1
|
Quirion L, Robert A, Boulais J, Huang S, Bernal Astrain G, Strakhova R, Jo CH, Kherdjemil Y, Faubert D, Thibault MP, Kmita M, Baskin JM, Gingras AC, Smith MJ, Côté JF. Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways. J Cell Sci 2024; 137:jcs262140. [PMID: 38606629 PMCID: PMC11166204 DOI: 10.1242/jcs.262140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The ADP-ribosylation factors (ARFs) and ARF-like (ARL) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we used proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ∼3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely, SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.
Collapse
Affiliation(s)
- Laura Quirion
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Shiying Huang
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Gabriela Bernal Astrain
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Regina Strakhova
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yacine Kherdjemil
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Denis Faubert
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | | | - Marie Kmita
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC H3G 2M1, Canada
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew J. Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Panagiotou S, Tan KW, Nguyen PM, Müller A, Oqua AI, Tomas A, Wendt A, Eliasson L, Tengholm A, Solimena M, Idevall-Hagren O. OSBP-mediated PI(4)P-cholesterol exchange at endoplasmic reticulum-secretory granule contact sites controls insulin secretion. Cell Rep 2024; 43:113992. [PMID: 38536815 DOI: 10.1016/j.celrep.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.
Collapse
Affiliation(s)
| | - Kia Wee Tan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Affiong Ika Oqua
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Wendt
- Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Diabetes Center (LUDC), Lund, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Diabetes Center (LUDC), Lund, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | |
Collapse
|
3
|
Quirion L, Robert A, Boulais J, Huang S, Bernal Astrain G, Strakhova R, Jo CH, Kherdjemil Y, Thibault MP, Faubert D, Kmita M, Baskin JM, Gingras AC, Smith MJ, Cote JF. Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.01.530598. [PMID: 36909472 PMCID: PMC10002736 DOI: 10.1101/2023.03.01.530598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The ADP-ribosylation factors (ARFs) and ARF-like (ARLs) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we utilized proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ~3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.
Collapse
|
4
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, Singh S, Gore MT, le Noble F, Gabhann FM, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. Angiogenesis 2024; 27:67-89. [PMID: 37695358 PMCID: PMC10881643 DOI: 10.1007/s10456-023-09893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Live-imaging of temporally controlled sFLT1 release from the endoplasmic reticulum showed clathrin-dependent sFLT1 trafficking at the Golgi into secretory vesicles that then trafficked to the plasma membrane. Depletion of STX6 altered vessel sprouting in 3D, suggesting that endothelial cell sFLT1 secretion influences proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Amy Gill
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Renee Li
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Simcha Singh
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Loh YP, Xiao L, Park JJ. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:568-587. [PMID: 38435713 PMCID: PMC10906782 DOI: 10.20517/evcna.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.
Collapse
Affiliation(s)
- Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Scientific Review Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Hummer BH, Carter T, Sellers BL, Triplett JD, Asensio CS. Identification of the functional domain of the dense core vesicle biogenesis factor HID-1. PLoS One 2023; 18:e0291977. [PMID: 37751424 PMCID: PMC10522040 DOI: 10.1371/journal.pone.0291977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. HID-1 is a trans-Golgi network (TGN) localized peripheral membrane protein contributing to LDCV formation. There is no information about HID-1 structure or domain architecture, and thus it remains unknown how HID-1 binds to the TGN and performs its function. We report that the N-terminus of HID-1 mediates membrane binding through a myristoyl group with a polybasic amino acid patch but lacks specificity for the TGN. In addition, we show that the C-terminus serves as the functional domain. Indeed, this isolated domain, when tethered to the TGN, can rescue the neuroendocrine secretion and sorting defects observed in HID-1 KO cells. Finally, we report that a point mutation within that domain, identified in patients with endocrine and neurological deficits, leads to loss of function.
Collapse
Affiliation(s)
- Blake H. Hummer
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Theodore Carter
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Breanna L. Sellers
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Jenna D. Triplett
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| | - Cedric S. Asensio
- Department of Biological Sciences, University of Denver, Denver, CO, United States of America
| |
Collapse
|
7
|
Wildonger J, Than H. Intracellular transport: Finding the motor that will take you where you need to go. Curr Biol 2023; 33:R950-R953. [PMID: 37751706 DOI: 10.1016/j.cub.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The Golgi complex is a busy production hub. A new study reveals that a microtubule end-binding (EB) protein enriched at the trans-Golgi network in neurons is needed to pair dense core vesicles with a kinesin motor for transport to axons.
Collapse
Affiliation(s)
- Jill Wildonger
- Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Helen Than
- Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
9
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, le Noble F, Mac Gabhann F, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525517. [PMID: 36747809 PMCID: PMC9900880 DOI: 10.1101/2023.01.27.525517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Depletion of STX6 altered vessel sprouting in a 3D angiogenesis model, indicating that endothelial cell sFLT1 secretion is important for proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill NC USA
| | - Amy Gill
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - Allison Marvin
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Renee Li
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Kaitlyn Quigley
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill NC USA
- Department of Biology, University of North Carolina, Chapel Hill NC USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill NC USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill NC USA
| |
Collapse
|
10
|
Reck J, Beuret N, Demirci E, Prescianotto-Baschong C, Spiess M. Small disulfide loops in peptide hormones mediate self-aggregation and secretory granule sorting. Life Sci Alliance 2022; 5:5/5/e202101279. [PMID: 35086936 PMCID: PMC8807871 DOI: 10.26508/lsa.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Unlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the TGN by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the ER. Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule sorting. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for sorting into secretory granules by self-aggregation.
