1
|
Alfarhan M, Liu F, Matani BR, Somanath PR, Narayanan SP. SMOX Inhibition Preserved Visual Acuity, Contrast Sensitivity, and Retinal Function and Reduced Neuro-Glial Injury in Mice During Prolonged Diabetes. Cells 2024; 13:2049. [PMID: 39768141 PMCID: PMC11674681 DOI: 10.3390/cells13242049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic retinopathy, a major cause of vision loss, is characterized by neurovascular changes in the retina. The lack of effective treatments to preserve vision in diabetic patients remains a significant challenge. A previous study from our laboratory demonstrated that 12-week treatment with MDL 72527, a pharmacological inhibitor of spermine oxidase (SMOX, a critical regulator of polyamine metabolism), reduced neurodegeneration in diabetic mice. Utilizing the streptozotocin-induced diabetic mouse model and MDL 72527, the current study investigated the effectiveness of SMOX inhibition on the measures of vision impairment and neuro-glial injury following 24 weeks of diabetes. Reductions in visual acuity, contrast sensitivity, and inner retinal function in diabetic mice were improved by MDL 72527 treatment. Diabetes-induced changes in neuronal-specific class III tubulin (Tuj-1), synaptophysin, glutamine synthetase, and vimentin were attenuated in response to SMOX inhibition. In conclusion, our findings show that SMOX inhibition improved visual acuity, contrast sensitivity, and inner retinal function and mitigated diabetes-induced neuroglial damage during long-term diabetes. Targeting SMOX signaling may provide a potential strategy for reducing retinal neuronal damage and preserving vision in diabetes.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
- Department of Clinical Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Bayan R. Matani
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| | - S. Priya Narayanan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30907, USA; (M.A.); (F.L.); (B.R.M.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30907, USA
| |
Collapse
|
2
|
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman JE, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. Nat Methods 2024:10.1038/s41592-024-02517-x. [PMID: 39609567 DOI: 10.1038/s41592-024-02517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 11/30/2024]
Abstract
The native membrane environment profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergents to disrupt and remove this vital membrane context, impeding our ability to decipher the local molecular context and its effect. Here we develop a membrane proteome-wide platform that enables rapid spatially resolved extraction of target MPs directly from cellular membranes into native nanodiscs that maintain the local membrane context, using a library of membrane-active polymers. We accompany this with an open-access database that quantifies the polymer-specific extraction efficiency for 2,065 unique mammalian MPs and provides the most optimized extraction condition for each. To validate, we demonstrate how this resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, we show how the database can be extended to capture overexpressed multiprotein complexes by taking two synaptic vesicle MPs. We expect these publicly available resources to empower researchers across disciplines to efficiently capture membrane 'nano-scoops' containing a target MP and interface with structural, functional and bioanalytical approaches.
Collapse
Affiliation(s)
- Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Snehasish Ghosh
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Cell Signaling Technology, Danvers, MA, USA
| | - Gerard Walker
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Eric Sun
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Talat Aman
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Brown C, Ghosh S, McAllister R, Kumar M, Walker G, Sun E, Aman T, Panda A, Kumar S, Li W, Coleman J, Liu Y, Rothman JE, Bhattacharyya M, Gupta K. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579775. [PMID: 38405833 PMCID: PMC10888908 DOI: 10.1101/2024.02.10.579775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The intricate molecular environment of the native membrane profoundly influences every aspect of membrane protein (MP) biology. Despite this, the most prevalent method of studying MPs uses detergent-like molecules that disrupt and remove this vital local membrane context. This severely impedes our ability to quantitatively decipher the local molecular context and comprehend its regulatory role in the structure, function, and biogenesis of MPs. Using a library of membrane-active polymers we have developed a platform for the high-throughput analysis of the membrane proteome. The platform enables near-complete spatially resolved extraction of target MPs directly from their endogenous membranes into native nanodiscs that maintain the local membrane context. We accompany this advancement with an open-access database that quantifies the polymer-specific extraction variability for 2065 unique mammalian MPs and provides the most optimized condition for each of them. Our method enables rapid and near-complete extraction and purification of target MPs directly from their endogenous organellar membranes at physiological expression levels while maintaining the nanoscale local membrane environment. Going beyond the plasma membrane proteome, our platform enables extraction from any target organellar membrane including the endoplasmic reticulum, mitochondria, lysosome, Golgi, and even transient organelles such as the autophagosome. To further validate this platform, we took several independent MPs and demonstrated how our resource can enable rapid extraction and purification of target MPs from different organellar membranes with high efficiency and purity. Further, taking two synaptic vesicle MPs, we show how the database can be extended to capture multiprotein complexes between overexpressed MPs. We expect these publicly available resources to empower researchers across disciplines to efficiently capture membrane 'nano-scoops' containing a target MP and interface with structural, functional, and other bioanalytical approaches. We demonstrate an example of this by combining our extraction platform with single-molecule TIRF imaging to demonstrate how it can enable rapid determination of homo-oligomeric states of target MPs in native cell membranes.
Collapse
Affiliation(s)
- Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Snehasish Ghosh
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gerard Walker
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Eric Sun
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Talat Aman
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Shailesh Kumar
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
4
|
Wang C, Jiang W, Leitz J, Yang K, Esquivies L, Wang X, Shen X, Held RG, Adams DJ, Basta T, Hampton L, Jian R, Jiang L, Stowell MHB, Baumeister W, Guo Q, Brunger AT. Structure and topography of the synaptic V-ATPase-synaptophysin complex. Nature 2024; 631:899-904. [PMID: 38838737 PMCID: PMC11269182 DOI: 10.1038/s41586-024-07610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.
Collapse
Affiliation(s)
- Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Wenhong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xing Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaotao Shen
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Richard G Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Daniel J Adams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tamara Basta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Lucas Hampton
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Wolfgang Baumeister
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, USA.
- Department of Photon Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Boesze-Battaglia K, Cohen GH, Bates PF, Walker LM, Zekavat A, Shenker BJ. Cellugyrin (synaptogyrin-2) dependent pathways are used by bacterial cytolethal distending toxin and SARS-CoV-2 virus to gain cell entry. Front Cell Infect Microbiol 2024; 14:1334224. [PMID: 38698905 PMCID: PMC11063343 DOI: 10.3389/fcimb.2024.1334224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/19/2024] [Indexed: 05/05/2024] Open
Abstract
Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.
Collapse
Affiliation(s)
- Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul F. Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lisa M. Walker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ali Zekavat
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bruce J. Shenker
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Yu T, Flores-Solis D, Eastep GN, Becker S, Zweckstetter M. Phosphatidylserine-dependent structure of synaptogyrin remodels the synaptic vesicle membrane. Nat Struct Mol Biol 2023:10.1038/s41594-023-01004-9. [PMID: 37217654 DOI: 10.1038/s41594-023-01004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
Synaptic vesicles are small membrane-enclosed organelles that store neurotransmitters at presynaptic terminals. The uniform morphology of synaptic vesicles is important for brain function, because it enables the storage of well-defined amounts of neurotransmitters and thus reliable synaptic transmission. Here, we show that the synaptic vesicle membrane protein synaptogyrin cooperates with the lipid phosphatidylserine to remodel the synaptic vesicle membrane. Using NMR spectroscopy, we determine the high-resolution structure of synaptogyrin and identify specific binding sites for phosphatidylserine. We further show that phosphatidylserine binding changes the transmembrane structure of synaptogyrin and is critical for membrane bending and the formation of small vesicles. Cooperative binding of phosphatidylserine to both a cytoplasmic and intravesicular lysine-arginine cluster in synaptogyrin is required for the formation of small vesicles. Together with other synaptic vesicle proteins, synaptogyrin thus can sculpt the membrane of synaptic vesicles.
Collapse
Affiliation(s)
- Taekyung Yu
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | | | - Gunnar N Eastep
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
7
|
Li W, Cologna SM. Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders. Mol Omics 2022; 18:256-278. [PMID: 35343995 PMCID: PMC9098683 DOI: 10.1039/d2mo00004k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major function of the lysosome is to degrade unwanted materials such as lipids, proteins, and nucleic acids; therefore, deficits of the lysosomal system can result in improper degradation and trafficking of these biomolecules. Diseases associated with lysosomal failure can be lethal and are termed lysosomal storage disorders (LSDs), which affect 1 in 5000 live births collectively. LSDs are inherited metabolic diseases caused by mutations in single lysosomal and non-lysosomal proteins and resulting in the subsequent accumulation of macromolecules within. Most LSD patients present with neurodegenerative clinical symptoms, as well as damage in other organs. The discovery of new biomarkers is necessary to understand and monitor these diseases and to track therapeutic progress. Over the past ten years, mass spectrometry (MS)-based proteomics has flourished in the biomarker studies in many diseases, including neurodegenerative, and more specifically, LSDs. In this review, biomarkers of disease pathophysiology and monitoring of LSDs revealed by MS-based proteomics are discussed, including examples from Niemann-Pick disease type C, Fabry disease, neuronal ceroid-lipofuscinoses, mucopolysaccharidosis, Krabbe disease, mucolipidosis, and Gaucher disease.
