1
|
Wu H, Hegde RS. Mechanism of signal-anchor triage during early steps of membrane protein insertion. Mol Cell 2023; 83:961-973.e7. [PMID: 36764302 PMCID: PMC10155758 DOI: 10.1016/j.molcel.2023.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Most membrane proteins use their first transmembrane domain, known as a signal anchor (SA), for co-translational targeting to the endoplasmic reticulum (ER) via the signal recognition particle (SRP). The SA then inserts into the membrane using either the Sec61 translocation channel or the ER membrane protein complex (EMC) insertase. How EMC and Sec61 collaborate to ensure SA insertion in the correct topology is not understood. Using site-specific crosslinking, we detect a pre-insertion SA intermediate adjacent to EMC. This intermediate forms after SA release from SRP but before ribosome transfer to Sec61. The polypeptide's N-terminal tail samples a cytosolic vestibule bordered by EMC3, from where it can translocate across the membrane concomitant with SA insertion. The ribosome then docks on Sec61, which has an opportunity to insert those SAs skipped by EMC. These results suggest that EMC acts between SRP and Sec61 to triage SAs for insertion during membrane protein biogenesis.
Collapse
Affiliation(s)
- Haoxi Wu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
2
|
McKenna MJ, Adams BM, Chu V, Paulo JA, Shao S. ATP13A1 prevents ERAD of folding-competent mislocalized and misoriented proteins. Mol Cell 2022; 82:4277-4289.e10. [PMID: 36283413 PMCID: PMC9675726 DOI: 10.1016/j.molcel.2022.09.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Benjamin M Adams
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Vincent Chu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
3
|
Abstract
The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3-EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
4
|
Abstract
In eukaryotic cells, about one-third of the synthesized proteins are translocated into the endoplasmic reticulum; they are membrane or lumen resident proteins and proteins direct to the Golgi apparatus. The co-translational translocation takes place through the heterotrimeric protein-conducting channel Sec61 which is associated with the ribosome and many accessory components, such as the heterotetrameric translocon-associated protein (TRAP) complex. Recently, microscopic techniques, such as cryo-electron microscopy and cryo-electron tomography, have enabled the determination of the translocation machinery structure. However, at present, there is a lack of understanding regarding the roles of some of its components; indeed, the TRAP complex function during co-translational translocation needs to be established. In addition, TRAP may play a role during unfolded protein response, endoplasmic-reticulum-associated protein degradation and congenital disorder of glycosylation (ssr4 CDG). In this article, I describe the current understanding of the TRAP complex in the light of its possible function(s).
Collapse
Affiliation(s)
- Antonietta Russo
- Medical Biochemistry and Molecular Biology, UKS, University of Saarland, Homburg, Germany
| |
Collapse
|
5
|
Denard B, Han S, Kim J, Ross EM, Ye J. Regulating G protein-coupled receptors by topological inversion. eLife 2019; 8:40234. [PMID: 30835201 PMCID: PMC6400500 DOI: 10.7554/elife.40234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 02/01/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a family of proteins containing seven transmembrane helices, with the N- and C-terminus of the protein located at the extracellular space and cytosol, respectively. Here, we report that ceramide or related sphingolipids might invert the topology of many GPCRs that contain a GXXXN motif in their first transmembrane helix. The functional significance of this topological regulation is illustrated by the CCR5 chemokine receptor. In the absence of lipopolysaccharide (LPS), CCR5 adopts a topology consistent with that of GPCR, allowing mouse peritoneal macrophages to migrate toward its ligand CCL5. LPS stimulation results in increased production of dihydroceramide, which inverts the topology of CCR5, preventing macrophages from migrating toward CCL5. These results suggest that GPCRs may not always adopt the same topology and can be regulated through topological inversion. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that major issues remain unresolved (see decision letter).
Collapse
Affiliation(s)
- Bray Denard
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sungwon Han
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - JungYeon Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Elliott M Ross
- Department of Pharmacology, Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
6
|
EMC Is Required to Initiate Accurate Membrane Protein Topogenesis. Cell 2018; 175:1507-1519.e16. [PMID: 30415835 PMCID: PMC6269167 DOI: 10.1016/j.cell.2018.10.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Mammals encode ∼5,000 integral membrane proteins that need to be inserted in a defined topology at the endoplasmic reticulum (ER) membrane by mechanisms that are incompletely understood. Here, we found that efficient biogenesis of β1-adrenergic receptor (β1AR) and other G protein-coupled receptors (GPCRs) requires the conserved ER membrane protein complex (EMC). Reconstitution studies of β1AR biogenesis narrowed the EMC requirement to the co-translational insertion of the first transmembrane domain (TMD). Without EMC, a proportion of TMD1 inserted in an inverted orientation or failed altogether. Purified EMC and SRP receptor were sufficient for correctly oriented TMD1 insertion, while the Sec61 translocon was necessary for insertion of the next TMD. Enforcing TMD1 topology with an N-terminal signal peptide bypassed the EMC requirement for insertion in vitro and restored efficient biogenesis of multiple GPCRs in EMC-knockout cells. Thus, EMC inserts TMDs co-translationally and cooperates with the Sec61 translocon to ensure accurate topogenesis of many membrane proteins. Efficient biogenesis of many GPCRs requires EMC, the ER membrane protein complex Without EMC, correct topology and insertion of the first transmembrane domain fails Purified EMC is sufficient for insertion of the first transmembrane domain of GPCRs The Sec61 complex is required for insertion of subsequent transmembrane domains
Collapse
|
7
|
Yim C, Jung SJ, Kim JEH, Jung Y, Jeong SD, Kim H. Profiling of signal sequence characteristics and requirement of different translocation components. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1640-1648. [DOI: 10.1016/j.bbamcr.2018.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
|
8
|
Tooke FJ, Babot M, Chandra G, Buchanan G, Palmer T. A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways. eLife 2017; 6. [PMID: 28513434 PMCID: PMC5449189 DOI: 10.7554/elife.26577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
The majority of multi-spanning membrane proteins are co-translationally inserted into the bilayer by the Sec pathway. An important subset of membrane proteins have globular, cofactor-containing extracytoplasmic domains requiring the dual action of the co-translational Sec and post-translational Tat pathways for integration. Here, we identify further unexplored families of membrane proteins that are dual Sec-Tat-targeted. We establish that a predicted heme-molybdenum cofactor-containing protein, and a complex polyferredoxin, each require the concerted action of two translocases for their assembly. We determine that the mechanism of handover from Sec to Tat pathway requires the relatively low hydrophobicity of the Tat-dependent transmembrane domain. This, coupled with the presence of C-terminal positive charges, results in abortive insertion of this transmembrane domain by the Sec pathway and its subsequent release at the cytoplasmic side of the membrane. Together, our data points to a simple unifying mechanism governing the assembly of dual targeted membrane proteins.
