1
|
Lum MR, Patel SH, Graham HK, Zhao M, Yi Y, Li L, Yao M, La Torre A, Santina LD, Han Y, Hu Y, Welsbie DS, Duan X. Afadin Sorts Different Retinal Neuron Types into Accurate Cellular Layers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630272. [PMID: 39763956 PMCID: PMC11703203 DOI: 10.1101/2024.12.24.630272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin1-4, a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin. We introduced the conditional Afadin mutant5 to an embryonic retinal Cre, Six3-Cre6-8. We reported that the mutants lead to the scrambled retinal neuron distribution, including Bipolar Cells (BCs), Amacrine Cells (ACs), and retinal ganglion cells (RGCs), across three cellular layers of the retina. This scrambled pattern was first reported here at neuron-type resolution. Importantly, the mutants do not display deficits for BCs, ACs, or RGCs in terms of neural fate specifications or survival. Additionally, the displayed RGC types still maintain synaptic partners with putative AC types, indicating that other molecular determinants instruct synaptic choices independent of Afadin. Lastly, there is a significant decline in visual function and mis-targeting of RGC axons to incorrect zones of the superior colliculus, one of the major retinorecipient areas. Collectively, our study uncovers a unique cellular role of Afadin in sorting retinal neuron types into proper cellular layers as the structural basis for orderly visual processing.
Collapse
Affiliation(s)
- Matthew R. Lum
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sachin H. Patel
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hannah K. Graham
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mengya Zhao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yujuan Yi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Melissa Yao
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | | | - Ying Han
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Derek S. Welsbie
- Viterbi Family Department of Ophthalmology, University of California San Diego, San Diego, CA 92037, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
2
|
Qi S, Sun C, Wang J, Wo L, Li Y, Wang C, Zhang Y, Bian H, Guo Y, Gao M, Wang M, Tang Y, Zhu Y, Xue F, Pang Q, Jiang Z, Yin X. Identification of NECTIN1 as a novel restriction factor for flavivirus infection. mBio 2024; 15:e0270824. [PMID: 39570015 PMCID: PMC11633101 DOI: 10.1128/mbio.02708-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Nectin cell adhesion molecule 1 (NECTIN1) is a cell adhesion molecule that belongs to the immunoglobulin superfamily. It has been considered the most ubiquitous receptor for herpesviruses. However, in the context of flavivirus infection, its role was previously unknown. In this study, we described an arrayed siRNA screen mainly targeting Ig-like proteins that showed NECTIN1-restricted bovine viral diarrhea virus (BVDV) infection. We demonstrated that the depletion of NECTIN1 could significantly enhance the infection of both biotypes and multiple genotypes of BVDV, including BVDV-1a, -1b, -1c, -1p, -1m, -1v, and -2a. Notably, the IgV of NECTIN1 has emerged as the key domain restricting BVDV infection. Moreover, NECTIN1 inhibited BVDV attachment without exerting a significant influence on BVDV translation or transcription. Furthermore, we demonstrated that both NECTIN1 and CD46 could bind to BVDV E2, while the binding affinity of NECTIN1 for BVDV E2 was greater than that for CD46. We further identified that the BVDV E2 domain DD was a key domain of BVDV interacting with NECTIN1. In addition, we showed that NECTIN1 inhibited infections by classical swine fever virus (CSFV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), which belong to the Flaviviridae family, but had limited effects on bluetongue virus (BTV), vesicular stomatitis virus (VSV), Akabane virus (AKAV), and Sindbis virus (SINV). Overall, our study has important implications for understanding the entry of BVDV and revealed a novel role for NECTIN1 as a restriction factor that inhibits flavivirus infection. IMPORTANCE NECTIN1, also known as CD111 or PVRL1, has been recognized as the primary receptor for several alpha herpesviruses, including herpes simplex virus (HSV), pseudorabies virus (PRV), and bovine herpesvirus 1 (BHV-1). However, our study revealed a novel role for NECTIN1 in the virus life cycle by influencing BVDV infection. Contrary to its role as a receptor for alpha herpesviruses, NECTIN1 acts as a restriction factor for BVDV by inhibiting viral attachment via competition with CD46 for binding to the domain DD of BVDV E2. We further revealed that the replication of members of the Flaviviridae family was inhibited by NECTIN1, while the replication of other RNA viruses did not significantly differ. Our results demonstrate that NECTIN1 is a novel factor restricting Flaviviridae family virus replication and highlight the complexity of virus-host interactions and the multifaceted nature of host factors involved in viral infection.
Collapse
Affiliation(s)
- Shuhui Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Molecular Biology, Teaching and Research Center, University of Liège, Gembloux, Belgium
| | - Lijing Wo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaonan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ying Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haiqiao Bian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongqi Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Menghang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yandong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fei Xue
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Quanhai Pang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhigang Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Mangeol P, Massey-Harroche D, Sebbagh M, Richard F, Lenne PF, Le Bivic A. [Zonula adherens matura: A new intestinal cell junction]. Med Sci (Paris) 2024; 40:985-988. [PMID: 39705574 DOI: 10.1051/medsci/2024170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Affiliation(s)
- Pierre Mangeol
- Aix Marseille Université, CNRS, Institut de biologie du développement de Marseille, UMR7288, Marseille, France
| | - Dominique Massey-Harroche
- Aix Marseille Université, CNRS, Institut de biologie du développement de Marseille, UMR7288, Marseille, France
| | - Michael Sebbagh
- Aix Marseille Université, Inserm, Dynamique et nano-environnement des membranes biologiques, (DyNaMo), Centre Turing des systèmes vivants, Marseille, France
| | - Fabrice Richard
- Aix Marseille Université, CNRS, Institut de biologie du développement de Marseille, UMR7288, Marseille, France
| | - Pierre-François Lenne
- Aix Marseille Université, CNRS, Institut de biologie du développement de Marseille, UMR7288, Centre Turing des systèmes vivants, Marseille, France
| | - André Le Bivic
- Aix Marseille Université, CNRS, Institut de biologie du développement de Marseille, UMR7288, Marseille, France
| |
Collapse
|
4
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2024; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Choi W, Goldfarb D, Yan F, Major MB, Fanning AS, Peifer M. Proximity proteomics provides a new resource for exploring the function of Afadin and the complexity of cell-cell adherens junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622507. [PMID: 39574742 PMCID: PMC11581034 DOI: 10.1101/2024.11.07.622507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full network of proteins in this network remains a key objective in our field. Proximity proteomics provides a means to define these networks. Mammalian Afadin and its Drosophila homolog Canoe are key parts of this protein network, facilitating diverse cell shape changes during gastrulation and other events of embryonic morphogenesis. Here we report results of several proximity proteomics screens, defining proteins in the neighborhood of both the N- and C-termini of mammalian Afadin in the premier epithelial model, MDCK cells. We compare our results with previous screens done in other cell types, and with proximity proteomics efforts with other junctional proteins. These reveal the value of multiple screens in defining the full network of neighbors and offer interesting insights into the overlap in protein composition between different epithelial cell junctions. Summary Statement Afadin BioID reveals new adherens junction proteins.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Alan S. Fanning
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
6
|
Offenhäuser C, Dave KA, Beckett KJ, Smith FM, Jayakody BA, Cooper LT, Agyei-Yeboah H, McCarron JK, Li Y, Bastick K, Al-Ejeh F, Cullen JK, Coulthard MG, Gorman JJ, Boyd AW, Day BW. EphA2 regulates vascular permeability and prostate cancer metastasis via modulation of cell junction protein phosphorylation. Oncogene 2024:10.1038/s41388-024-03206-x. [PMID: 39511410 DOI: 10.1038/s41388-024-03206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Prostate cancer morbidity and mortality demonstrate a need for more effective targeted therapies. One potential target is EphA2, although paradoxically, pro- and anti-oncogenic effects have been shown to be mediated by EphA2. We demonstrate that unique activating and blocking EphA2-targeting monoclonal antibodies display opposing tumor-suppressive and oncogenic properties in vivo. To further explore this complexity, we performed detailed phosphoproteomic analysis following ligand-induced EphA2 activation. Our analysis identified altered phosphorylation of 73 downstream proteins related to the PI3K/AKT/mTOR and ERK/MAPK pathways, with the majority implicated in cell junction and cytoskeletal organization, cell motility, and tumor metastasis. We demonstrate that the adapter protein SHB is an essential component in mediating the inhibition of the ERK/MAPK pathway in response to EphA2 receptor activation. Furthermore, we identify the adherence junction protein afadin as an EphA2-regulated phosphoprotein which is involved in prostate cancer migration and invasion.