Collapse
Affiliation(s)
- Wenping Li
- Department of Chemistry, University of Illinois at Chicago, USA.
| | | |
Collapse
|
8
|
De Pace R, Britt DJ, Mercurio J, Foster AM, Djavaherian L, Hoffmann V, Abebe D, Bonifacino JS. Synaptic Vesicle Precursors and Lysosomes Are Transported by Different Mechanisms in the Axon of Mammalian Neurons. Cell Rep 2021; 31:107775. [PMID: 32553155 PMCID: PMC7478246 DOI: 10.1016/j.celrep.2020.107775] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
BORC is a multisubunit complex previously shown to promote coupling of mammalian lysosomes and C. elegans synaptic vesicle (SV) precursors (SVPs) to kinesins for anterograde transport of these organelles along microtubule tracks. We attempted to meld these observations into a unified model for axonal transport in mammalian neurons by testing two alternative hypotheses: (1) that SV and lysosomal proteins are co-transported within a single type of “lysosome-related vesicle” and (2) that SVPs and lysosomes are distinct organelles, but both depend on BORC for axonal transport. Analyses of various types of neurons from wild-type rats and mice, as well as from BORC-deficient mice, show that neither hypothesis is correct. We find that SVPs and lysosomes are transported separately, but only lysosomes depend on BORC for axonal transport in these neurons. These findings demonstrate that SVPs and lysosomes are distinct organelles that rely on different machineries for axonal transport in mammalian neurons. De Pace et al. show that lysosomes and synaptic vesicle precursors (SVPs) are distinct organelles that move separately from the soma to the axon in rat and mouse neurons. Moreover, they demonstrate that the BLOC-1-related complex (BORC) is required for the transport of lysosomes but not SVPs in mouse neurons.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dylan J Britt
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey Mercurio
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arianne M Foster
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucas Djavaherian
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Frkatovic A, Zaytseva OO, Klaric L. Genetic Regulation of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:259-287. [PMID: 34687013 DOI: 10.1007/978-3-030-76912-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defining the genetic components that control glycosylation of the human immunoglobulin G (IgG) is an ongoing effort, which has so far been addressed by means of heritability, linkage and genome-wide association studies (GWAS). Unlike the synthesis of proteins, N-glycosylation biosynthesis is not a template-driven process, but rather a complex process regulated by both genetic and environmental factors. Current heritability studies have shown that while up to 75% of the variation in levels of some IgG glycan traits can be explained by genetics, some glycan traits are completely defined by environmental influences. Advances in both high-throughput genotyping and glycan quantification methods have enabled genome-wide association studies that are increasingly used to estimate associations of millions of single-nucleotide polymorphisms and glycosylation traits. Using this method, 18 genomic regions have so far been robustly associated with IgG N-glycosylation, discovering associations with genes encoding glycosyltransferases, but also transcription factors, co-factors, membrane transporters and other genes with no apparent role in IgG glycosylation. Further computational analyses have shown that IgG glycosylation is likely to be regulated through the expression of glycosyltransferases, but have also for the first time suggested which transcription factors are involved in the process. Moreover, it was also shown that IgG glycosylation and inflammatory diseases share common underlying causal genetic variants, suggesting that studying genetic regulation of IgG glycosylation helps not only to better understand this complex process but can also contribute to understanding why glycans are changed in disease. However, further studies are needed to unravel whether changes in IgG glycosylation are causing these diseases or the changes in the glycome are caused by the disease.
Collapse
Affiliation(s)
- Azra Frkatovic
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Olga O Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Raja MK, Preobraschenski J, Del Olmo-Cabrera S, Martinez-Turrillas R, Jahn R, Perez-Otano I, Wesseling JF. Elevated synaptic vesicle release probability in synaptophysin/gyrin family quadruple knockouts. eLife 2019; 8:40744. [PMID: 31090538 PMCID: PMC6519982 DOI: 10.7554/elife.40744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/18/2019] [Indexed: 01/05/2023] Open
Abstract
Synaptophysins 1 and 2 and synaptogyrins 1 and 3 constitute a major family of synaptic vesicle membrane proteins. Unlike other widely expressed synaptic vesicle proteins such as vSNAREs and synaptotagmins, the primary function has not been resolved. Here, we report robust elevation in the probability of release of readily releasable vesicles with both high and low release probabilities at a variety of synapse types from knockout mice missing all four family members. Neither the number of readily releasable vesicles, nor the timing of recruitment to the readily releasable pool was affected. The results suggest that family members serve as negative regulators of neurotransmission, acting directly at the level of exocytosis to dampen connection strength selectively when presynaptic action potentials fire at low frequency. The widespread expression suggests that chemical synapses may play a frequency filtering role in biological computation that is more elemental than presently envisioned. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mathan K Raja
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Isabel Perez-Otano
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| | - John F Wesseling
- Department of Neuroscience, Universidad de Navarra, Pamplona, Spain.,Institute for Neurosciences CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
11
|
Hammoum I, Benlarbi M, Dellaa A, Kahloun R, Messaoud R, Amara S, Azaiz R, Charfeddine R, Dogui M, Khairallah M, Lukáts Á, Ben Chaouacha-Chekir R. Retinal dysfunction parallels morphologic alterations and precede clinically detectable vascular alterations in Meriones shawi, a model of type 2 diabetes. Exp Eye Res 2018; 176:174-187. [PMID: 30009825 DOI: 10.1016/j.exer.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Diabetic retinopathy is a major cause of reduced visual acuity and acquired blindness. The aim of this work was to analyze functional and vascular changes in diabetic Meriones shawi (M.sh) an animal model of metabolic syndrome and type 2 diabetes. The animals were divided into four groups. Two groups were fed a high fat diet (HFD) for 3 and 7 months, two other groups served as age-matched controls. Retinal function was assessed using full field electroretinogram (Ff-ERG). Retinal thickness and vasculature were examined by optical coherence tomography, eye fundus and fluorescein angiography. Immunohistochemistry was used to examine key proteins of glutamate metabolism and synaptic transmission. Diabetic animals exhibited significantly delayed scotopic and photopic ERG responses and decreases in scotopic and photopic a- and b-wave amplitudes at both time points. Furthermore, a decrease of the amplitude of the flicker response and variable changes in the scotopic and photopic oscillatory potentials was reported. A significant decrease in retinal thickness was observed. No evident change in the visual streak area and no sign of vascular abnormality was present; however, some exudates in the periphery were visible in 7 months diabetic animals. Imunohistochemistry detected a decrease in the expression of glutamate synthetase, vesicular glutamate transporter 1 and synaptophysin proteins. Results indicate that a significant retinal dysfunction was present in the HFD induced diabetes involving both rod and cone pathways and this dysfunction correlate well with the morphological abnormalities reported previously. Furthermore, neurodegeneration and abnormalities in retinal function occur before vascular alterations would be detectable in diabetic M.sh.
Collapse
Affiliation(s)
- Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, El Manar University (UTM), Tunis, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia
| | - Rim Kahloun
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Riadh Messaoud
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Soumaya Amara
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, Industrial Area Kalaa Kebira, Sousse, Tunisia
| | - Mohamed Dogui
- Service of Functional Explorations of the Nervous System, Sahloul University Hospital, Sousse, Tunisia
| | - Moncef Khairallah
- Service of Ophtalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Tunisia.
| |
Collapse
|
12
|
Marcotulli D, Fattorini G, Bragina L, Perugini J, Conti F. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex. Front Cell Neurosci 2017; 11:389. [PMID: 29311825 PMCID: PMC5732259 DOI: 10.3389/fncel.2017.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/24/2017] [Indexed: 01/23/2023] Open
Abstract
Presynaptic proteins are potential therapeutic targets for epilepsy and other neurological diseases. We tested the hypothesis that chronic treatment with the SV2A ligand levetiracetam affects the expression of other presynaptic proteins. Results showed that in rat neocortex no significant difference was detected in SV2A protein levels in levetiracetam treated animals compared to controls, whereas levetiracetam post-transcriptionally decreased several vesicular proteins and increased LRRK2, without any change in mRNA levels. Analysis of SV2A interactome indicates that the presynaptic proteins regulation induced by levetiracetam reported here is mediated by this interactome, and suggests that LRRK2 plays a role in forging the pattern of effects.
