1
|
Fallah M, Najafi A, Ranjbar M, Balighi K, Daneshpazhooh M, Ebrahimpour-Koujan S. Lipid Profile Scores Predict Severity of Pemphigus: A Cross-Sectional Study. Indian J Dermatol 2025; 70:63-74. [PMID: 40162360 PMCID: PMC11952704 DOI: 10.4103/ijd.ijd_372_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 04/02/2025] Open
Abstract
Background There is little evidence about the relationship between lipid indices and the severity of pemphigus vulgaris (PV) disease. In this cross-sectional study, we try to find out the exact relationship between three dietary lipid indices (PUFA/SFA ratio and ω-6/ω-3 index) and the severity of PV disease. Methods In this hospital-based cross-sectional study, a total of 138 pemphigus vulgaris cases were studied, of which 108 had PDAI ≤15, and 30 had PDAI>15. Dietary intakes were measured a valid 168-item FFQ. To calculate the lipid indices, the data received from diet were used. Results After adjusting for potential confounders, people with the highest ω-6/ω-3 index had 32% lowest severity of PV disease compared to the people in the lowest category. However, this association was not significant in all models (OR: 0.68; 95% CI: 0.24-1.93, P trend = 0.47). Moreover, people with the highest PUFA/SFA index had 9% highest severity of PV disease compared to the people in the lowest category. However, this association was not significant in all models (OR: 1.09; 95% CI: 0.34-3.51, P trend = 0.88). Conclusion The evidence of our study shows that the relation between PUFA/SFA ratio and ω-6/ω-3 index is not significant. However, case-control studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Maryam Fallah
- From the Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Najafi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ranjbar
- From the Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Balighi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraiya Ebrahimpour-Koujan
- From the Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Pacheco-Tovar D, Pacheco-Tovar MG, Saavedra-Alonso S, Zapata-Benavides P, Torres-del-Muro FDJ, Bollain-y-Goytia JJ, Herrera-Esparza R, Rodríguez-Padilla C, Avalos-Díaz E. shRNA-Targeting Caspase-3 Inhibits Cell Detachment Induced by Pemphigus Vulgaris Autoantibodies in HaCaT Cells. Int J Mol Sci 2024; 25:8864. [PMID: 39201550 PMCID: PMC11354573 DOI: 10.3390/ijms25168864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pemphigus is an autoimmune disease that affects the skin and mucous membranes, induced by the deposition of pemphigus IgG, which mainly targets desmogleins 1 and 3 (Dsg1 and 3). This autoantibody causes steric interference between Dsg1 and 3 and the loss of cell adhesion, producing acantholysis. This molecule and its cellular effects are clinically reflected as intraepidermal blistering. Pemphigus vulgaris-IgG (PV-IgG) binding involves p38MAPK-signaling-dependent caspase-3 activation. The present work assessed the in vitro effect of PV-IgG on the adherence of HaCaT cells dependent on caspase-3. PV-IgG induced cell detachment and apoptotic changes, as demonstrated by annexin fluorescent assays. The effect of caspase-3 induced by PV-IgG was suppressed in cells pre-treated with caspase-3-shRNA, and normal IgG (N-IgG) as a control had no relevant effects on the aforementioned parameters. The results demonstrated that shRNA reduces caspase-3 expression, as measured via qRT-PCR and via Western blot and immunofluorescence, and increases cell adhesion. In conclusion, shRNA prevented in vitro cell detachment and the late effects of apoptosis induced by PV-IgG on HaCaT cells, furthering our understanding of the molecular role of caspase-3 cell adhesion dependence in pemphigus disease.
Collapse
Affiliation(s)
- Deyanira Pacheco-Tovar
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
- School of Chemistry Sciences, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, Carretera Zacatecas-Guadalajara, Ejido “La Escondida”, Zacatecas CP 98160, Zacatecas, Mexico
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - María-Guadalupe Pacheco-Tovar
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
- School of Chemistry Sciences, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, Carretera Zacatecas-Guadalajara, Ejido “La Escondida”, Zacatecas CP 98160, Zacatecas, Mexico
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Santiago Saavedra-Alonso
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Pablo Zapata-Benavides
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Felipe-de-Jesús Torres-del-Muro
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
- School of Chemistry Sciences, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, Carretera Zacatecas-Guadalajara, Ejido “La Escondida”, Zacatecas CP 98160, Zacatecas, Mexico
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Juan-José Bollain-y-Goytia
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
| | - Rafael Herrera-Esparza
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
| | - Cristina Rodríguez-Padilla
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Esperanza Avalos-Díaz
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
| |
Collapse
|
3
|
Mueller EJ, Rahimi S, Sauta P, Shojaeian T, Durrer L, Quinche S, Francois M, Locher E, Edler M, Illi M, Gentinetta T, Lau K, Pojer F, Borradori L, Hariton WVJ. Standardized Production of Anti-Desmoglein 3 Antibody AK23 for Translational Pemphigus Vulgaris Research. Curr Protoc 2024; 4:e1118. [PMID: 39169810 DOI: 10.1002/cpz1.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Antibody-mediated receptor activation is successfully used to develop medical treatments. If the activation induces a pathological response, such antibodies are also excellent tools for defining molecular mechanisms of target receptor malfunction and designing rescue therapies. Prominent examples are naturally occurring autoantibodies inducing the severe blistering disease pemphigus vulgaris (PV). In the great majority of patients, the antibodies bind to the adhesion receptor desmoglein 3 (Dsg3) and interfere with cell signaling to provoke severe blistering in the mucous membranes and/or skin. The identification of a comprehensive causative signaling network downstream of antibody-targeted Dsg3 receptors (e.g., shown by pharmacological activators or inhibitors) is currently being discussed as a basis to develop urgently needed first-line treatments for PV patients. Although polyclonal PV IgG antibodies have been used as proof of principle for pathological signal activation, monospecific anti-Dsg3 antibodies are necessary and have been developed to identify pathological Dsg3 receptor-mediated signal transduction. The experimental monospecific PV antibody AK23, produced from hybridoma cells, was extensively tested in our laboratory in both in vitro and in vivo models for PV and proved to recapitulate the clinicopathological features of PV when generated using the standardized production and purification protocols described herein. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Bovine IgG stripping from FBS and quality control Basic Protocol 2: AK23 hybridoma expansion and IgG production Basic Protocol 3: AK23 IgG purification Basic Protocol 4: AK23 IgG quality control Support Protocol 1: Detection of endotoxin levels Support Protocol 2: Detection and removal of mycoplasma.
Collapse
Affiliation(s)
- Eliane J Mueller
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Siavash Rahimi
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrizia Sauta
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Taravat Shojaeian
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laurence Durrer
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Soraya Quinche
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Michael Francois
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Elisabeth Locher
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Monika Edler
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Marlies Illi
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Thomas Gentinetta
- CSL, CSL Biologics Research Centre, Bern, Switzerland
- Swiss Institute for Translational and Entrepreneurial Medicine, sitem-insel, Bern, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL Lausanne, Lausanne, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Department for Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Hariton WV, Schulze K, Rahimi S, Shojaeian T, Feldmeyer L, Schwob R, Overmiller AM, Sayar BS, Borradori L, Mahoney MG, Galichet A, Müller EJ. A desmosomal cadherin controls multipotent hair follicle stem cell quiescence and orchestrates regeneration through adhesion signaling. iScience 2023; 26:108568. [PMID: 38162019 PMCID: PMC10755723 DOI: 10.1016/j.isci.2023.108568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Stem cells (SCs) are critical to maintain tissue homeostasis. However, it is currently not known whether signaling through cell junctions protects quiescent epithelial SC reservoirs from depletion during disease-inflicted damage. Using the autoimmune model disease pemphigus vulgaris (PV), this study reveals an unprecedented role for a desmosomal cadherin in governing SC quiescence and regeneration through adhesion signaling in the multipotent mouse hair follicle compartment known as the bulge. Autoantibody-mediated, mechanical uncoupling of desmoglein (Dsg) 3 transadhesion activates quiescent bulge SC which lose their multipotency and stemness, become actively cycling, and finally delaminate from their epithelial niche. This then initiates a self-organized regenerative program which restores Dsg3 function and bulge morphology including SC quiescence and multipotency. These profound changes are triggered by the sole loss of functional Dsg3, resemble major signaling events in Dsg3-/- mice, and are driven by SC-relevant EGFR activation and Wnt modulation requiring longitudinal repression of Hedgehog signaling.