Collapse
Affiliation(s)
- Carolin Offenhäuser
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Keyur A Dave
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Kirrilee J Beckett
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Fiona M Smith
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Buddhika A Jayakody
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Leanne T Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Helen Agyei-Yeboah
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jennifer K McCarron
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Yuchen Li
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kate Bastick
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fares Al-Ejeh
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jason K Cullen
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark G Coulthard
- Mayne Academy of Paediatrics, Faculty of Medicine, The University of Queensland, Queensland Children's Hospital, Brisbane, QLD, 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, 4101, Australia
| | - Jeffrey J Gorman
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Andrew W Boyd
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bryan W Day
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- School of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
7
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Gong R, Reynolds MJ, Sun X, Alushin GM. Afadin mediates cadherin-catenin complex clustering on F-actin linked to cooperative binding and filament curvature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617332. [PMID: 39415991 PMCID: PMC11482809 DOI: 10.1101/2024.10.08.617332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The E-cadherin-β-catenin-αE-catenin (cadherin-catenin) complex couples the cytoskeletons of neighboring cells at adherens junctions (AJs) to mediate force transmission across epithelia. Mechanical force and auxiliary binding partners converge to stabilize the cadherin-catenin complex's inherently weak binding to actin filaments (F-actin) through unclear mechanisms. Here we show that afadin's coiled-coil (CC) domain and vinculin synergistically enhance the cadherin-catenin complex's F-actin engagement. The cryo-EM structure of an E-cadherin-β-catenin-αE-catenin-vinculin-afadin-CC supra-complex bound to F-actin reveals that afadin-CC bridges adjacent αE-catenin actin-binding domains along the filament, stabilizing flexible αE-catenin segments implicated in mechanical regulation. These cooperative binding contacts promote the formation of supra-complex clusters along F-actin. Additionally, cryo-EM variability analysis links supra-complex binding along individual F-actin strands to nanoscale filament curvature, a deformation mode associated with cytoskeletal forces. Collectively, this work elucidates a mechanistic framework by which vinculin and afadin tune cadherin-catenin complex-cytoskeleton coupling to support AJ function across varying mechanical regimes.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Murakami K, Ganguly S. The Nectin family ligands, PVRL2 and PVR, in cancer immunology and immunotherapy. Front Immunol 2024; 15:1441730. [PMID: 39156900 PMCID: PMC11327090 DOI: 10.3389/fimmu.2024.1441730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
In recent years, immunotherapy has emerged as a crucial component of cancer treatment. However, its efficacy remains limited across various cancer types, highlighting unmet needs. Poliovirus receptor-related 2 (PVRL2) and Poliovirus receptor (PVR) are members of the Nectin and Nectin-like Molecules family, known for their role as cell-cell adhesion molecules. With the development of immunotherapy, their involvement in tumor immune mechanisms as immune checkpoint factors has garnered significant attention. PVRL2 and PVR are predominantly expressed on tumor cells and antigen-presenting cells, binding to PVRIG and TIGIT, respectively, which are primarily found on T and NK cells, thereby suppressing antitumor immunity. Notably, gynecological cancers such as ovarian and endometrial cancers exhibit high expression levels of PVRL2 and PVR, with similar trends observed in various other solid and hematologic tumors. Targeting these immune checkpoint pathways offers a promising therapeutic avenue, potentially in combination with existing treatments. However, the immunomodulatory mechanism involving these bindings, known as the DNAM-1 axis, is complex, underscoring the importance of understanding it for developing novel therapies. This article comprehensively reviews the immunomodulatory mechanisms centered on PVRL2 and PVR, elucidating their implications for various cancer types.
Collapse
Affiliation(s)
| | - Sudipto Ganguly
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Hall AE, Klompstra D, Nance J. C. elegans Afadin is required for epidermal morphogenesis and functionally interfaces with the cadherin-catenin complex and RhoGAP PAC-1/ARHGAP21. Dev Biol 2024; 511:12-25. [PMID: 38556137 PMCID: PMC11088504 DOI: 10.1016/j.ydbio.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
During epithelial morphogenesis, the apical junctions connecting cells must remodel as cells change shape and make new connections with their neighbors. In the C. elegans embryo, new apical junctions form when epidermal cells migrate and seal with one another to encase the embryo in skin ('ventral enclosure'), and junctions remodel when epidermal cells change shape to squeeze the embryo into a worm shape ('elongation'). The junctional cadherin-catenin complex (CCC), which links epithelial cells to each other and to cortical actomyosin, is essential for C. elegans epidermal morphogenesis. RNAi genetic enhancement screens have identified several genes encoding proteins that interact with the CCC to promote epidermal morphogenesis, including the scaffolding protein Afadin (AFD-1), whose depletion alone results in only minor morphogenesis defects. Here, by creating a null mutation in afd-1, we show that afd-1 provides a significant contribution to ventral enclosure and elongation on its own. Unexpectedly, we find that afd-1 mutant phenotypes are strongly modified by diet, revealing a previously unappreciated parental nutritional input to morphogenesis. We identify functional interactions between AFD-1 and the CCC by demonstrating that E-cadherin is required for the polarized distribution of AFD-1 to cell contact sites in early embryos. Finally, we show that afd-1 promotes the enrichment of polarity regulator, and CCC-interacting protein, PAC-1/ARHGAP21 to cell contact sites, and we identify genetic interactions suggesting that afd-1 and pac-1 regulate epidermal morphogenesis at least in part through parallel mechanisms. Our findings reveal that C. elegans AFD-1 makes a significant contribution to epidermal morphogenesis and functionally interfaces with core and associated CCC proteins.
Collapse
Affiliation(s)
- Allison E Hall
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA; Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, 10016, USA; Regis University, Biology Department, Denver, CO, 80221, USA.
| | - Diana Klompstra
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA; Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, 10016, USA
| | - Jeremy Nance
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA; Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY, 10016, USA; University of Wisconsin - Madison, Department of Cell and Regenerative Biology and Center for Quantitative Cell Imaging, Madison, WI, 53706, USA.
| |
Collapse
|
11
|
Dai R, Xia B, Wang M, Huang M, Chen L, Huang Y, Chen T. Japanese medaka (Oryzias latipes) Nectin4 plays an important role against red spotted grouper nervous necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109650. [PMID: 38788912 DOI: 10.1016/j.fsi.2024.109650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Nectins are adhesion molecules that play a crucial role in the organization of epithelial and endothelial junctions and function as receptors for the entry of herpes simplex virus. However, the role of Nectin4 remains poorly understood in fish. In this study, nectin4 gene was cloned from medaka (OlNectin4). OlNectin4 was located on chromosome 18 and contained 11 exons, with a total genome length of 25754 bp, coding sequences of 1689 bp, coding 562 amino acids and a molecular weight of 65.5 kDa. OlNectin4 contained four regions, including an Immunoglobulin region, an Immunoglobulin C-2 Type region, a Transmembrane region and a Coiled coil region. OlNectin4 shared 47.18 % and 25.00 % identity to Paralichthys olivaceus and Mus musculus, respectively. In adult medaka, the transcript of nectin4 was predominantly detected in gill. During red spotted grouper nervous necrosis virus (RGNNV) infection, overexpression of OlNectin4 in GE cells significantly increased viral gene transcriptions. Meanwhile, Two mutants named OlNectin4△4 (+4 bp) and OlNectin4△7 (-7 bp) medaka were established using CRISPR-Cas9 system. Nectin4-KO medaka had higher mortality than WT after infected with RGNNV. Moreover, the expression of RGNNV RNA2 gene in different tissues of the Nectin4-KO were higher than WT medaka after challenged with RGNNV. The brain and eye of Nectin4-KO medaka which RGNNV mainly enriched, exhibited significantly higher expression of interferon signaling genes than in WT. Taken together, the OlNectin4 plays a complex role against RGNNV infection by inducing interferon responses for viral clearance.
Collapse
Affiliation(s)
- Ronggui Dai
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Bilin Xia
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyang Wang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Mingxi Huang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Lei Chen
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yan Huang
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Tiansheng Chen
- State Key Laboratory of Mariculture Breeding, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
12
|
Thomas D, Recabal-Beyer A, Senecal JMM, Serletis D, Lynn BD, Jackson MF, Nagy JI. Association of connexin36 with adherens junctions at mixed synapses and distinguishing electrophysiological features of those at mossy fiber terminals in rat ventral hippocampus. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:28-54. [PMID: 39021415 PMCID: PMC11249852 DOI: 10.62347/rtmh4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Granule cells in the hippocampus project axons to hippocampal CA3 pyramidal cells where they form large mossy fiber terminals. We have reported that these terminals contain the gap junction protein connexin36 (Cx36) specifically in the stratum lucidum of rat ventral hippocampus, thus creating morphologically mixed synapses that have the potential for dual chemical/electrical transmission. METHODOLOGY Here, we used various approaches to characterize molecular and electrophysiological relationships between the Cx36-containing gap junctions at mossy fiber terminals and their postsynaptic elements and to examine molecular relationships at mixed synapses in the brainstem. RESULTS In rat and human ventral hippocampus, many of these terminals, identified by their selective expression of vesicular zinc transporter-3 (ZnT3), displayed multiple, immunofluorescent Cx36-puncta representing gap junctions, which were absent at mossy fiber terminals in the dorsal hippocampus. In rat, these were found in close proximity to the protein constituents of adherens junctions (i.e., N-cadherin and nectin-1) that are structural hallmarks of mossy fiber terminals, linking these terminals to the dendritic shafts of CA3 pyramidal cells, thus indicating the loci of gap junctions at these contacts. Cx36-puncta were also associated with adherens junctions at mixed synapses in the brainstem, supporting emerging views of the structural organization of the adherens junction-neuronal gap junction complex. Electrophysiologically induced long-term potentiation (LTP) of field responses evoked by mossy fiber stimulation was greater in the ventral than dorsal hippocampus. CONCLUSIONS The electrical component of transmission at mossy fiber terminals may contribute to enhanced LTP responses in the ventral hippocampus.