Collapse
|
11
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
12
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
13
|
Burns CH, Yau B, Rodriguez A, Triplett J, Maslar D, An YS, van der Welle REN, Kossina RG, Fisher MR, Strout GW, Bayguinov PO, Veenendaal T, Chitayat D, Fitzpatrick JAJ, Klumperman J, Kebede MA, Asensio CS. Pancreatic β-Cell-Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes 2021; 70:436-448. [PMID: 33168621 PMCID: PMC7881869 DOI: 10.2337/db20-0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic β-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in β-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.
Collapse
Affiliation(s)
| | - Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Jenna Triplett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Drew Maslar
- Department of Biological Sciences, University of Denver, Denver, CO
| | - You Sun An
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Reini E N van der Welle
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ross G Kossina
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Gregory W Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Tineke Veenendaal
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
- Departments of Neuroscience and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
14
|
Insulin granule biogenesis and exocytosis. Cell Mol Life Sci 2020; 78:1957-1970. [PMID: 33146746 PMCID: PMC7966131 DOI: 10.1007/s00018-020-03688-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Insulin is produced by pancreatic β-cells, and once released to the blood, the hormone stimulates glucose uptake and suppresses glucose production. Defects in both the availability and action of insulin lead to elevated plasma glucose levels and are major hallmarks of type-2 diabetes. Insulin is stored in secretory granules that form at the trans-Golgi network. The granules undergo extensive modifications en route to their release sites at the plasma membrane, including changes in both protein and lipid composition of the granule membrane and lumen. In parallel, the insulin molecules also undergo extensive modifications that render the hormone biologically active. In this review, we summarize current understanding of insulin secretory granule biogenesis, maturation, transport, docking, priming and eventual fusion with the plasma membrane. We discuss how different pools of granules form and how these pools contribute to insulin secretion under different conditions. We also highlight the role of the β-cell in the development of type-2 diabetes and discuss how dysregulation of one or several steps in the insulin granule life cycle may contribute to disease development or progression.
Collapse
|
15
|
ROBINSON DAVIDG. Plant Golgi ultrastructure. J Microsc 2020; 280:111-121. [DOI: 10.1111/jmi.12899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Affiliation(s)
- DAVID G. ROBINSON
- Centre for Organismal Studies University of Heidelberg Heidelberg Germany
| |
Collapse
|
16
|
Hummer BH, Maslar D, Soltero-Gutierrez M, de Leeuw NF, Asensio CS. Differential sorting behavior for soluble and transmembrane cargoes at the trans-Golgi network in endocrine cells. Mol Biol Cell 2019; 31:157-166. [PMID: 31825717 PMCID: PMC7001476 DOI: 10.1091/mbc.e19-10-0561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulated secretion of neuropeptides and peptide hormones by secretory granules (SGs) is central to physiology. Formation of SGs occurs at the trans-Golgi network (TGN) where their soluble cargo aggregates to form a dense core, but the mechanisms controlling the sorting of regulated secretory cargoes (soluble and transmembrane) away from constitutively secreted proteins remain unclear. Optimizing the use of the retention using selective hooks method in (neuro-)endocrine cells, we now quantify TGN budding kinetics of constitutive and regulated secretory cargoes. We further show that, by monitoring two cargoes simultaneously, it becomes possible to visualize sorting to the constitutive and regulated secretory pathways in real time. Further analysis of the localization of SG cargoes immediately after budding from the TGN revealed that, surprisingly, the bulk of two studied transmembrane SG cargoes (phogrin and VMAT2) does not sort directly onto SGs during budding, but rather exit the TGN into nonregulated vesicles to get incorporated to SGs at a later step. This differential behavior of soluble and transmembrane cargoes suggests a more complex model of SG biogenesis than anticipated.