Collapse
Affiliation(s)
- Fiona J Tooke
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marion Babot
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Grant Buchanan
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
9
|
Vitrac H, Dowhan W, Bogdanov M. Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1291-1300. [PMID: 28432030 DOI: 10.1016/j.bbamem.2017.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
The final topology of membrane proteins is thought to be dictated primarily by the encoding sequence. However, according to the Charge Balance Rule the topogenic signals within nascent membrane proteins are interpreted in agreement with the Positive Inside Rule as influenced by the protein phospholipid environment. The role of long-range protein-lipid interactions in establishing a final uniform or dual topology is unknown. In order to address this role, we determined the positional dependence of the potency of charged residues as topological signals within Escherichia coli sucrose permease (CscB) in cells in which the zwitterionic phospholipid phosphatidylethanolamine (PE), acting as topological determinant, was either eliminated or tightly titrated. Although the position of a single or paired oppositely charged amino acid residues within an extramembrane domain (EMD), either proximal, central or distal to a transmembrane domain (TMD) end, does not appear to be important, the oppositely charged residues exert their topogenic effects separately only in the absence of PE. Thus, the Charge Balance Rule can be executed in a retrograde manner from any cytoplasmic EMD or any residue within an EMD most likely outside of the translocon. Moreover, CscB is inserted into the membrane in two opposite orientations at different ratios with the native orientation proportional to the mol % of PE. The results demonstrate how the cooperative contribution of lipid-protein interactions affects the potency of charged residues as topological signals, providing a molecular mechanism for the realization of single, equal or different amounts of oppositely oriented protein within the same membrane.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
10
|
McKenna M, Simmonds RE, High S. Mycolactone reveals the substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis. J Cell Sci 2017; 130:1307-1320. [PMID: 28219954 PMCID: PMC5399781 DOI: 10.1242/jcs.198655] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Mycolactone is the exotoxin virulence factor produced by Mycobacterium ulcerans, the pathogen responsible for Buruli ulcer. The skin lesions and immunosuppression that are characteristic of this disease result from the action of mycolactone, which targets the Sec61 complex and inhibits the co-translational translocation of secretory proteins into the endoplasmic reticulum. In this study, we investigate the effect of mycolactone on the Sec61-dependent biogenesis of different classes of transmembrane protein (TMP). Our data suggest that the effect of mycolactone on TMP biogenesis depends on how the nascent chain initially engages the Sec61 complex. For example, the translocation of TMP lumenal domains driven by an N-terminal cleavable signal sequence is efficiently inhibited by mycolactone. In contrast, the effect of mycolactone on protein translocation that is driven solely by a non-cleavable signal anchor/transmembrane domain depends on which flanking region is translocated. For example, while translocation of the region N-terminal to a signal anchor/transmembrane domain is refractive to mycolactone, C-terminal translocation is efficiently inhibited. Our findings highlight the diversity of Sec61-dependent translocation and provide a molecular basis for understanding the effect of mycolactone on the biogenesis of different TMPs. Highlighted Article: The exotoxin mycolactone interferes with the biogenesis of the majority of transmembrane proteins and its actions highlight differences in how distinct classes of these proteins initially engage the Sec61 translocon.
Collapse
Affiliation(s)
- Michael McKenna
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Manchester M13 9PT, UK
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Manchester M13 9PT, UK
| |
Collapse
|
11
|
Vitrac H, MacLean DM, Karlstaedt A, Taegtmeyer H, Jayaraman V, Bogdanov M, Dowhan W. Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation. J Biol Chem 2016; 292:1613-1624. [PMID: 27974465 DOI: 10.1074/jbc.m116.765719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools.
Collapse
Affiliation(s)
- Heidi Vitrac
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030.
| | - David M MacLean
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Anja Karlstaedt
- the Department of Internal Medicine, Division of Cardiology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Heinrich Taegtmeyer
- the Department of Internal Medicine, Division of Cardiology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Vasanthi Jayaraman
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - Mikhail Bogdanov
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030
| | - William Dowhan
- From the Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School, Houston, Texas 77030.
| |
Collapse
|
12
|
Topogenesis and cell surface trafficking of GPR34 are facilitated by positive-inside rule that effects through a tri-basic motif in the first intracellular loop. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1534-51. [PMID: 27086875 DOI: 10.1016/j.bbamcr.2016.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
Protein folding, topogenesis and intracellular targeting of G protein-coupled receptors (GPCRs) must be precisely coordinated to ensure correct receptor localization. To elucidate how different steps of GPCR biosynthesis work together, we investigated the process of membrane topology determination and how it relates to the acquisition of cell surface trafficking competence in human GPR34. By monitoring a fused FLAG-tag and a conformation-sensitive native epitope during the expression of GPR34 mutant panel, a tri-basic motif in the first intracellular loop was identified as the key topogenic signal that dictates the orientation of transmembrane domain-1 (TM1). Charge disruption of the motif perturbed topogenic processes and resulted in the conformational epitope loss, post-translational processing alteration, and trafficking arrest in the Golgi. The placement of a cleavable N-terminal signal sequence as a surrogate topogenic determinant overcame the effects of tri-basic motif mutations and rectified the TM1 orientation; thereby restored the conformational epitope, post-translational modifications, and cell surface trafficking altogether. Progressive N-tail truncation and site-directed mutagenesis revealed that a proline-rich segment of the N-tail and all four cysteines individually located in the four separate extracellular regions must simultaneously reside in the ER lumen to muster the conformational epitope. Oxidation of all four cysteines was necessary for the epitope formation, but the cysteine residues themselves were not required for the trafficking event. The underlying biochemical properties of the conformational epitope was therefore the key to understand mechanistic processes propelled by positive-inside rule that simultaneously regulate the topogenesis and intracellular trafficking of GPR34.
Collapse
|
13
|
De Marothy MT, Elofsson A. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding. Protein Sci 2015; 24:1057-74. [PMID: 25970811 DOI: 10.1002/pro.2698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/24/2015] [Indexed: 01/12/2023]
Abstract
Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices-implying a dynamic relationship between membrane proteins and their environment.