Collapse
Affiliation(s)
- William V.J. Hariton
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Katja Schulze
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Siavash Rahimi
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Taravat Shojaeian
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Laurence Feldmeyer
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Roman Schwob
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Andrew M. Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Beyza S. Sayar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Mỹ G. Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arnaud Galichet
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Eliane J. Müller
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Hartmann V, Hariton WV, Rahimi S, Hammers CM, Ludwig RJ, Müller EJ, Hundt JE. The human skin organ culture model as an optimal complementary tool for murine pemphigus models. Lab Anim 2023; 57:381-395. [PMID: 36647613 DOI: 10.1177/00236772221145647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pemphigus is a severe autoimmune bullous disease of the skin and/or mucous membranes caused by autoantibodies that mainly target the adhesion proteins desmoglein (Dsg) 3 and/or Dsg1. Clinically, pemphigus is characterized by flaccid blistering, leading to severe water and electrolyte loss. Before the introduction of corticosteroid treatment, the disease turned out to be fatal in many cases. Despite recent therapeutic improvements, treatment of pemphigus patients is centred on prolonged systemic immunosuppression and remains challenging. Current drug development for pemphigus has a strong focus on disease-causing B cells and autoantibodies and, more recently, also on modulating autoantibody-induced tissue pathology and keratinocyte signalling. This drug development requires reliable pre-clinical model systems replicating the pathogenesis of the human disease. Among those are neonatal and adult mouse models based on the transfer of Dsg3, Dsg1/3 or Dsg1-specific autoantibodies. To reduce the number of animal experiments, we recently established a standardized human skin organ culture (HSOC) model for pemphigus. This model reproduces the clinical phenotype of autoantibody-induced tissue pathology in pemphigus vulgaris. For induction of blistering, a recombinant single-chain variable fragment (scFv) targeting both Dsg1 and 3 is injected into pieces of human skin (obtained from plastic surgeries). Further characterization of the HSOC model demonstrated that key morphologic, molecular and immunologic features of pemphigus are being replicated. Thus, the pemphigus HSOC model is an excellent alternative to pemphigus animal model systems that are based on the transfer of (auto)antibodies.
Collapse
Affiliation(s)
- Veronika Hartmann
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - William Vj Hariton
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | - Siavash Rahimi
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
- Centre for Research on Inflammation of the Skin, University of Lübeck, Germany
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Germany
| | - Eliane J Müller
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
- Centre for Research on Inflammation of the Skin, University of Lübeck, Germany
| |
Collapse
|
6
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
7
|
Ishii N. Significance of anti-desmocollin autoantibodies in pemphigus. J Dermatol 2023; 50:132-139. [PMID: 36578135 PMCID: PMC10107560 DOI: 10.1111/1346-8138.16660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 12/30/2022]
Abstract
The major autoantigens for pemphigus are desmogleins (Dsgs), cell-cell adhesive structure proteins, one of the desmosomal cadherins. Recent progress in molecular biology has revealed that IgG autoantibodies of classical pemphigus react with Dsg1 or Dsg3. Desmocollins (Dscs) also belong to the cadherin supergene family that provides structure to the desmosomes and play an important role in cell-to-cell adhesion. In addition to the presence of four desmosomal Dsg isoforms, i.e. Dsg1-4, Dsc1, 2 and 3, all of which are derived from different genes, Dsc1 has been previously identified as the target antigen of IgA autoantibodies in the subcorneal pustular dermatosis (SPD)-type of intercellular IgA dermatosis. In addition to the IgA anti-Dsc1 autoantiboides, the presence of IgG anti-Dsc autoantibodies is described in patients of some autoimmune bullous diseases. In particular, the current pemphigus detecting autoantibodies to Dscs has shown a tendency in atypical variants of pemphigus. Therefore, autoantibodies against Dscs alone may cause detachment of cell-cell adhesion in the epidermis in some pemphigus. However, except for the findings of a few in vitro and in vivo studies, there is currently no clear evidence for the pathogenicity of anti-Dsc autoantibodies in pemphigus, whereas significance of anti-Dsg autoantibodies is well established. This article describes the structure and function of the Dscs, and explores the evidence regarding the pathogenic role of anti-Dsc autoantibodies in pemphigus.
Collapse
Affiliation(s)
- Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
8
|
Apremilast prevents blistering in human epidermis and stabilizes keratinocyte adhesion in pemphigus. Nat Commun 2023; 14:116. [PMID: 36624106 PMCID: PMC9829900 DOI: 10.1038/s41467-022-35741-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/21/2022] [Indexed: 01/10/2023] Open
Abstract
Pemphigus vulgaris is a life-threatening blistering skin disease caused by autoantibodies destabilizing desmosomal adhesion. Current therapies focus on suppression of autoantibody formation and thus treatments directly stabilizing keratinocyte adhesion would fulfill an unmet medical need. We here demonstrate that apremilast, a phosphodiesterase 4 inhibitor used in psoriasis, prevents skin blistering in pemphigus vulgaris. Apremilast abrogates pemphigus autoantibody-induced loss of keratinocyte cohesion in ex-vivo human epidermis, cultured keratinocytes in vitro and in vivo in mice. In parallel, apremilast inhibits keratin retraction as well as desmosome splitting, induces phosphorylation of plakoglobin at serine 665 and desmoplakin assembly into desmosomal plaques. We established a plakoglobin phospho-deficient mouse model that reveals fragile epidermis with altered organization of keratin filaments and desmosomal cadherins. In keratinocytes derived from these mice, intercellular adhesion is impaired and not rescued by apremilast. These data identify an unreported mechanism of desmosome regulation and propose that apremilast stabilizes keratinocyte adhesion and is protective in pemphigus.
Collapse
|
9
|
Eichkorn RA, Schmidt MF, Walter E, Hertl M, Baron JM, Waschke J, Yazdi AS. Innate immune activation as cofactor in pemphigus disease manifestation. Front Immunol 2022; 13:898819. [PMID: 35928825 PMCID: PMC9343989 DOI: 10.3389/fimmu.2022.898819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Molecular mechanisms underlying auto-antibody-induced acantholysis in pemphigus vulgaris are subject of current research to date. To decipher the discrepancy between ubiquitous antibody binding to the epidermal desmosomes, but discontinuous disease manifestation, we were able to identify Ultraviolet A (UVA) as a cofactor for acantholysis. UVA induces interleukin (IL)-1 secretion in keratinocytes, mirroring innate immune system activation. In an in vitro keratinocyte dissociation assay increased fragmentation was observed when UVA was added to anti-Desmoglein 3 Immunoglobulins (anti-Dsg3 IgG). These results were confirmed in skin explants where UVA enhanced anti-Dsg3-mediated loss of epidermal adhesion. The UVA-mediated effect was blocked in vitro by the pan-caspase-inhibitor zVAD-fmk. Thus, we introduce UVA as a caspase-dependent exogenous cofactor for acantholysis which suggests that local innate immune responses largely contribute to overt clinical blister formation upon autoantibody binding to epidermal cells in pemphigus vulgaris.
Collapse
Affiliation(s)
- Ramona A. Eichkorn
- Department of Dermatology, Eberhard Karl University of Tuebingen, Tuebingen, Germany
| | - Morna F. Schmidt
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
| | - Elias Walter
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Marburg, Germany
| | - Jens Malte Baron
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Amir S. Yazdi
- Department of Dermatology, Eberhard Karl University of Tuebingen, Tuebingen, Germany
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
- *Correspondence: Amir S. Yazdi,
| |
Collapse
|
10
|
Lotti R, Atene CG, Zanfi ED, Bertesi M, Zanocco-Marani T. In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus. Int J Mol Sci 2022; 23:7044. [PMID: 35806044 PMCID: PMC9266423 DOI: 10.3390/ijms23137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Pemphigus is a life-threatening autoimmune disease. Several phenotypic variants are part of this family of bullous disorders. The disease is mainly mediated by pathogenic autoantibodies, but is also directed against two desmosomal adhesion proteins, desmoglein 1 (DSG1) and 3 (DSG3), which are expressed in the skin and mucosae. By binding to their antigens, autoantibodies induce the separation of keratinocytes, in a process known as acantholysis. The two main Pemphigus variants are Pemphigus vulgaris and foliaceus. Several models of Pemphigus have been described: in vitro, ex vivo and in vivo, passive or active mouse models. Although no model is ideal, different models display specific characteristics that are useful for testing different hypotheses regarding the initiation of Pemphigus, or to evaluate the efficacy of experimental therapies. Different disease models also allow us to evaluate the pathogenicity of specific Pemphigus autoantibodies, or to investigate the role of previously not described autoantigens. The aim of this review is to provide an overview of Pemphigus disease models, with the main focus being on active models and their potential to reproduce different disease subgroups, based on the involvement of different autoantigens.