Collapse
Affiliation(s)
- Daniele Marcotulli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Luca Bragina
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| |
Collapse
|
13
|
Funke S, Perumal N, Beck S, Gabel-Scheurich S, Schmelter C, Teister J, Gerbig C, Gramlich OW, Pfeiffer N, Grus FH. Glaucoma related Proteomic Alterations in Human Retina Samples. Sci Rep 2016; 6:29759. [PMID: 27425789 PMCID: PMC4947915 DOI: 10.1038/srep29759] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/24/2016] [Indexed: 01/23/2023] Open
Abstract
Glaucoma related proteomic changes have been documented in cell and animal models. However, proteomic studies investigating on human retina samples are still rare. In the present work, retina samples of glaucoma and non-glaucoma control donors have been examined by a state-of-the-art mass spectrometry (MS) workflow to uncover glaucoma related proteomic changes. More than 600 proteins could be identified with high confidence (FDR < 1%) in human retina samples. Distinct proteomic changes have been observed in 10% of proteins encircling mitochondrial and nucleus species. Numerous proteins showed a significant glaucoma related level change (p < 0.05) or distinct tendency of alteration (p < 0.1). Candidates were documented to be involved in cellular development, stress and cell death. Increase of stress related proteins and decrease of new glaucoma related candidates, ADP/ATP translocase 3 (ANT3), PC4 and SRFS1-interacting protein 1 (DFS70) and methyl-CpG-binding protein 2 (MeCp2) could be documented by MS. Moreover, candidates could be validated by Accurate Inclusion Mass Screening (AIMS) and immunostaining and supported for the retinal ganglion cell layer (GCL) by laser capture microdissection (LCM) in porcine and human eye cryosections. The workflow allowed a detailed view into the human retina proteome highlighting new molecular players ANT3, DFS70 and MeCp2 associated to glaucoma.
Collapse
Affiliation(s)
- Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Silke Gabel-Scheurich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Claudia Gerbig
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Oliver W Gramlich
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa, USA
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
14
|
Siloni S, Singer-Lahat D, Esa M, Tsemakhovich V, Chikvashvili D, Lotan I. Regulation of the neuronal KCNQ2 channel by Src--a dual rearrangement of the cytosolic termini underlies bidirectional regulation of gating. J Cell Sci 2015; 128:3489-501. [PMID: 26275828 DOI: 10.1242/jcs.173922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/26/2015] [Indexed: 12/11/2022] Open
Abstract
Neuronal M-type K(+) channels are heteromers of KCNQ2 and KCNQ3 subunits, and are found in cell bodies, dendrites and the axon initial segment, regulating the firing properties of neurons. By contrast, presynaptic KCNQ2 homomeric channels directly regulate neurotransmitter release. Previously, we have described a mechanism for gating downregulation of KCNQ2 homomeric channels by calmodulin and syntaxin1A. Here, we describe a new mechanism for regulation of KCNQ2 channel gating that is modulated by Src, a non-receptor tyrosine kinase. In this mechanism, two concurrent distinct structural rearrangements of the cytosolic termini induce two opposing effects: upregulation of the single-channel open probability, mediated by an N-terminal tyrosine, and reduction in functional channels, mediated by a C-terminal tyrosine. In contrast, Src-mediated regulation of KCNQ3 homomeric channels, shown previously to be achieved through the corresponding tyrosine residues, involves the N-terminal-tyrosine-mediated downregulation of the open probability, rather than an upregulation. We argue that the dual bidirectional regulation of KCNQ2 functionality by Src, mediated through two separate sites, means that KCNQ2 can be modified by cellular factors that might specifically interact with either one of the sites, with potential significance in the fine-tuning of neurotransmitters release at nerve terminals.
Collapse
Affiliation(s)
- Sivan Siloni
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Moad Esa
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Vlad Tsemakhovich
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
15
|
Abstract
Synaptic vesicles release their vesicular contents to the extracellular space by Ca(2+)-triggered exocytosis. The Ca(2+)-triggered exocytotic process is regulated by synaptotagmin (Syt), a vesicular Ca(2+)-binding C2 domain protein. Synaptotagmin 1 (Syt1), the most studied major isoform among 16 Syt isoforms, mediates Ca(2+)-triggered synaptic vesicle exocytosis by interacting with the target membranes and SNARE/complexin complex. In synapses of the central nervous system, synaptobrevin 2, a major vesicular SNARE protein, forms a ternary SNARE complex with the plasma membrane SNARE proteins, syntaxin 1 and SNAP25. The affinities of Ca(2+)-dependent interactions between Syt1 and its targets (i.e., SNARE complexes and membranes) are well correlated with the efficacies of the corresponding exocytotic processes. Therefore, different SNARE protein isoforms and membrane lipids, which interact with Syt1 with various affinities, are capable of regulating the efficacy of Syt1-mediated exocytosis. Otoferlin, another type of vesicular C2 domain protein that binds to the membrane in a Ca(2+)-dependent manner, is also involved in the Ca(2+)-triggered synaptic vesicle exocytosis in auditory hair cells. However, the functions of otoferlin in the exocytotic process are not well understood. In addition, at least five different types of synaptic vesicle proteins such as synaptic vesicle protein 2, cysteine string protein α, rab3, synapsin, and a group of proteins containing four transmembrane regions, which includes synaptophysin, synaptogyrin, and secretory carrier membrane protein, are involved in modulating the exocytotic process by regulating the formation and trafficking of synaptic vesicles.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
16
|
Önel SF, Rust MB, Jacob R, Renkawitz-Pohl R. Tethering membrane fusion: common and different players in myoblasts and at the synapse. J Neurogenet 2014; 28:302-15. [PMID: 24957080 PMCID: PMC4245166 DOI: 10.3109/01677063.2014.936014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drosophila Membrane fusion is essential for the communication of membrane-defined compartments, development of multicellular organisms and tissue homeostasis. Although membrane fusion has been studied extensively, still little is known about the molecular mechanisms. Especially the intercellular fusion of cells during development and tissue homeostasis is poorly understood. Somatic muscle formation in Drosophila depends on the intercellular fusion of myoblasts. In this process, myoblasts recognize each other and adhere, thereby triggering a protein machinery that leads to electron-dense plaques, vesicles and F-actin formation at apposing membranes. Two models of how local membrane stress is achieved to induce the merging of the myoblast membranes have been proposed: the electron-dense vesicles transport and release a fusogen and F-actin bends the plasma membrane. In this review, we highlight cell-adhesion molecules and intracellular proteins known to be involved in myoblast fusion. The cell-adhesion proteins also mediate the recognition and adhesion of other cell types, such as neurons that communicate with each other via special intercellular junctions, termed chemical synapses. At these synapses, neurotransmitters are released through the intracellular fusion of synaptic vesicles with the plasma membrane. As the targeting of electron-dense vesicles in myoblasts shares some similarities with the targeting of synaptic vesicle fusion, we compare molecules required for synaptic vesicle fusion to recently identified molecules involved in myoblast fusion.
Collapse
Affiliation(s)
- Susanne Filiz Önel
- Developmental Biology, Philipps University of Marburg , 35043 Marburg , Germany
| | | | | | | |
Collapse
|
17
|
Maeder CI, San-Miguel A, Wu EY, Lu H, Shen K. In vivo neuron-wide analysis of synaptic vesicle precursor trafficking. Traffic 2014; 15:273-91. [PMID: 24320232 DOI: 10.1111/tra.12142] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
During synapse development, synaptic proteins must be targeted to sites of presynaptic release. Directed transport as well as local sequestration of synaptic vesicle precursors (SVPs), membranous organelles containing many synaptic proteins, might contribute to this process. Using neuron-wide time-lapse microscopy, we studied SVP dynamics in the DA9 motor neuron in Caenorhabditis elegans. SVP transport was highly dynamic and bi-directional throughout the entire neuron, including the dendrite. While SVP trafficking was anterogradely biased in axonal segments prior to the synaptic domain, directionality of SVP movement was stochastic in the dendrite and distal axon. Furthermore, frequency of movement and speed were variable between different compartments. These data provide evidence that SVP transport is differentially regulated in distinct neuronal domains. It also suggests that polarized SVP transport in concert with local vesicle capturing is necessary for accurate presynapse formation and maintenance. SVP trafficking analysis of two hypomorphs for UNC-104/KIF1A in combination with mathematical modeling identified directionality of movement, entry of SVPs into the axon as well as axonal speeds as the important determinants of steady-state SVP distributions. Furthermore, detailed dissection of speed distributions for wild-type and unc-104/kif1a mutant animals revealed an unexpected role for UNC-104/KIF1A in dendritic SVP trafficking.
Collapse
Affiliation(s)
- Celine I Maeder
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA,, USA
| | | | | | | | | |
Collapse
|
18
|
Kotani T, Toyono T, Seta Y, Kitou A, Kataoka S, Toyoshima K. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds. Cell Tissue Res 2013; 353:391-8. [DOI: 10.1007/s00441-013-1629-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
|
19
|
Ahmed S, Holt M, Riedel D, Jahn R. Small-scale isolation of synaptic vesicles from mammalian brain. Nat Protoc 2013; 8:998-1009. [PMID: 23619891 DOI: 10.1038/nprot.2013.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic vesicles (SVs) are essential organelles that participate in the release of neurotransmitters from a neuron. Biochemical analysis of purified SVs was instrumental in the identification of proteins involved in exocytotic membrane fusion and neurotransmitter uptake. Although numerous protocols have been published detailing the isolation of SVs from the brain, those that give the highest-purity vesicles often have low yields. Here we describe a protocol for the small-scale isolation of SVs from mouse and rat brain. The procedure relies on standard fractionation techniques, including differential centrifugation, rate-zonal centrifugation and size-exclusion chromatography, but it has been optimized for minimal vesicle loss while maintaining a high degree of purity. The protocol can be completed in less than 1 d and allows the recovery of ∼150 μg of vesicle protein from a single mouse brain, thus allowing vesicle isolation from transgenic mice.