Collapse
Affiliation(s)
| | | | | | - Noah F de Leeuw
- Department of Physics and Astronomy, University of Denver, Denver, CO 80210
| | | |
Collapse
|
17
|
Topalidou I, Cattin-Ortolá J, Hummer B, Asensio CS, Ailion M. EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells. Mol Biol Cell 2019; 31:59-79. [PMID: 31721635 PMCID: PMC6938272 DOI: 10.1091/mbc.e18-07-0469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dense-core vesicles (DCVs) are secretory vesicles found in neurons and endocrine cells. DCVs package and release cargoes including neuropeptides, biogenic amines, and peptide hormones. We recently identified the endosome-associated recycling protein (EARP) complex and the EARP-interacting-protein EIPR-1 as proteins important for controlling levels of DCV cargoes in Caenorhabditis elegans neurons. Here we determine the role of mammalian EIPR1 in insulinoma cells. We find that in Eipr1 KO cells, there is reduced insulin secretion, and mature DCV cargoes such as insulin and carboxypeptidase E (CPE) accumulate near the trans-Golgi network and are not retained in mature DCVs in the cell periphery. In addition, we find that EIPR1 is required for the stability of the EARP complex subunits and for the localization of EARP and its association with membranes, but EIPR1 does not affect localization or function of the related Golgi-associated retrograde protein (GARP) complex. EARP is localized to two distinct compartments related to its function: an endosomal compartment and a DCV biogenesis-related compartment. We propose that EIPR1 functions with EARP to control both endocytic recycling and DCV maturation.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Blake Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
18
|
Makowski SL, Kuna RS, Field SJ. Induction of membrane curvature by proteins involved in Golgi trafficking. Adv Biol Regul 2019; 75:100661. [PMID: 31668661 PMCID: PMC7056495 DOI: 10.1016/j.jbior.2019.100661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
19
|
Sesta A, Cassarino MF, Terreni M, Ambrogio AG, Libera L, Bardelli D, Lasio G, Losa M, Pecori Giraldi F. Ubiquitin-Specific Protease 8 Mutant Corticotrope Adenomas Present Unique Secretory and Molecular Features and Shed Light on the Role of Ubiquitylation on ACTH Processing. Neuroendocrinology 2019; 110:119-129. [PMID: 31280266 PMCID: PMC6979434 DOI: 10.1159/000500688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have recently been shown to occur in ACTH-secreting pituitary adenomas, thus calling attention to the ubiquitin system in corticotrope adenomas. OBJECTIVES Assess the consequences of USP8 mutations and establish the role of ubiquitin on ACTH turnover in human ACTH-secreting pituitary adenomas. METHODS USP8 mutation status was established in 126 ACTH-secreting adenomas. Differences in ACTH secretion and POMC expression from adenoma primary cultures and in microarray gene expression profiles from archival specimens were sought according to USP8 sequence. Ubiquitin/ACTH coimmunoprecipitation and incubation with MG132, a proteasome inhibitor, were performed in order to establish whether ubiquitin plays a role in POMC/ACTH degradation in corticotrope adenomas. RESULTS USP8 mutations were identified in 29 adenomas (23%). Adenomas presenting USP8 mutations secreted greater amounts of ACTH and expressed POMC at higher levels compared to USP wild-type specimens. USP8 mutant adenomas were also more sensitive to modulation by CRH and dexamethasone in vitro. At microarray analysis, genes associated with endosomal protein degradation and membrane components were downregulated in USP8 mutant adenomas as were AVPR1B, IL11RA, and PITX2. Inhibition of the ubiquitin-proteasome pathway increased ACTH secretion and POMC itself proved a target of ubiquitylation, independently of USP8 sequence status. CONCLUSIONS Our study has shown that USP8 mutant ACTH-secreting adenomas present a more "typical" corticotrope phenotype and reduced expression of several genes associated with protein degradation. Further, ubiquitylation is directly involved in intracellular ACTH turnover, suggesting that the ubiquitin-proteasome system may represent a target for treatment of human ACTH-secreting adenomas.
Collapse
Affiliation(s)
- Antonella Sesta
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Maria Francesca Cassarino
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | | | - Alberto G Ambrogio
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Laura Libera
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Donatella Bardelli
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy
| | - Giovanni Lasio
- Department of Neurosurgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marco Losa
- Department of Neurosurgery, Ospedale San Raffaele, Milan, Italy
| | - Francesca Pecori Giraldi
- Istituto Auxologico Italiano IRCCS, Neuroendocrinology Research Laboratory, Cusano Milanino, Milan, Italy,
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
20
|
Hummer BH, de Leeuw NF, Burns C, Chen L, Joens MS, Hosford B, Fitzpatrick JAJ, Asensio CS. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification. Mol Biol Cell 2017; 28:3870-3880. [PMID: 29074564 PMCID: PMC5739301 DOI: 10.1091/mbc.e17-08-0491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
The peripheral membrane protein HID-1 localizes to the trans-Golgi network, where it contributes to the formation of large dense core vesicles of neuroendocrine cells by influencing cargo sorting and trans-Golgi network acidification. Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.