Collapse
Affiliation(s)
- Roberta Lotti
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Claudio Giacinto Atene
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Emma Dorotea Zanfi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (T.Z.-M.)
| | - Matteo Bertesi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (T.Z.-M.)
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (T.Z.-M.)
| |
Collapse
|
11
|
Yuan H, Pan M, Chen H, Mao X. Immunotherapy for Pemphigus: Present and Future. Front Med (Lausanne) 2022; 9:901239. [PMID: 35783635 PMCID: PMC9240651 DOI: 10.3389/fmed.2022.901239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus is a chronic and severe autoimmune bullous disease caused by autoantibodies targeting adhesion molecules between keratinocytes. It requires 2–3 years on average to manage the disease. To date, although Rituximab combined with short-term systemic glucocorticoids was accepted as first-line therapy, systemic glucocorticoids remain the primary therapeutic option for pemphigus patients, successfully decreasing morbidity and mortality from pemphigus. However, novel therapeutic strategies are desirable due to the low efficacy in some subset of patients and the long-term severe adverse effects of traditional therapies. Recently, immunotherapy has proved to be encouraging for disease control or cure. Based on the current understanding of the immune mechanisms of pemphigus, we review the immune targets and corresponding agents applied in practice or under clinical trials. The goals of the novel treatments are to improve the quality of life of pemphigus patients by improving efficacy and safety, minimizing side effects, achieving fast disease control, or curing the disease.
Collapse
Affiliation(s)
- Huijie Yuan
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Xuming Mao
| |
Collapse
|
12
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
13
|
Apoptolysis: a less understood concept in the pathogenesis of Pemphigus Vulgaris. Apoptosis 2022; 27:322-328. [PMID: 35445279 DOI: 10.1007/s10495-022-01726-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Pemphigus Vulgaris (PV) is a severe autoimmune disease characterized by supra-basal blisters in the skin and mucous membranes of a wide range of mammals, including humans. It not only affects the skin but also has severe oral manifestations. It has been stated that auto-antibodies are produced, for unknown reasons, which are directed against desmogleins present on the epithelium and thus leads to acantholysis and intraepithelial blistering. But the exact mechanism is still not completely understood. Here we would like to shed light on a new pathologic mechanism i.e., apoptolysis, which emphasizes that apoptotic enzymes contribute to acantholysis development both in terms of molecular events and chronologic sequence. A possible role of apoptolysis has been discussed in purview of PV.
Collapse
|
14
|
Pitfalls in the Application of Dispase-Based Keratinocyte Dissociation Assay for In Vitro Analysis of Pemphigus Vulgaris. Vaccines (Basel) 2022; 10:vaccines10020208. [PMID: 35214667 PMCID: PMC8878461 DOI: 10.3390/vaccines10020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pemphigus vulgaris (PV) is a chronic, life-altering autoimmune disease due to the production of anti-desmoglein antibodies causing the loss of cell–cell adhesion in keratinocytes (acantholysis) and blister formation in both skin and mucous membranes. The dispase-based keratinocyte dissociation assay (DDA) is the method of choice to examine the pathogenic effect of antibodies and additional co-stimuli on cell adhesion in vitro. Despite its widespread use, there is a high variability of experimental conditions, leading to inconsistent results. In this paper, we identify and discuss pitfalls in the application of DDA, including generation of a monolayer with optimized density, appropriate culturing conditions to obtain said monolayer, application of mechanical stress in a standardized manner, and performing consistent data processing. Importantly, we describe a detailed protocol for a successful and reliable DDA and the respective ideal conditions for three different types of human keratinocytes: (1) primary keratinocytes, (2) the HaCaT spontaneously immortalized keratinocyte cell line, and (3) the recently characterized HaSKpw spontaneously immortalized keratinocyte cell line. Our study provides detailed protocols which guarantee intra- and inter-experimental comparability of DDA.
Collapse
|
15
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
16
|
Huang Y, Jedličková H, Cai Y, Rehman A, Gammon L, Ahmad US, Uttagomol J, Parkinson EK, Fortune F, Wan H. Oxidative Stress-Mediated YAP Dysregulation Contributes to the Pathogenesis of Pemphigus Vulgaris. Front Immunol 2021; 12:649502. [PMID: 33968042 PMCID: PMC8098436 DOI: 10.3389/fimmu.2021.649502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 11/15/2022] Open
Abstract
Pemphigus Vulgaris (PV) is a life-threatening autoimmune disease manifested with blisters in the skin and mucosa and caused by autoantibodies against adhesion protein desmoglein-3 (Dsg3) expressed in epithelial membrane linings of these tissues. Despite many studies, the pathogenesis of PV remains incompletely understood. Recently we have shown Dsg3 plays a role in regulating the yes-associated protein (YAP), a co-transcription factor and mechanical sensor, and constraining reactive oxygen species (ROS). This study investigated the effect of PV sera as well as the anti-Dsg3 antibody AK23 on these molecules. We detected elevated YAP steady-state protein levels in PV cells surrounding blisters and perilesional regions and in keratinocytes treated with PV sera and AK23 with concomitant transient ROS overproduction. Cells treated with hydrogen peroxide also exhibited augmented nuclear YAP accompanied by reduction of Dsg3 and α-catenin, a negative regulator of YAP. As expected, transfection of α-catenin-GFP plasmid rendered YAP export from the nucleus evoked by hydrogen peroxide. In addition, suppression of total YAP was observed in hydrogen peroxide treated cells exposed to antioxidants with enhanced cell-cell adhesion being confirmed by decreased fragmentation in the dispase assay compared to hydrogen peroxide treatment alone. On the other hand, the expression of exogenous YAP disrupted intercellular junction assembly. In contrast, YAP depletion resulted in an inverse effect with augmented expression of junction assembly proteins, including Dsg3 and α-catenin capable of abolishing the effect of AK23 on Dsg3 expression. Finally, inhibition of other kinase pathways, including p38MAPK, also demonstrated suppression of YAP induced by hydrogen peroxide. Furthermore, antioxidant treatment of keratinocytes suppressed PV sera-induced total YAP accumulation. In conclusion, this study suggests that oxidative stress coupled with YAP dysregulation attributes to PV blistering, implying antioxidants may be beneficial in the treatment of PV.
Collapse
Affiliation(s)
- Yunying Huang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Hana Jedličková
- Department of Dermatology, St. Anna University Hospital, Brno, Czechia
| | - Yang Cai
- CB Joint MHNCRL, Hospital and School of Stomatology, Guizhou Medical University, Guiyang, China
| | - Ambreen Rehman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Luke Gammon
- Phenotypic Screening Facility, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Jutamas Uttagomol
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Eric Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Farida Fortune
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
17
|
Yang M, Wu H, Zhao M, Chang C, Lu Q. The pathogenesis of bullous skin diseases. J Transl Autoimmun 2019; 2:100014. [PMID: 32743502 PMCID: PMC7388362 DOI: 10.1016/j.jtauto.2019.100014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023] Open
Abstract
Bullous skin diseases are a group of dermatoses characterized by blisters and bullae in the skin and mucous membranes. The etiology and pathogenesis of bullous skin diseases are not completely clear. The most common are pemphigus and bullous pemphigoid (BP). Autoantibodies play critical roles in their pathogenesis. Abnormalities in the adhesion between keratinocytes in patients with pemphigus leads to acantholysis and formation of intra-epidermal blisters. Anti-desmoglein autoantibodies are present both in the circulation and skin lesions of patients with pemphigus. The deficient adhesion of keratinocytes to the basement membrane in BP patients gives rise to subepidermal blisters. Autoantibodies against the components of hemidesmosome can be detected in BP patients. Many novel therapeutics based on knowledge of the pathogenesis have emerged in recent years.
Collapse
Affiliation(s)
- Miao Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children’s Hospital, Hollywood, FL, 33021, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| |
Collapse
|
18
|
Amber KT, Valdebran M, Grando SA. Non-Desmoglein Antibodies in Patients With Pemphigus Vulgaris. Front Immunol 2018; 9:1190. [PMID: 29915578 PMCID: PMC5994403 DOI: 10.3389/fimmu.2018.01190] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Pemphigus vulgaris (PV) is a potentially life-threatening mucocutaneous autoimmune blistering disease. Patients develop non-healing erosions and blisters due to cell–cell detachment of keratinocytes (acantholysis), with subsequent suprabasal intraepidermal splitting. Identified almost 30 years ago, desmoglein-3 (Dsg3), a Ca2+-dependent cell adhesion molecule belonging to the cadherin family, has been considered the “primary” autoantigen in PV. Proteomic studies have identified numerous autoantibodies in patients with PV that have known roles in the physiology and cell adhesion of keratinocytes. Antibodies to these autoantibodies include desmocollins 1 and 3, several muscarinic and nicotinic acetylcholine receptor subtypes, mitochondrial proteins, human leukocyte antigen molecules, thyroid peroxidase, and hSPCA1—the Ca2+/Mn2+-ATPase encoded by ATP2C1, which is mutated in Hailey–Hailey disease. Several studies have identified direct pathogenic roles of these proteins, or synergistic roles when combined with Dsg3. We review the role of these direct and indirect mechanisms of non-desmoglein autoantibodies in the pathogenesis of PV.