Collapse
Affiliation(s)
- Saheeb Ahmed
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
20
|
D’Cruz TS, Weibley BN, Kimball SR, Barber AJ. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes. PLoS One 2012; 7:e44711. [PMID: 22970294 PMCID: PMC3435316 DOI: 10.1371/journal.pone.0044711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/07/2012] [Indexed: 11/18/2022] Open
Abstract
Synaptophysin, is an abundant presynaptic protein involved in synaptic vesicle recycling and neurotransmitter release. Previous work shows that its content is significantly reduced in the rat retina by streptozotocin (STZ)-diabetes. This study tested the hypothesis that STZ-diabetes alters synaptophysin protein turnover and glycosylation in the rat retina. Whole explant retinas from male Sprague-Dawley rats were used in this study. Rats were made diabetic by a single intraperitoneal STZ injection (65 mg/kg body weight in 10 mM sodium citrate, pH 4.5). mRNA translation was measured using a 35S-methionine labeling assay followed by synaptophysin immunoprecipitation and autoradiography. A pulse-chase study was used to determine the depletion of newly synthesized synaptophysin. Depletion of total synaptophysin was determined after treatment with cycloheximide. Mannose rich N-glycosylated synaptophysin was detected by treating retinal lysates with endoglycosidase H followed by immunoblot analysis. Synaptophysin mRNA translation was significantly increased after 1 month (p<0.001) and 2 months (p<0.05) of STZ-diabetes, compared to age-matched controls. Newly synthesized synaptophysin degradation was significantly accelerated in the retina after 1 and 2 months of diabetes compared to controls (p<0.05). Mannose rich glycosylated synaptophysin was significantly increased after 1 month of STZ-diabetes compared to controls (p<0.05).These data suggest that diabetes increases mRNA translation of synaptophysin in the retina, resulting in an accumulation of mannose rich glycosylated synaptophysin, a transient post-translational state of the protein. This diabetes-induced irregularity in post-translational processing could explain the accelerated degradation of retinal synaptophysin in diabetes.
Collapse
Affiliation(s)
- Travis S. D’Cruz
- Department of Ophthalmology, The Penn State Hershey Eye Center, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Brittany N. Weibley
- Department of Ophthalmology, The Penn State Hershey Eye Center, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Scot R. Kimball
- Cellular and Molecular Physiology, The Penn State Hershey Eye Center, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Alistair J. Barber
- Department of Ophthalmology, The Penn State Hershey Eye Center, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- Cellular and Molecular Physiology, The Penn State Hershey Eye Center, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Löw C, Jegerschöld C, Kovermann M, Moberg P, Nordlund P. Optimisation of over-expression in E. coli and biophysical characterisation of human membrane protein synaptogyrin 1. PLoS One 2012; 7:e38244. [PMID: 22675529 PMCID: PMC3365889 DOI: 10.1371/journal.pone.0038244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/02/2012] [Indexed: 11/25/2022] Open
Abstract
Progress in functional and structural studies of integral membrane proteins (IMPs) is lacking behind their soluble counterparts due to the great challenge in producing stable and homogeneous IMPs. Low natural abundance, toxicity when over-expressed and potential lipid requirements of IMPs are only a few reasons for the limited progress. Here, we describe an optimised workflow for the recombinant over-expression of the human tetraspan vesicle protein (TVP) synaptogyrin in Escherichia coli and its biophysical characterisation. TVPs are ubiquitous and abundant components of vesicles. They are believed to be involved in various aspects of the synaptic vesicle cycle, including vesicle biogenesis, exocytosis and endocytotic recycling. Even though TVPs are found in most cell types, high-resolution structural information for this class of membrane proteins is still missing. The optimisation of the N-terminal sequence of the gene together with the usage of the recently developed Lemo21(DE3) strain which allows the balancing of the translation with the membrane insertion rate led to a 50-fold increased expression rate compared to the classical BL21(DE3) strain. The protein was soluble and stable in a variety of mild detergents and multiple biophysical methods confirmed the folded state of the protein. Crosslinking experiments suggest an oligomeric architecture of at least four subunits. The protein stability is significantly improved in the presence of cholesteryl hemisuccinate as judged by differential light scattering. The approach described here can easily be adapted to other eukaryotic IMPs.
Collapse
Affiliation(s)
- Christian Löw
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (CL); (PN)
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michael Kovermann
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg, Saale, Germany
| | - Per Moberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (CL); (PN)
| |
Collapse
|
22
|
Synaptogyrin-dependent modulation of synaptic neurotransmission in Caenorhabditis elegans. Neuroscience 2011; 190:75-88. [DOI: 10.1016/j.neuroscience.2011.05.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 05/20/2011] [Accepted: 05/28/2011] [Indexed: 01/31/2023]
|
23
|
Messa M, Congia S, Defranchi E, Valtorta F, Fassio A, Onofri F, Benfenati F. Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. J Cell Sci 2010; 123:2256-65. [PMID: 20530578 DOI: 10.1242/jcs.068445] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synapsins are synaptic vesicle (SV)-associated phosphoproteins involved in the regulation of neurotransmitter release. Synapsins reversibly tether SVs to the cytoskeleton and their phosphorylation by serine/threonine kinases increases SV availability for exocytosis by impairing their association with SVs and/or actin. We recently showed that synapsin I, through SH3- or SH2-mediated interactions, activates Src and is phosphorylated by the same kinase at Tyr301. Here, we demonstrate that, in contrast to serine phosphorylation, Src-mediated tyrosine phosphorylation of synapsin I increases its binding to SVs and actin, and increases the formation of synapsin dimers, which are both potentially involved in SV clustering. Synapsin I phosphorylation by Src affected SV dynamics and was physiologically regulated in brain slices in response to depolarization. Expression of the non-phosphorylatable (Y301F) synapsin I mutant in synapsin-I-knockout neurons increased the sizes of the readily releasable and recycling pools of SVs with respect to the wild-type form, which is consistent with an increased availability of recycled SVs for exocytosis. The data provide a mechanism for the effects of Src on SV trafficking and indicate that tyrosine phosphorylation of synapsins, unlike serine phosphorylation, stimulates the reclustering of recycled SVs and their recruitment to the reserve pool.
Collapse
Affiliation(s)
- Mirko Messa
- Department of Experimental Medicine, University of Genova and Istituto Nazionale di Neuroscienze, Viale Benedetto XV 3, 161632 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J Neurosci 2010; 30:2-12. [PMID: 20053882 DOI: 10.1523/jneurosci.4074-09.2010] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles (SVs) store neurotransmitters and release them by exocytosis. The vesicular neurotransmitter transporters discriminate which transmitter will be sequestered and stored by the vesicles. However, it is unclear whether the neurotransmitter phenotype of SVs is solely defined by the transporters or whether it is associated with additional proteins. Here we have compared the protein composition of SVs enriched in vesicular glutamate (VGLUT-1) and GABA transporters (VGAT), respectively, using quantitative proteomics. Of >450 quantified proteins, approximately 50 were differentially distributed between the populations, with only few of them being specific for SVs. Of these, the most striking differences were observed for the zinc transporter ZnT3 and the vesicle proteins SV2B and SV31 that are associated preferentially with VGLUT-1 vesicles, and for SV2C that is associated mainly with VGAT vesicles. Several additional proteins displayed a preference for VGLUT-1 vesicles including, surprisingly, synaptophysin, synaptotagmins, and syntaxin 1a. Moreover, MAL2, a membrane protein of unknown function distantly related to synaptophysins and SCAMPs, cofractionated with VGLUT-1 vesicles. Both subcellular fractionation and immunolocalization at the light and electron microscopic level revealed that MAL2 is a bona-fide membrane constituent of SVs that is preferentially associated with VGLUT-1-containing nerve terminals. We conclude that SVs specific for different neurotransmitters share the majority of their protein constituents, with only few vesicle proteins showing preferences that, however, are nonexclusive, thus confirming that the vesicular transporters are the only components essential for defining the neurotransmitter phenotype of a SV.
Collapse
|
25
|
Association study and mutational screening of SYNGR1 as a candidate susceptibility gene for schizophrenia. Psychiatr Genet 2009; 19:237-43. [DOI: 10.1097/ypg.0b013e32832cebf7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Baldwin MR, Barbieri JT. Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon 2009; 54:570-4. [PMID: 19362106 DOI: 10.1016/j.toxicon.2009.01.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/25/2009] [Indexed: 11/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) elicit flaccid paralysis by cleaving SNARE proteins within peripheral neurons. BoNTs are classified into seven serotypes, termed A-G, based on antibody cross-neutralization. Clostridia produce BoNTs as single-chain toxins that are cleaved into a di-chain protein that comprises an N-terminal zinc metalloprotease domain that is linked by a disulfide bond to the C-terminal translocation/receptor-binding domain. BoNT/A and BoNT/B utilize synaptic vesicle protein 2 (SV2) and synaptotagmin, respectively, as receptors for entry into neurons. Using affinity chromatography, BoNT/A and BoNT/B were found to bind a synaptic vesicle protein complex in CHAPS extracts of synaptic vesicles. Mass spectroscopy identified synaptic vesicle protein 2, synaptotagmin I, synaptophysin, vesicle-associated membrane protein 2, and the vacuolar ATPase-proton pump as components of the BoNT-synaptic vesicle protein complex. BoNT/A and BoNT/B possessed unique density-gradient profiles when bound to synaptic vesicle protein complexes. The identification of BoNT/A and BoNT/B bound to synaptic vesicle protein complexes provides insight into the interactions of BoNT and neuronal receptors.
