1
|
Johansen AM, Forsythe SD, McGrath CT, Barker G, Jimenez H, Paluri RK, Pasche BC. TGFβ in Pancreas and Colorectal Cancer: Opportunities to Overcome Therapeutic Resistance. Clin Cancer Res 2024; 30:3676-3687. [PMID: 38916900 PMCID: PMC11371528 DOI: 10.1158/1078-0432.ccr-24-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
TGFβ is a pleiotropic signaling pathway that plays a pivotal role in regulating a multitude of cellular functions. TGFβ has a dual role in cell regulation where it induces growth inhibition and cell death; however, it can switch to a growth-promoting state under cancerous conditions. TGFβ is upregulated in colorectal cancer and pancreatic cancer, altering the tumor microenvironment and immune system and promoting a mesenchymal state. The upregulation of TGFβ in certain cancers leads to resistance to immunotherapy, and attempts to inhibit TGFβ expression have led to reduced therapeutic resistance when combined with chemotherapy and immunotherapy. Here, we review the current TGFβ inhibitor drugs in clinical trials for pancreatic and colorectal cancer, with the goal of uncovering advances in improving clinical efficacy for TGFβ combinational treatments in patients. Furthermore, we discuss the relevance of alterations in TGFβ signaling and germline variants in the context of personalizing treatment for patients who show lack of response to current therapeutics.
Collapse
Affiliation(s)
- Allan M Johansen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Steven D Forsythe
- Neuroendocrine Therapy Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Callum T McGrath
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Grayson Barker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Hugo Jimenez
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Ravi K Paluri
- Section of Hematology/Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Boris C Pasche
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
2
|
Li L, Lu L, Xiao Z, Lv J, Huang H, Wu B, Zhao T, Li C, Wang W, Wang H. Deamidation enables pathogenic SMAD6 variants to activate the BMP signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1915-1927. [PMID: 38913236 DOI: 10.1007/s11427-023-2532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/23/2024] [Indexed: 06/25/2024]
Abstract
The BMP signaling pathway plays a crucial role in regulating early embryonic development and tissue homeostasis. SMAD6 encodes a negative regulator of BMP, and rare variants of SMAD6 are recurrently found in individuals with birth defects. However, we observed that a subset of rare pathogenic variants of SMAD6 consistently exhibited positive regulatory effects instead of the initial negative effects on the BMP signaling pathway. We sought to determine whether these SMAD6 variants have common pathogenic mechanisms. Here, we showed that pathogenic SMAD6 variants accompanying this functional reversal exhibit similar increases in deamidation. Mechanistically, increased deamidation of SMAD6 variants promotes the accumulation of the BMP receptor BMPR1A and the formation of new complexes, both of which lead to BMP signaling pathway activation. Specifically, two residues, N262 and N404, in SMAD6 were identified as the crucial sites of deamidation, which was catalyzed primarily by glutamine-fructose-6-phosphate transaminase 2 (GFPT2). Additionally, treatment of cells harboring SMAD6 variants with a deamidase inhibitor restored the inhibitory effect of SMAD6 on the BMP signaling pathway. Conversely, when wild-type SMAD6 was manually simulated to mimic the deamidated state, the reversed function of activating BMP signaling was reproduced. Taken together, these findings show that deamidation of SMAD6 plays a crucial role in the functional reversal of BMP signaling activity, which can be induced by a subset of various SMAD6 variants. Our study reveals a common pathogenic mechanism shared by these variants and provides a potential strategy for preventing birth defects through deamidation regulation, which might prevent the off-target effects of gene editing.
Collapse
Affiliation(s)
- Ling Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Lei Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Ziqi Xiao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingyi Lv
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China
| | - Bo Wu
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China
| | - Tongjin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Chengtao Li
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weimin Wang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, and Children's Hospital, Fudan University, Shanghai, 200090, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Prenatal Diagnosis Center of Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518028, China.
| |
Collapse
|
3
|
Voytyuk O, Ohata Y, Moustakas A, Ten Dijke P, Heldin CH. Smad7 palmitoylation by the S-acyltransferase zDHHC17 enhances its inhibitory effect on TGF-β/Smad signaling. J Biol Chem 2024; 300:107462. [PMID: 38876303 PMCID: PMC11277750 DOI: 10.1016/j.jbc.2024.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Intracellular signaling by the pleiotropic cytokine transforming growth factor-β (TGF-β) is inhibited by Smad7 in a feedback control mechanism. The activity of Smad7 is tightly regulated by multiple post-translational modifications. Using resin-assisted capture and metabolic labeling methods, we show here that Smad7 is S-palmitoylated in mammary epithelial cell models that are widely studied because of their strong responses to TGF-β and their biological relevance to mammary development and tumor progression. S-palmitoylation of Smad7 is mediated by zDHHC17, a member of a family of 23 S-acyltransferase enzymes. Moreover, we identified four cysteine residues (Cys202, Cys225, Cys415, and Cys417) in Smad7 as palmitoylation acceptor sites. S-palmitoylation of Smad7 on Cys415 and Cys417 promoted the translocation of Smad7 from the nucleus to the cytoplasm, enhanced the stability of the Smad7 protein, and enforced its inhibitory effect on TGF-β-induced Smad transcriptional response. Thus, our findings reveal a new post-translational modification of Smad7, and highlight an important role of S-palmitoylation to enhance inhibition of TGF-β/Smad signaling by Smad7.