Collapse
Affiliation(s)
- Kyle T Amber
- Department of Dermatology, University of California Irvine, Irvine, CA, United States
| | - Manuel Valdebran
- Department of Dermatology, University of California Irvine, Irvine, CA, United States
| | - Sergei A Grando
- Department of Dermatology, University of California Irvine, Irvine, CA, United States.,Department of Dermatology, Institute for Immunology, University of California Irvine, Irvine, CA, United States.,Department of Biological Chemistry, Institute for Immunology, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
19
|
Sajda T, Sinha AA. Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model. Front Immunol 2018; 9:692. [PMID: 29755451 PMCID: PMC5932349 DOI: 10.3389/fimmu.2018.00692] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV.
Collapse
Affiliation(s)
- Thomas Sajda
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
20
|
Vielmuth F, Walter E, Fuchs M, Radeva MY, Buechau F, Magin TM, Spindler V, Waschke J. Keratins Regulate p38MAPK-Dependent Desmoglein Binding Properties in Pemphigus. Front Immunol 2018; 9:528. [PMID: 29616033 PMCID: PMC5868517 DOI: 10.3389/fimmu.2018.00528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Keratins are crucial for the anchorage of desmosomes. Severe alterations of keratin organization and detachment of filaments from the desmosomal plaque occur in the autoimmune dermatoses pemphigus vulgaris and pemphigus foliaceus (PF), which are mainly caused by autoantibodies against desmoglein (Dsg) 1 and 3. Keratin alterations are a structural hallmark in pemphigus pathogenesis and correlate with loss of intercellular adhesion. However, the significance for autoantibody-induced loss of intercellular adhesion is largely unknown. In wild-type (wt) murine keratinocytes, pemphigus autoantibodies induced keratin filament retraction. Under the same conditions, we used murine keratinocytes lacking all keratin filaments (KtyII k.o.) as a model system to dissect the role of keratins in pemphigus. KtyII k.o. cells show compromised intercellular adhesion without antibody (Ab) treatment, which was not impaired further by pathogenic pemphigus autoantibodies. Nevertheless, direct activation of p38MAPK via anisomycin further decreased intercellular adhesion indicating that cell cohesion was not completely abrogated in the absence of keratins. Direct inhibition of Dsg3, but not of Dsg1, interaction via pathogenic autoantibodies as revealed by atomic force microscopy was detectable in both cell lines demonstrating that keratins are not required for this phenomenon. However, PF-IgG shifted Dsg1-binding events from cell borders toward the free cell surface in wt cells. This led to a distribution pattern of Dsg1-binding events similar to KtyII k.o. cells under resting conditions. In keratin-deficient keratinocytes, PF-IgG impaired Dsg1-binding strength, which was not different from wt cells under resting conditions. In addition, pathogenic autoantibodies were capable of activating p38MAPK in both KtyII wt and k.o. cells, the latter of which already displayed robust p38MAPK activation under resting conditions. Since inhibition of p38MAPK blocked autoantibody-induced loss of intercellular adhesion in wt cells and restored baseline cell cohesion in keratin-deficient cells, we conclude that p38MAPK signaling is (i) critical for regulation of cell adhesion, (ii) regulated by keratins, and (iii) targets both keratin-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elias Walter
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Fuchs
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mariya Y Radeva
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fanny Buechau
- Division of Cell and Developmental Biology, Institute of Biology, Sächsische Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Division of Cell and Developmental Biology, Institute of Biology, Sächsische Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Volker Spindler
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
21
|
Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: a Comprehensive Review on Pathogenesis, Clinical Presentation and Novel Therapeutic Approaches. Clin Rev Allergy Immunol 2018; 54:1-25. [DOI: 10.1007/s12016-017-8662-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Spindler V, Eming R, Schmidt E, Amagai M, Grando S, Jonkman MF, Kowalczyk AP, Müller EJ, Payne AS, Pincelli C, Sinha AA, Sprecher E, Zillikens D, Hertl M, Waschke J. Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. J Invest Dermatol 2017; 138:32-37. [PMID: 29037765 DOI: 10.1016/j.jid.2017.06.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
The autoimmune blistering skin disease pemphigus is caused by IgG autoantibodies against desmosomal cadherins, but the precise mechanisms are in part a matter of controversial discussions. This review focuses on the currently existing models of the disease and highlights the relevance of desmoglein-specific versus nondesmoglein autoantibodies, the contribution of nonautoantibody factors, and the mechanisms leading to cell dissociation and blister formation in response to autoantibody binding. As the review brings together the majority of laboratories currently working on pemphigus pathogenesis, it aims to serve as a solid basis for further investigations for the entire field.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Rüdiger Eming
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Sergei Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, California, USA
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew P Kowalczyk
- Departments of Cell Biology and Dermatology, Emory University, Atlanta, Georgia, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Bern, Switzerland; Vetsuisse Faculty, DermFocus, Bern, Switzerland; Department of Dermatology, University Hospital of Bern, Bern, Switzerland
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, University of Modena and Reggio Emilia, Modena, Italy
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
23
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
24
|
Hammers CM, Stanley JR. Mechanisms of Disease: Pemphigus and Bullous Pemphigoid. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:175-97. [PMID: 26907530 DOI: 10.1146/annurev-pathol-012615-044313] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pemphigus and bullous pemphigoid are autoantibody-mediated blistering skin diseases. In pemphigus, keratinocytes in epidermis and mucous membranes lose cell-cell adhesion, and in pemphigoid, the basal keratinocytes lose adhesion to the basement membrane. Pemphigus lesions are mediated directly by the autoantibodies, whereas the autoantibodies in pemphigoid fix complement and mediate inflammation. In both diseases, the autoantigens have been cloned and characterized; pemphigus antigens are desmogleins (cell adhesion molecules in desmosomes), and pemphigoid antigens are found in hemidesmosomes (which mediate adhesion to the basement membrane). This knowledge has enabled diagnostic testing for these diseases by enzyme-linked immunosorbent assays and dissection of various pathophysiological mechanisms, including direct inhibition of cell adhesion, antibody-induced internalization of antigen, and cell signaling. Understanding these mechanisms of disease has led to rational targeted therapeutic strategies.
Collapse
Affiliation(s)
- Christoph M Hammers
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; .,Department of Dermatology, University of Luebeck, D-23562 Luebeck, Germany;
| | - John R Stanley
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
25
|
Di Zenzo G, Amber KT, Sayar BS, Müller EJ, Borradori L. Immune response in pemphigus and beyond: progresses and emerging concepts. Semin Immunopathol 2015; 38:57-74. [DOI: 10.1007/s00281-015-0541-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
26
|
Luyet C, Schulze K, Sayar BS, Howald D, Müller EJ, Galichet A. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris. PLoS One 2015; 10:e0119809. [PMID: 25748204 PMCID: PMC4352034 DOI: 10.1371/journal.pone.0119809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients' biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including cancer.