Collapse
Affiliation(s)
- Blake H Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Noah F de Leeuw
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Christian Burns
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Lan Chen
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Matthew S Joens
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Bethany Hosford
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| |
Collapse
|
21
|
Touz MC, Zamponi N. Sorting without a Golgi complex. Traffic 2017; 18:637-645. [DOI: 10.1111/tra.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Maria C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
22
|
Topalidou I, Cattin-Ortolá J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, Ailion M. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet 2016; 12:e1006074. [PMID: 27191843 PMCID: PMC4871572 DOI: 10.1371/journal.pgen.1006074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. Animal cells package and store many important signaling molecules in specialized compartments called dense-core vesicles. Molecules stored in dense-core vesicles include peptide hormones like insulin and small molecule neurotransmitters like dopamine. Defects in the release of these compounds can lead to a wide range of metabolic and mental disorders in humans, including diabetes, depression, and drug addiction. However, it is not well understood how dense-core vesicles are formed in cells and package the appropriate molecules. Here we use a genetic screen in the microscopic worm C. elegans to identify proteins that are important for early steps in the generation of dense-core vesicles, such as packaging the correct molecular cargos in the vesicles. We identify several factors that are conserved between worms and humans and point to a new role for a protein complex that had previously been shown to be important for controlling trafficking in other cellular compartments. The identification of this complex suggests new cellular trafficking events that may be important for the generation of dense-core vesicles.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jérôme Cattin-Ortolá
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Andrea L. Pappas
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Tanguy E, Carmon O, Wang Q, Jeandel L, Chasserot-Golaz S, Montero-Hadjadje M, Vitale N. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. J Neurochem 2016; 137:904-12. [PMID: 26877188 DOI: 10.1111/jnc.13577] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
Abstract
The regulated secretory pathway begins with the formation of secretory granules by budding from the Golgi apparatus and ends by their fusion with the plasma membrane leading to the release of their content into the extracellular space, generally following a rise in cytosolic calcium. Generation of these membrane-bound transport carriers can be classified into three steps: (i) cargo sorting that segregates the cargo from resident proteins of the Golgi apparatus, (ii) membrane budding that encloses the cargo and depends on the creation of appropriate membrane curvature, and (iii) membrane fission events allowing the nascent carrier to separate from the donor membrane. These secretory vesicles then mature as they are actively transported along microtubules toward the cortical actin network at the cell periphery. The final stage known as regulated exocytosis involves the docking and the priming of the mature granules, necessary for merging of vesicular and plasma membranes, and the subsequent partial or total release of the secretory vesicle content. Here, we review the latest evidence detailing the functional roles played by lipids during secretory granule biogenesis, recruitment, and exocytosis steps. In this review, we highlight evidence supporting the notion that lipids play important functions in secretory vesicle biogenesis, maturation, recruitment, and membrane fusion steps. These effects include regulating various protein distribution and activity, but also directly modulating membrane topology. The challenges ahead to understand the pleiotropic functions of lipids in a secretory granule's journey are also discussed. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Ophélie Carmon
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Lydie Jeandel
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Maité Montero-Hadjadje
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic 2015; 16:1210-38. [PMID: 26403691 DOI: 10.1111/tra.12335] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.
Collapse
Affiliation(s)
- Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Ailion M, Hannemann M, Dalton S, Pappas A, Watanabe S, Hegermann J, Liu Q, Han HF, Gu M, Goulding MQ, Sasidharan N, Schuske K, Hullett P, Eimer S, Jorgensen EM. Two Rab2 interactors regulate dense-core vesicle maturation. Neuron 2014; 82:167-80. [PMID: 24698274 DOI: 10.1016/j.neuron.2014.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2014] [Indexed: 12/14/2022]
Abstract
Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network.
Collapse
Affiliation(s)
- Michael Ailion
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Washington, Seattle WA, 98195, USA.
| | - Mandy Hannemann
- European Neuroscience Institute, 37077 Göttingen, Germany; International Max Planck Research School Molecular Biology, 37077 Göttingen, Germany
| | - Susan Dalton
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Andrea Pappas
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jan Hegermann
- European Neuroscience Institute, 37077 Göttingen, Germany; DFG research Center for Molecular Physiology of the Brain (CMPB), 37077 Göttingen, Germany
| | - Qiang Liu
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Hsiao-Fen Han
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mingyu Gu
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Morgan Q Goulding
- Department of Biochemistry, University of Washington, Seattle WA, 98195, USA
| | | | - Kim Schuske
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick Hullett
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Stefan Eimer
- European Neuroscience Institute, 37077 Göttingen, Germany; DFG research Center for Molecular Physiology of the Brain (CMPB), 37077 Göttingen, Germany
| | - Erik M Jorgensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
26
|
Torres IL, Rosa-Ferreira C, Munro S. The Arf family G protein Arl1 is required for secretory granule biogenesis in Drosophila. J Cell Sci 2014; 127:2151-60. [PMID: 24610947 DOI: 10.1242/jcs.122028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The small G protein Arf like 1 (Arl1) is found at the Golgi complex, and its GTP-bound form recruits several effectors to the Golgi including GRIP-domain-containing coiled-coil proteins, and the Arf1 exchange factors Big1 and Big2. To investigate the role of Arl1, we have characterised a loss-of-function mutant of the Drosophila Arl1 orthologue. The gene is essential, and examination of clones of cells lacking Arl1 shows that it is required for recruitment of three of the four GRIP domain golgins to the Golgi, with Drosophila GCC185 being less dependent on Arl1. At a functional level, Arl1 is essential for formation of secretory granules in the larval salivary gland. When Arl1 is missing, Golgi are still present but there is a dispersal of adaptor protein 1 (AP-1), a clathrin adaptor that requires Arf1 for its membrane recruitment and which is known to be required for secretory granule biogenesis. Arl1 does not appear to be required for AP-1 recruitment in all tissues, suggesting that it is crucially required to enhance Arf1 activation at the trans-Golgi in particular tissues.
Collapse
Affiliation(s)
- Isabel L Torres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
27
|
Sirkis DW, Edwards RH, Asensio CS. Widespread dysregulation of peptide hormone release in mice lacking adaptor protein AP-3. PLoS Genet 2013; 9:e1003812. [PMID: 24086151 PMCID: PMC3784564 DOI: 10.1371/journal.pgen.1003812] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.