Collapse
Affiliation(s)
- Minttu T De Marothy
- Department of Biochemistry and Biophysics Science for Life Laboratory, Stockholm University, Solna, SE-171 21, Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics Science for Life Laboratory, Stockholm University, Solna, SE-171 21, Sweden
| |
Collapse
|
14
|
Junne T, Wong J, Studer C, Aust T, Bauer BW, Beibel M, Bhullar B, Bruccoleri R, Eichenberger J, Estoppey D, Hartmann N, Knapp B, Krastel P, Melin N, Oakeley EJ, Oberer L, Riedl R, Roma G, Schuierer S, Petersen F, Tallarico JA, Rapoport TA, Spiess M, Hoepfner D. Decatransin, a new natural product inhibiting protein translocation at the Sec61/SecYEG translocon. J Cell Sci 2015; 128:1217-29. [PMID: 25616894 DOI: 10.1242/jcs.165746] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest 'decatransin' as the name for this new decadepsipeptide translocation inhibitor.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Joanne Wong
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Thomas Aust
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Benedikt W Bauer
- Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Martin Beibel
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Bhupinder Bhullar
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | | | - Jürg Eichenberger
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - David Estoppey
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Nicole Hartmann
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Britta Knapp
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Philipp Krastel
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Nicolas Melin
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Edward J Oakeley
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Lukas Oberer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - Frank Petersen
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| | - John A Tallarico
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Dominic Hoepfner
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland Novartis Institutes for BioMedical Research, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
15
|
Liu M, Sun J, Cui J, Chen W, Guo H, Barbetti F, Arvan P. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Aspects Med 2014; 42:3-18. [PMID: 25542748 DOI: 10.1016/j.mam.2014.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023]
Abstract
A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China; Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| | - Jinhong Sun
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Jinqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wei Chen
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Tor Vergata, Rome and Bambino Gesù Children's Hospital, Rome, Italy
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
16
|
Lee H, Kim H. Membrane topology of transmembrane proteins: determinants and experimental tools. Biochem Biophys Res Commun 2014; 453:268-76. [PMID: 24938127 DOI: 10.1016/j.bbrc.2014.05.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.
Collapse
Affiliation(s)
- Hunsang Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Hyun Kim
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea.
| |
Collapse
|
17
|
Liu M, Wright J, Guo H, Xiong Y, Arvan P. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. VITAMINS AND HORMONES 2014; 95:35-62. [PMID: 24559913 DOI: 10.1016/b978-0-12-800174-5.00002-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin is an essential hormone for maintaining metabolic homeostasis in the body. To make fully bioactive insulin, pancreatic beta cells initiate synthesis of the insulin precursor, preproinsulin, at the cytosolic side of the endoplasmic reticulum (ER), whereupon it undergoes co- and post-translational translocation across the ER membrane. Preproinsulin is cleaved by signal peptidase to form proinsulin that folds on the luminal side of the ER, forming three evolutionarily conserved disulfide bonds. Properly folded proinsulin forms dimers and exits from the ER, trafficking through Golgi complex into immature secretory granules wherein C-peptide is endoproteolytically excised, allowing fully bioactive two-chain insulin to ultimately be stored in mature granules for insulin secretion. Although insulin biosynthesis has been intensely studied in recent decades, the earliest events, including proinsulin entry and exit from the ER, have been relatively understudied. However, over the past 5 years, more than 20 new insulin gene mutations have been reported to cause a new syndrome termed Mutant INS-gene-induced Diabetes of Youth (MIDY). Although these mutants have not been completely characterized, most of them affect proinsulin entry and exit from the ER. Here, we summarize our current knowledge about the early events of insulin biosynthesis and review recent advances in understanding how defects in these events may lead to pancreatic beta cell failure.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Metabolism, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jordan Wright
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yi Xiong
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
18
|
Sommer N, Junne T, Kalies KU, Spiess M, Hartmann E. TRAP assists membrane protein topogenesis at the mammalian ER membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3104-3111. [DOI: 10.1016/j.bbamcr.2013.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 01/03/2023]
|
19
|
Kaur J, Bose HS. Passenger protein determines translocation versus retention in the endoplasmic reticulum for aromatase expression. Mol Pharmacol 2013; 85:290-300. [PMID: 24280011 DOI: 10.1124/mol.113.090431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aromatase protein is overexpressed in the breasts of women affected with cancer. In the endoplasmic reticulum (ER), signal sequence and signal anchors (SAs) facilitate translocation and topology of proteins. To understand the function of type-I SAs (SA-Is), we evaluated translocation of aromatase, whose signal anchor follows a hydrophilic region. Aromatase SA-I mediates translocation of a short N-terminal hydrophillic domain to ER lumen and integrates the protein in the membrane, with the remainder of the protein residing in the cytosol. We showed that lack of a signal peptidase cleavage site is not responsible for the stop-transfer function of SA-I. However, SA-I could not block the translocation of a full-length microsomal secretory protein and was cleaved as part of the signal sequence. We propose that interaction between the translocon and the region after the signal anchor plays a critical role in directing the topology of the protein by SA-Is. The positive charges in the signal sequence helped it to override the function of signal anchor. Thus, when signal sequence follows SA-I immediately, the interaction with the translocon is perturbed and topology of the protein in ER is altered. If signal sequence is placed far enough from SA-I, then it does not affect membrane integration of SA-I. In summary, we conclude that it is not just the SA-I, but also the region following it, which together affect function of aromatase SA-I in ER.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Mercer University School of Medicine and Memorial University Medical Center, Department of Biochemistry, Biomedical Sciences, Anderson Cancer Institute, Savannah, Georgia
| | | |
Collapse
|
20
|
Kulemzin S, Chikaev N, Volkova O, Reshetnikova E, Taranin A, Najakshin A, Mechetina L. Characterization of human FCRLA isoforms. Immunol Lett 2013; 152:153-8. [PMID: 23742757 DOI: 10.1016/j.imlet.2013.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/20/2013] [Accepted: 05/26/2013] [Indexed: 02/01/2023]
Abstract
FCRLA is an ER-resident B-cell specific protein. The exact function of this protein remains unclear although human FCRLA has been recently shown to interact with IgM, IgG and IgA. The retention of FCRLA in ER is mediated by the N-terminal domain. The major human FCRLA isoform is encoded by five exons, of which one encodes a short signal peptide (SSP) and the others code four protein domains. Here we show that human tissues also produce transcripts which contain an additional exon and encode proteins with signal peptide that is six residues longer (LSP). Transfection experiments demonstrated that the extension of the signal peptide had no visible effect on the topology and molecular mass of the processed four-domain FCRLA isoform. However, the length of the signal peptide was found to affect processing of two-domain FCRLA isoforms composed of the third and fourth domains (FCRLAd2). The signal peptide was not cleaved in the SSP-FCRLAd2 and this isoform was found to accumulate in the ER. In contrast, the LSP-containing FCRLAd2 isoform was processed, O-glycosylated and secreted. The secreted FCRLAd2 isoform did not interact with IgG- or IgM-immunosorbents.