Collapse
Affiliation(s)
- Camille Luyet
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Katja Schulze
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beyza S. Sayar
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Denise Howald
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J. Müller
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Arnaud Galichet
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Li X, Ishii N, Ohata C, Furumura M, Hashimoto T. Signalling pathways in pemphigus vulgaris. Exp Dermatol 2014; 23:155-6. [PMID: 24387643 DOI: 10.1111/exd.12317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 12/20/2022]
Abstract
Acantholysis in pemphigus vulgaris is induced by binding of autoantibodies to desmoglein 3 (Dsg3). The roles of signalling pathways on development of acantholysis have recently been extensively studied. In the study by Sayar et al., recently published in Exp Dermatol, epidermal growth factor receptor (EGFR) signalling was activated in both in vivo and in vitro pemphigus vulgaris experimental models. However, while EGFR inhibitors suppressed activity of p38 mitogen-activated protein kinase (p38MAPK) linearly, they suppressed activity of c-Myc and acantholysis in a non-linear, V-shaped relationship. These findings indicated complicated interactions among EGFR, p38MAPK and c-Myc in pemphigus vulgaris pathology.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Dermatology, Kurume University School of Medicine and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
28
|
Hartlieb E, Rötzer V, Radeva M, Spindler V, Waschke J. Desmoglein 2 compensates for desmoglein 3 but does not control cell adhesion via regulation of p38 mitogen-activated protein kinase in keratinocytes. J Biol Chem 2014; 289:17043-53. [PMID: 24782306 DOI: 10.1074/jbc.m113.489336] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desmosomal cadherins are transmembrane adhesion molecules that provide cell adhesion by interacting in the intercellular space of adjacent cells. In keratinocytes, several desmoglein (Dsg1-4) and desmocollin (Dsc1-3) isoforms are coexpressed. We have shown previously that Dsg2 is less important for keratinocyte cohesion compared with Dsg3 and that the latter forms a complex with p38 MAPK. In this study, we compared the involvement of Dsg2 and Dsg3 in the p38 MAPK-dependent regulation of keratinocyte cohesion. We show that loss of cell adhesion and keratin filament retraction induced by Dsg3 depletion is ameliorated by specific p38 MAPK inhibition. Furthermore, in contrast to depletion of Dsg2, siRNA-mediated silencing of Dsg3 induced p38 MAPK activation, which is in line with immunoprecipitation experiments demonstrating the interaction of activated p38 MAPK with Dsg3 but not with Dsg2. Cell fractionation into a cytoskeleton-unbound and a cytoskeleton-anchored desmosome-containing pool revealed that Dsg3, in contrast to Dsg2, is present in relevant amounts in the unbound pool in which activated p38 MAPK is predominantly detectable. Moreover, because loss of cell adhesion by Dsg3 depletion was partially rescued by p38 MAPK inhibition, we conclude that, besides its function as an adhesion molecule, Dsg3 is strengthening cell cohesion via modulation of p38 MAPK-dependent keratin filament reorganization. Nevertheless, because subsequent targeting of Dsg3 in Dsg2-depleted cells led to drastically enhanced keratinocyte dissociation and Dsg2 was enhanced at the membrane in Dsg3 knockout cells, we conclude that Dsg2 compensates for Dsg3 loss of function.
Collapse
Affiliation(s)
- Eva Hartlieb
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Vera Rötzer
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Mariya Radeva
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Volker Spindler
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Jens Waschke
- From the Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| |
Collapse
|
29
|
Sehgal L, Mukhopadhyay A, Rajan A, Khapare N, Sawant M, Vishal SS, Bhatt K, Ambatipudi S, Antao N, Alam H, Gurjar M, Basu S, Mathur R, Borde L, Hosing AS, Vaidya MM, Thorat R, Samaniego F, Kolthur-Seetharam U, Dalal SN. 14-3-3γ-Mediated transport of plakoglobin to the cell border is required for the initiation of desmosome assembly in vitro and in vivo. J Cell Sci 2014; 127:2174-88. [PMID: 24610948 DOI: 10.1242/jcs.125807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The regulation of cell-cell adhesion is important for the processes of tissue formation and morphogenesis. Here, we report that loss of 14-3-3γ leads to a decrease in cell-cell adhesion and a defect in the transport of plakoglobin and other desmosomal proteins to the cell border in HCT116 cells and cells of the mouse testis. 14-3-3γ binds to plakoglobin in a PKCμ-dependent fashion, resulting in microtubule-dependent transport of plakoglobin to cell borders. Transport of plakoglobin to the border is dependent on the KIF5B-KLC1 complex. Knockdown of KIF5B in HCT116 cells, or in the mouse testis, results in a phenotype similar to that observed upon 14-3-3γ knockdown. Our results suggest that loss of 14-3-3γ leads to decreased desmosome formation and a decrease in cell-cell adhesion in vitro, and in the mouse testis in vivo, leading to defects in testis organization and spermatogenesis.
Collapse
Affiliation(s)
- Lalit Sehgal
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | - Anandi Rajan
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Nileema Khapare
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Mugdha Sawant
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Sonali S Vishal
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Khyati Bhatt
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Srikant Ambatipudi
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Noelle Antao
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Hunain Alam
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Mansa Gurjar
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Srikanta Basu
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Rohit Mathur
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lalit Borde
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Amol S Hosing
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Milind M Vaidya
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Rahul Thorat
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| | - Felipe Samaniego
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Sorab N Dalal
- KS215, ACTREC, Tata Memorial Centre Kharghar Node, Navi Mumbai 410210, India
| |
Collapse
|
30
|
Spindler V, Waschke J. Desmosomal Cadherins and Signaling: Lessons from Autoimmune Disease. ACTA ACUST UNITED AC 2014; 21:77-84. [DOI: 10.3109/15419061.2013.877000] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Plakoglobin but not desmoplakin regulates keratinocyte cohesion via modulation of p38MAPK signaling. J Invest Dermatol 2014; 134:1655-1664. [PMID: 24441103 DOI: 10.1038/jid.2014.21] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/25/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022]
Abstract
Plakoglobin (Pg) and desmoplakin (DP) are adapter proteins within the desmosome, providing a mechanical link between desmosomal cadherins as transmembrane adhesion molecules and the intermediate filament cytoskeleton. As in the severe skin blistering disease pemphigus, autoantibodies against desmosomal adhesion molecules induce loss of keratinocyte cohesion at least in part via p38 mitogen-activated protein kinase (p38MAPK) activation and depletion of desmosomal components, we evaluated the roles of Pg and DP in the p38MAPK-dependent loss of cell adhesion. Silencing of either Pg or DP reduced cohesion of cultured human keratinocytes in dissociation assays. However, Pg but not DP silencing caused activation of p38MAPK-dependent keratin filament collapse and cell dissociation. Interestingly, extranuclear but not nuclear Pg rescued loss of cell adhesion and keratin retraction. In line with this, Pg regulated the levels of the desmosomal adhesion molecule desmoglein 3 and tethered p38MAPK to desmosomal complexes. Our data demonstrate a role of extranuclear Pg in controlling cell adhesion via p38MAPK-dependent regulation of keratin filament organization.
Collapse
|
32
|
Cirillo N, AlShwaimi E, McCullough M, Prime SS. Pemphigus vulgaris autoimmune globulin induces Src-dependent tyrosine-phosphorylation of plakophilin 3 and its detachment from desmoglein 3. Autoimmunity 2013; 47:134-40. [PMID: 24328683 DOI: 10.3109/08916934.2013.866100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cell adhesion molecule plakophilin 3 (Pkp3) plays an essential role in the maintenance of skin integrity and is targeted in certain autoimmune conditions. In one example, we have shown that Pkp3 is instrumental in mediating the discohesive effects of sera from patients with pemphigus vulgaris (PV), a life-threatening autoimmune disease that targets intercellular adhesion in the epidermis. In the present study, we determine the effect of PV autoimmune globulin (PV IgG) on Pkp3 in an in-vitro model of PV. We demonstrate that Pkp3 becomes tyrosine phosphorylated as early as 30 min upon binding of PV IgG to keratinocyte surface and eventually detaches from its binding partner desmoglein 3 (Dsg3). In parallel, Pkp3 is depleted from the membrane (Triton X-soluble) fraction and accumulates in the cytoplasm within 240 min of incubation with PV IgG. Inhibition of Pkp3 phosphorylation by a Src inhibitor attenuates the discohesive effects of PV IgG. Taken together, the data demonstrate that activation of Src-kinase signalling is crucial for PV acantholysis and acts, at least in part, via phosphorylation of the adaptor protein Pkp3.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School & Oral Health CRC, The University of Melbourne , Melbourne , Australia
| | | | | | | |
Collapse
|
33
|
Abstract
Desmosomes anchor intermediate filaments at sites of cell contact established by the interaction of cadherins extending from opposing cells. The incorporation of cadherins, catenin adaptors, and cytoskeletal elements resembles the closely related adherens junction. However, the recruitment of intermediate filaments distinguishes desmosomes and imparts a unique function. By linking the load-bearing intermediate filaments of neighboring cells, desmosomes create mechanically contiguous cell sheets and, in so doing, confer structural integrity to the tissues they populate. This trait and a well-established role in human disease have long captured the attention of cell biologists, as evidenced by a publication record dating back to the mid-1860s. Likewise, emerging data implicating the desmosome in signaling events pertinent to organismal development, carcinogenesis, and genetic disorders will secure a prominent role for desmosomes in future biological and biomedical investigations.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University Feinberg, School of Medicine , Chicago, IL , USA
| | | |
Collapse
|
34
|
Tucker DK, Stahley SN, Kowalczyk AP. Plakophilin-1 protects keratinocytes from pemphigus vulgaris IgG by forming calcium-independent desmosomes. J Invest Dermatol 2013; 134:1033-1043. [PMID: 24056861 PMCID: PMC3961504 DOI: 10.1038/jid.2013.401] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 08/22/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022]
Abstract
Plakophilin-1 (PKP-1) is an armadillo family protein critical for desmosomal adhesion and epidermal integrity. In the autoimmune skin-blistering disease pemphigus vulgaris (PV), autoantibodies (IgG) target the desmosomal cadherin desmoglein 3 (Dsg3) and compromise keratinocyte cell-cell adhesion. Here, we report that enhanced expression of PKP-1 protects keratinocytes from PV IgG-induced loss of cell-cell adhesion. PKP-1 prevents loss of Dsg3 and other desmosomal proteins from cell-cell borders and prevents alterations in desmosome ultrastructure in keratinocytes treated with PV IgG. Using a series of Dsg3 chimeras and deletion constructs, we find that PKP-1 clusters Dsg3 with the desmosomal plaque protein desmoplakin in a manner dependent on the plakoglobin-binding domain of the Dsg3 tail. Furthermore, PKP-1 expression transforms desmosome adhesion from a calcium-dependent to a calcium-independent and hyperadhesive state. These results demonstrate that manipulating the expression of a single desmosomal plaque protein can block the pathogenic effects of PV IgG on keratinocyte adhesion.
