effects the behavioral changes leading to efficient cell motility and chemotaxis. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Daniel F Lusche
- Department of Biology, The W.M. Keck Dynamic Image Analysis Facility, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
5
|
Fiehler RW, Wolff T. Drosophila Myosin II, Zipper, is essential for ommatidial rotation. Dev Biol 2007; 310:348-62. [PMID: 17826761 PMCID: PMC2110880 DOI: 10.1016/j.ydbio.2007.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 06/20/2007] [Accepted: 08/01/2007] [Indexed: 01/17/2023]
Abstract
The adult Drosophila retina is a highly polarized epithelium derived from a precursor tissue that is initially symmetric across its dorsoventral axis. Specialized 90 degrees rotational movements of subsets of cells, the ommatidial precursors, establish mirror symmetry in the retinal epithelium. Myosin II, or Zipper (Zip), a motor protein, regulates the rate at which ommatidia rotate: in zip mutants, the rate of rotation is significantly slowed. Zip is concentrated in the cells that we show to be at the likely interface between rotating and non-rotating cells: the boundary between differentiated and undifferentiated cells. Zip is also robust in newly added ommatidial cells, consistent with our model that the machinery that drives rotation should shift to newly recruited cells as they are added to the growing ommatidium. Finally, cell death genes and canonical Wnt signaling pathway members genetically modify the zip phenotype.
Collapse
Affiliation(s)
- Ryan W Fiehler
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
6
|
Wessels D, Lusche DF, Kuhl S, Heid P, Soll DR. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. J Cell Sci 2007; 120:2517-31. [PMID: 17623773 DOI: 10.1242/jcs.010876] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has been suggested that the phosphatydylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] phosphatase and tensin homolog PTEN plays a fundamental role in Dictyostelium discoideum chemotaxis. To identify that role, the behavior of a pten(-) mutant was quantitatively analyzed using two-dimensional and three-dimensional computer-assisted methods. pten(-) cells were capable of polarizing and translocating in the absence of attractant, and sensing and responding to spatial gradients, temporal gradients and natural waves of attractant. However, all of these responses were compromised (i.e. less efficient) because of the fundamental incapacity of pten(-) cells to suppress lateral pseudopod formation and turning. This defect was equally manifested in the absence, as well as presence, of attractant. PTEN, which is constitutively localized in the cortex of polarized cells, was found essential for the attractant-stimulated increase in cortical myosin II and F-actin that is responsible for the increased suppression of pseudopods during chemotaxis. PTEN, therefore, plays a fundamental role in the suppression of lateral pseudopod formation, a process essential for the efficiency of locomotion and chemotaxis, but not in directional sensing.
Collapse
Affiliation(s)
- Deborah Wessels
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
7
|
Franke JD, Montague RA, Kiehart DP. Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr Biol 2006; 15:2208-21. [PMID: 16360683 DOI: 10.1016/j.cub.2005.11.064] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 11/16/2005] [Indexed: 11/16/2022]
Abstract
BACKGROUND The morphogenic movements that characterize embryonic development require the precise temporal and spatial control of cell-shape changes. Drosophila dorsal closure is a well-established model for epithelial sheet morphogenesis, and mutations in more than 60 genes cause defects in closure. Closure requires that four forces, derived from distinct tissues, be precisely balanced. The proteins responsible for generating each of the forces have not been determined. RESULTS We document dorsal closure in living embryos to show that mutations in nonmuscle myosin II (encoded by zipper; zip/MyoII) disrupt the integrity of multiple tissues during closure. We demonstrate that MyoII localization is distinct from, but overlaps, F-actin in the supracellular purse string, whereas in the amnioserosa and lateral epidermis each has similar, cortical distributions. In zip/MyoII mutant embryos, we restore MyoII function either ubiquitously or specifically in the leading edge, amnioserosa, or lateral epidermis and find that zip/MyoII function in any one tissue can rescue closure. Using a novel, transgenic mosaic approach, we establish that contractility of the supracellular purse string in leading-edge cells requires zip/MyoII-generated forces; that zip/MyoII function is responsible for the apical contraction of amnioserosa cells; that zip/MyoII is important for zipping; and that defects in zip/MyoII contractility cause the misalignment of the lateral-epidermal sheets during seam formation. CONCLUSIONS We establish that zip/MyoII is responsible for generating the forces that drive cell-shape changes in each of the force-generating tissues that contribute to closure. This highly conserved contractile protein likely drives cell-sheet movements throughout phylogeny.