Collapse
Affiliation(s)
- Sergey Kulemzin
- Institute of Molecular and Cellular Biology SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | | | | | | | | | | | | |
Collapse
|
21
|
Reithinger JH, Kim JEH, Kim H. Sec62 protein mediates membrane insertion and orientation of moderately hydrophobic signal anchor proteins in the endoplasmic reticulum (ER). J Biol Chem 2013; 288:18058-67. [PMID: 23632075 DOI: 10.1074/jbc.m113.473009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nascent chains are known to be targeted to the endoplasmic reticulum membrane either by a signal recognition particle (SRP)-dependent co-translational or by an SRP-independent post-translational translocation route depending on signal sequences. Using a set of model and cellular proteins carrying an N-terminal signal anchor sequence of controlled hydrophobicity and yeast mutant strains defective in SRP or Sec62 function, the hydrophobicity-dependent targeting efficiency and targeting pathway preference were systematically evaluated. Our results suggest that an SRP-dependent co-translational and an SRP-independent post-translational translocation are not mutually exclusive for signal anchor proteins and that moderately hydrophobic ones require both SRP and Sec62 for proper targeting and translocation to the endoplasmic reticulum. Further, defect in Sec62 selectively reduced signal sequences inserted in an N(in)-C(out) (type II) membrane topology, implying an undiscovered role of Sec62 in regulating the orientation of the signal sequence in an early stage of translocation.
Collapse
|
22
|
Kocik L, Junne T, Spiess M. Orientation of Internal Signal-Anchor Sequences at the Sec61 Translocon. J Mol Biol 2012; 424:368-78. [DOI: 10.1016/j.jmb.2012.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/29/2022]
|
23
|
Zhang B, Miller TF. Long-timescale dynamics and regulation of Sec-facilitated protein translocation. Cell Rep 2012; 2:927-37. [PMID: 23084746 PMCID: PMC3483636 DOI: 10.1016/j.celrep.2012.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/21/2012] [Accepted: 08/31/2012] [Indexed: 01/11/2023] Open
Abstract
We present a coarse-grained modeling approach that spans the nanosecond- to minute-timescale dynamics of cotranslational protein translocation. The method enables direct simulation of both integral membrane protein topogenesis and transmembrane domain (TM) stop-transfer efficiency. Simulations reveal multiple kinetic pathways for protein integration, including a mechanism in which the nascent protein undergoes slow-timescale reorientation, or flipping, in the confined environment of the translocon channel. Competition among these pathways gives rise to the experimentally observed dependence of protein topology on ribosomal translation rate and protein length. We further demonstrate that sigmoidal dependence of stop-transfer efficiency on TM hydrophobicity arises from local equilibration of the TM across the translocon lateral gate, and it is predicted that slowing ribosomal translation yields decreased stop-transfer efficiency in long proteins. This work reveals the balance between equilibrium and nonequilibrium processes in protein targeting, and it provides insight into the molecular regulation of the Sec translocon.
Collapse
Affiliation(s)
- Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
24
|
Tie JK, Jin DY, Stafford DW. Human vitamin K epoxide reductase and its bacterial homologue have different membrane topologies and reaction mechanisms. J Biol Chem 2012; 287:33945-55. [PMID: 22923610 DOI: 10.1074/jbc.m112.402941] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin K epoxide reductase (VKOR) is essential for the production of reduced vitamin K that is required for modification of vitamin K-dependent proteins. Three- and four-transmembrane domain (TMD) topology models have been proposed for VKOR. They are based on in vitro glycosylation mapping of the human enzyme and the crystal structure of a bacterial (Synechococcus) homologue, respectively. These two models place the functionally disputed conserved loop cysteines, Cys-43 and Cys-51, on different sides of the endoplasmic reticulum (ER) membrane. In this study, we fused green fluorescent protein to the N or C terminus of human VKOR, expressed these fusions in HEK293 cells, and examined their topologies by fluorescence protease protection assays. Our results show that the N terminus of VKOR resides in the ER lumen, whereas its C terminus is in the cytoplasm. Selective modification of cysteines by polyethylene glycol maleimide confirms the cytoplasmic location of the conserved loop cysteines. Both results support a three-TMD model of VKOR. Interestingly, human VKOR can be changed to a four-TMD molecule by mutating the charged residues flanking the first TMD. Cell-based activity assays show that this four-TMD molecule is fully active. Furthermore, the conserved loop cysteines, which are essential for intramolecular electron transfer in the bacterial VKOR homologue, are not required for human VKOR whether they are located in the cytoplasm (three-TMD molecule) or the ER lumen (four-TMD molecule). Our results confirm that human VKOR is a three-TMD protein. Moreover, the conserved loop cysteines apparently play different roles in human VKOR and in its bacterial homologues.
Collapse
Affiliation(s)
- Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | |
Collapse
|
25
|
Zhang B, Miller TF. Direct simulation of early-stage Sec-facilitated protein translocation. J Am Chem Soc 2012; 134:13700-7. [PMID: 22852862 DOI: 10.1021/ja3034526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct simulations reveal key mechanistic features of early-stage protein translocation and membrane integration via the Sec-translocon channel. We present a novel computational protocol that combines non-equilibrium growth of the nascent protein with microsecond timescale molecular dynamics trajectories. Analysis of multiple, long timescale simulations elucidates molecular features of protein insertion into the translocon, including signal-peptide docking at the translocon lateral gate (LG), large lengthscale conformational rearrangement of the translocon LG helices, and partial membrane integration of hydrophobic nascent-protein sequences. Furthermore, the simulations demonstrate the role of specific molecular interactions in the regulation of protein secretion, membrane integration, and integral membrane protein topology. Salt-bridge contacts between the nascent-protein N-terminus, cytosolic translocon residues, and phospholipid head groups are shown to favor conformations of the nascent protein upon early-stage insertion that are consistent with the Type II (N(cyt)/C(exo)) integral membrane protein topology, and extended hydrophobic contacts between the nascent protein and the membrane lipid bilayer are shown to stabilize configurations that are consistent with the Type III (N(exo)/C(cyt)) topology. These results provide a detailed, mechanistic basis for understanding experimentally observed correlations between integral membrane protein topology, translocon mutagenesis, and nascent-protein sequence.
Collapse
Affiliation(s)
- Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
| | | |
Collapse
|
26
|
Gilmore R, Mandon EC. Understanding integration of α-helical membrane proteins: the next steps. Trends Biochem Sci 2012; 37:303-8. [PMID: 22748693 DOI: 10.1016/j.tibs.2012.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022]
Abstract
Integration of a protein into the endoplasmic reticulum (ER) membrane occurs through a series of multistep reactions that include targeting of ribosome-nascent polypeptide complexes to the ER, attachment of the ribosome to the protein translocation channel, lateral partitioning of α-helical transmembrane spans into the lipid bilayer, and folding of the lumenal, cytosolic and membrane-embedded domains of the protein. However, the molecular mechanisms and kinetics of these steps are still not entirely clear. To obtain a better understanding of the mechanism of membrane protein integration, we propose that it will be important to utilize in vivo experiments to examine the kinetics of membrane protein integration and in vitro experiments to characterize interactions between nascent membrane proteins, protein translocation factors and molecular chaperones.