Collapse
Affiliation(s)
- Dana K Tucker
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Sara N Stahley
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA; Department of Dermatology, Emory University, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
35
|
Spindler V, Rötzer V, Dehner C, Kempf B, Gliem M, Radeva M, Hartlieb E, Harms GS, Schmidt E, Waschke J. Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering. J Clin Invest 2013; 123:800-11. [PMID: 23298835 DOI: 10.1172/jci60139] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/08/2012] [Indexed: 11/17/2022] Open
Abstract
In pemphigus vulgaris, a life-threatening autoimmune skin disease, epidermal blisters are caused by autoantibodies primarily targeting desmosomal cadherins desmoglein 3 (DSG3) and DSG1, leading to loss of keratinocyte cohesion. Due to limited insights into disease pathogenesis, current therapy relies primarily on nonspecific long-term immunosuppression. Both direct inhibition of DSG transinteraction and altered intracellular signaling by p38 MAPK likely contribute to the loss of cell adhesion. Here, we applied a tandem peptide (TP) consisting of 2 connected peptide sequences targeting the DSG adhesive interface that was capable of blocking autoantibody-mediated direct interference of DSG3 transinteraction, as revealed by atomic force microscopy and optical trapping. Importantly, TP abrogated autoantibody-mediated skin blistering in mice and was effective when applied topically. Mechanistically, TP inhibited both autoantibody-induced p38 MAPK activation and its association with DSG3, abrogated p38 MAPK-induced keratin filament retraction, and promoted desmosomal DSG3 oligomerization. These data indicate that p38 MAPK links autoantibody-mediated inhibition of DSG3 binding to skin blistering. By limiting loss of DSG3 transinteraction, p38 MAPK activation, and keratin filament retraction, which are hallmarks of pemphigus pathogenesis, TP may serve as a promising treatment option.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Signaling dependent and independent mechanisms in pemphigus vulgaris blister formation. PLoS One 2012; 7:e50696. [PMID: 23226536 PMCID: PMC3513318 DOI: 10.1371/journal.pone.0050696] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/23/2012] [Indexed: 11/26/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies directed against the desmosomal cadherin desmoglein-3 (Dsg3). Significant advances in our understanding of pemphigus pathomechanisms have been derived from the generation of pathogenic monoclonal Dsg3 antibodies. However, conflicting models for pemphigus pathogenicity have arisen from studies using either polyclonal PV patient IgG or monoclonal Dsg3 antibodies. In the present study, the pathogenic mechanisms of polyclonal PV IgG and monoclonal Dsg3 antibodies were directly compared. Polyclonal PV IgG cause extensive clustering and endocytosis of keratinocyte cell surface Dsg3, whereas pathogenic mouse monoclonal antibodies compromise cell-cell adhesion strength without causing these alterations in Dsg3 trafficking. Furthermore, tyrosine kinase or p38 MAPK inhibition prevents loss of keratinocyte adhesion in response to polyclonal PV IgG. In contrast, disruption of adhesion by pathogenic monoclonal antibodies is not prevented by these inhibitors either in vitro or in human skin explants. Our results reveal that the pathogenic activity of polyclonal PV IgG can be attributed to p38 MAPK-dependent clustering and endocytosis of Dsg3, whereas pathogenic monoclonal Dsg3 antibodies can function independently of this pathway. These findings have important implications for understanding pemphigus pathophysiology, and for the design of pemphigus model systems and therapeutic interventions.
Collapse
|
37
|
Abstract
Desmosomes are intercellular adhesive junctions that are particularly prominent in tissues experiencing mechanical stress, such as the heart and epidermis. Whereas the related adherens junction links actin to calcium-dependent adhesion molecules known as classical cadherins, desmosomes link intermediate filaments (IF) to the related subfamily of desmosomal cadherins. By tethering these stress-bearing cytoskeletal filaments to the plasma membrane, desmosomes serve as integrators of the IF cytoskeleton throughout a tissue. Recent evidence suggests that IF attachment in turn strengthens desmosomal adhesion. This collaborative arrangement results in formation of a supracellular network, which is critical for imparting mechanical integrity to tissues. Diseases and animal models targeting desmosomal components highlight the importance of desmosomes in development and tissue integrity, while the downregulation of individual protein components in cancer metastasis and wound healing suggests their importance in cell homeostasis. This chapter will provide an update on desmosome composition, function, and regulation, and will also discuss recent work which raises the possibility that desmosome proteins do more than play a structural role in tissues where they reside.
Collapse
|
38
|
The desmosomal armadillo protein plakoglobin regulates prostate cancer cell adhesion and motility through vitronectin-dependent Src signaling. PLoS One 2012; 7:e42132. [PMID: 22860065 PMCID: PMC3408445 DOI: 10.1371/journal.pone.0042132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 07/03/2012] [Indexed: 02/02/2023] Open
Abstract
Plakoglobin (PG) is an armadillo protein that associates with both classic and desmosomal cadherins, but is primarily concentrated in mature desmosomes in epithelia. While reduced levels of PG have been reported in localized and hormone refractory prostate tumors, the functional significance of these changes is unknown. Here we report that PG expression is reduced in samples of a prostate tumor tissue array and inversely correlated with advancing tumor potential in 7 PCa cell lines. Ectopically expressed PG enhanced intercellular adhesive strength, and attenuated the motility and invasion of aggressive cell lines, whereas silencing PG in less tumorigenic cells had the opposite effect. PG also regulated cell-substrate adhesion and motility through extracellular matrix (ECM)-dependent inhibition of Src kinase, suggesting that PG’s effects were not due solely to increased intercellular adhesion. PG silencing resulted in elevated levels of the ECM protein vitronectin (VN), and exposing PG-expressing cells to VN induced Src activity. Furthermore, increased VN levels and Src activation correlated with diminished expression of PG in patient tissues. Thus, PG may inhibit Src by keeping VN low. Our results suggest that loss of intercellular adhesion due to reduced PG expression might be exacerbated by activation of Src through a PG-dependent mechanism. Furthermore, PG down-regulation during PCa progression could contribute to the known VN-dependent promotion of PCa invasion and metastasis, demonstrating a novel functional interaction between desmosomal cell-cell adhesion and cell-substrate adhesion signaling axes in prostate cancer.
Collapse
|
39
|
Abstract
Much of the original research on desmosomes and their biochemical components was through analysis of skin and mucous membranes. The identification of desmogleins 1 and 3, desmosomal adhesion glycoproteins, as targets in pemphigus, a fatal autoimmune blistering disease of the skin and mucous membranes, provided the first link between desmosomes, desmogleins, and human diseases. The clinical and histological similarities of staphylococcal scalded skin syndrome or bullous impetigo and pemphigus foliaceus led us to identify desmoglein 1 as the proteolytic target of staphylococcal exfoliative toxins. Genetic analysis of striate palmoplantar keratoderma and hypotrichosis identified their responsible genes as desmogleins 1 and 4, respectively. More recently, these fundamental findings in cutaneous biology were extended beyond the skin. Desmoglein 2, which is expressed earliest among the four isoforms of desmoglein in development and found in all desmosome-bearing epithelial cells, was found to be mutated in arrythmogenic right ventricular cardiomyopathy and has also been identified as a receptor for a subset of adenoviruses that cause respiratory and urinary tract infections. The story of desmoglein research illuminates how dermatological research, originally focused on one skin disease, pemphigus, has contributed to understanding the biology and pathophysiology of many seemingly unrelated tissues and diseases.