Collapse
Affiliation(s)
- Josef D Franke
- Department of Biology, Developmental Cell and Molecular Biology Group, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
8
|
Franke JD, Boury AL, Gerald NJ, Kiehart DP. Native nonmuscle myosin II stability and light chain binding inDrosophila melanogaster. ACTA ACUST UNITED AC 2006; 63:604-22. [PMID: 16917818 DOI: 10.1002/cm.20148] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Native nonmuscle myosin IIs play essential roles in cellular and developmental processes throughout phylogeny. Individual motor molecules consist of a heterohexameric complex of three polypeptides which, when properly assembled, are capable of force generation. Here, we more completely characterize the properties, relationships and associations that each subunit has with one another in Drosophila melanogaster. All three native nonmuscle myosin II polypeptide subunits are expressed in close to constant stoichiometry to each other throughout development. We find that the stability of two subunits, the heavy chain and the regulatory light chain, depend on one another whereas the stability of the third subunit, the essential light chain, does not depend on either the heavy chain or regulatory light chain. We demonstrate that heavy chain aggregates, which form when regulatory light chain is lacking, associate with the essential light chain in vivo-thus showing that regulatory light chain association is required for heavy chain solubility. By immunodepletion we find that the majority of both light chains are associated with the nonmuscle myosin II heavy chain but pools of free light chain and/or light chain bound to other proteins are present. We identify four myosins (myosin II, myosin V, myosin VI and myosin VIIA) and a microtubule-associated protein (asp/Abnormal spindle) as binding partners for the essential light chain (but not the regulatory light chain) through mass spectrometry and co-precipitation. Using an in silico approach we identify six previously uncharacterized genes that contain IQ-motifs and may be essential light chain binding partners.
Collapse
Affiliation(s)
- Josef D Franke
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
9
|
Wu D, Asiedu M, Adelstein RS, Wei Q. A novel guanine nucleotide exchange factor MyoGEF is required for cytokinesis. Cell Cycle 2006; 5:1234-9. [PMID: 16721066 PMCID: PMC2034313 DOI: 10.4161/cc.5.11.2815] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The cleavage furrow is created by an actomyosin contractile ring that is regulated by small GTPase proteins such as Rac1 and RhoA. Guanine nucleotide exchange factors (GEFs) are positive regulators of the small GTPase proteins and have been implicated as important factors in regulating cytokinesis. However, it is still unclear how GEFs regulate the contractile ring during cytokinesis in mammalian cells. Here we report that a novel GEF, which is termed MyoGEF (myosin-interacting GEF), interacts with non-muscle myosin II and exhibits activity toward RhoA. MyoGEF and non-muscle myosin II colocalize to the cleavage furrow in early anaphase cells. Disruption of MyoGEF expression in U2OS cells by RNA interference (RNAi) results in the formation of multinucleated cells. These results suggest that MyoGEF, RhoA, and non-muscle myosin II act as a functional unit at the cleavage furrow to advance furrow ingression during cytokinesis.
Collapse
Affiliation(s)
- Di Wu
- Department of Biochemistry; Kansas State University; Manhattan, Kansas USA
| | - Michael Asiedu
- Department of Biochemistry; Kansas State University; Manhattan, Kansas USA
| | | | - Qize Wei
- Department of Biochemistry; Kansas State University; Manhattan, Kansas USA
- *Correspondence to: Qize Wei, Ph.D.; Department of Biochemistry; Kansas State University; 104 Willard Hall; Manhattan, Kansas 66506 USA; Tel.: 785.532.6736; Fax: 785.532.7278,
| |
Collapse
|
10
|
Takagishi Y, Futaki S, Itoh K, Espreafico EM, Murakami N, Murata Y, Mochida S. Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J Physiol 2005; 569:195-208. [PMID: 16166155 PMCID: PMC1464199 DOI: 10.1113/jphysiol.2005.095943] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2005] [Accepted: 09/13/2005] [Indexed: 11/08/2022] Open
Abstract
While vesicle transport is one of the principal functions of myosin motors in neurones, the role played by specific myosin subtypes in discrete vesicle trafficking is poorly understood. We conducted electrophysiological and morphological experiments to determine whether myosin isoforms II and V might be involved in the transport of small synaptic vesicles in presynaptic nerve terminals of a model cholinergic synapse. Electron microscopy revealed the presence of normal synaptic architecture and synaptic vesicle density in presynaptic terminals of cultured superior cervical ganglion neurones (SCGNs) from myosin Va null rats (dilute-opisthotonus, dop). Similarly, electrophysiological analyses of synaptic transmission and synaptic vesicle cycling at paired SCGN synapses failed to uncover any significant differences in synaptic development and function between normal and dop rats. Immunocytochemistry and in situ localization of green fluorescent protein (GFP)-fusion proteins in wild-type synapses revealed that myosins IIB and Va were distributed throughout the cell soma and processes of SCGNs, while myosins IIA and Vb were not detected in SCGNs. Myosin Va was conspicuously absent in presynaptic nerve terminals, but myosin IIB alone was found to be expressed. Furthermore, synaptic transmission was inhibited by introduction of myosin IIB heavy chain fragments into presynaptic terminals of SCGNs. Together these results suggest that only myosin IIB isoform participates in vesicle trafficking in presynaptic nerve terminals of cultured SCGNs.