Collapse
Affiliation(s)
- Deepthi Thomas
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Antonia Recabal-Beyer
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónVíctor Lamas 1290, Casilla 160, Concepción, Chile
| | - Joanne MM Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Demitre Serletis
- Epilepsy Center, Neurological Institute, Cleveland ClinicCleveland, Ohio, USA
| | - Bruce D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Science CentreWinnipeg, Manitoba, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Camp D, Venkatesh B, Solianova V, Varela L, Goult BT, Tanentzapf G. The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion. PLoS Genet 2024; 20:e1011224. [PMID: 38662776 PMCID: PMC11075885 DOI: 10.1371/journal.pgen.1011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/07/2024] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorena Varela
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Awotoye W, Mossey PA, Hetmanski JB, Gowans LJ, Eshete MA, Adeyemo WL, Alade A, Zeng E, Adamson O, James O, Fashina A, Ogunlewe MO, Naicker T, Adeleke C, Busch T, Li M, Petrin A, Oladayo A, Kayali S, Olotu J, Sule V, Hassan M, Pape J, Aladenika ET, Donkor P, Arthur FK, Obiri-Yeboah S, Sabbah DK, Agbenorku P, Ray D, Plange-Rhule G, Oti AA, Albokhari D, Sobreira N, Dunnwald M, Beaty TH, Taub M, Marazita ML, Adeyemo AA, Murray JC, Butali A. Damaging Mutations in AFDN Contribute to Risk of Nonsyndromic Cleft Lip With or Without Cleft Palate. Cleft Palate Craniofac J 2024; 61:697-705. [PMID: 36384317 PMCID: PMC10185709 DOI: 10.1177/10556656221135926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel or rare damaging mutations have been implicated in the developmental pathogenesis of nonsyndromic cleft lip with or without cleft palate (nsCL ± P). Thus, we investigated the human genome for high-impact mutations that could explain the risk of nsCL ± P in our cohorts. We conducted next-generation sequencing (NGS) analysis of 130 nsCL ± P case-parent African trios to identify pathogenic variants that contribute to the risk of clefting. We replicated this analysis using whole-exome sequence data from a Brazilian nsCL ± P cohort. Computational analyses were then used to predict the mechanism by which these variants could result in increased risks for nsCL ± P. We discovered damaging mutations within the AFDN gene, a cell adhesion molecule (CAMs) that was previously shown to contribute to cleft palate in mice. These mutations include p.Met1164Ile, p.Thr453Asn, p.Pro1638Ala, p.Arg669Gln, p.Ala1717Val, and p.Arg1596His. We also discovered a novel splicing p.Leu1588Leu mutation in this protein. Computational analysis suggests that these amino acid changes affect the interactions with other cleft-associated genes including nectins (PVRL1, PVRL2, PVRL3, and PVRL4) CDH1, CTNNA1, and CTNND1. This is the first report on the contribution of AFDN to the risk for nsCL ± P in humans. AFDN encodes AFADIN, an important CAM that forms calcium-independent complexes with nectins 1 and 4 (encoded by the genes PVRL1 and PVRL4). This discovery shows the power of NGS analysis of multiethnic cleft samples in combination with a computational approach in the understanding of the pathogenesis of nsCL ± P.
Collapse
Affiliation(s)
- Waheed Awotoye
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Peter A. Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - Jacqueline B. Hetmanski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lord J.J Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mekonen A. Eshete
- Addis Ababa University, School Medicine, Surgical Department, Addis Ababa, Ethiopia
| | - Wasiu L. Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos Nigeria
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olawale Adamson
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos Nigeria
| | - Olutayo James
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos Nigeria
| | - Azeez Fashina
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos Nigeria
| | - Modupe O Ogunlewe
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos Nigeria
| | - Thirona Naicker
- Department of Pediatrics, University of KwaZulu-Natal, South Africa
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Aline Petrin
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
| | - Abimbola Oladayo
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Sami Kayali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Joy Olotu
- Department of Anatomy, University of Port Harcourt
| | - Veronica Sule
- Department of Operative Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Mohaned Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - John Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Emmanuel T. Aladenika
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Peter Donkor
- Department of Surgery, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K.N. Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Solomon Obiri-Yeboah
- Department of Maxillofacial Sciences, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel K. Sabbah
- Department of Child Oral Health and Orthodontics, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pius Agbenorku
- Department of Surgery, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Debashree Ray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gyikua Plange-Rhule
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Acheampong Oti
- Department of Maxillofacial Sciences, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniah Albokhari
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University
| | | | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Margaret Taub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Azeez Butali
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Jensen CC, Peifer M. Too old for hide-and-seek; cell maturation reveals hidden apical junctional organization. Proc Natl Acad Sci U S A 2024; 121:e2401735121. [PMID: 38466856 PMCID: PMC10962932 DOI: 10.1073/pnas.2401735121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Affiliation(s)
- Corbin C. Jensen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
16
|
McParland ED, Butcher TA, Gurley NJ, Johnson RI, Slep KC, Peifer M. The Dilute domain in Canoe is not essential for linking cell junctions to the cytoskeleton but supports morphogenesis robustness. J Cell Sci 2024; 137:jcs261734. [PMID: 38323935 PMCID: PMC11006394 DOI: 10.1242/jcs.261734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Robust linkage between adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The Drosophila multidomain protein Canoe and its mammalian homolog afadin are crucial for this, as in their absence many events of morphogenesis fail. To define the mechanism of action for Canoe, we are taking it apart. Canoe has five folded protein domains and a long intrinsically disordered region. The largest is the Dilute domain, which is shared by Canoe and myosin V. To define the roles of this domain in Canoe, we combined biochemical, genetic and cell biological assays. AlphaFold was used to predict its structure, providing similarities and contrasts with Myosin V. Biochemical data suggested one potential shared function - the ability to dimerize. We generated Canoe mutants with the Dilute domain deleted (CnoΔDIL). Surprisingly, they were viable and fertile. CnoΔDIL localized to adherens junctions and was enriched at junctions under tension. However, when its dose was reduced, CnoΔDIL did not provide fully wild-type function. Furthermore, canoeΔDIL mutants had defects in the orchestrated cell rearrangements of eye development. This reveals the robustness of junction-cytoskeletal connections during morphogenesis and highlights the power of natural selection to maintain protein structure.
Collapse
Affiliation(s)
- Emily D. McParland
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Ruth I. Johnson
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Mangeol P, Massey-Harroche D, Sebbagh M, Richard F, Le Bivic A, Lenne PF. The zonula adherens matura redefines the apical junction of intestinal epithelia. Proc Natl Acad Sci U S A 2024; 121:e2316722121. [PMID: 38377188 PMCID: PMC10907237 DOI: 10.1073/pnas.2316722121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Cell-cell apical junctions of epithelia consist of multiprotein complexes that organize as belts regulating cell-cell adhesion, permeability, and mechanical tension: the tight junction (zonula occludens), the zonula adherens (ZA), and the macula adherens. The prevailing dogma is that at the ZA, E-cadherin and catenins are lined with F-actin bundles that support and transmit mechanical tension between cells. Using super-resolution microscopy on human intestinal biopsies and Caco-2 cells, we show that two distinct multiprotein belts are basal of the tight junctions as the intestinal epithelia mature. The most apical is populated with nectins/afadin and lined with F-actin; the second is populated with E-cad/catenins. We name this dual-belt architecture the zonula adherens matura. We find that the apical contraction apparatus and the dual-belt organization rely on afadin expression. Our study provides a revised description of epithelial cell-cell junctions and identifies a module regulating the mechanics of epithelia.