Collapse
Affiliation(s)
- Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - John R. Stanley
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Tsang SM, Brown L, Lin K, Liu L, Piper K, O'Toole EA, Grose R, Hart IR, Garrod DR, Fortune F, Wan H. Non-junctional human desmoglein 3 acts as an upstream regulator of Src in E-cadherin adhesion, a pathway possibly involved in the pathogenesis of pemphigus vulgaris. J Pathol 2012; 227:81-93. [DOI: 10.1002/path.3982] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/03/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022]
|
41
|
An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris. J Invest Dermatol 2011; 132:346-55. [PMID: 21956125 PMCID: PMC3258361 DOI: 10.1038/jid.2011.299] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Evidence has accumulated that changes in intracellular signaling downstream of desmoglein 3 (Dsg3) may play a significant role in epithelial blistering in the autoimmune disease pemphigus vulgaris (PV). Currently, most studies on PV involve passive transfer of pathogenic antibodies into neonatal mice which have not finalized epidermal morphogenesis, and do not permit analysis of mature hair follicles (HFs) and stem cell niches. To investigate Dsg3 antibody-induced signaling in the adult epidermis at defined stages of the HF cycle, we here developed a model with passive transfer of the monospecific pathogenic Dsg3 antibody AK23 into adult 8-week-old C57Bl/6J mice. Validated using histopathological and molecular methods, we found that this model faithfully recapitulates major features described in PV patients and PV models. Two hours after AK23 transfer we observed widening of intercellular spaces between desmosomes and EGFR activation, followed by increased Myc expression and epidermal hyperproliferation, desmosomal Dsg3 depletion and predominant blistering in HFs and oral mucosa. These data confirm that the adult passive transfer mouse model is ideally suited for detailed studies of Dsg3 antibody-mediated signaling in adult skin, providing the basis for investigations on novel keratinocyte-specific therapeutic strategies.
Collapse
|
42
|
Abstract
The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients.
Collapse
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
43
|
The extent of desmoglein 3 depletion in pemphigus vulgaris is dependent on Ca(2+)-induced differentiation: a role in suprabasal epidermal skin splitting? THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1905-16. [PMID: 21864491 DOI: 10.1016/j.ajpath.2011.06.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 05/18/2011] [Accepted: 06/22/2011] [Indexed: 01/24/2023]
Abstract
Pemphigus vulgaris (PV) is an autoimmune disease of the skin and mucous membranes and is characterized by development of autoantibodies against the desmosomal cadherins desmoglein (Dsg) 3 and Dsg1 and formation of intraepidermal suprabasal blisters. Depletion of Dsg3 is a critical mechanism in PV pathogenesis. Because we did not detect reduced Dsg3 levels in keratinocytes cultured for longer periods under high-Ca(2+) conditions, we hypothesized that Dsg depletion depends on Ca(2+)-mediated keratinocyte differentiation. Our data indicate that depletion of Dsg3 occurs specifically in deep epidermal layers both in skin of patients with PV and in an organotypic raft model of human epidermis incubated using IgG fractions from patients with PV. In addition, Dsg3 depletion and loss of Dsg3 staining were prominent in cultured primary keratinocytes and in HaCaT cells incubated in high-Ca(2+) medium for 3 days, but were less pronounced in HaCaT cultures after 8 days. These effects were dependent on protein kinase C signaling because inhibition of protein kinase C blunted both Dsg3 depletion and loss of intercellular adhesion. Moreover, protein kinase C inhibition blocked suprabasal Dsg3 depletion in cultured human epidermis and blister formation in a neonatal mouse model. Considered together, our data indicate a contribution of Dsg depletion to PV pathogenesis dependent on Ca(2+)-induced differentiation. Furthermore, prominent depletion in basal epidermal layers may contribute to the suprabasal cleavage plane observed in PV.
Collapse
|
44
|
Tsunoda K, Ota T, Saito M, Hata T, Shimizu A, Ishiko A, Yamada T, Nakagawa T, Kowalczyk AP, Amagai M. Pathogenic relevance of IgG and IgM antibodies against desmoglein 3 in blister formation in pemphigus vulgaris. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:795-806. [PMID: 21718682 DOI: 10.1016/j.ajpath.2011.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 04/19/2011] [Accepted: 04/29/2011] [Indexed: 11/17/2022]
Abstract
Pemphigus vulgaris is an autoimmune disease caused by IgG antibodies against desmoglein 3 (Dsg3). Previously, we isolated a pathogenic mAb against Dsg3, AK23 IgG, which induces a pemphigus vulgaris-like phenotype characterized by blister formation. In the present study, we generated a transgenic mouse expressing AK23 IgM to examine B-cell tolerance and the pathogenic role of IgM. Autoreactive transgenic B cells were found in the spleen and lymph nodes, whereas anti-Dsg3 AK23 IgM was detected in the cardiovascular circulation. The transgenic mice did not develop an obvious pemphigus vulgaris phenotype, however, even though an excess of AK23 IgM was passively transferred to neonatal mice. Similarly, when hybridoma cells producing AK23 IgM were inoculated into adult mice, no blistering was observed. Immunoelectron microscopy revealed IgM binding at the edges of desmosomes or interdesmosomal cell membranes, but not in the desmosome core, where AK23 IgG binding has been frequently detected. Furthermore, in an in vitro dissociation assay using cultured keratinocytes, AK23 IgG and AK23 IgM F(ab')(2) fragments, but not AK23 IgM, induced fragmentation of epidermal sheets. Together, these observations indicate that antibodies must gain access to Dsg3 integrated within desmosomes to induce the loss of keratinocyte cell-cell adhesion. These findings provide an important framework for improved understanding of B-cell tolerance and the pathophysiology of blister formation in pemphigus.
Collapse
Affiliation(s)
- Kazuyuki Tsunoda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Spindler V, Waschke J. Role of Rho GTPases in desmosomal adhesion and pemphigus pathogenesis. Ann Anat 2011; 193:177-80. [PMID: 21441018 DOI: 10.1016/j.aanat.2011.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 12/12/2022]
Abstract
Desmosomes are distinct intercellular contacts essential to the integrity of epithelial tissues and the heart muscle. This function is impaired in the disease pemphigus, in which patients develop autoantibodies against the cadherin-type desmosomal core proteins desmogleins. Autoantibody binding induces loss of cell-cell adhesion leading to blisters within the epidermis and mucous membranes. Despite the relevance of desmosomes for integrity of such essential organs as the skin, data on the regulation of desmosome assembly and maintenance and desmosome-mediated adhesion are only slowly emerging. Small guanosine triphosphatases (GTPases) of the Rho family have long been established as regulators of other cell junctions such as adherens junctions, but also have been implicated in participating in the formation of desmosomes. In this short review we summarize two papers from our group dealing with the role of Rho family GTPases for desmosomal adhesion and pemphigus and discuss these data integrating novel work recently published.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany.
| | | |
Collapse
|
46
|
Wu X, Peters-Hall JR, Ghimbovschi S, Mimms R, Rose MC, Peña MT. Glandular gene expression of sinus mucosa in chronic rhinosinusitis with and without cystic fibrosis. Am J Respir Cell Mol Biol 2010; 45:525-33. [PMID: 21177983 DOI: 10.1165/rcmb.2010-0133oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Secretory cells in submucosal glands (SMGs) secrete antibacterial proteins and mucin glycoproteins into the apical lumen of the respiratory tract, and these are critical for innate immune mucosal integrity. Glandular hyperplasia is manifested in diseases with obstructive respiratory pathologies associated with mucous hypersecretion, and is predominant in the sinus mucosa of patients with chronic rhinosinusitis (CRS), cystic fibrosis (CF), and clinical symptoms of CRS. To gain insights into the molecular basis of SMG hyperplasia in CRS, gene expression microarray analyses were performed to identify the differences in global and specific gene expression in the sinus mucosa of control, CRS, and CRS/CF patients. A marked up-regulation of 11 glandular-associated genes in CRS and CRS/CF sinus mucosa was evident. The RNA and protein expressions of the four most highly up-regulated genes (DSG3, KRT14, PTHLH, and OTX2) were evaluated. An increased expression of DSG3, KRT14, and PTHLH was demonstrated at the mRNA and protein levels in both CRS and CRS/CF sinus mucosa, whereas the increased expression of OTX2 was evident only for CRS/CF sinus mucosa, implicating OTX2 as a CF-specific gene. Immunofluorescence analysis localized DSG3, PTHLH, and OTX2 to serous cells, and KRT14 to myoepithelial cells, in SMGs. Because glandular hyperplasia is a central histologic feature of CRS, the identification of overexpressed glandular genes in the sinus mucosa lays the groundwork for future studies of glandular hyperplasia, and may ultimately lead to the development of novel treatments for mucous hypersecretion in patients with CRS.