Collapse
Affiliation(s)
- Yoshiko Takagishi
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Tavares P, Rigothier MC, Khun H, Roux P, Huerre M, Guillén N. Roles of cell adhesion and cytoskeleton activity in Entamoeba histolytica pathogenesis: a delicate balance. Infect Immun 2005; 73:1771-8. [PMID: 15731078 PMCID: PMC1064917 DOI: 10.1128/iai.73.3.1771-1778.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Entamoeba histolytica colonizes the human large bowel. Invasion of the intestinal epithelium causes amoebic colitis and opens the route for amoebic liver abscesses. The parasite relies on its dynamic actomyosin cytoskeleton and on surface adhesion molecules for dissemination in the human tissues. Here we show that the galactose/N-acetylgalactosamine (Gal/GalNAc) lectin clusters in focal structures localized in the region of E. histolytica that contacts monolayers of enterocytes. Disruption of myosin II activity impairs the formation of these structures and renders the trophozoites avirulent for liver abscess development. Production of the cytoplasmic domain of the E. histolytica Gal/GalNAc lectin in engineered trophozoites causes reduced adhesion to enterocytes. Intraportal delivery of these parasites to the liver leads to the formation of a large number of small abscesses with disorganized morphology that are localized in the vicinity of blood vessels. The data support a model for invasion in which parasite motility is essential for establishment of infectious foci, while the adhesion to host cells modulates the distribution of trophozoites in the liver and their capacity to migrate in the hepatic tissue.
Collapse
Affiliation(s)
- Paulo Tavares
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France.
| | | | | | | | | | | |
Collapse
|
12
|
Marion S, Guillen N, Bacri JC, Wilhelm C. Acto-myosin cytoskeleton dependent viscosity and shear-thinning behavior of the amoeba cytoplasm. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:262-72. [PMID: 15711811 DOI: 10.1007/s00249-004-0449-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/11/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
The mechanical behavior of the human parasite Entamoeba histolytica plays a major role in the invasive process of host tissues and vessels. In this study, we set up an intracellular rheological technique derived from magnetic tweezers to measure the viscoelastic properties within living amoebae. The experimental setup combines two magnetic fields at 90 degrees from each other and is adapted to an inverted microscope, which allows monitoring of the rotation of pairs of magnetic phagosomes. We observe either the response of the phagosome pair to an instantaneous 45 degrees rotation of the magnetic field or the response to a permanent uniform rotation of the field at a given frequency. By the first method, we concluded that the phagosome pairs experience a soft viscoelastic medium, represented by the same mechanical model previously described for the cytoplasm of Dictyostelium discoideum [Feneberg et al. in Eur Biophys J 30(4):284-294 2001]. By the second method, the permanent rotation of a pair allowed us to apply a constant shear rate and to calculate the apparent viscosity of the cytoplasm. As found for entangled polymers, the viscosity decreases with the shear rate applied (shear-thinning behavior) and exhibits a power-law-type thinning, with a corresponding exponent of 0.65. Treatment of amoeba with drugs that affect the actin polymer content demonstrated that the shear-thinning behavior of the cytoplasm depends on the presence of an intact actin cytoskeleton. These data present a physiologic relevance for Entamoeba histolytica virulence. The shear-thinning behavior could facilitate cytoplasm streamings during cell movement and cell deformation, under important shear experienced by the amoeba during the invasion of human tissues. In this study, we also investigated the role of the actin-based motor myosin II and concluded that myosin II stiffens the F-actin gel in living parasites likely by its cross-linking activity.