Collapse
Affiliation(s)
- Michael R Baldwin
- Department of Microbiology and Molecular Genetics, 8701 Watertown Plank Rd., Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
27
|
Unique luminal localization of VGAT-C terminus allows for selective labeling of active cortical GABAergic synapses. J Neurosci 2009; 28:13125-31. [PMID: 19052203 DOI: 10.1523/jneurosci.3887-08.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotransmitter uptake into synaptic vesicles is mediated by vesicular neurotransmitter transporters. Although these transporters belong to different families, they all are thought to share a common overall topology with an even number of transmembrane domains. Using epitope-specific antibodies and mass spectrometry we show that the vesicular GABA transporter (VGAT) possesses an uneven number of transmembrane domains, with the N terminus facing the cytoplasm and the C terminus residing in the synaptic vesicle lumen. Antibodies recognizing the C terminus of VGAT (anti-VGAT-C) selectively label GABAergic nerve terminals of live cultured hippocampal and striatal neurons as confirmed by immunocytochemistry and patch-clamp electrophysiology. Injection of fluorochromated anti-VGAT-C into the hippocampus of mice results in specific labeling of GABAergic synapses in vivo. Overall, our data open the possibility of studying novel GABA release sites, characterizing inhibitory vesicle trafficking, and establishing their contribution to inhibitory neurotransmission at identified GABAergic synapses.
Collapse
|
28
|
Cheng MC, Chen CH. Identification of rare mutations of synaptogyrin 1 gene in patients with schizophrenia. J Psychiatr Res 2007; 41:1027-31. [PMID: 17049558 DOI: 10.1016/j.jpsychires.2006.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/25/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Synaptogyrin 1 gene (SYNGR1) is considered as a positional candidate gene for schizophrenia because of its location at chromosome 22q13, a region linked to schizophrenia, and its reduced expression in postmortem brain of patients with schizophrenia. Additionally, genetic studies also reported association of SYNGR1 is with schizophrenia and bipolar disorder in southern India. Prompted by these findings, we were interested to know if SYNGR1 is also associated with schizophrenia in our population. Therefore, we systematically searched for SYNGR1 mutations in a cohort of Han Chinese patients from Taiwan. Four single nucleotide polymorphisms (SNPs) were identified, including three at the putative core promoter region (g.-673A>C, g.-377G>A and g.-318G>T) that are in strong linkage disequilibrium and one in intron 2 (IVS2-64C>G). Computer program predicts that g.-637A>C and g.318G>T may change transcription binding sites of AP-1 and TGT3, respectively. We further carried out SNP- and haplotype-based case-control association studies of these tress SNPs with schizophrenia. However, no association was detected between these SNPs and schizophrenia in our sample. Nevertheless, we identified several rare mutations in exon 6 of SYNGR1 gene in our patient cohort (n=497), including a 3-bp (AAC) in-frame insertion between codon 202 and 203 (P202_T203insN) in two patients, an A-to-G missense mutation (c.665A>G) at codon 222 (D222G) in one patient, a synonymous mutation (c.669C>T) at codon 223 (T223T) in one patient, and a C-to-T at 3' UTR of SYNGR1 (c.772C>T) in one patient. These are mutations were not found in 507 control subjects, suggesting further functional assays are warranted to verify their relevance to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Min-Chih Cheng
- Institute of Medical Sciences, Tzu-Chi University, Hualien City 970, Taiwan
| | | |
Collapse
|
29
|
Onofri F, Messa M, Matafora V, Bonanno G, Corradi A, Bachi A, Valtorta F, Benfenati F. Synapsin phosphorylation by SRC tyrosine kinase enhances SRC activity in synaptic vesicles. J Biol Chem 2007; 282:15754-67. [PMID: 17400547 DOI: 10.1074/jbc.m701051200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synapsins are synaptic vesicle-associated phosphoproteins implicated in the regulation of neurotransmitter release. Synapsin I is the major binding protein for the SH3 domain of the kinase c-Src in synaptic vesicles. Its binding leads to stimulation of synaptic vesicle-associated c-Src activity. We investigated the mechanism and role of Src activation by synapsins on synaptic vesicles. We found that synapsin is tyrosine phosphorylated by c-Src in vitro and on intact synaptic vesicles independently of its phosphorylation state on serine. Mass spectrometry revealed a single major phosphorylation site at Tyr(301), which is highly conserved in all synapsin isoforms and orthologues. Synapsin tyrosine phosphorylation triggered its binding to the SH2 domains of Src or Fyn. However, synapsin selectively activated and was phosphorylated by Src, consistent with the specific enrichment of c-Src in synaptic vesicles over Fyn or n-Src. The activity of Src on synaptic vesicles was controlled by the amount of vesicle-associated synapsin, which is in turn dependent on synapsin serine phosphorylation. Synaptic vesicles depleted of synapsin in vitro or derived from synapsin null mice exhibited greatly reduced Src activity and tyrosine phosphorylation of other synaptic vesicle proteins. Disruption of the Src-synapsin interaction by internalization of either the Src SH3 or SH2 domains into synaptosomes decreased synapsin tyrosine phosphorylation and concomitantly increased neurotransmitter release in response to Ca(2+)-ionophores. We conclude that synapsin is an endogenous substrate and activator of synaptic vesicle-associated c-Src and that regulation of Src activity on synaptic vesicles participates in the regulation of neurotransmitter release by synapsin.
Collapse
Affiliation(s)
- Franco Onofri
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Baldwin MR, Barbieri JT. Association of botulinum neurotoxin serotypes a and B with synaptic vesicle protein complexes. Biochemistry 2007; 46:3200-10. [PMID: 17311420 DOI: 10.1021/bi602396x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins (BoNTs) elicit flaccid paralysis through cleavage of SNARE proteins within peripheral neurons. There are seven serotypes of the BoNTs, termed A-G, which differ in the SNARE protein and/or site that is cleaved. BoNTs are single-chain toxins that comprise an N-terminal zinc metalloprotease domain that is disulfide linked to the C-terminal translocation/receptor binding domain. SV2 and synaptotagmin have been identified as receptors for BoNT serotypes A and B, respectively. Using affinity chromatography, BoNTs A and B were observed to bind synaptic vesicle protein complexes in synaptosome lysates. Tandem LC-MS/MS identified SV2, synaptotagmin I, synaptophysin, vesicle-associated membrane protein 2 (VAMP2), and the vacuolar proton pump as components of the BoNT-receptor complex. Density gradient analysis showed that BoNT serotypes A and B exhibited unique interactions with the synaptic vesicle protein complexes. The association of BoNT serotypes A and B with synaptic vesicle protein complexes implicates a physiological role for protein complexes in synaptic vesicle biology and provides insight into the interactions of BoNT and neuronal receptors.
Collapse
Affiliation(s)
- Michael R Baldwin
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
31
|
Kotti TJ, Ramirez DMO, Pfeiffer BE, Huber KM, Russell DW. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci U S A 2006; 103:3869-74. [PMID: 16505352 PMCID: PMC1450160 DOI: 10.1073/pnas.0600316103] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Indexed: 12/18/2022] Open
Abstract
The mevalonate pathway produces cholesterol and nonsterol isoprenoids, such as geranylgeraniol. In the brain, a fraction of cholesterol is metabolized in neurons by the enzyme cholesterol 24-hydroxylase, and this depletion activates the mevalonate pathway. Brains from mice lacking 24-hydroxylase excrete cholesterol more slowly, and the tissue compensates by suppressing the mevalonate pathway. Here we report that this suppression causes a defect in learning. 24-Hydroxylase knockout mice exhibit severe deficiencies in spatial, associative, and motor learning, and in hippocampal long-term potentiation (LTP). Acute treatment of wild-type hippocampal slices with an inhibitor of the mevalonate pathway (a statin) also impairs LTP. The effects of statin treatment and genetic elimination of 24-hydroxylase on LTP are reversed by a 20-min treatment with geranylgeraniol but not by cholesterol. We conclude that cholesterol turnover in brain activates the mevalonate pathway and that a constant production of geranylgeraniol in a small subset of neurons is required for LTP and learning.
Collapse
Affiliation(s)
| | | | - Brad E. Pfeiffer
- Physiology, and
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390
| | - Kimberly M. Huber
- Physiology, and
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390
| | | |
Collapse
|
32
|
Evans GJO, Cousin MA. Tyrosine phosphorylation of synaptophysin in synaptic vesicle recycling. Biochem Soc Trans 2006; 33:1350-3. [PMID: 16246116 PMCID: PMC2077014 DOI: 10.1042/bst20051350] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The integral SV (synaptic vesicle) protein synaptophysin was one of the first nerve terminal proteins identified. However its role, if any, in the SV life cycle remains undetermined. One of the most prominent features of synaptophysin is that its cytoplasmic C-terminus largely consists of pentapeptide repeats initiated by a tyrosine residue. Synaptophysin is heavily phosphorylated by tyrosine kinases in the nerve terminal, suggesting that this phosphorylation is central to its function. This review will cover the evidence for tyrosine phosphorylation of synaptophysin and how this phosphorylation may control its function in the SV life cycle.