Collapse
Affiliation(s)
- Daniel W. Sirkis
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Robert H. Edwards
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Cédric S. Asensio
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
28
|
Expression and function of the dense-core vesicle membranes are governed by the transcription repressor REST. FEBS Lett 2013; 587:1915-22. [PMID: 23651552 DOI: 10.1016/j.febslet.2013.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/20/2022]
Abstract
The membrane of dense-core vesicles is present only in neural cells, where it is instrumental to the regulated discharge of important molecules such as the catecholamine neurotransmitters. The mechanism underlying the specificity of this membrane to certain cell types has so far been unclear. Studies of this problem have been carried out by employing the pheochromocytoma PC12 cell line and its clones defective of dense-core vesicles. REST, the transcription repressor expressed at high levels in non-neural and at very low levels in neural cells, was found to regulate the genes encoding almost all the proteins of both the core and the membrane of the dense-core vesicles, including the transporter for catecholamines and the SNAREs for their exocytosis. Moreover, REST appears to control the assembly of the vesicle membrane. The role of REST in the various steps of the expression and function of the dense-core vesicle membrane is critical during development and participates in the dynamic regulation of mature cell physiology.
Collapse
|
29
|
Kögel T, Rudolf R, Hodneland E, Copier J, Regazzi R, Tooze SA, Gerdes HH. Rab3D is critical for secretory granule maturation in PC12 cells. PLoS One 2013; 8:e57321. [PMID: 23526941 PMCID: PMC3602456 DOI: 10.1371/journal.pone.0057321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.
Collapse
Affiliation(s)
- Tanja Kögel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rüdiger Rudolf
- Interdisciplinary Center of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | | | - John Copier
- London Research Institute Cancer Research United Kingdom, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sharon A. Tooze
- London Research Institute Cancer Research United Kingdom, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Hans-Hermann Gerdes
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Interdisciplinary Center of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
31
|
Orai-STIM-mediated Ca2+ release from secretory granules revealed by a targeted Ca2+ and pH probe. Proc Natl Acad Sci U S A 2012. [PMID: 23184982 DOI: 10.1073/pnas.1218247109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Secretory granules (SGs) sequester significant calcium. Understanding roles for this calcium and potential mechanisms of release is hampered by the difficulty of measuring SG calcium directly in living cells. We adapted the Förster resonance energy transfer-based D1-endoplasmic reticulum (ER) probe to develop a unique probe (D1-SG) to measure calcium and pH in secretory granules. It significantly localizes to SGs and reports resting free Ca(2+) of 69 ± 15 μM and a pH of 5.8. Application of extracellular ATP to activate P2Y receptors resulted in a slow monotonic decrease in SG Ca(2+) temporally correlated with the occurrence of store-operated calcium entry (SOCE). Further investigation revealed a unique receptor-mediated mechanism of calcium release from SGs that involves SG store-operated Orai channels activated by their regulator stromal interaction molecule 1 (STIM1) on the ER. SG Ca(2+) release is completely antagonized by a SOCE antagonist, by switching to Ca(2+)-free medium, and by overexpression of a dominant-negative Orai1(E106A). Overexpression of the CRAC activation domain (CAD) of STIM1 resulted in a decrease of resting SG Ca(2+) by ∼75% and completely abolished the ATP-mediated release of Ca(2+) from SGs. Overexpression of a dominant-negative CAD construct(CAD-A376K) induced no significant changes in SG Ca(2+). Colocalization analysis suggests that, like the plasma membrane, SG membranes also possess Orai1 channels and that during SG Ca(2+) release, colocalization between SGs and STIM1 increases. We propose Orai channel opening on SG membranes as a potential mode of calcium release from SGs that may serve to raise local cytoplasmic calcium concentrations and aid in refilling intracellular calcium stores of the ER and exocytosis.
Collapse
|
32
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Chapleau CA, Larimore JL, Theibert A, Pozzo-Miller L. Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J Neurodev Disord 2011; 1:185-96. [PMID: 19966931 PMCID: PMC2788955 DOI: 10.1007/s11689-009-9027-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- Christopher A Chapleau
- Department of Neurobiology, Civitan International Research Center, Evelyn McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
34
|
Burgess J, Jauregui M, Tan J, Rollins J, Lallet S, Leventis PA, Boulianne GL, Chang HC, Le Borgne R, Krämer H, Brill JA. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila. Mol Biol Cell 2011; 22:2094-105. [PMID: 21490149 PMCID: PMC3113773 DOI: 10.1091/mbc.e11-01-0054] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.
Collapse
Affiliation(s)
- Jason Burgess
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Asensio CS, Sirkis DW, Edwards RH. RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. ACTA ACUST UNITED AC 2011; 191:1173-87. [PMID: 21149569 PMCID: PMC3002028 DOI: 10.1083/jcb.201006131] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AP-3 concentrates proteins within large dense-core vesicles to promote regulated exocytosis. The regulated release of proteins depends on their inclusion within large dense-core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network (TGN), but the mechanism for protein sorting to this regulated secretory pathway (RSP) and the cytosolic machinery involved in this process have remained poorly understood. Using an RNA interference screen in Drosophila melanogaster S2 cells, we now identify a small number of genes, including several subunits of the heterotetrameric adaptor protein AP-3, which are required for sorting to the RSP. In mammalian neuroendocrine cells, loss of AP-3 dysregulates exocytosis due to a primary defect in LDCV formation. Previous work implicated AP-3 in the endocytic pathway, but we find that AP-3 promotes sorting to the RSP within the biosynthetic pathway at the level of the TGN. Although vesicles with a dense core still form in the absence of AP-3, they contain substantially less synaptotagmin 1, indicating that AP-3 concentrates the proteins required for regulated exocytosis.