Collapse
Affiliation(s)
- Sabrina Marion
- Unité de Biologie Cellulaire du Parasitisme, INSERM U389, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
13
|
Shu S, Liu X, Korn ED. Dictyostelium and Acanthamoeba myosin II assembly domains go to the cleavage furrow of Dictyostelium myosin II-null cells. Proc Natl Acad Sci U S A 2003; 100:6499-504. [PMID: 12748387 PMCID: PMC164475 DOI: 10.1073/pnas.0732155100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How myosin II localizes to the cleavage furrow of dividing cells is largely unknown. We show here that a 283-residue protein, assembly domain (AD)1, corresponding to the AD in the tail of Dictyostelium myosin II assembles into bundles of long tubules when expressed in myosin II-null cells and localizes to the cleavage furrow of dividing cells. AD1 mutants that do not polymerize in vitro do not go to the cleavage furrow in vivo. An assembly-competent polypeptide corresponding to the C-terminal 256 residues of Acanthamoeba myosin II also goes to the cleavage furrow of Dictyostelium myosin II-null cells. When overexpressed in wild-type cells, AD1 colocalizes with endogenous myosin II (possibly as a copolymer) in interphase, motile, and dividing cells and under caps of Con A receptors but has no effect on myosin II-dependent functions. These results suggest that neither a specific sequence, other than that required for polymerization, nor interaction with other proteins is required for localization of myosin II to the cleavage furrow.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Wang N, Wu WI, De Lozanne A. BEACH family of proteins: phylogenetic and functional analysis of six Dictyostelium BEACH proteins. J Cell Biochem 2003; 86:561-70. [PMID: 12210762 DOI: 10.1002/jcb.10254] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The beige and Chediak-Higashi syndrome (BEACH)-domain containing proteins constitute a new family of proteins found in all eukaryotes. The function of these proteins, which include the Chediak-Higashi syndrome (CHS) protein, Neurobeachin, LvsA, and FAN, is still poorly understood. To understand the diversity of this novel protein family, we analyzed a large array of BEACH-family protein sequences from several organisms. Comparison of all these sequences suggests that they can be classified into five distinct groups that may represent five distinct functional classes. In Dictyostelium we identified six proteins in this family, named LvsA-F, that belong to four of those classes. To test the function of these proteins in Dictyostelium we created disruption mutants in each of the lvs genes. Phenotypic analyses of these mutants indicate that LvsA is required for cytokinesis and osmoregulation and LvsB functions in lysosomal traffic. The LvsC-F proteins are not required for these or other processes such as growth and development. These results strongly support the concept that BEACH proteins from different classes have distinct cellular functions. Having six distinct BEACH proteins, Dictyostelium should be an excellent model system to dissect the molecular function of this interesting family of proteins.
Collapse
Affiliation(s)
- Ning Wang
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
15
|
Tsujioka M, Machesky LM, Cole SL, Yahata K, Inouye K. A unique talin homologue with a villin headpiece-like domain is required for multicellular morphogenesis in Dictyostelium. Curr Biol 1999; 9:389-92. [PMID: 10209124 DOI: 10.1016/s0960-9822(99)80169-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecules involved in the interaction between the extracellular matrix, cell membrane and cytoskeleton are of central importance in morphogenesis. Talin is a large cytoskeletal protein with a modular structure consisting of an amino-terminal membrane-interacting domain, with sequence similarities to members of the band 4.1 family, and a carboxy-terminal region containing F-actin-binding and vinculin-binding domains [1] [2]. It also interacts with the cytoplasmic tail of beta integrins which, on the external face of the membrane, bind to extracellular matrix proteins [3]. The possible roles of talin in multicellular morphogenesis in development remain largely unexplored. In Dictyostelium, a eukaryotic microorganism capable of multicellular morphogenesis, a talin homologue (TALA) has previously been identified and shown to play an important role in cell-to-substrate adhesion and maintenance of normal elastic properties of the cell [4] [5] [6]. Here, we describe a second talin homologue (TALB) that is required for multicellular morphogenesis in the development of Dictyostelium. Unlike any other talin characterised to date, it contains an additional carboxy-terminal domain homologous to the villin headpiece.
Collapse
Affiliation(s)
- M Tsujioka
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
16
|
Bi E, Maddox P, Lew DJ, Salmon ED, McMillan JN, Yeh E, Pringle JR. Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol 1998; 142:1301-12. [PMID: 9732290 PMCID: PMC2149343 DOI: 10.1083/jcb.142.5.1301] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/1998] [Revised: 07/30/1998] [Indexed: 11/22/2022] Open
Abstract
In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother-bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother-bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Delta strains divide nearly as efficiently as wild type; other myo1Delta strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell-wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin.