Collapse
Affiliation(s)
- Pierre Mangeol
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Dominique Massey-Harroche
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Michael Sebbagh
- Aix Marseille Université, INSERM, Dynamics and Nanoenvironment of Biological Membrane, DyNaMo, Turing Center for Living Systems, Marseille 13009, France
| | - Fabrice Richard
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - André Le Bivic
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Pierre-François Lenne
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Turing Center for Living Systems, Marseille13009, France
| |
Collapse
|
18
|
Pinto-Dueñas DC, Hernández-Guzmán C, Marsch PM, Wadurkar AS, Martín-Tapia D, Alarcón L, Vázquez-Victorio G, Méndez-Méndez JV, Chanona-Pérez JJ, Nangia S, González-Mariscal L. The Role of ZO-2 in Modulating JAM-A and γ-Actin Junctional Recruitment, Apical Membrane and Tight Junction Tension, and Cell Response to Substrate Stiffness and Topography. Int J Mol Sci 2024; 25:2453. [PMID: 38473701 DOI: 10.3390/ijms25052453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography.
Collapse
Affiliation(s)
- Diana Cristina Pinto-Dueñas
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Christian Hernández-Guzmán
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Patrick Matthew Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Anand Sunil Wadurkar
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Genaro Vázquez-Victorio
- Physics Department, Science School, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | | | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| |
Collapse
|
19
|
Cebul ER, Marivin A, Wexler LR, Perrat PN, Bénard CY, Garcia-Marcos M, Heiman MG. SAX-7/L1CAM acts with the adherens junction proteins MAGI-1, HMR-1/Cadherin, and AFD-1/Afadin to promote glial-mediated dendrite extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575259. [PMID: 38260503 PMCID: PMC10802611 DOI: 10.1101/2024.01.11.575259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Adherens junctions (AJs) are a fundamental organizing structure for multicellular life. Although AJs are studied mainly in epithelia, their core function - stabilizing cell contacts by coupling adhesion molecules to the cytoskeleton - is important in diverse tissues. We find that two C. elegans sensory neurons, URX and BAG, require conserved AJ proteins for dendrite morphogenesis. We previously showed that URX and BAG dendrites attach to the embryonic nose via the adhesion molecule SAX-7/L1CAM, acting both in neurons and glia, and then extend by stretch during embryo elongation. Here, we find that a PDZ-binding motif (PB) in the SAX-7 cytoplasmic tail acts with other interaction motifs to promote dendrite extension. Using pull-down assays, we find that the SAX-7 PB binds the multi-PDZ scaffolding protein MAGI-1, which bridges it to the cadherin-catenin complex protein HMP-2/β-catenin. Using cell-specific rescue and depletion, we find that both MAGI-1 and HMR-1/Cadherin act in glia to non-autonomously promote dendrite extension. Double mutant analysis indicates that each protein can act independently of SAX-7, suggesting a multivalent adhesion complex. The SAX-7 PB motif also binds AFD-1/Afadin, loss of which further enhances sax-7 BAG dendrite defects. As MAGI-1, HMR-1, and AFD-1 are all found in epithelial AJs, we propose that an AJ-like complex in glia promotes dendrite extension.
Collapse
Affiliation(s)
- Elizabeth R. Cebul
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Present address: Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Arthur Marivin
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA, Boston University School of Medicine, Boston, MA 02118, USA
| | - Leland R. Wexler
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Paola N. Perrat
- Department of Biological Sciences, CERMO-FC Research Center, Universite du Québec à Montréal, Montreál, QC, Canada
| | - Claire Y. Bénard
- Department of Biological Sciences, CERMO-FC Research Center, Universite du Québec à Montréal, Montreál, QC, Canada
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| | - Maxwell G. Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
20
|
Wang H, Sun D, Chen J, Li H, Chen L. Nectin-4 has emerged as a compelling target for breast cancer. Eur J Pharmacol 2023; 960:176129. [PMID: 38059449 DOI: 10.1016/j.ejphar.2023.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The incidence of breast cancer in women has increased year by year, becoming one of the most common malignant tumors in females worldwide. Most patients can be treated with surgery and endocrine drugs, but there are still some patients who lack effective treatment, such as triple-negative breast cancer (TNBC). Nectin-4, a protein encoded by poliovirus receptor-associated protein 4, is a Ca2+-independent immunoglobulin-like protein. It is mainly involved in the adhesion between cells. In recent years, studies have found that Nectin-4 is overexpressed in breast cancer and several other malignancies. Otherwise, several monoclonal antibodies and inhibitors targeting Nectin-4 have shown prosperous outcomes, so Nectin-4 has great potential to be a therapeutic target for breast cancer. The present review systematically describes the significance of Nectin-4 in each aspect of breast cancer, as well as the molecular mechanisms of these aspects mediated by Nectin-4. We further highlight ongoing or proposed therapeutic strategies for breast cancer specific to Nectin-4.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
21
|
Mezher M, Dumbali S, Fenn I, Lamb C, Miller C, Sharmin S, Cabe JI, Bejar-Padilla V, Conway D, Maruthamuthu V. Vinculin is essential for sustaining normal levels of endogenous forces at cell-cell contacts. Biophys J 2023; 122:4518-4527. [PMID: 38350000 PMCID: PMC10719050 DOI: 10.1016/j.bpj.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 02/15/2024] Open
Abstract
Transmission of cell-generated (i.e., endogenous) tension at cell-cell contacts is crucial for tissue shape changes during morphogenesis and adult tissue repair in tissues such as epithelia. E-cadherin-based adhesions at cell-cell contacts are the primary means by which endogenous tension is transmitted between cells. The E-cadherin-β-catenin-α-catenin complex mechanically couples to the actin cytoskeleton (and thereby the cell's contractile machinery) both directly and indirectly. However, the key adhesion constituents required for substantial endogenous force transmission at these adhesions in cell-cell contacts are unclear. Due to the role of α-catenin as a mechanotransducer that recruits vinculin at cell-cell contacts, we expected α-catenin to be essential for sustaining normal levels of force transmission. Instead, using the traction force imbalance method to determine the inter-cellular force at a single cell-cell contact between cell pairs, we found that it is vinculin that is essential for sustaining normal levels of endogenous force transmission, with absence of vinculin decreasing the inter-cellular tension by over 50%. Our results constrain the potential mechanical pathways of force transmission at cell-cell contacts and suggest that vinculin can transmit forces at E-cadherin adhesions independent of α-catenin, possibly through β-catenin. Furthermore, we tested the ability of lateral cell-cell contacts to withstand external stretch and found that both vinculin and α-catenin are essential to maintain cell-cell contact stability under external forces.
Collapse
Affiliation(s)
- Mazen Mezher
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Sandeep Dumbali
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Ian Fenn
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Carter Lamb
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Conrad Miller
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Saika Sharmin
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Vidal Bejar-Padilla
- Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia.
| |
Collapse
|
22
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. E-cadherin adhesion dynamics as revealed by an accelerated force ramp are dependent upon the presence of α-catenin. Biochem Biophys Res Commun 2023; 682:308-315. [PMID: 37837751 PMCID: PMC10615569 DOI: 10.1016/j.bbrc.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA; Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
23
|
McParland ED, Amber Butcher T, Gurley NJ, Johnson RI, Slep KC, Peifer M. The Dilute domain of Canoe is not essential for Canoe's role in linking adherens junctions to the cytoskeleton but contributes to robustness of morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562854. [PMID: 37905001 PMCID: PMC10614895 DOI: 10.1101/2023.10.18.562854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Robust linkage between cell-cell adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The multidomain protein Drosophila Canoe and its mammalian homolog Afadin are critical for this linkage, and in their absence many events of morphogenesis fail. To define underlying mechanisms, we are taking Canoe apart, using Drosophila as our model. Canoe and Afadin share five folded protein domains, followed by a large intrinsically disordered region. The largest of these folded domains is the Dilute domain, which is found in Canoe/Afadin, their paralogs, and members of the MyosinV family. To define the roles of Canoe's Dilute domain we have combined biochemical, genetic and cell biological assays. Use of the AlphaFold tools revealed the predicted structure of the Canoe/Afadin Dilute domain, providing similarities and contrasts with that of MyosinV. Our biochemical data suggest one potential shared function: the ability to dimerize. We next generated Drosophila mutants with the Dilute domain cleanly deleted. Surprisingly, these mutants are viable and fertile, and CanoeΔDIL protein localizes to adherens junctions and is enriched at junctions under tension. However, when we reduce the dose of CanoeΔDIL protein in a sensitized assay, it becomes clear it does not provide full wildtype function. Further, canoeΔDIL mutants have defects in pupal eye development, another process that requires orchestrated cell rearrangements. Together, these data reveal the robustness in AJ-cytoskeletal connections during multiple embryonic and postembryonic events, and the power of natural selection to maintain protein structure even in robust systems.