Collapse
Affiliation(s)
- Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA.
| | | |
Collapse
|
27
|
Topological analysis of small leucine-rich repeat proteoglycan nyctalopin. PLoS One 2012; 7:e33137. [PMID: 22485138 PMCID: PMC3317652 DOI: 10.1371/journal.pone.0033137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/10/2012] [Indexed: 11/24/2022] Open
Abstract
Nyctalopin is a small leucine rich repeat proteoglycan (SLRP) whose function is
critical for normal vision. The absence of nyctalopin results in the complete
form of congenital stationary night blindness. Normally, glutamate released by
photoreceptors binds to the metabotropic glutamate receptor type 6 (GRM6), which
through a G-protein cascade closes the non-specific cation channel, TRPM1, on
the dendritic tips of depolarizing bipolar cells (DBCs) in the retina.
Nyctalopin has been shown to interact with TRPM1 and expression of TRPM1 on the
dendritic tips of the DBCs is dependent on nyctalopin expression. In the current
study, we used yeast two hybrid and biochemical approaches to investigate
whether murine nyctalopin was membrane bound, and if so by what mechanism, and
also whether the functional form was as a homodimer. Our results show that
murine nyctalopin is anchored to the plasma membrane by a single transmembrane
domain, such that the LRR domain is located in the extracellular space.
Collapse
|
28
|
Ojemalm K, Halling KK, Nilsson I, von Heijne G. Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol Cell 2012; 45:529-40. [PMID: 22281052 DOI: 10.1016/j.molcel.2011.12.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/19/2011] [Accepted: 12/27/2011] [Indexed: 01/22/2023]
Abstract
α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (N(cyt)-C(lum) or N(lum)-C(cyt)) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the "missing hydrophobicity" in polytopic membrane proteins.
Collapse
Affiliation(s)
- Karin Ojemalm
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Sweden
| | | | | | | |
Collapse
|
29
|
Abstract
Integral membrane proteins of the cell surface and most intracellular compartments of eukaryotic cells are assembled at the endoplasmic reticulum. Two highly conserved and parallel pathways mediate membrane protein targeting to and insertion into this organelle. The classical cotranslational pathway, utilized by most membrane proteins, involves targeting by the signal recognition particle followed by insertion via the Sec61 translocon. A more specialized posttranslational pathway, employed by many tail-anchored membrane proteins, is composed of entirely different factors centered around a cytosolic ATPase termed TRC40 or Get3. Both of these pathways overcome the same biophysical challenges of ferrying hydrophobic cargo through an aqueous milieu, selectively delivering it to one among several intracellular membranes and asymmetrically integrating its transmembrane domain(s) into the lipid bilayer. Here, we review the conceptual and mechanistic themes underlying these core membrane protein insertion pathways, the complexities that challenge our understanding, and future directions to overcome these obstacles.
Collapse
Affiliation(s)
- Sichen Shao
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
30
|
Helix-destabilizing, beta-branched, and polar residues in the baboon reovirus p15 transmembrane domain influence the modularity of FAST proteins. J Virol 2011; 85:4707-19. [PMID: 21367887 DOI: 10.1128/jvi.02223-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fusogenic reoviruses induce syncytium formation using the fusion-associated small transmembrane (FAST) proteins. A recent study indicated the p14 FAST protein transmembrane domain (TMD) can be functionally replaced by the TMDs of the other FAST proteins but not by heterologous TMDs, suggesting that the FAST protein TMDs are modular fusion units. We now show that the p15 FAST protein is also a modular fusogen, as indicated by the functional replacement of the p15 ectodomain with the corresponding domain from the p14 FAST protein. Paradoxically, the p15 TMD is not interchangeable with the TMDs of the other FAST proteins, implying that unique attributes of the p15 TMD are required when this fusion module is functioning in the context of the p15 ecto- and/or endodomain. A series of point substitutions, truncations, and reextensions were created in the p15 TMD to define features that are specific to the functioning of the p15 TMD. Removal of only one or two residues from the N terminus or four residues from the C terminus of the p15 TMD eliminated membrane fusion activity, and there was a direct correlation between the fusion-promoting function of the p15 TMD and the presence of N-terminal, hydrophobic β-branched residues. Substitution of the glycine residues and triserine motif present in the p15 TMD also impaired or eliminated the fusion-promoting activity of the p15 TMD. The ability of the p15 TMD to function in an ecto- and endodomain-specific context is therefore influenced by stringent sequence requirements that reflect the importance of TMD polar residues and helix-destabilizing residues.
Collapse
|
31
|
Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L. Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:882-96. [PMID: 21251105 DOI: 10.1111/j.1365-313x.2010.04469.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang N, Cannon RD, Holland BR, Patchett ML, Schmid J. Impact of genetic background on allele selection in a highly mutable Candida albicans gene, PNG2. PLoS One 2010; 5:e9614. [PMID: 20231904 PMCID: PMC2834760 DOI: 10.1371/journal.pone.0009614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/16/2010] [Indexed: 11/19/2022] Open
Abstract
In many microbes rapid mutation of highly mutable contingency genes continually replenishes a pool of variant alleles from which the most suitable are selected, assisting in rapid adaptation and evasion of the immune response. In some contingency genes mutability is achieved through DNA repeats within the coding region. The fungal human pathogen Candida albicans has 2600 repeat-containing ORFs. For those investigated (ALS genes, HYR1, HYR2, CEK1, RLM1) many protein variants with differing amino acid repeat regions exist, as expected for contingency genes. However, specific alleles dominate in different clades, which is unexpected if allele variation is used for short-term adaptation. Generation of new alleles of repeat-containing C. albicans ORFs has never been observed directly. Here we present evidence for restrictions on the emergence of new alleles in a highly mutable C. albicans repeat-containing ORF, PNG2, encoding a putative secreted or cell surface glycoamidase. In laboratory cultures new PNG2 alleles arose at a rate of 2.8×10−5 (confidence interval 3.3×10−6−9. 9×10−5) per cell per division, comparable to rates measured for contingency genes. Among 80 clinical isolates 17 alleles of different length and 23 allele combinations were distinguishable; sequence differences between repeat regions of identical size suggest the existence of 36 protein variants. Specific allele combinations predominated in different genetic backgrounds, as defined by DNA fingerprinting and multilocus sequence typing. Given the PNG2 mutation rate, this is unexpected, unless in different genetic backgrounds selection favors different alleles. Specific alleles or allele combinations were not preferentially associated with C. albicans isolates from particular body sites or geographical regions. Our results suggest that the mutability of PNG2 is not used for short-term adaptation or evasion of the immune system. Nevertheless the large number of alleles observed indicates that mutability of PNG2 may assist C. albicans strains from different genetic backgrounds optimize their interaction with the host in the long term.