Collapse
Affiliation(s)
- Cédric S Asensio
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
36
|
Maritzen T, Schmidt MR, Kukhtina V, Higman VA, Strauss H, Volkmer R, Oschkinat H, Dotti CG, Haucke V. A novel subtype of AP-1-binding motif within the palmitoylated trans-Golgi network/endosomal accessory protein Gadkin/gamma-BAR. J Biol Chem 2009; 285:4074-4086. [PMID: 19965873 DOI: 10.1074/jbc.m109.049197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Membrane traffic between the trans-Golgi network (TGN) and endosomes is mediated in part by the assembly of clathrin-AP-1 adaptor complex-coated vesicles. This process involves multiple accessory proteins that directly bind to the ear domain of AP-1gamma via degenerate peptide motifs that conform to the consensus sequence diameterG(P/D/E)(diameter/L/M) (with diameter being a large hydrophobic amino acid). Recently, gamma-BAR (hereafter referred to as Gadkin for reasons explained below) has been identified as a novel AP-1 recruitment factor involved in AP-1-dependent endosomal trafficking of lysosomal enzymes. How precisely Gadkin interacts with membranes and with AP-1gamma has remained unclear. Here we show that Gadkin is an S-palmitoylated peripheral membrane protein that lacks stable tertiary structure. S-Palmitoylation is required for the recruitment of Gadkin to TGN/endosomal membranes but not for binding to AP-1. Furthermore, we identify a novel subtype of AP-1-binding motif within Gadkin that specifically associates with the gamma1-adaptin ear domain. Mutational inactivation of this novel type of motif, either alone or in combination with three more conventional AP-1gamma binding peptides, causes Gadkin to mislocalize to the plasma membrane and interferes with its ability to render AP-1 brefeldin A-resistant, indicating its physiological importance. Our studies thus unravel the molecular basis for Gadkin-mediated AP-1 recruitment to TGN/endosomal membranes and identify a novel subtype of the AP-1-binding motif.
Collapse
Affiliation(s)
- Tanja Maritzen
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Michael R Schmidt
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Viktoria Kukhtina
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Victoria A Higman
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Holger Strauss
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Rudolf Volkmer
- the Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Hartmut Oschkinat
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Carlos G Dotti
- the Vlanders Institute for Biotechnology, Molecular & Developmental Genetics Program and Department of Human Genetics, University of Leuven Medical School, Herestraat 49, 3000 Leuven, Belgium, and
| | - Volker Haucke
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany; the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
37
|
Insulin granule biogenesis, trafficking and exocytosis. VITAMINS AND HORMONES 2009; 80:473-506. [PMID: 19251047 DOI: 10.1016/s0083-6729(08)00616-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is becoming increasingly apparent that beta cell dysfunction resulting in abnormal insulin secretion is the essential element in the progression of patients from a state of impaired glucose tolerance to frank type 2 diabetes (Del Prato, 2003; Del Prato and Tiengo, 2001). Although extensive studies have examined the molecular, cellular and physiologic mechanisms of insulin granule biogenesis, sorting, and exocytosis the precise mechanisms controlling these processes and their dysregulation in the developed of diabetes remains an area of important investigation. We now know that insulin biogenesis initiates with the synthesis of preproinsulin in rough endoplastic reticulum and conversion of preproinsulin to proinsulin. Proinsulin begins to be packaged in the Trans-Golgi Network and is sorting into immature secretory granules. These immature granules become acidic via ATP-dependent proton pump and proinsulin undergoes proteolytic cleavage resulting the formation of insulin and C-peptide. During the granule maturation process, insulin is crystallized with zinc and calcium in the form of dense-core granules and unwanted cargo and membrane proteins undergo selective retrograde trafficking to either the constitutive trafficking pathway for secretion or to degradative pathways. The newly formed mature dense-core insulin granules populate two different intracellular pools, the readily releasable pools (RRP) and the reserved pool. These two distinct populations are thought to be responsible for the biphasic nature of insulin release in which the RRP granules are associated with the plasma membrane and undergo an acute calcium-dependent release accounting for first phase insulin secretion. In contrast, second phase insulin secretion requires the trafficking of the reserved granule pool to the plasma membrane. The initial trigger for insulin granule fusion with the plasma membrane is a rise in intracellular calcium and in the case of glucose stimulation results from increased production of ATP, closure of the ATP-sensitive potassium channel and cellular depolarization. In turn, this opens voltage-dependent calcium channels allowing increased influx of extracellular calcium. Calcium is thought to bind to members of the fusion regulatory proteins synaptogamin that functionally repressors the fusion inhibitory protein complexin. Both complexin and synaptogamin interact as well as several other regulatory proteins interact with the core fusion machinery composed of the Q- or t-SNARE proteins syntaxin 1 and SNAP25 in the plasma membrane that assembles with the R- or v-SNARE protein VAMP2 in insulin granules. In this chapter we will review the current progress of insulin granule biogenesis, sorting, trafficking, exocytosis and signaling pathways that comprise the molecular basis of glucose-dependent insulin secretion.