Collapse
Affiliation(s)
- Emily D. McParland
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | | | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
24
|
Xinyu W, Qian W, Yanjun W, Jingwen K, Keying X, Jiazheng J, Haibing Z, Kai W, Xiao X, Lixing Z. Polarity protein AF6 functions as a modulator of necroptosis by regulating ubiquitination of RIPK1 in liver diseases. Cell Death Dis 2023; 14:673. [PMID: 37828052 PMCID: PMC10570300 DOI: 10.1038/s41419-023-06170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
AF6, a known polarity protein, contributes to the maintenance of homeostasis while ensuring tissue architecture, repair, and integrity. Mice that lack AF6 display embryonic lethality owing to cell-cell junction disruption. However, we show AF6 promotes necroptosis via regulating the ubiquitination of RIPK1 by directly interact with the intermediate domain of RIPK1, which was mediated by the deubiquitylase enzyme USP21. Consistently, while injection of mice with an adenovirus providing AF6 overexpression resulted in accelerated TNFα-induced necroptosis-mediated mortality in vivo, we observed that mice with hepatocyte-specific deletion of AF6 prevented hepatocytes from necroptosis and the subsequent inflammatory response in various liver diseases model, including non-alcoholic steatohepatitis (NASH) and the systemic inflammatory response syndrome (SIRS).Together, these data suggest that AF6 represents a novel regulator of RIPK1-RIPK3 dependent necroptotic pathway. Thus, the AF6-RIPK1-USP21 axis are potential therapeutic targets for treatment of various liver injuries and metabolic diseases.
Collapse
Affiliation(s)
- Wang Xinyu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen Qian
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wu Yanjun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kong Jingwen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Keying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Jiazheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhang Haibing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Wang Kai
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xu Xiao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Zhan Lixing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
25
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. α-Catenin Dependent E-cadherin Adhesion Dynamics as Revealed by an Accelerated Force Ramp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550975. [PMID: 37645773 PMCID: PMC10461907 DOI: 10.1101/2023.07.28.550975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
- Bioengineering, George Mason University, Fairfax, VA 22030
| | - Jolene I. Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
26
|
Gurley NJ, Szymanski RA, Dowen RH, Butcher TA, Ishiyama N, Peifer M. Exploring the evolution and function of Canoe's intrinsically disordered region in linking cell-cell junctions to the cytoskeleton during embryonic morphogenesis. PLoS One 2023; 18:e0289224. [PMID: 37535684 PMCID: PMC10399776 DOI: 10.1371/journal.pone.0289224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
One central question for cell and developmental biologists is defining how epithelial cells can change shape and move during embryonic development without tearing tissues apart. This requires robust yet dynamic connections of cells to one another, via the cell-cell adherens junction, and of junctions to the actin and myosin cytoskeleton, which generates force. The last decade revealed that these connections involve a multivalent network of proteins, rather than a simple linear pathway. We focus on Drosophila Canoe, homolog of mammalian Afadin, as a model for defining the underlying mechanisms. Canoe and Afadin are complex, multidomain proteins that share multiple domains with defined and undefined binding partners. Both also share a long carboxy-terminal intrinsically disordered region (IDR), whose function is less well defined. IDRs are found in many proteins assembled into large multiprotein complexes. We have combined bioinformatic analysis and the use of a series of canoe mutants with early stop codons to explore the evolution and function of the IDR. Our bioinformatic analysis reveals that the IDRs of Canoe and Afadin differ dramatically in sequence and sequence properties. When we looked over shorter evolutionary time scales, we identified multiple conserved motifs. Some of these are predicted by AlphaFold to be alpha-helical, and two correspond to known protein interaction sites for alpha-catenin and F-actin. We next identified the lesions in a series of eighteen canoe mutants, which have early stop codons across the entire protein coding sequence. Analysis of their phenotypes are consistent with the idea that the IDR, including the conserved motifs in the IDR, are critical for protein function. These data provide the foundation for further analysis of IDR function.
Collapse
Affiliation(s)
- Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Rachel A. Szymanski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert H. Dowen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Noboru Ishiyama
- Launchpad Therapeutics, Inc., Cambridge, MA, United States of America
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
27
|
Hall AE, Klompstra D, Nance J. C. elegans Afadin is required for epidermal morphogenesis and functionally interfaces with the cadherin-catenin complex and RhoGAP PAC-1/ARHGAP21. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551013. [PMID: 37546884 PMCID: PMC10402129 DOI: 10.1101/2023.07.28.551013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
During epithelial morphogenesis, the apical junctions connecting cells must remodel as cells change shape and make new connections with their neighbors. In the C. elegans embryo, new apical junctions form when epidermal cells migrate and seal with one another to encase the embryo in skin ('ventral enclosure'), and junctions remodel when epidermal cells change shape to squeeze the embryo into a worm shape ('elongation'). The junctional cadherin-catenin complex (CCC), which links epithelial cells to each other and to cortical actomyosin, is essential for C. elegans epidermal morphogenesis. RNAi genetic enhancement screens have identified several proteins that interact with the CCC to promote epidermal morphogenesis, including the scaffolding protein Afadin (AFD-1), whose depletion alone results in only minor morphogenesis defects. Here, by creating a null mutation in afd-1 , we show that afd-1 provides a significant contribution to ventral enclosure and elongation on its own. Unexpectedly, we find that afd-1 mutant phenotypes are strongly modified by diet, revealing a previously unappreciated maternal nutritional input to morphogenesis. We identify functional interactions between AFD-1 and the CCC by demonstrating that E-cadherin is required for the polarized distribution of AFD-1 to cell contact sites in early embryos. Finally, we show that afd-1 promotes the enrichment of polarity regulator and CCC-interacting protein PAC-1/ARHGAP21 to cell contact sites, and identify genetic interactions suggesting that afd-1 and pac-1 regulate epidermal morphogenesis at least in part through parallel mechanisms. Our findings reveal that C. elegans AFD-1 makes a significant contribution to epidermal morphogenesis and functionally interfaces with core and associated CCC proteins.
Collapse
|
28
|
Gurley NJ, Szymanski RA, Dowen RH, Butcher TA, Ishiyama N, Peifer M. Exploring the evolution and function of Canoe’s intrinsically disordered region in linking cell-cell junctions to the cytoskeleton during embryonic morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531372. [PMID: 36945496 PMCID: PMC10028902 DOI: 10.1101/2023.03.06.531372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
One central question for cell and developmental biologists is defining how epithelial cells can change shape and move during embryonic development without tearing tissues apart. This requires robust yet dynamic connections of cells to one another, via the cell-cell adherens junction, and of junctions to the actin and myosin cytoskeleton, which generates force. The last decade revealed that these connections involve a multivalent network of proteins, rather than a simple linear pathway. We focus on Drosophila Canoe, homolog of mammalian Afadin, as a model for defining the underlying mechanisms. Canoe and Afadin are complex, multidomain proteins that share multiple domains with defined and undefined binding partners. Both also share a long carboxy-terminal intrinsically disordered region (IDR), whose function is less well defined. IDRs are found in many proteins assembled into large multiprotein complexes. We have combined bioinformatic analysis and the use of a series of canoe mutants with early stop codons to explore the evolution and function of the IDR. Our bioinformatic analysis reveals that the IDRs of Canoe and Afadin differ dramatically in sequence and sequence properties. When we looked over shorter evolutionary time scales, we identified multiple conserved motifs. Some of these are predicted by AlphaFold to be alpha-helical, and two correspond to known protein interaction sites for alpha-catenin and F-actin. We next identified the lesions in a series of eighteen canoe mutants, which have early stop codons across the entire protein coding sequence. Analysis of their phenotypes are consistent with the idea that the IDR, including its C-terminal conserved motifs, are important for protein function. These data provide the foundation for further analysis of IDR function.
Collapse
Affiliation(s)
- Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Rachel A Szymanski
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Robert H Dowen
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noboru Ishiyama
- Launchpad Therapeutics, Inc., One Main Street, Cambridge MA 02142
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Maruo T, Mizutani K, Miyata M, Kuriu T, Sakakibara S, Takahashi H, Kida D, Maesaka K, Sugaya T, Sakane A, Sasaki T, Takai Y, Mandai K. s-Afadin binds to MAGUIN/Cnksr2 and regulates the localization of the AMPA receptor and glutamatergic synaptic response in hippocampal neurons. J Biol Chem 2023; 299:103040. [PMID: 36803960 PMCID: PMC10040811 DOI: 10.1016/j.jbc.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.