Collapse
Affiliation(s)
- Ningxin Zhang
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Barbara R. Holland
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | - Mark L. Patchett
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | - Jan Schmid
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
33
|
Abstract
Special codes are embedded in the primary sequence of newly synthesized proteins to determine their final destination. Protein translocation across biological membranes requires co-operation between the targeting and translocation machineries. A conserved membrane channel, the Sec61/SecY complex, mediates protein translocation across or integration into the endoplasmic reticulum membrane in eukaryotes and the plasma membrane in prokaryotes. A combination of recent biochemical and structural data provides novel insights into the mechanism of how the channel allows polypeptide movement into the exoplasmic space and the lipid bilayer.
Collapse
|
34
|
Abstract
The topology of polytopic membrane proteins is determined by topogenic sequences in the protein, protein-translocon interactions, and interactions during folding within the protein and between the protein and the lipid environment. Orientation of transmembrane domains is dependent on membrane phospholipid composition during initial assembly as well as on changes in lipid composition postassembly. The membrane translocation potential of negative amino acids working in opposition to the positive-inside rule is largely dampened by the normal presence of phosphatidylethanolamine, thus explaining the dominance of positive residues as retention signals. Phosphatidylethanolamine provides the appropriate charge density that permits the membrane surface to maintain a charge balance between membrane translocation and retention signals and also allows the presence of negative residues in the cytoplasmic face of proteins for other purposes.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | |
Collapse
|
35
|
Saurí A, Tamborero S, Martínez-Gil L, Johnson AE, Mingarro I. Viral Membrane Protein Topology Is Dictated by Multiple Determinants in Its Sequence. J Mol Biol 2009; 387:113-28. [DOI: 10.1016/j.jmb.2009.01.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
|
36
|
Reovirus FAST protein transmembrane domains function in a modular, primary sequence-independent manner to mediate cell-cell membrane fusion. J Virol 2009; 83:2941-50. [PMID: 19129451 DOI: 10.1128/jvi.01869-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The FAST proteins are a unique family of virus-encoded cell-cell membrane fusion proteins. In the absence of a cleavable N-terminal signal peptide, a single-pass transmembrane domain (TMD) functions as a reverse signal-anchor to direct the FAST proteins into the plasma membrane in an N(exo)/C(cyt) topology. There is little information available on the role of the FAST protein TMD in the cell-cell membrane fusion reaction. We show that in the absence of conservation in the length or primary amino acid sequence, the p14 TMD can be functionally exchanged with the TMDs of the p10 and p15 FAST proteins. This is not the case for chimeric p14 proteins containing the TMDs of two different enveloped viral fusion proteins or a cellular membrane protein; such chimeric proteins were defective for both pore formation and syncytiogenesis. TMD structural features that are conserved within members of the FAST protein family presumably play direct roles in the fusion reaction. Molecular modeling suggests that the funnel-shaped architecture of the FAST protein TMDs may represent such a conserved structural and functional motif. Interestingly, although heterologous TMDs exert diverse influences on the trafficking of the p14 FAST protein, these TMDs are capable of functioning as reverse signal-anchor sequences to direct p14 into lipid rafts in the correct membrane topology. The FAST protein TMDs are therefore not primary determinants of type III protein topology, but they do play a direct, sequence-independent role in the membrane fusion reaction.
Collapse
|
37
|
Molecular code for protein insertion in the endoplasmic reticulum membrane is similar for N(in)-C(out) and N(out)-C(in) transmembrane helices. Proc Natl Acad Sci U S A 2008; 105:15702-7. [PMID: 18840693 DOI: 10.1073/pnas.0804842105] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmembrane alpha-helices in integral membrane proteins can have two orientations in the membrane: N(in)-C(out) or N(out)-C(in). Previous studies of model N(out)-C(in) transmembrane segment have led to a detailed, quantitative picture of the "molecular code" that relates amino acid sequence to membrane insertion efficiency in vivo [Hessa T, et al. (2007) Molecular code for transmembrane helix recognition by the Sec61 translocon. Nature 450:1026-1030], but whether the same code applies also to N(in)-C(out) transmembrane helices is unknown. Here, we show that the contributions of individual amino acids to the overall efficiency of membrane insertion are similar for the two kinds of helices and that the threshold hydrophobicity for membrane insertion can be up to approximately 1 kcal/mol lower for N(in)-C(out) compared with N(out)-C(in) transmembrane helices, depending on the neighboring helices.
Collapse
|
38
|
Envelope protein palmitoylations are crucial for murine coronavirus assembly. J Virol 2008; 82:2989-99. [PMID: 18184706 DOI: 10.1128/jvi.01906-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The coronavirus assembly process encloses a ribonucleoprotein genome into vesicles containing the lipid-embedded proteins S (spike), E (envelope), and M (membrane). This process depends on interactions with membranes that may involve palmitoylation, a common posttranslational lipidation of cysteine residues. To determine whether specific palmitoylations influence coronavirus assembly, we introduced plasmid DNAs encoding mouse hepatitis coronavirus (MHV) S, E, M, and N (nucleocapsid) into 293T cells and found that virus-like particles (VLPs) were robustly assembled and secreted into culture medium. Palmitate adducts predicted on cysteines 40, 44, and 47 of the 83-residue E protein were then evaluated by constructing mutant cDNAs with alanine or glycine codon substitutions at one or more of these positions. Triple-substituted proteins (E.Ts) lacked palmitate adducts. Both native E and E.T proteins localized at identical perinuclear locations, and both copurified with M proteins, but E.T was entirely incompetent for VLP production. In the presence of the E.T proteins, the M protein subunits accumulated into detergent-insoluble complexes that failed to secrete from cells, while native E proteins mobilized M into detergent-soluble secreted forms. Many of these observations were corroborated in the context of natural MHV infections, with native E, but not E.T, complementing debilitated recombinant MHVs lacking E. Our findings suggest that palmitoylations are essential for E to act as a vesicle morphogenetic protein and further argue that palmitoylated E proteins operate by allowing the primary coronavirus assembly subunits to assume configurations that can mobilize into secreted lipid vesicles and virions.
Collapse
|
39
|
Xu X, Lu J, Lu Q, Zhong H, Weng S, He J. Characterization of a membrane protein (VP001L) from infectious spleen and kidney necrosis virus (ISKNV). Virus Genes 2007; 36:157-67. [DOI: 10.1007/s11262-007-0177-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
|
40
|
Forrest KL, Bhave M. The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomics 2007; 8:115-33. [PMID: 18030508 DOI: 10.1007/s10142-007-0065-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/12/2007] [Accepted: 10/14/2007] [Indexed: 11/27/2022]
Abstract
Aquaporins, members of major intrinsic proteins (MIPs), transport water across cellular membranes and play vital roles in all organisms. Adversities such as drought, salinity, or chilling affect water uptake and transport, and numerous plant MIPs are reported to be differentially regulated under such stresses. However, MIP genes have been not yet been characterized in wheat, the largest cereal crop. We have identified 24 PIP and 11 TIP aquaporin genes from wheat by gene isolation and database searches. They vary extensively in lengths, numbers, and sequences of exons and introns, and sequences and cellular locations of predicted proteins, but the intron positions (if present) are characteristic. The putative PIP proteins show a high degree of conservation of signature sequences or residues for membrane integration, water transport, and regulation. The TIPs are more diverse, some with potential for water transport and others with various selectivity filters including a new combination. Most genes appear to be expressed as expressed sequence tags, while two are likely pseudogenes. Many of the genes are highly identical to rice but some are unique, and many correspond to genes that show differential expression under salinity and/or drought. The results provide extensive information for functional studies and developing markers for stress tolerance.