Collapse
Affiliation(s)
- G J O Evans
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
33
|
Abstract
The integral SV (synaptic vesicle) protein synaptophysin was one of the first nerve terminal proteins identified. However its role, if any, in the SV life cycle remains undetermined. One of the most prominent features of synaptophysin is that its cytoplasmic C-terminus largely consists of pentapeptide repeats initiated by a tyrosine residue. Synaptophysin is heavily phosphorylated by tyrosine kinases in the nerve terminal, suggesting that this phosphorylation is central to its function. This review will cover the evidence for tyrosine phosphorylation of synaptophysin and how this phosphorylation may control its function in the SV life cycle.
Collapse
|
34
|
Verma R, Kubendran S, Das SK, Jain S, Brahmachari SK. SYNGR1 is associated with schizophrenia and bipolar disorder in southern India. J Hum Genet 2005; 50:635-40. [PMID: 16215643 DOI: 10.1007/s10038-005-0307-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 08/23/2005] [Indexed: 11/26/2022]
Abstract
Chromosome 22q11-13 is one of the most consistent linkage regions for schizophrenia (SCZ) and bipolar disorder (BPAD). The SYNGR1 gene, which is associated with presynaptic vesicles in neuronal cells, is located on 22q13.1. We have previously identified a novel nonsense mutation in the SYNGR1 gene in a SCZ pedigree. In the present study, a detailed analysis of this gene was performed in a case-control cohort (198 BPAD, 193 SCZ and 107 controls from southern India) to test for association with SCZ and BPAD. Sequence analysis of all exonic and flanking intronic regions of the SYNGR1 gene in 198 BPAD and 193 SCZ cases revealed a novel mutation Lsy99Glu (in one BPAD patient) and two other novel common polymorphisms [synonymous single nucleotide polymorphism (SNP--Ser97Ser) and an Asn ins/del] in the SYNGR1 gene. We also validated 9 out of 14 dbSNPs in our population. Case-control analysis revealed allelic (P = 0.028-0.00007) association of five polymorphisms with SCZ and/or BPAD cases. Further, 3-SNP (with LD block 1 SNPs) and 2-SNP (with LD block 2 SNPs) haplotype analyses did not show any association with either SCZ or BPAD. Our results support SYNGR1 as a probable susceptibility gene for SCZ and BPAD. Also, the observed association of SYNGR1 with both SCZ and BPAD suggests the likely involvement of a common pathway in the etiology of these disorders.
Collapse
Affiliation(s)
- Ranjana Verma
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110007, India
| | | | | | | | | |
Collapse
|
35
|
Meyer MH, Etienne W, Meyer RA. Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study. BMC Musculoskelet Disord 2004; 5:24. [PMID: 15291962 PMCID: PMC512295 DOI: 10.1186/1471-2474-5-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 08/03/2004] [Indexed: 01/10/2023] Open
Abstract
Background The time required for radiographic union following femoral fracture increases with age in both humans and rats for unknown reasons. Since abnormalities in fracture innervation will slow skeletal healing, we explored whether abnormal mRNA expression of genes related to nerve cell activity in the older rats was associated with the slowing of skeletal repair. Methods Simple, transverse, mid-shaft, femoral fractures with intramedullary rod fixation were induced in anaesthetized female Sprague-Dawley rats at 6, 26, and 52 weeks of age. At 0, 0.4, 1, 2, 4, and 6 weeks after fracture, a bony segment, one-third the length of the femur, centered on the fracture site, including the external callus, cortical bone, and marrow elements, was harvested. cRNA was prepared and hybridized to 54 Affymetrix U34A microarrays (3/age/time point). Results The mRNA levels of 62 genes related to neural function were affected by fracture. Of the total, 38 genes were altered by fracture to a similar extent at the three ages. In contrast, eight neural genes showed prolonged down-regulation in the older rats compared to the more rapid return to pre-fracture levels in younger rats. Seven genes were up-regulated by fracture more in the younger rats than in the older rats, while nine genes were up-regulated more in the older rats than in the younger. Conclusions mRNA of 24 nerve-related genes responded differently to fracture in older rats compared to young rats. This differential expression may reflect altered cell function at the fracture site that may be causally related to the slowing of fracture healing with age or may be an effect of the delayed healing.
Collapse
Affiliation(s)
- Martha H Meyer
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232-2861 USA
| | - Wiguins Etienne
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232-2861 USA
| | - Ralph A Meyer
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232-2861 USA
| |
Collapse
|
36
|
Belizaire R, Komanduri C, Wooten K, Chen M, Thaller C, Janz R. Characterization of synaptogyrin 3 as a new synaptic vesicle protein. J Comp Neurol 2004; 470:266-81. [PMID: 14755516 DOI: 10.1002/cne.20008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synaptogyrins comprise a family of tyrosine-phosphorylated proteins with two neuronal (synaptogyrins 1 and 3) and one ubiquitous (cellugyrin) isoform. Previous studies have indicated that synaptogyrins are involved in the regulation of neurotransmitter release. Synaptogyrin 1 is a synaptic vesicle protein; cellugyrin, by contrast, is absent from synaptic vesicles. In an effort to further characterize the synaptogyrin family, we studied the distribution of the synaptogyrin 3 protein in the nervous system. Subcellular fractionation and immunoprecipitation of synaptic vesicles from mouse brain showed that synaptogyrin 3 is associated with synaptic vesicles and that synaptogyrins 1 and 3 can reside on the same synaptic vesicle. Immunofluorescent staining of cultured hippocampal neurons confirmed the synaptic localization of synaptogyrin 3. Analysis of the relative distributions of synaptogyrins 1 and 3 in mouse brain revealed a more restricted expression pattern for synaptogyrin 3 compared to the ubiquitous distribution of synaptogyrin 1. Strong synaptogyrin 3 labeling was observed in the mossy fiber region of the hippocampus, substantia nigra pars reticulata, pallidum, and deep cerebellar nuclei. By comparison, the striatum and reticular and ventral posterolateral thalamic nuclei, which all showed synaptogyrin 1 labeling, contained significantly less synaptogyrin 3. Finally, we used in situ hybridization experiments to correlate synaptogyrin 3 mRNA in cell bodies with synaptogyrin 3 protein at synapses. Altogether, our data indicate that neuronal synaptogyrins are differentially expressed protein isoforms that may represent functionally distinct populations of synapses and/or synaptic vesicles.
Collapse
Affiliation(s)
- Roger Belizaire
- W.M. Keck Center for Learning and Memory, Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, Houston, Texas, 77030, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Protein ubiquitination has been implicated recently in neural development, plasticity, and degeneration. We previously identified ZNRF1/nin283, a protein with a unique, evolutionarily conserved C-terminal domain containing a juxtaposed zinc finger/RING finger combination. Here we describe the identification of a closely related protein, ZNRF2, thus defining a novel family of ZNRF E3 ubiquitin ligases. Both ZNRF1 and ZNRF2 have E3 ubiquitin ligase activity and are highly expressed in the nervous system, particularly during development. In neurons, ZNRF proteins are located in different compartments within the presynaptic terminal: ZNRF1 is associated with synaptic vesicle membranes, whereas ZNRF2 is present in presynaptic plasma membranes. Mutant ZNRF proteins with a disrupted RING finger, a domain necessary for their E3 function, can each inhibit Ca2+-dependent exocytosis in PC12 cells. These data suggest that ZNRF proteins play a role in the establishment and maintenance of neuronal transmission and plasticity via their ubiquitin ligase activity.
Collapse
|
38
|
Araki T, Milbrandt J. ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J Neurosci 2003; 23:9385-94. [PMID: 14561866 PMCID: PMC6740566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Protein ubiquitination has been implicated recently in neural development, plasticity, and degeneration. We previously identified ZNRF1/nin283, a protein with a unique, evolutionarily conserved C-terminal domain containing a juxtaposed zinc finger/RING finger combination. Here we describe the identification of a closely related protein, ZNRF2, thus defining a novel family of ZNRF E3 ubiquitin ligases. Both ZNRF1 and ZNRF2 have E3 ubiquitin ligase activity and are highly expressed in the nervous system, particularly during development. In neurons, ZNRF proteins are located in different compartments within the presynaptic terminal: ZNRF1 is associated with synaptic vesicle membranes, whereas ZNRF2 is present in presynaptic plasma membranes. Mutant ZNRF proteins with a disrupted RING finger, a domain necessary for their E3 function, can each inhibit Ca2+-dependent exocytosis in PC12 cells. These data suggest that ZNRF proteins play a role in the establishment and maintenance of neuronal transmission and plasticity via their ubiquitin ligase activity.