Collapse
|
38
|
Abstract
Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.
Collapse
|
39
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|
40
|
Park JJ, Loh YP. How peptide hormone vesicles are transported to the secretion site for exocytosis. Mol Endocrinol 2008; 22:2583-95. [PMID: 18669645 DOI: 10.1210/me.2008-0209] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Post-Golgi transport of peptide hormone-containing vesicles from the site of genesis at the trans-Golgi network to the release site at the plasma membrane is essential for activity-dependent hormone secretion to mediate various endocrinological functions. It is known that these vesicles are transported on microtubules to the proximity of the release site, and they are then loaded onto an actin/myosin system for distal transport through the actin cortex to just below the plasma membrane. The vesicles are then tethered to the plasma membrane, and a subpopulation of them are docked and primed to become the readily releasable pool. Cytoplasmic tails of vesicular transmembrane proteins, as well as many cytosolic proteins including adaptor proteins, motor proteins, and guanosine triphosphatases, are involved in vesicle budding, the anchoring of the vesicles, and the facilitation of movement along the transport systems. In addition, a set of cytosolic proteins is also necessary for tethering/docking of the vesicles to the plasma membrane. Many of these proteins have been identified from different types of (neuro)endocrine cells. Here, we summarize the proteins known to be involved in the mechanisms of sorting various cargo proteins into regulated secretory pathway hormone-containing vesicles, movement of these vesicles along microtubules and actin filaments, and their eventual tethering/docking to the plasma membrane for hormone secretion.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | |
Collapse
|
41
|
Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE. Trafficking of vesicular neurotransmitter transporters. Traffic 2008; 9:1425-36. [PMID: 18507811 DOI: 10.1111/j.1600-0854.2008.00771.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.
Collapse
Affiliation(s)
- Hao Fei
- Departments of Psychiatry and Neurobiology, Gonda Goldschmied Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1761, USA
| | | | | | | | | |
Collapse
|
42
|
Morvan J, Tooze SA. Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 2008; 129:243-52. [PMID: 18197413 PMCID: PMC2248607 DOI: 10.1007/s00418-008-0377-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2008] [Indexed: 01/24/2023]
Abstract
In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo.
Collapse
Affiliation(s)
- Joëlle Morvan
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
43
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
44
|
Unstimulated amylase secretion is proteoglycan-dependent in rat parotid acinar cells. Arch Biochem Biophys 2008; 469:165-73. [DOI: 10.1016/j.abb.2007.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/09/2007] [Accepted: 10/13/2007] [Indexed: 11/22/2022]
|
45
|
Braun V, Deschamps C, Raposo G, Benaroch P, Benmerah A, Chavrier P, Niedergang F. AP-1 and ARF1 control endosomal dynamics at sites of FcR mediated phagocytosis. Mol Biol Cell 2007; 18:4921-31. [PMID: 17914058 PMCID: PMC2096587 DOI: 10.1091/mbc.e07-04-0392] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phagocytosis, the mechanism of ingestion of large material and microorganisms, relies on actin polymerization and on the focal delivery of intracellular endocytic compartments. The molecular mechanisms involved in the formation and delivery of the endocytic vesicles that are recruited at sites of phagocytosis are not well characterized. Here we show that adaptor protein (AP)-1 but not AP-2 clathrin adaptor complexes are recruited early below the sites of particle attachment and are required for efficient receptor-mediated phagocytosis in murine macrophages. Clathrin, however, is not recruited with the AP complexes. We further show that the recruitment of AP-1-positive structures at sites of phagocytosis is regulated by the GTP-binding protein ARF1 but is not sensitive to brefeldin A. Furthermore, AP-1 depletion leads to increased surface levels of TNF-alpha, a cargo known to traffic through the endosomes to the plasma membrane upon stimulation of the macrophages. Together, our results support a clathrin-independent role for AP complexes in endosomal dynamics in macrophages by retaining some cargo proteins, a process important for membrane remodeling during phagocytosis.
Collapse
Affiliation(s)
- Virginie Braun
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Chantal Deschamps
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| | - Graça Raposo
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Philippe Benaroch
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Institut National de la Santé et de la Recherche Médicale U653, F-75248 Paris, France
| | - Alexandre Benmerah
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| | - Philippe Chavrier
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Florence Niedergang
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| |
Collapse
|
46
|
Yu A, Rual JF, Tamai K, Harada Y, Vidal M, He X, Kirchhausen T. Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev Cell 2007; 12:129-41. [PMID: 17199046 PMCID: PMC2831292 DOI: 10.1016/j.devcel.2006.10.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/08/2006] [Accepted: 10/19/2006] [Indexed: 11/21/2022]
Abstract
Upon activation by Wnt, the Frizzled receptor is internalized in a process that requires the recruitment of Dishevelled. We describe a novel interaction between Dishevelled2 (Dvl2) and micro2-adaptin, a subunit of the clathrin adaptor AP-2; this interaction is required to engage activated Frizzled4 with the endocytic machinery and for its internalization. The interaction of Dvl2 with AP-2 requires simultaneous association of the DEP domain and a peptide YHEL motif within Dvl2 with the C terminus of micro2. Dvl2 mutants in the YHEL motif fail to associate with micro2 and AP-2, and prevent Frizzled4 internalization. Corresponding Xenopus Dishevelled mutants show compromised ability to interfere with gastrulation mediated by the planar cell polarity (PCP) pathway. Conversely, a Dvl2 mutant in its DEP domain impaired in PCP signaling exhibits defective AP-2 interaction and prevents the internalization of Frizzled4. We suggest that the direct interaction of Dvl2 with AP-2 is important for Frizzled internalization and Frizzled/PCP signaling.