Collapse
Affiliation(s)
- Kerrie L Forrest
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, John St, Hawthorn, Victoria 3122, Australia
| | | |
Collapse
|
41
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
42
|
Junne T, Schwede T, Goder V, Spiess M. Mutations in the Sec61p Channel Affecting Signal Sequence Recognition and Membrane Protein Topology. J Biol Chem 2007; 282:33201-9. [PMID: 17893139 DOI: 10.1074/jbc.m707219200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orientation of most single-spanning membrane proteins obeys the "positive-inside rule", i.e. the flanking region of the transmembrane segment that is more positively charged remains in the cytosol. These membrane proteins are integrated by the Sec61/SecY translocon, but how their orientation is achieved is unknown. We have screened for mutations in yeast Sec61p that alter the orientation of single-spanning membrane proteins. We identified a class of mutants that are less efficient in retaining the positively charged flanking region in the cytosol. Surprisingly, these mutations are located at many different sites in the Sec61/SecY molecule, and they do not only involve charged amino acid residues. All these mutants have a prl phenotype that so far have only been seen in bacteria; they allow proteins with defective signal sequences to be translocated, likely because the Sec61p channel opens more easily. A similar correlation between topology defects and prl phenotype was also seen with previously identified yeast Sec61 mutants. Our results suggest a model in which the regulated opening of the translocon is required for the faithful orientation of membrane proteins.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| | | | | | | |
Collapse
|
43
|
Cheng Z, Gilmore R. Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration. Nat Struct Mol Biol 2006; 13:930-6. [PMID: 16980973 DOI: 10.1038/nsmb1146] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 08/25/2006] [Indexed: 11/08/2022]
Abstract
Integral membrane proteins are cotranslationally inserted into the endoplasmic reticulum via the protein translocation channel, or translocon, which mediates the transport of lumenal domains, retention of cytosolic domains and integration of transmembrane spans into the phospholipid bilayer. Upon translocon binding, transmembrane spans interact with a lateral gate, which regulates access to membrane phospholipids, and a lumenal gate, which controls the translocation of soluble domains. We analyzed the in vivo kinetics of integration of model membrane proteins in Saccharomyces cerevisiae using ubiquitin translocation assay reporters. Our findings indicate that the conformational changes in the translocon that permit opening of the lumenal and lateral channel gates occur less rapidly than elongation of the nascent polypeptide. Transmembrane spans and lumenal domains are therefore exposed to the cytosol during integration of a polytopic membrane protein, which may pose a challenge to the fidelity of membrane protein integration.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605-2324, USA
| | | |
Collapse
|
44
|
Junne T, Schwede T, Goder V, Spiess M. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol Biol Cell 2006; 17:4063-8. [PMID: 16822836 PMCID: PMC1556385 DOI: 10.1091/mbc.e06-03-0200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Sec61/SecY translocon mediates translocation of proteins across the membrane and integration of membrane proteins into the lipid bilayer. The structure of the translocon revealed a plug domain blocking the pore on the lumenal side. It was proposed to be important for gating the protein conducting channel and for maintaining the permeability barrier in its unoccupied state. Here, we analyzed in yeast the effect of introducing destabilizing point mutations in the plug domain or of its partial or complete deletion. Unexpectedly, even when the entire plug domain was deleted, cells were viable without growth phenotype. They showed an effect on signal sequence orientation of diagnostic signal-anchor proteins, a minor defect in cotranslational and a significant deficiency in posttranslational translocation. Steady-state levels of the mutant protein were reduced, and when coexpressed with wild-type Sec61p, the mutant lacking the plug competed poorly for complex partners. The results suggest that the plug is unlikely to be important for sealing the translocation pore in yeast but that it plays a role in stabilizing Sec61p during translocon formation.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Veit Goder
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
45
|
Varga R, Avenarius MR, Kelley PM, Keats BJ, Berlin CI, Hood LJ, Morlet TG, Brashears SM, Starr A, Cohn ES, Smith RJH, Kimberling WJ. OTOF mutations revealed by genetic analysis of hearing loss families including a potential temperature sensitive auditory neuropathy allele. J Med Genet 2006; 43:576-81. [PMID: 16371502 PMCID: PMC2593030 DOI: 10.1136/jmg.2005.038612] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/21/2005] [Accepted: 12/07/2005] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The majority of hearing loss in children can be accounted for by genetic causes. Non-syndromic hearing loss accounts for 80% of genetic hearing loss in children, with mutations in DFNB1/GJB2 being by far the most common cause. Among the second tier genetic causes of hearing loss in children are mutations in the DFNB9/OTOF gene. METHODS In total, 65 recessive non-syndromic hearing loss families were screened by genotyping for association with the DFNB9/OTOF gene. Families with genotypes consistent with linkage or uninformative for linkage to this gene region were further screened for mutations in the 48 known coding exons of otoferlin. RESULTS Eight OTOF pathological variants were discovered in six families. Of these, Q829X was found in two families. We also noted 23 other coding variant, believed to have no pathology. A previously published missense allele I515T was found in the heterozygous state in an individual who was observed to be temperature sensitive for the auditory neuropathy phenotype. CONCLUSIONS Mutations in OTOF cause both profound hearing loss and a type of hearing loss where otoacoustic emissions are spared called auditory neuropathy.
Collapse
Affiliation(s)
- R Varga
- Center for Hereditary Communication Disorders, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mitra K, Frank J. A model for co-translational translocation: ribosome-regulated nascent polypeptide translocation at the protein-conducting channel. FEBS Lett 2006; 580:3353-60. [PMID: 16714018 DOI: 10.1016/j.febslet.2006.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/04/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
The protein-conducting channel (PCC) must allow both the translocation of soluble polypeptide regions across, and the lateral partitioning of hydrophobic transmembrane helices (TMHs) into, the membrane. We have analyzed existing structures of ribosomes and ribosome-PCC complexes and observe conformational changes suggesting that the ribosome may sense and orient the nascent polypeptide and also facilitate conformational changes in the PCC, subsequently directing the nascent polypeptide into the appropriate PCC-mediated translocation mode. The PCC is predicted to be able to accommodate one central, consolidated channel or two segregated pores with different lipid accessibilities, which may enable the lipid-mediated partitioning of a TMH from one pore, while the other, aqueous, pore allows translocation of a hydrophilic polypeptide segment. Our hypothesis suggests a plausible mechanism for the transitioning of the PCC between different configurations.