Collapse
Affiliation(s)
- Toshiyuki Araki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
39
|
von Kriegstein K, Schmitz F. The expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Cell Tissue Res 2003; 311:159-73. [PMID: 12596036 DOI: 10.1007/s00441-002-0674-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 11/05/2002] [Indexed: 10/25/2022]
Abstract
In the present study, we generated a systematic overview of the expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Using indirect immunofluorescence microscopy, we analyzed the spatial and temporal distribution of 11 important membrane and membrane-associated synaptic proteins (syntaxin 1/3, SNAP-25, synaptobrevin 2, synaptogyrin, synaptotagmin I, SV2A, SV2B, Rab3A, clathrin light chains, CSP and neuroligin I) during synaptogenesis. The temporospatial distribution of these synaptic proteins was "normalized" by the simultaneous visualization of the synaptic vesicle protein synaptophysin, which served as an internal reference protein. We found that expression of various synaptic membrane proteins started at different time points and changed progressively during development. At early stages of development synaptic vesicle membrane proteins at extrasynaptic locations did not always colocalize with synaptophysin, indicating that these proteins probably do not reside in the same transport vesicles. Despite a non-synchronized onset of protein expression, clustering and colocalization of all synaptic membrane proteins at ribbon synapses roughly occurred in the same time window (between day 4 after birth, P4, and P5). Thus, the basic synaptic membrane machinery is already present in ribbon synapses before the well-known complete morphological maturation of ribbon synapses between P7 and P12. We conclude that ribbon synapse formation is a multistep process in which the concerted recruitment of synaptic membrane proteins is a relatively early event and clearly not the final step.
Collapse
Affiliation(s)
- Katharina von Kriegstein
- Department of Molecular Neurobiology, Max-Planck Institute for Experimental Medicine, Hermann-Rein-Str 3, 37075 Göttingen, Germany
| | | |
Collapse
|
40
|
Hübner K, Windoffer R, Hutter H, Leube RE. Tetraspan vesicle membrane proteins: synthesis, subcellular localization, and functional properties. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:103-59. [PMID: 11893164 DOI: 10.1016/s0074-7696(02)14004-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraspan vesicle membrane proteins (TVPs) are characterized by four transmembrane regions and cytoplasmically located end domains. They are ubiquitous and abundant components of vesicles in most, if not all, cells of multicellular organisms. TVP-containing vesicles shuttle between various membranous compartments and are localized in biosynthetic and endocytotic pathways. Based on gene organization and amino acid sequence similarities TVPs can be grouped into three distinct families that are referred to as physins, gyrins, and secretory carrier-associated membrane proteins (SCAMPs). In mammals synaptophysin, synaptoporin, pantophysin, and mitsugumin29 constitute the physins, synaptogyrin 1-4 the gyrins, and SCAMP1-5 the SCAMPs. Members of each family are cell-type-specifically synthesized resulting in unique patterns of TVP coexpression and subcellular colocalization. TVP orthologs have been identified in most multicellular organisms, including diverse animal and plant species, but have not been detected in unicellular organisms. They are subject to protein modification, most notably to phosphorylation, and are part of multimeric complexes. Experimental evidence is reviewed showing that TVPs contribute to vesicle trafficking and membrane morphogenesis.
Collapse
Affiliation(s)
- Kirsten Hübner
- Department of Anatomy, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
41
|
Daly C, Ziff EB. Ca2+-dependent formation of a dynamin-synaptophysin complex: potential role in synaptic vesicle endocytosis. J Biol Chem 2002; 277:9010-5. [PMID: 11779869 DOI: 10.1074/jbc.m110815200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptophysin is a synaptic vesicle (SV) protein of unknown function. Here we show that a repeated sequence in the cytoplasmic tail of synaptophysin mediates the formation of a protein complex containing the GTPase dynamin. The formation of this complex requires a high Ca(2+) concentration, suggesting that it occurs preferentially at the sites of SV exocytosis. Coimmunoprecipitation of a dynamin-synaptophysin complex from brain extracts is promoted by dissociation of vesicle-associated membrane protein 2 from synaptophysin. This finding suggests that dynamin only associates with synaptophysin in vivo after vesicle-associated membrane protein 2 (VAMP2) enters the SNARE complex. GTP binding releases dynamin from synaptophysin, possibly serving to regulate dynamin selfassembly during endocytosis. Our results suggest that synaptophysin plays a role in SV recycling by recruiting dynamin to the vesicle membrane.
Collapse
Affiliation(s)
- Christopher Daly
- Howard Hughes Medical Institute and Department of Biochemistry, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
42
|
Spiwoks-Becker I, Vollrath L, Seeliger MW, Jaissle G, Eshkind LG, Leube RE. Synaptic vesicle alterations in rod photoreceptors of synaptophysin-deficient mice. Neuroscience 2002; 107:127-42. [PMID: 11744253 DOI: 10.1016/s0306-4522(01)00345-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The abundance of the integral membrane protein synaptophysin in synaptic vesicles and its multiple possible functional contributions to transmitter exocytosis and synaptic vesicle formation stand in sharp contrast to the observed lack of defects in synaptophysin knockout mice. Assuming that deficiencies are compensated by the often coexpressed synaptophysin isoform synaptoporin, we now show that retinal rod photoreceptors, which do not synthesize synaptoporin either in wild-type or in knockout mice, are affected by the loss of synaptophysin. Multiple pale-appearing photoreceptors, as seen by electron microscopy, possess reduced cytoplasmic electron density, swollen mitochondria, an enlarged cell surface area, and, most importantly, a significantly reduced number of synaptic vesicles with an unusually bright interior. Quantification of the number of synaptic vesicles per unit area, not only in these, but also in all other rod terminals of knockout animals, reveals a considerable reduction in vesicles that is even more pronounced during the dark period, i.e., at times of highest synaptic activity. Moreover, activity-dependent reduction in synaptic vesicle diameter, typically occurring in wild-type mice, is not detected in knockout animals. The large number of clathrin-coated pits and vesicles in dark-adapted synaptophysin knockout mice is taken as an indication of compensatory usage of synaptophysin-independent pathway(s), and, conversely, in view of the overall reduction in the number of synaptic vesicles, as an indication for the presence of another synaptophysin-dependent synaptic vesicle recycling pathway. Our results provide in vivo evidence for the importance of the integral membrane protein synaptophysin for synaptic vesicle recycling and formation.
Collapse
Affiliation(s)
- I Spiwoks-Becker
- Department of Anatomy, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Komazaki S, Nishi M, Takeshima H, Nakamura H. Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice. Dev Growth Differ 2001; 43:717-23. [PMID: 11737152 DOI: 10.1046/j.1440-169x.2001.00609.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, we detected a novel membrane protein, mitsugumin29 (MG29), in the triads in rabbit skeletal muscle cells and suggested important roles for this membrane protein in the formation of the sarcoplasmic reticulum (SR) networks and triads in muscle cells. In the present study, we examined the development of skeletal muscle cells in MG29-deficient mice to try to determine the roles played by MG29 in the formation of the SR networks and triads. Ultrastructural observations revealed some morphological abnormalities in these mice, such as incomplete formation of the SR networks, an irregular running of the transverse tubule and a partial defect in the triads at the A-I junctional region. These ultrastructural abnormalities occurred during early myogenesis and were preserved until the adult stage. The possible roles for MG29 in the formation of SR networks and triads in skeletal muscle cells are discussed in the light of these observations.
Collapse
Affiliation(s)
- S Komazaki
- Department of Anatomy, Saitama Medical School, Moroyama, Iruma, Saitama 350-0495, Japan.
| | | | | | | |
Collapse
|
44
|
Shibata M, Itoh M, Ohmori SY, Shinga J, Taira M. Systematic screening and expression analysis of the head organizer genes in Xenopus embryos. Dev Biol 2001; 239:241-56. [PMID: 11784032 DOI: 10.1006/dbio.2001.0428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We describe here a systematic screen of an anterior endomesoderm (AEM) cDNA library to isolate novel genes which are expressed in the head organizer region. After removing clones which hybridized to labeled cDNA probes synthesized with total RNA from a trunk region of tailbud embryos, the 5' ends of 1039 randomly picked cDNA clones were sequenced to make expressed sequence tags (ESTs), which formed 754 tentative unique clusters. Those clusters were compared against public databases and classified according to similarities found to other genes and gene products. Of them, 151 clusters were identified as known Xenopus genes, including eight organizer-specific ones (5.3%). Gene expression pattern screening was performed for 198 unique clones, which were selected because they either have no known function or are predicted to be developmental regulators in other species. The screen revealed nine possible organizer-specific clones (4.5%), four of which appeared to be expressed in the head organizer region. Detailed expression analysis from gastrula to neurula stages showed that these four genes named crescent, P7E4 (homologous to human hypothetical genes), P8F7 (an unclassified gene), and P17F11 (homologous to human and Arabidopsis hypothetical genes) demarcate spatiotemporally distinct subregions of the AEM corresponding to the head organizer region. These results indicate that our screening strategy is effective in isolating novel region-specific genes.