Collapse
Affiliation(s)
- Tomohiko Maruo
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshihiko Kuriu
- Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Hatena Takahashi
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Daichi Kida
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Kouki Maesaka
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Tsukiko Sugaya
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Kenji Mandai
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan; Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| |
Collapse
|
30
|
Listeria monocytogenes-How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens 2022; 11:pathogens11121491. [PMID: 36558825 PMCID: PMC9783847 DOI: 10.3390/pathogens11121491] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on various bacterial virulence factors, immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate through the blood and invade diverse host organs. In persons with impaired immunity, the elderly, and pregnant women, the pathogen can also cross the blood-brain and placental barriers, which results in the invasion of the central nervous system and fetus infection, respectively. The aim of this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus on their molecular and cellular aspects. We believe that all this information is crucial for a better understanding of the pathogenesis of L. monocytogenes infection.
Collapse
|
31
|
Kedashiro S, Kameyama T, Mizutani K, Takai Y. Stimulatory role of nectin-4 and p95-ErbB2 in multilayered T47D cell proliferation. Genes Cells 2022; 27:451-464. [PMID: 35430770 DOI: 10.1111/gtc.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
Multilayered proliferation in an adherent culture as well as proliferation in a suspension culture is a characteristic feature of cancer cells. We previously showed using T47D human mammary cancer cells that nectin-4, upregulated in many cancer cells, cis-interacts with ErbB2 and its trastuzumab-resistant splice variants, p95-ErbB2 and ErbB2ΔEx16, and enhances DNA synthesis mainly through the PI3K-AKT pathway in an adherent culture. We showed here that only the combination of nectin-4 and p95-ErbB2, but not that of nectin-4 and ErbB2 or that of nectin-4 and ErbB2ΔEx16, cooperatively enhanced multilayered T47D cell proliferation through the Hippo pathway-mediated SOX2 gene expression in an adherent culture. T47D cells expressed the components of the apical junctional complex (AJC) consisting of adherens junctions (AJs) and tight junctions and cell polarity molecules, but not the AJ component afadin. The AJC and apicobasal polarity were disorganized in T47D cells in a monolayer and T47D cells stably expressing both nectin-4 and p95-ErbB2 in multilayers. These results indicate that nectin-4 and p95-ErbB2 play a stimulatory role in multilayered proliferation in an adherent culture.
Collapse
Affiliation(s)
- Shin Kedashiro
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeshi Kameyama
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kiyohito Mizutani
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshimi Takai
- From the Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
32
|
Luo S, Su T, Zhou X, Hu WX, Hu J. Chromosome 1 instability in multiple myeloma: Aberrant gene expression, pathogenesis, and potential therapeutic target. FASEB J 2022; 36:e22341. [PMID: 35579877 DOI: 10.1096/fj.202200354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
Multiple myeloma (MM), the terminally differentiated B cells malignancy, is widely considered to be incurable since many patients have either developed drug resistance or experienced an eventual relapse. To develop precise and efficient therapeutic strategies, we must understand the pathogenesis of MM. Thus, unveiling the driver events of MM and its further clonal evolution will help us understand this complicated disease. Chromosome 1 instabilities are the most common genomic alterations that participate in MM pathogenesis, and these aberrations of chromosome 1 mainly include copy number variations and structural changes. The chromosome 1q gains/amplifications and 1p deletions are the most frequent structural changes of chromosomes in MM. In this review, we intend to focus on the genes that are affected by chromosome 1 instability: some tumor suppressors were lost or down regulated in 1p deletions, and others that contributed to tumorigenesis were upregulated in 1q gains/amplifications. We have summarized their biological function as well as their roles in the MM pathogenesis, hoping to uncover potential novel therapeutical targets and promote the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Saiqun Luo
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Tao Su
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Zhou
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Wei-Xin Hu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Jingping Hu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
33
|
Kuo WT, Odenwald MA, Turner JR, Zuo L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann N Y Acad Sci 2022; 1514:21-33. [PMID: 35580994 PMCID: PMC9427709 DOI: 10.1111/nyas.14798] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epithelial cells are the first line of mucosal defense. In the intestine, a single layer of epithelial cells must establish a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing the leakage of potentially harmful luminal materials. Key to this is the tight junction, which seals the paracellular space and prevents unrestricted leakage. The tight junction is a protein complex established by interactions between members of the claudin, zonula occludens, and tight junction-associated MARVEL protein (TAMP) families. Claudins form the characteristic tight junction strands seen by freeze-fracture microscopy and create paracellular channels, but the functions of ZO-1 and occludin, founding members of the zonula occludens and TAMP families, respectively, are less well defined. Recent studies have revealed that these proteins have essential noncanonical (nonbarrier) functions that allow them to regulate epithelial apoptosis and proliferation, facilitate viral entry, and organize specialized epithelial structures. Surprisingly, neither is required for intestinal barrier function or overall health in the absence of exogenous stressors. Here, we provide a brief overview of ZO-1 and occludin canonical (barrier-related) functions, and a more detailed examination of their noncanonical functions.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Graduate Institute of Oral Biology, National Taiwan University, Taipei, Taiwan.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Zuo
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Perez-Vale KZ, Yow KD, Johnson RI, Byrnes AE, Finegan TM, Slep KC, Peifer M. Multivalent interactions make adherens junction-cytoskeletal linkage robust during morphogenesis. J Cell Biol 2021; 220:e202104087. [PMID: 34762121 PMCID: PMC8590279 DOI: 10.1083/jcb.202104087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Embryogenesis requires cells to change shape and move without disrupting epithelial integrity. This requires robust, responsive linkage between adherens junctions and the actomyosin cytoskeleton. Using Drosophila morphogenesis, we define molecular mechanisms mediating junction-cytoskeletal linkage and explore the role of mechanosensing. We focus on the junction-cytoskeletal linker Canoe, a multidomain protein. We engineered the canoe locus to define how its domains mediate its mechanism of action. To our surprise, the PDZ and FAB domains, which we thought connected junctions and F-actin, are not required for viability or mechanosensitive recruitment to junctions under tension. The FAB domain stabilizes junctions experiencing elevated force, but in its absence, most cells recover, suggesting redundant interactions. In contrast, the Rap1-binding RA domains are critical for all Cno functions and enrichment at junctions under tension. This supports a model in which junctional robustness derives from a large protein network assembled via multivalent interactions, with proteins at network nodes and some node connections more critical than others.
Collapse
Affiliation(s)
- Kia Z. Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kristi D. Yow
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Amy E. Byrnes
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tara M. Finegan
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, NY
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
35
|
Cervero P, Vrenken K, Klose M, Rehm K, Linder S. Nectin stabilization at adherens junctions is counteracted by Rab5a-dependent endocytosis. Eur J Cell Biol 2021; 100:151184. [PMID: 34826799 DOI: 10.1016/j.ejcb.2021.151184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cell-cell junctions undergo constant remodeling, which is crucial for the control of vascular integrity. Indeed, transport of junctional components such as cadherins is understood in increasing depth. However, little is known about the respective pathways regulating localization of nectin at cell-cell junctions. Here, we performed an siRNA-based screen of vesicle regulators of the RabGTPase family, leading to the identification of a novel role for Rab5a in the endocytosis nectin-2 at adherens junctions of primary human endothelial cells (HUVEC). Confocal microscopy experiments revealed disordered nectin-2 localization at adherens junctions upon Rab5a depletion. In addition, internalized nectin-2 was shown to prominently localize to Rab5a-positive vesicles in both fixed and living cells. As shown previously, nectin-2 stabilization at junctions is achieved via drebrin-dependent coupling to the subcortical actin cytoskeleton. Consistently, depletion of drebrin in this study leads to enhanced internalization of nectin-2 from junctions. Strikingly, simultaneous silencing of Rab5a and drebrin restored the junctional localization of nectin-2, pointing to Rab5a as counteracting the drebrin-dependent stabilization of nectin-2 at adherens junctions. This mechanism could be further validated by transendothelial resistance measurements. Collectively, our results identify Rab5a as a key player in the endocytosis of nectin-2 and thus in the regulation of adherens junction integrity in primary human endothelial cells.