Collapse
Affiliation(s)
- Kakoli Mitra
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | |
Collapse
|
47
|
Abstract
The conserved protein-conducting channel, referred to as the Sec61 channel in eukaryotes or the SecY channel in eubacteria and archaea, translocates proteins across cellular membranes and integrates proteins containing hydrophobic transmembrane segments into lipid bilayers. Structural studies illustrate how the protein-conducting channel accomplishes these tasks. Three different mechanisms, each requiring a different set of channel binding partners, are employed to move polypeptide substrates: The ribosome feeds the polypeptide chain directly into the channel, a ratcheting mechanism is used by the eukaryotic endoplasmic reticulum chaperone BiP, and a pushing mechanism is utilized by the bacterial ATPase SecA. We review these translocation mechanisms, relating biochemical and genetic observations to the structures of the protein-conducting channel and its binding partners.
Collapse
Affiliation(s)
- Andrew R Osborne
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
48
|
Hombría JCG, Brown S, Häder S, Zeidler MP. Characterisation of Upd2, a Drosophila JAK/STAT pathway ligand. Dev Biol 2005; 288:420-33. [PMID: 16277982 DOI: 10.1016/j.ydbio.2005.09.040] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/26/2005] [Accepted: 09/29/2005] [Indexed: 11/24/2022]
Abstract
The characterisation of ligands that activate the JAK/STAT pathway has the potential to throw light onto a comparatively poorly understood aspect of this important signal transduction cascade. Here, we describe our analysis of the only invertebrate JAK/STAT pathway ligands identified to date, the Drosophila unpaired-like family. We show that upd2 is expressed in a pattern essentially identical to that of upd and demonstrate that the proteins encoded by this region activate JAK/STAT pathway signalling. Mutational analysis demonstrates a mutual semi-redundancy that can be visualised in multiple tissues known to require JAK/STAT signalling. In order to better characterise the in vivo function of these ligands, we developed a reporter based on a natural JAK/STAT pathway responsive enhancer and show that ectopic upd2 expression can effectively activate the JAK/STAT pathway. While both Upd and Upd2 are secreted JAK/STAT pathway agonists, tissue culture assays show that the signal-sequences of Upd and Upd2 confer distinct properties, with Upd associated primarily with the extracellular matrix and Upd2 secreted into the media. The differing biophysical characteristics identified for Upd-like molecules have implications for their function in vivo and adds another aspect to our understanding of cytokine signalling in Drosophila.
Collapse
Affiliation(s)
- James Castelli-Gair Hombría
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide, Carretera de Utrera, Km 1, 41013 Seville, Spain.
| | | | | | | |
Collapse
|
49
|
Hernandez R, Ferreira D, Sinodis C, Litton K, Brown DT. Single amino acid insertions at the junction of the sindbis virus E2 transmembrane domain and endodomain disrupt virus envelopment and alter infectivity. J Virol 2005; 79:7682-97. [PMID: 15919921 PMCID: PMC1143637 DOI: 10.1128/jvi.79.12.7682-7697.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The final steps in the envelopment of Sindbis virus involve specific interactions of the E2 endodomain with the virus nucleocapsid. Deleting E2 K at position 391 (E2 DeltaK391) resulted in the disruption of virus assembly in mammalian cells but not insect cells (host range mutant). This suggested unique interactions of the E2 DeltaK391 endodomain with the different biochemical environments of the mammalian and insect cell lipid bilayers. To further investigate the role of the amino acid residues located at or around position E2 391 and constraints on the length of the endodomain on virus assembly, amino acid insertions/substitutions at the transmembrane/endodomain junction were constructed. An additional K was inserted at amino acid position 392 (KK391/392), a K-->F substitution at position 391 was constructed (F391), and an additional F was inserted at 392 (FF391/392). These changes should lengthen the endodomain in the KK391/392 insertion mutant or shorten the endodomain in the FF391/392 mutant. The mutant FF391/392 grown in BHK cells formed virus particles containing extruded material not found on wild-type virus. This characteristic was not seen in FF391/392 virus grown in insect cells. The mutant KK391/392 grown in BHK cells was defective in the final membrane fission reaction, producing multicored or conjoined virus particles. The production of these aberrant particles was ameliorated when the KK391/392 mutant was grown in insect cells. These data indicate that there is a critical minimal spanning distance from the E2 membrane proximal amino acid at position 391 and the conserved E2 Y400 residue. The observed phenotypes of these mutants also invoke an important role of the specific host membrane lipid composition on virus architecture and infectivity.
Collapse
Affiliation(s)
- Raquel Hernandez
- Department of Molecular and Structural Biochemistry, Campus Box 7622, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | | | |
Collapse
|
50
|
Dawe S, Corcoran JA, Clancy EK, Salsman J, Duncan R. Unusual topological arrangement of structural motifs in the baboon reovirus fusion-associated small transmembrane protein. J Virol 2005; 79:6216-26. [PMID: 15858006 PMCID: PMC1091723 DOI: 10.1128/jvi.79.10.6216-6226.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Select members of the Reoviridae are the only nonenveloped viruses known to induce syncytium formation. The fusogenic orthoreoviruses accomplish cell-cell fusion through a distinct class of membrane fusion-inducing proteins referred to as the fusion-associated small transmembrane (FAST) proteins. The p15 membrane fusion protein of baboon reovirus is unique among the FAST proteins in that it contains two hydrophobic regions (H1 and H2) recognized as potential transmembrane (TM) domains, suggesting a polytopic topology. However, detailed topological analysis of p15 indicated only the H1 domain is membrane spanning. In the absence of an N-terminal signal peptide, the H1 TM domain serves as a reverse signal-anchor to direct p15 membrane insertion and a bitopic N(exoplasmic)/C(cytoplasmic) topology. This topology results in the translocation of the smallest ectodomain ( approximately 20 residues) of any known viral fusion protein, with the majority of p15 positioned on the cytosolic side of the membrane. Mutagenic analysis indicated the unusual presence of an N-terminal myristic acid on the small p15 ectodomain is essential to the fusion process. Furthermore, the only other hydrophobic region (H2) present in p15, aside from the TM domain, is located within the endodomain. Consequently, the p15 ectodomain is devoid of a fusion peptide motif, a hallmark feature of membrane fusion proteins. The exceedingly small, myristoylated ectodomain and the unusual topological distribution of structural motifs in this nonenveloped virus membrane fusion protein necessitate alternate models of protein-mediated membrane fusion.
Collapse
Affiliation(s)
- Sandra Dawe
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | |
Collapse
|