Collapse
Affiliation(s)
- E Bi
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Arhets P, Olivo JC, Gounon P, Sansonetti P, Guillén N. Virulence and functions of myosin II are inhibited by overexpression of light meromyosin in Entamoeba histolytica. Mol Biol Cell 1998; 9:1537-47. [PMID: 9614192 PMCID: PMC25380 DOI: 10.1091/mbc.9.6.1537] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Several changes in cell morphology take place during the capping of surface receptors in Entamoeba histolytica. The amoebae develop the uroid, an appendage formed by membrane invaginations, which accumulates ligand-receptor complexes resulting from the capping process. Membrane shedding is particularly active in the uroid region and leads to the elimination of accumulated ligands. This appendage has been postulated to participate in parasitic defense mechanisms against the host immune response, because it eliminates complement and specific antibodies bound to the amoeba surface. The involvement of myosin II in the capping process of surface receptors has been suggested by experiments showing that drugs that affect myosin II heavy-chain phosphorylation prevent this activity. To understand the role of this mechanoenzyme in surface receptor capping, a myosin II dominant negative strain was constructed. This mutant is the first genetically engineered cytoskeleton-deficient strain of E. histolytica. It was obtained by overexpressing the light meromyosin domain, which is essential for myosin II filament formation. E. histolytica overexpressing light meromyosin domain displayed a myosin II null phenotype characterized by abnormal movement, failure to form the uroid, and failure to undergo the capping process after treatment with concanavalin A. In addition, the amoebic cytotoxic capacities of the transfectants on human colon cells was dramatically reduced, indicating a role for cytoskeleton in parasite pathogenicity.
Collapse
Affiliation(s)
- P Arhets
- Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale U389, 75724 Paris Cédex 15, France
| | | | | | | | | |
Collapse
|
18
|
Larochelle DA, Vithalani KK, De Lozanne A. Role of Dictyostelium racE in cytokinesis: mutational analysis and localization studies by use of green fluorescent protein. Mol Biol Cell 1997; 8:935-44. [PMID: 9168476 PMCID: PMC276139 DOI: 10.1091/mbc.8.5.935] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The small GTPase racE is essential for cytokinesis in Dictyostelium but its precise role in cell division is not known. To determine the molecular mechanism of racE function, we undertook a mutational analysis of racE. The exogenous expression of either wild-type racE or a constitutively active V20racE mutant effectively rescues the cytokinesis deficiency of racE null cells. In contrast, a constitutively inactive N25racE mutant fails to rescue the cytokinesis deficiency. Thus, cytokinesis requires only the activation of racE by GTP and not the inactivation of racE by hydrolysis of GTP. To determine the spatial distribution of racE, we created a fusion protein with GFP at the amino terminus of racE. Remarkably, GFP-racE fusion protein was fully competent to rescue the phenotype of racE null cells and, therefore, must reside in the same location as native racE. We found that GFP-racE localized to the plasma membrane of the cell throughout the entire cell cycle. Furthermore, constitutively active and inactive GFP-racE fusion proteins also localized to the plasma membrane. We mapped the domain required for plasma membrane localization to the carboxyl-terminal 40 amino acids of racE. This domain, however, is not sufficient to confer racE function onto a closely related GTPase. Taken together, these results suggest that racE functions at the cell cortex but it is not involved in determining the timing or placement of the contractile ring.
Collapse
Affiliation(s)
- D A Larochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
19
|
Larochelle DA, Vithalani KK, De Lozanne A. A novel member of the rho family of small GTP-binding proteins is specifically required for cytokinesis. J Biophys Biochem Cytol 1996; 133:1321-9. [PMID: 8682867 PMCID: PMC2120902 DOI: 10.1083/jcb.133.6.1321] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several members of the rho/rac family of small GTP-binding proteins are known to regulate the distribution of the actin cytoskeleton in various subcellular processes. We describe here a novel rac protein, racE, which is specifically required for cytokinesis, an actomyosin-mediated process. The racE gene was isolated in a molecular genetic screen devised to isolate genes required for cytokinesis in Dictyostelium. Phenotypic characterization of racE mutants revealed that racE is not essential for any other cell motility event, including phagocytosis, chemotaxis, capping, or development. Our data provide the first genetic evidence for the essential requirement of a rho-like protein, specifically in cytokinesis, and suggest a role for these proteins in coordinating cytokinesis with the mitotic events of the cell cycle.
Collapse
Affiliation(s)
- D A Larochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|