Collapse
Affiliation(s)
- M Shibata
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
45
|
Abstract
We have studied the localization of synaptogyrin family members in vivo. Both native and green fluorescent protein (GFP)-tagged Caenorhabditis elegans synaptogyrin (SNG-1) are expressed in neurons and synaptically localized. Deletion and mutational analysis with the use of GFP-tagged SNG-1 has defined a 38 amino acid sequence within the C terminus of SNG-1 and a single arginine in the cytoplasmic loop between transmembrane domain 2 and 3 that are required for SNG-1 localization. These domains may represent components of signals that target synaptogyrin for endocytosis from the plasma membrane and direct synaptogyrin to synaptic vesicles, respectively. In chimeric studies, these regions were sufficient to relocalize cellugyrin, a nonneuronal form of synaptogyrin, from nonsynaptic regions such as the sensory dendrites and the cell body to synaptic vesicles. Furthermore, GFP-tagged rat synaptogyrin is synaptically localized in neurons of C. elegans and in cultured hippocampal neurons. Similarly, the C-terminal domain of rat synaptogyrin is necessary for localization in hippocampal neurons. Our study suggests that the mechanisms for synaptogyrin localization are likely to be conserved from C. elegans to vertebrates.
Collapse
Affiliation(s)
- H Zhao
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
46
|
Murén E, Oyen M, Barmark G, Ronne H. Identification of yeast deletion strains that are hypersensitive to brefeldin A or monensin, two drugs that affect intracellular transport. Yeast 2001; 18:163-72. [PMID: 11169758 DOI: 10.1002/1097-0061(20010130)18:2<163::aid-yea659>3.0.co;2-#] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have screened the Eurofan deletion strain collection for mutants that are either sensitive or resistant to three drugs known to affect intracellular transport: brefeldin A, monensin and C(2)-ceramide. Drug-sensitive mutants were analysed by complementation with cognate clones and tetrad analysis to confirm that the phenotypes are linked to the deletions. Out of 620 deletion strains, we found 18 mutants that were sensitive to either brefeldin A, monensin or both. Several of these mutants are deleted for genes that are known to be involved in intracellular transport, membrane biogenesis and/or cell wall biosynthesis. Among such previously known genes were VAM6, VAC7, SYS1, TLG2, RCY1, ERG4, ALG9 and ALG12. Some other genes recovered in our screen were not previously implicated in intracellular transport, but are related to other yeast genes with such a function. Still other genes encode proteins with no obvious link to intracellular transport. Several of these are putative transcription factors or RNA-binding proteins, which suggests that they may affect drug sensitivity by modulating the expression of other genes or proteins.
Collapse
Affiliation(s)
- E Murén
- Department of Plant Biology, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Box 7080, S-750 07 Uppsala, Sweden
| | | | | | | |
Collapse
|
47
|
Shoji-Kasai Y, Morishima M, Kuwahara R, Kondo S, Itakura M, Takahashi M. Establishment of variant PC12 subclones deficient in stimulation-secretion coupling. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1499:180-90. [PMID: 11341965 DOI: 10.1016/s0167-4889(00)00103-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clonal rat pheochromocytoma (PC12) cells have been widely used to study the molecular mechanism of exocytosis. We have isolated variant PC12 subclones with deficiencies in stimulation-secretion coupling, by a single cell recloning, and investigated the defects. PC12-1G2 hardly released dopamine following high-K(+)-induced depolarization, but normal release was evoked by the Ca(2+)-ionophore, ionomycin. Fura-2 fluorometry indicated that a nicardipine-sensitive component of Ca(2+) influx was missing, suggesting that PC12-1G2 has defects in L-type Ca(2+) channel function. PC12-2B3 was not responsive to high-K(+)-induced depolarization and ionomycin, and voltage-dependent Ca(2+) entry was identical to that of the normal clone. Electron microscopy revealed that the number of vesicles adjacent or directly attached to the plasma membrane was decreased in PC12-2B3. The expression of presynaptic proteins was analyzed by immunoblotting using a panel of antibodies. Syntaxin 1, VAMP-2, SNAP-25, Munc18, Rab3C and Sec-6 were decreased compared to the control clone and that of synaptophysin was extremely low. PC12-D60 synthesized and released dopamine normally, but had almost lost its catecholamine-uptake activity. These results show that multiple PC12 cells variants are spontaneously generated, and that recloning can select PC12 subclones useful for the study of the molecular mechanisms of neurotransmitter release.
Collapse
Affiliation(s)
- Y Shoji-Kasai
- Mitsubishi Kasai Institute of Life Sciences, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Kupriyanova TA, Kandror KV. Cellugyrin is a marker for a distinct population of intracellular Glut4-containing vesicles. J Biol Chem 2000; 275:36263-8. [PMID: 10967091 DOI: 10.1074/jbc.m002797200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although Glut4 traffic is routinely described as translocation from an "intracellular storage pool" to the plasma membrane, it has been long realized that Glut4 travels through at least two functionally distinct intracellular membrane compartments on the way to and from the cell surface. Biochemical separation and systematic studies of the individual Glut4-containing compartments have been limited by the lack of appropriate reagents. We have prepared a monoclonal antibody against a novel component protein of Glut4 vesicles and have identified this protein as cellugyrin, a ubiquitously expressed homologue of a major synaptic vesicle protein, synaptogyrin. By means of sucrose gradient centrifugation, immunoadsorption, and confocal microscopy, we have shown that virtually all cellugyrin is co-localized with Glut4 in the same vesicles. However, unlike Glut4, cellugyrin is not re-distributed to the plasma membrane in response to insulin stimulation, and at least 40-50% of the total population of Glut4 vesicles do not contain this protein. We suggest that cellugyrin represents a specific marker of a functionally distinct population of Glut4 vesicles that permanently maintains its intracellular localization and is not recruited to the plasma membrane by insulin.
Collapse
Affiliation(s)
- T A Kupriyanova
- Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
49
|
Ulfig N, Feldhaus C, Bohl J. Transient expression of synaptogyrin in the ganglionic eminence of the human fetal brain. Ann Anat 2000; 182:505-8. [PMID: 11125798 DOI: 10.1016/s0940-9602(00)80090-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The ganglionic eminence (GE) representing a conspicuous bulb-like elevation of the telencephalic proliferative zone has recently been shown to be involved in the establishment of cortical connections. This study demonstrates the presence of synaptogyrin-immunoreactivity in a large number of cell bodies of the human GE between 12 and 20 weeks of gestation. From the 20th week onwards synaptogyrin expression sharply declines. No immunoreactive structures are detectable in the 23rd week or later. As the GE persists nearly throughout the entire fetal period these results show that its neurochemical features change distinctly in the course of development. The synaptogyrin-immunoreactive GE-cells may form an early corticopedal connection which provides a scaffold for outgrowing cortical axons.
Collapse
Affiliation(s)
- N Ulfig
- Department of Anatomy, University of Rostock, Germany.
| | | | | |
Collapse
|
50
|
Hubbard C, Singleton D, Rauch M, Jayasinghe S, Cafiso D, Castle D. The secretory carrier membrane protein family: structure and membrane topology. Mol Biol Cell 2000; 11:2933-47. [PMID: 10982391 PMCID: PMC14966 DOI: 10.1091/mbc.11.9.2933] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Secretory carrier membrane proteins (SCAMPs) are integral membrane proteins found in secretory and endocytic carriers implicated to function in membrane trafficking. Using expressed sequence tag database and library screens and DNA sequencing, we have characterized several new SCAMPs spanning the plant and animal kingdoms and have defined a broadly conserved protein family. No obvious fungal homologue has been identified, however. We have found that SCAMPs share several structural motifs. These include NPF repeats, a leucine heptad repeat enriched in charged residues, and a proline-rich SH3-like and/or WW domain-binding site in the N-terminal domain, which is followed by a membrane core containing four putative transmembrane spans and three amphiphilic segments that are the most highly conserved structural elements. All SCAMPs are 32-38 kDa except mammalian SCAMP4, which is approximately 25 kDa and lacks most of the N-terminal hydrophilic domain of other SCAMPs. SCAMP4 is authentic as determined by Northern and Western blotting, suggesting that this portion of the larger SCAMPs encodes the functional domain. Focusing on SCAMP1, we have characterized its structure further by limited proteolysis and Western blotting with the use of isolated secretory granules as a uniformly oriented source of antigen and by topology mapping through expression of alkaline phosphatase gene fusions in Escherichia coli. Results show that SCAMP1 is degraded sequentially from the N terminus and then the C terminus, yielding an approximately 20-kDa membrane core that contains four transmembrane spans. Using synthetic peptides corresponding to the three conserved amphiphilic segments of the membrane core, we have demonstrated their binding to phospholipid membranes and shown by circular dichroism spectroscopy that the central amphiphilic segment linking transmembrane spans 2 and 3 is alpha-helical. In the intact protein, these segments are likely to reside in the cytoplasm-facing membrane interface. The current model of SCAMP1 suggests that the N and C termini form the cytoplasmic surface of the protein overlying a membrane core, which contains a functional domain located at the cytoplasmic interface with little exposure of the protein on the ectodomain.
Collapse
Affiliation(s)
- C Hubbard
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|