Collapse
Affiliation(s)
- Xiaofang Wu
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tsang SM, Liu L, Teh MT, Wheeler A, Grose R, Hart IR, Garrod DR, Fortune F, Wan H. Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src. PLoS One 2010; 5:e14211. [PMID: 21151980 PMCID: PMC2997060 DOI: 10.1371/journal.pone.0014211] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/12/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Desmoglein 3 (Dsg3), a desmosomal adhesion protein, is expressed in basal and immediate suprabasal layers of skin and across the entire stratified squamous epithelium of oral mucosa. However, increasing evidence suggests that the role of Dsg3 may involve more than just cell-cell adhesion. METHODOLOGY/PRINCIPAL FINDINGS To determine possible additional roles of Dsg3 during epithelial cell adhesion we used overexpression of full-length human Dsg3 cDNA, and RNAi-mediated knockdown of this molecule in various epithelial cell types. Overexpression of Dsg3 resulted in a reduced level of E-cadherin but a colocalisation with the E-cadherin-catenin complex of the adherens junctions. Concomitantly these transfected cells exhibited marked migratory capacity and the formation of filopodial protrusions. These latter events are consistent with Src activation and, indeed, Src-specific inhibition reversed these phenotypes. Moreover Dsg3 knockdown, which also reversed the decreased level of E-cadherin, partially blocked Src phosphorylation. CONCLUSIONS/SIGNIFICANCE Our data are consistent with the possibility that Dsg3, as an up-stream regulator of Src activity, helps regulate adherens junction formation.
Collapse
Affiliation(s)
- Siu Man Tsang
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Li Liu
- Centre for Infectious Disease, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Ann Wheeler
- Imaging Facility, Blizard Institute of Cell and Molecular Sciences, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Richard Grose
- Centre for Tumor Biology, Institute of Cancer, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Ian R. Hart
- Centre for Tumor Biology, Institute of Cancer, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - David R. Garrod
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- King Saud University, Riyadh, Saudi Arabia
| | - Farida Fortune
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Hong Wan
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
48
|
Spindler V, Vielmuth F, Schmidt E, Rubenstein DS, Waschke J. Protective endogenous cyclic adenosine 5'-monophosphate signaling triggered by pemphigus autoantibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6831-8. [PMID: 21037102 PMCID: PMC3129745 DOI: 10.4049/jimmunol.1002675] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pemphigus vulgaris (PV) is an autoimmune skin disease mediated by autoantibodies directed against the cadherin-type cell adhesion molecules desmoglein (Dsg) 3 and Dsg1 and is characterized by loss of keratinocyte cohesion and epidermal blistering. Several intracellular signaling pathways, such as p38MAPK activation and RhoA inhibition, have been demonstrated to be altered following autoantibody binding and to be causally involved in loss of keratinocyte cohesion. In this paper, we demonstrate that cAMP-mediated signaling completely prevented blister formation in a neonatal pemphigus mouse model. Furthermore, elevation of cellular cAMP levels by forskolin/rolipram or β receptor agonist isoproterenol blocked loss of intercellular adhesion, depletion of cellular Dsg3, and morphologic changes induced by Ab fractions of PV patients (PV-IgG) in cultured keratinocytes. Incubation with PV-IgG alone increased cAMP levels, indicating that cAMP elevation may be a cellular response pathway to strengthen intercellular adhesion. Our data furthermore demonstrate that this protective pathway may involve protein kinase A signaling because protein kinase A inhibition attenuated recovery from PV-IgG-induced cell dissociation. Finally, cAMP increase interfered with PV-IgG-induced signaling by preventing p38MAPK activation both in vitro and in vivo. Taken together, our data provide insights into the cellular response mechanisms following pemphigus autoantibody binding and point to a possible novel and more specific therapeutic approach in pemphigus.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg
| | | | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - David S. Rubenstein
- Department of Dermatology, University of North Carolina, Chapel Hill, NC 27599
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg
| |
Collapse
|
49
|
Simpson CL, Kojima SI, Cooper-Whitehair V, Getsios S, Green KJ. Plakoglobin rescues adhesive defects induced by ectodomain truncation of the desmosomal cadherin desmoglein 1: implications for exfoliative toxin-mediated skin blistering. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2921-37. [PMID: 21075858 DOI: 10.2353/ajpath.2010.100397] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Desmoglein 1 (Dsg1) is a desmosomal cadherin that is essential to epidermal integrity. In the blistering diseases bullous impetigo and staphylococcal scalded-skin syndrome, pathogenesis depends on cleavage of Dsg1 by a bacterial protease, exfoliative toxin A, which removes residues 1 to 381 of the Dsg1 ectodomain. However, the cellular responses to Dsg1 cleavage that precipitate keratinocyte separation to induce blister formation are unknown. Here, we show that ectodomain-deleted Dsg1 (Δ381-Dsg1) mimics the toxin-cleaved cadherin, disrupts desmosomes, and reduces the mechanical integrity of keratinocyte sheets. In addition, we demonstrate that truncated Dsg1 remains associated with its catenin partner, plakoglobin, and causes a reduction in the levels of endogenous desmosomal cadherins in a dose-dependent manner, leading us to hypothesize that plakoglobin sequestration by truncated Dsg1 destabilizes other cadherins. Accordingly, a triple-point mutant of the ectodomain-deleted cadherin, which is uncoupled from plakoglobin, does not impair adhesion, indicating that this interaction is essential to the pathogenic potential of truncated Dsg1. Moreover, we demonstrate that increasing plakoglobin levels rescues cadherin expression, desmosome organization, and functional adhesion in cells expressing Δ381-Dsg1 or treated with exfoliative toxin A. Finally, we report that histone deacetylase inhibition up-regulates desmosomal cadherins and prevents the loss of adhesion induced by Dsg1 truncation. These findings further our understanding of the mechanism of exfoliative toxin-induced pathology and suggest novel strategies to suppress blistering in bulbous impetigo and staphylococcal scalded-skin syndrome.
Collapse
Affiliation(s)
- Cory L Simpson
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
50
|
Mimouni D, Blank M, Payne AS, Anhalt GJ, Avivi C, Barshack I, David M, Shoenfeld Y. Efficacy of intravenous immunoglobulin (IVIG) affinity-purified anti-desmoglein anti-idiotypic antibodies in the treatment of an experimental model of pemphigus vulgaris. Clin Exp Immunol 2010; 162:543-9. [PMID: 20964642 DOI: 10.1111/j.1365-2249.2010.04265.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pemphigus vulgaris is a rare life-threatening autoimmune bullous disease caused by immunoglobulin G (IgG) autoantibodies directed against desmogleins 1 and 3. Previously, we showed that intravenous immunoglobulin (IVIG) ameliorates anti-desmoglein-induced experimental pemphigus vulgaris in newborn naive mice. The aim of this study was to examine the efficacy of anti-anti-desmoglein-specific IVIG in a similar model. Pemphigus-vulgaris-specific IVIG (PV-sIVIG) was affinity-purified from IVIG on a column of single-chain variable fragment (scFv) anti-desmogleins 1 and 3. The anti-idiotypic activity of PV-sIVIG was confirmed by enzyme-linked immunosorbent assay, inhibition assay. After induction of pemphigus by injection of anti-desmogleins 1 and 3 scFv to newborn mice, the animals were treated with PV-sIVIG, IVIG (low or high dose) or IgG from a healthy donor (n = 10 each). The skin was examined 24-48 h later, and samples of affected areas were analysed by histology and immunofluorescence. In vitro study showed that PV-sIVIG significantly inhibited anti-desmogleins 1 and 3 scFv binding to recombinant desmoglein-3 in a dose-dependent manner. Specificity was confirmed by inhibition assay. In vivo analysis revealed cutaneous lesions of pemphigus vulgaris in mice injected with normal IgG (nine of 10 mice) or low-dose IVIG (nine of 10 mice), but not in mice treated with PV-sIVIG (none of 10) or high-dose IVIG (none of 10). On immunopathological study, PV-sIVIG and regular IVIG prevented the formation of acantholysis and deposition of IgG in intercellular spaces. In conclusion, the PV-sIVIG preparation is more effective than native IVIG in inhibiting anti-desmoglein-induced pemphigus vulgaris in mice and might serve as a future therapy in patients with the clinical disease.
Collapse
Affiliation(s)
- D Mimouni
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|