Collapse
Affiliation(s)
- Pasquale Cervero
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kirsten Vrenken
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, P.O.Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Matthias Klose
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kerstin Rehm
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
36
|
miR-125b Promotes Colorectal Cancer Migration and Invasion by Dual-Targeting CFTR and CGN. Cancers (Basel) 2021; 13:cancers13225710. [PMID: 34830864 PMCID: PMC8616371 DOI: 10.3390/cancers13225710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third leading cause for cancer related death, in which metastasis exerts a pivotal role. Therefore, we aim to find out the possible mechanism underlying CRC metastasis. We found that the level of miR-125b was elevated in normal, primary CRC, and distant metastasis tissues stepwise, and high level miR-125b was positively correlated with lymph node metastasis and tumor differentiation. In vitro and in vivo assays showed miR-125b significantly promoted CRC migration and invasion. To elucidate the potential mechanism, cystic fibrosis transmembrane conductance regulator (CFTR) and cingulin (CGN) were defined as two target genes of miR-125b. On the one hand, miR-125b promoted epithelial-mesenchymal transition (EMT) and the production and secretion of urokinase plasminogen activator (uPA) by inhibiting CFTR; on the other hand, miR-125b activated Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) signaling by repressing CGN. Therefore, we provided a potential biomarker for CRC prevention and treatment in the future. Abstract Metastasis contributes to the poor prognosis of colorectal cancer, the causative factor of which is not fully understood. Previously, we found that miR-125b (Accession number: MIMAT0000423) contributed to cetuximab resistance in colorectal cancer (CRC). In this study, we identified a novel mechanism by which miR-125b enhances metastasis by targeting cystic fibrosis transmembrane conductance regulator (CFTR) and the tight junction-associated adaptor cingulin (CGN) in CRC. We found that miR-125b expression was upregulated in primary CRC tumors and metastatic sites compared with adjacent normal tissues. Overexpression of miR-125b in CRC cells enhanced migration capacity, while knockdown of miR-125b decreased migration and invasion. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays identified CFTR and CGN as the target genes of miR-125b, and the inhibitory impact of CFTR and CGN on metastasis was further verified both in vitro and in vivo. Moreover, we found that miR-125b facilitated the epithelial-mesenchymal transition (EMT) process and the expression and secretion of urokinase plasminogen activator (uPA) by targeting CFTR and enhanced the Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) pathway activity by targeting CGN. Together, these findings suggest miR-125b as a key functional molecule in CRC and a promising biomarker for the diagnosis and treatment of CRC.
Collapse
|
37
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Abstract
Nectins are immunoglobulin-like cell adhesion molecules constituting a family with four members, nectin-1, nectin-2, nectin-3, and nectin-4. In the brain, nectin-2 as well as nectin-1 and nectin-3 are expressed whereas nectin-4 is hardly expressed. In the nervous system, physiological functions of nectin-1 and nectin-3, such as synapse formation, mossy fiber trajectory regulation, interneurite affinity, contextual fear memory formation, and stress-related mental disorders, have been revealed. Nectin-2 is ubiquitously expressed in non-neuronal tissues and various nectin-2 functions in non-nervous systems have been extensively investigated, but nectin-2 functions in the brain have not been revealed until recently. Recent findings have revealed that nectin-2 is expressed in the specific areas of the brain and plays important roles, such as homeostasis of astrocytes and neurons and the formation of synapses. Moreover, a single nucleotide polymorphism in the human NECTIN2 gene is associated with Alzheimer's disease. We here summarize recent progress in our understanding of nectin-2 functions in the brain.
Collapse
|
39
|
Baskaran Y, Tay FPL, Ng EYW, Swa CLF, Wee S, Gunaratne J, Manser E. Proximity proteomics identifies PAK4 as a component of Afadin-Nectin junctions. Nat Commun 2021; 12:5315. [PMID: 34493720 PMCID: PMC8423818 DOI: 10.1038/s41467-021-25011-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Felicia Pei-Ling Tay
- FB Laboratory, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Elsa Yuen Wai Ng
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Claire Lee Foon Swa
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Sheena Wee
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Edward Manser
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore.
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Tozzi M, Brown EL, Petersen PSS, Lundh M, Isidor MS, Plucińska K, Nielsen TS, Agueda-Oyarzabal M, Small L, Treebak JT, Emanuelli B. Dynamic interplay between Afadin S1795 phosphorylation and diet regulates glucose homeostasis in obese mice. J Physiol 2021; 600:885-902. [PMID: 34387373 DOI: 10.1113/jp281657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Afadin is a ubiquitously expressed scaffold protein with a recently discovered role in insulin signalling and glucose metabolism. Insulin-stimulated phosphorylation of Afadin at S1795 occurs in insulin-responsive tissues such as adipose tissue, muscle, liver, pancreas and heart. Afadin abundance and AfadinS1795 phosphorylation are dynamically regulated in metabolic tissues during diet-induced obesity progression. Genetic silencing of AfadinS1795 phosphorylation improves glucose homeostasis in the early stages of diet-induced metabolic dysregulation. AfadinS1795 phosphorylation contributes to the early development of obesity-related complications in mice. ABSTRACT Obesity is associated with systemic insulin resistance and numerous metabolic disorders. Yet, the mechanisms underlying impaired insulin action during obesity remain to be fully elucidated. Afadin is a multifunctional scaffold protein with the ability to modulate insulin action through its phosphorylation at S1795 in adipocytes. In the present study, we report that insulin-stimulated AfadinS1795 phosphorylation is not restricted to adipose tissues, but is a common signalling event in insulin-responsive tissues including muscle, liver, pancreas and heart. Furthermore, a dynamic regulation of Afadin abundance occurred during diet-induced obesity progression, while its phosphorylation was progressively attenuated. To investigate the role of AfadinS1795 phosphorylation in the regulation of whole-body metabolic homeostasis, we generated a phospho-defective mouse model (Afadin SA) in which the Afadin phosphorylation site was silenced (S1795A) at the whole-body level using CRISPR-Cas9-mediated gene editing. Metabolic characterization of these mice under basal physiological conditions or during a high-fat diet (HFD) challenge revealed that preventing AfadinS1795 phosphorylation improved insulin sensitivity and glucose tolerance and increased liver glycogen storage in the early stage of diet-induced metabolic dysregulation, without affecting body weight. Together, our findings reveal that AfadinS1795 phosphorylation in metabolic tissues is critical during obesity progression and contributes to promote systemic insulin resistance and glucose intolerance in the early phase of diet-induced obesity.
Collapse
Affiliation(s)
- Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patricia S S Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie S Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucińska
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marina Agueda-Oyarzabal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
RAS GTPase signalling to alternative effector pathways. Biochem Soc Trans 2021; 48:2241-2252. [PMID: 33125484 DOI: 10.1042/bst20200506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
RAS GTPases are fundamental regulators of development and drivers of an extraordinary number of human cancers. RAS oncoproteins constitutively signal through downstream effector proteins, triggering cancer initiation, progression and metastasis. In the absence of targeted therapeutics to mutant RAS itself, inhibitors of downstream pathways controlled by the effector kinases RAF and PI3K have become tools in the treatment of RAS-driven tumours. Unfortunately, the efficacy of this approach has been greatly minimized by the prevalence of acquired drug resistance. Decades of research have established that RAS signalling is highly complex, and in addition to RAF and PI3K these small GTPase proteins can interact with an array of alternative effectors that feature RAS binding domains. The consequence of RAS binding to these effectors remains relatively unexplored, but these pathways may provide targets for combinatorial therapeutics. We discuss here three candidate alternative effectors: RALGEFs, RASSF5 and AFDN, detailing their interaction with RAS GTPases and their biological significance. The metastatic nature of RAS-driven cancers suggests more attention should be granted to these alternate pathways, as they are highly implicated in the regulation of cell adhesion, polarity, cell size and cytoskeletal architecture.
Collapse
|
42
|
Smyth T, Georas SN. Effects of ozone and particulate matter on airway epithelial barrier structure and function: a review of in vitro and in vivo studies. Inhal Toxicol 2021; 33:177-192. [PMID: 34346824 DOI: 10.1080/08958378.2021.1956021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The airway epithelium represents a crucial line of defense against the spread of inhaled pathogens. As the epithelium is the first part of the body to be exposed to the inhaled environment, it must act as both a barrier to and sentinel against any inhaled agents. Despite its vital role in limiting the spread of inhaled pathogens, the airway epithelium is also regularly exposed to air pollutants which disrupt its normal function. Here we review the current understanding of the structure and composition of the airway epithelial barrier, as well as the impact of inhaled pollutants, including the reactive gas ozone and particulate matter, on epithelial function. We discuss the current in vitro, rodent model, and human exposure findings surrounding the impact of various inhaled pollutants on epithelial barrier function, mucus production, and mucociliary clearance. Detailed information on how inhaled pollutants impact epithelial structure and function will further our understanding of the adverse health effects of air pollution exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
43
|
Nectins and Nectin-like molecules in synapse formation and involvement in neurological diseases. Mol Cell Neurosci 2021; 115:103653. [PMID: 34242750 DOI: 10.1016/j.mcn.2021.103653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/11/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Synapses are interneuronal junctions which form neuronal networks and play roles in a variety of functions, including learning and memory. Two types of junctions, synaptic junctions (SJs) and puncta adherentia junctions (PAJs), have been identified. SJs are found at all excitatory and inhibitory synapses whereas PAJs are found at excitatory synapses, but not inhibitory synapses, and particularly well developed at hippocampal mossy fiber giant excitatory synapses. Both SJs and PAJs are mediated by cell adhesion molecules (CAMs). Major CAMs at SJs are neuroligins-neurexins and Nectin-like molecules (Necls)/CADMs/SynCAMs whereas those at PAJs are nectins and cadherins. In addition to synaptic PAJs, extrasynaptic PAJs have been identified at contact sites between neighboring dendrites near synapses and regulate synapse formation. In addition to SJs and PAJs, a new type of cell adhesion apparatus different from these junctional apparatuses has been identified and named nectin/Necl spots. One nectin spot at contact sites between neighboring dendrites at extrasynaptic regions near synapses regulates synapse formation. Several members of nectins and Necls had been identified as viral receptors before finding their physiological functions as CAMs and evidence is accumulating that many nectins and Necls are related to onset and progression of neurological diseases. We review here nectin and Necls in synapse formation and involvement in neurological diseases.