Collapse
Affiliation(s)
- Anan Yu
- Department of Cell Biology and the CBR Institute for Biomedical Research, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-François Rual
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Keiko Tamai
- Program of Neurobiology, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Yuko Harada
- Program of Neurobiology, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Xi He
- Program of Neurobiology, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Kirchhausen
- Department of Cell Biology and the CBR Institute for Biomedical Research, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
47
|
Haberman Y, Ziv I, Gorzalczany Y, Hirschberg K, Mittleman L, Fukuda M, Sagi-Eisenberg R. Synaptotagmin (Syt) IX is an essential determinant for protein sorting to secretory granules in mast cells. Blood 2006; 109:3385-92. [PMID: 17164344 DOI: 10.1182/blood-2006-07-033126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The secretory granules (SGs) of secretory cells of the hematopoietic lineage, such as the mast cells, are lysosome-related organelles whose membrane proteins travel through the plasma membrane and the endocytic system. Therefore, a mechanism must exist to prevent proteins destined to recycling or to the trans-Golgi network (TGN) from reaching the SGs. We now show that synaptotagmin (Syt) IX, a Syt homologue that is required for recycling from the endocytic recycling compartment (ERC) in rat basophilic leukemia (RBL-2H3) cultured mast cells, is involved in segregating recycling proteins from the SGs. By using as a marker the recycling protein TGN38, which cycles between the TGN, plasma membrane, and the ERC, we show that knock-down of Syt IX results in mistargeting of HA-tagged TGN38 to the SGs. We further demonstrate that Syt IX binds directly the small GTPase ARF1 and associates with the clathrin adaptor complex AP-1. These results therefore implicate Syt IX as an essential factor for the correct sorting of SGs proteins. Moreover, they place Syt IX as part of the machinery that is involved in the formation of transport carriers that mediate SGs protein sorting.
Collapse
Affiliation(s)
- Yael Haberman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
48
|
Kim T, Gondré-Lewis MC, Arnaoutova I, Loh YP. Dense-core secretory granule biogenesis. Physiology (Bethesda) 2006; 21:124-33. [PMID: 16565478 DOI: 10.1152/physiol.00043.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dense-core secretory granule is a key organelle for secretion of hormones and neuropeptides in endocrine cells and neurons, in response to stimulation. Cholesterol and granins are critical for the assembly of these organelles at the trans-Golgi network, and their biogenesis is regulated quantitatively by posttranscriptional and posttranslational mechanisms.
Collapse
Affiliation(s)
- Taeyoon Kim
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
49
|
Fujita-Yoshigaki J, Katsumata O, Matsuki M, Yoshigaki T, Furuyama S, Sugiya H. Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells. Biochem Biophys Res Commun 2006; 344:283-92. [PMID: 16630574 DOI: 10.1016/j.bbrc.2006.03.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteins was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.
Collapse
Affiliation(s)
- Junko Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba 271-8587, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Ahras M, Otto GP, Tooze SA. Synaptotagmin IV is necessary for the maturation of secretory granules in PC12 cells. ACTA ACUST UNITED AC 2006; 173:241-51. [PMID: 16618809 PMCID: PMC2063815 DOI: 10.1083/jcb.200506163] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In neuroendocrine PC12 cells, immature secretory granules (ISGs) mature through homotypic fusion and membrane remodeling. We present evidence that the ISG-localized synaptotagmin IV (Syt IV) is involved in ISG maturation. Using an in vitro homotypic fusion assay, we show that the cytoplasmic domain (CD) of Syt IV, but not of Syt I, VII, or IX, inhibits ISG homotypic fusion. Moreover, Syt IV CD binds specifically to ISGs and not to mature secretory granules (MSGs), and Syt IV binds to syntaxin 6, a SNARE protein that is involved in ISG maturation. ISG homotypic fusion was inhibited in vivo by small interfering RNA–mediated depletion of Syt IV. Furthermore, the Syt IV CD, as well as Syt IV depletion, reduces secretogranin II (SgII) processing by prohormone convertase 2 (PC2). PC2 is found mostly in the proform, suggesting that activation of PC2 is also inhibited. Granule formation, and the sorting of SgII and PC2 from the trans-Golgi network into ISGs and MSGs, however, is not affected. We conclude that Syt IV is an essential component for secretory granule maturation.
Collapse
Affiliation(s)
- Malika Ahras
- Cancer Research UK, London Research Institute, London WC2A 3PX, England, UK
| | | | | |
Collapse
|