Collapse
|
44
|
Hara T, Saeki K, Jinnouchi H, Kazuno S, Miura Y, Yokomizo T. The c-terminal region of BLT2 restricts its localization to the lateral membrane in a LIN7C-dependent manner. FASEB J 2021; 35:e21364. [PMID: 33481310 DOI: 10.1096/fj.202002640r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Leukotriene B4 receptor type 2 (BLT2) is a G protein-coupled receptor (GPCR) mainly expressed in epithelial cells, where it enhances barrier function. A unique characteristic of BLT2 is its restricted localization to the lateral membrane. However, the molecular mechanism underlying the localization of BLT2 to the lateral membrane and the physiological roles of laterally localized BLT2 are unknown. BLT1 is the most homologous GPCR to BLT2 and localizes to both the apical and lateral membranes. In this study, we generated chimeric receptors of BLT2 and BLT1 as well as deletion mutants of BLT2 to determine the region(s) of BLT2 responsible for its localization. Chimeric receptors containing the C-terminal domain of BLT2 localized only to the lateral membrane, and the C-terminal deletion mutant of BLT2 accumulated at the Golgi apparatus. Furthermore, the middle and C-terminal regions of BLT2 were important for maintaining epithelial barrier function. Proteomics analysis using the chimeric BLT-ascorbate peroxidase 2 biotinylation method showed that some proteins involved in intracellular protein transport, cell-cell junctions, and actin filament binding were located very close to the C-terminal domain of BLT2. Knockdown of lin-7 homolog C (LIN7C), a membrane trafficking protein, led to accumulation of BLT2 in the Golgi apparatus, resulting in diminished epithelial barrier function. These results suggest that the C-terminal region of BLT2 plays an important role in the transport of BLT2 from the Golgi apparatus to the plasma membrane in a LIN7C-dependent manner.
Collapse
Affiliation(s)
- Takuya Hara
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Fuji Research Laboratories, Kowa Co., Ltd, Shizuoka, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromi Jinnouchi
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Abstract
Mechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins. Here we discuss how PDZ proteins are emerging as new mechanotransducer proteins by altering their conformations or localizations upon force loads, leading to the formation of macromolecular modules tethering the cell membrane to the actin cytoskeleton.
Collapse
|
46
|
Man L, Lustgarten-Guahmich N, Kallinos E, Redhead-Laconte Z, Liu S, Schattman B, Redmond D, Hancock K, Zaninovic N, Schattman G, Rosenwaks Z, James D. Comparison of Human Antral Follicles of Xenograft versus Ovarian Origin Reveals Disparate Molecular Signatures. Cell Rep 2021; 32:108027. [PMID: 32783948 DOI: 10.1016/j.celrep.2020.108027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The activation, growth, and maturation of oocytes to an ovulatory phase, termed folliculogenesis, is governed by the orchestrated activity of multiple specialized cell types within the ovary; yet, the mechanisms governing diversification and behavior of discrete cellular sub-populations within follicles are poorly understood. We use bulk and single-cell RNA sequencing to distinguish the transcriptional signature of prospectively isolated granulosa and theca/stroma cell subsets within human antral follicles derived from xenografts or ovaries. The analysis deconstructs phenotypic diversification within small (<4 mm) antral follicles, identifying secreted factors that are differentially enriched between mural and oophorus granulosa cells, and segregating stromal/support and steroidal activity between theca externa and interna, respectively. Multiple factors are differentially expressed in follicles of xenograft versus ovarian origin. These data capture a high-resolution transcriptional signature of granulosa and theca subpopulations and provide a systems-level portrait of cellular diversification in early antral human follicles.
Collapse
Affiliation(s)
- Limor Man
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nicole Lustgarten-Guahmich
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Eleni Kallinos
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zachary Redhead-Laconte
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sally Liu
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Benjamin Schattman
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Redmond
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kolbe Hancock
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nikica Zaninovic
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Glenn Schattman
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zev Rosenwaks
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daylon James
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
47
|
Lundh M, Altıntaş A, Tozzi M, Fabre O, Ma T, Shamsi F, Gerhart-Hines Z, Barrès R, Tseng YH, Emanuelli B. Cold-induction of afadin in brown fat supports its thermogenic capacity. Sci Rep 2021; 11:9794. [PMID: 33963248 PMCID: PMC8105362 DOI: 10.1038/s41598-021-89207-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts β3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.
Collapse
Affiliation(s)
- Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Farnaz Shamsi
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Specific substrates composed of collagen and fibronectin support the formation of epithelial cell sheets by MDCK cells lacking α-catenin or classical cadherins. Cell Tissue Res 2021; 385:127-148. [PMID: 33864500 DOI: 10.1007/s00441-021-03448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The effect of the extracellular matrix substrates on the formation of epithelial cell sheets was studied using MDCK cells in which the α-catenin gene was disrupted. Although the mutant cells did not form an epithelial cell sheet in conventional cell culture, the cells formed an epithelial cell sheet when they were cultured on or in a collagen gel; the same results were not observed when cells were cultured on collagen-coated cover glasses or culture dishes. Moreover, the cells cultured on the cell culture inserts coated with fibronectin, Matrigel, or vitronectin formed epithelial cell sheets, whereas the cells cultured on cover glasses coated with these proteins did not form the structure, implying that the physical and chemical features of the substrates exert a profound effect on the formation of epithelial cell sheets. MDCK cells lacking the expression of E- and K-cadherins displayed similar properties. When the mutant MDCK cells were cultured in the presence of blebbistatin, they formed epithelial cell sheets, suggesting that myosin II was involved in the formation of these sheets. These cell sheets showed intimate cell-cell adhesion, and electron microscopy confirmed the formation of cell junctions. We propose that specific ECM substrates organize the formation of basic epithelial cell sheets, whereas classical cadherins stabilize cell-cell contacts and promote the formation of structures.
Collapse
|
49
|
Sakakibara S, Mizutani K, Sugiura A, Sakane A, Sasaki T, Yonemura S, Takai Y. Afadin regulates actomyosin organization through αE-catenin at adherens junctions. J Cell Biol 2021; 219:151595. [PMID: 32227204 PMCID: PMC7199863 DOI: 10.1083/jcb.201907079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Actomyosin-undercoated adherens junctions are critical for epithelial cell integrity and remodeling. Actomyosin associates with adherens junctions through αE-catenin complexed with β-catenin and E-cadherin in vivo; however, in vitro biochemical studies in solution showed that αE-catenin complexed with β-catenin binds to F-actin less efficiently than αE-catenin that is not complexed with β-catenin. Although a "catch-bond model" partly explains this inconsistency, the mechanism for this inconsistency between the in vivo and in vitro results remains elusive. We herein demonstrate that afadin binds to αE-catenin complexed with β-catenin and enhances its F-actin-binding activity in a novel mechanism, eventually inducing the proper actomyosin organization through αE-catenin complexed with β-catenin and E-cadherin at adherens junctions.
Collapse
Affiliation(s)
- Shotaro Sakakibara
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayumu Sugiura
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Cell Biology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
50
|
Yu HH, Zallen JA. Abl and Canoe/Afadin mediate mechanotransduction at tricellular junctions. Science 2021; 370:370/6520/eaba5528. [PMID: 33243859 DOI: 10.1126/science.aba5528] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
Epithelial structure is generated by the dynamic reorganization of cells in response to mechanical forces. Adherens junctions transmit forces between cells, but how cells sense and respond to these forces in vivo is not well understood. We identify a mechanotransduction pathway involving the Abl tyrosine kinase and Canoe/Afadin that stabilizes cell adhesion under tension at tricellular junctions in the Drosophila embryo. Canoe is recruited to tricellular junctions in response to actomyosin contractility, and this mechanosensitivity requires Abl-dependent phosphorylation of a conserved tyrosine in the Canoe actin-binding domain. Preventing Canoe tyrosine phosphorylation destabilizes tricellular adhesion, and anchoring Canoe at tricellular junctions independently of mechanical inputs aberrantly stabilizes adhesion, arresting cell rearrangement. These results identify a force-responsive mechanism that stabilizes tricellular adhesion under tension during epithelial remodeling.
Collapse
Affiliation(s)
- Huapeng H Yu
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|