Collapse
Affiliation(s)
- Oleksandr Voytyuk
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden.
| | - Yae Ohata
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Mignini I, Blasi V, Termite F, Esposto G, Borriello R, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Fibrostenosing Crohn's Disease: Pathogenetic Mechanisms and New Therapeutic Horizons. Int J Mol Sci 2024; 25:6326. [PMID: 38928032 PMCID: PMC11204249 DOI: 10.3390/ijms25126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Bowel strictures are well recognized as one of the most severe complications in Crohn's disease, with variable impacts on the prognosis and often needing surgical or endoscopic treatment. Distinguishing inflammatory strictures from fibrotic ones is of primary importance due to the different therapeutic approaches required. Indeed, to better understand the pathogenesis of fibrosis, it is crucial to investigate molecular processes involving genetic factors, cytokines, alteration of the intestinal barrier, and epithelial and endothelial damage, leading to an increase in extracellular matrix synthesis, which ultimately ends in fibrosis. In such a complex mechanism, the gut microbiota also seems to play a role. A better comprehension of molecular processes underlying bowel fibrosis, in addition to radiological and histopathological findings, has led to the identification of high-risk patients for personalized follow-up and testing of new therapies, primarily in preclinical models, targeting specific pathways involving Transforming Growth Factor-β, interleukins, extracellular matrix balance, and gut microbiota. Our review aims to summarize current evidence about molecular factors involved in intestinal fibrosis' pathogenesis, paving the way for potential diagnostic biomarkers or anti-fibrotic treatments for stricturing Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (V.B.); (G.E.); (R.B.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
5
|
Shah U, Patel N, Patel M, Rohit S, Solanki N, Patel A, Patel S, Patel V, Patel R, Jawarkar RD. Computational Exploration of Naturally Occurring Flavonoids as TGF-β Inhibitors in Breast Cancer: Insights from Docking and Molecular Dynamics Simulations and In-vitro Cytotoxicity Study. Chem Biodivers 2024; 21:e202301903. [PMID: 38623839 DOI: 10.1002/cbdv.202301903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Breast cancer is a global health concern, demanding innovative treatments. Targeting the Transforming Growth Factor-beta (TGF-β) signaling pathway, pivotal in breast cancer, is a promising approach. TGF-β inhibits proliferation via G1 phase cell cycle arrest, acting as a suppressor initially, but in later stages, it promotes progression by enhancing motility, invasiveness, and metastasis formation. This study explores naturally occurring flavonoids' interactions with TGF-β. Using molecular docking against the protein's crystal structure (PDB Id: 1PY5), Gossypin showed the highest docking score and underwent molecular dynamics simulation, revealing complex flexibility and explaining how flavonoids impede TGF-β signaling in breast cancer. ADMET predictions adhered to Lipinski's rule of Five. Insights into flavonoid-TGF-β binding offer a novel angle for breast cancer treatment. Flavonoids having a good docking score like gossypin, morin, luteolin and taxifolin shown potent cytotoxic effect on breast cancer cell line, MCF-7. Understanding these interactions could inspire flavonoid-based therapies targeting TGF-β to halt breast cancer growth. These findings pave the way for personalized, targeted breast cancer therapies, offering hope against this formidable disease.
Collapse
Affiliation(s)
- Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Niyati Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Shishir Rohit
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
- Kashiv Biosciences Pvt. Ltd., Ahmedabad, India
| | - Nilay Solanki
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Swayamprakash Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Vishwa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Rajvi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Rahul D Jawarkar
- Department of Pharmaceutical Chemistry, Dr Rajendra Gode Institute of Pharmacy, Mardi Road, Amravati, Maharashtra, India, 444602
| |
Collapse
|
6
|
Zong Y, Deng K, Chong WP. Regulation of Treg cells by cytokine signaling and co-stimulatory molecules. Front Immunol 2024; 15:1387975. [PMID: 38807592 PMCID: PMC11131382 DOI: 10.3389/fimmu.2024.1387975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune system, are responsible for maintaining immune homeostasis and preventing excessive immune responses. This review explores the signaling pathways of the cytokines that regulate Treg cells, including transforming growth factor beta (TGF-β), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance the immunosuppressive capabilities of Tregs. It also examines how, conversely, signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-α) can undermine Treg suppressive functions or even drive their reprogramming into effector T cells. The B7 family comprises indispensable co-stimulators for T cell activation. Among its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate the differentiation, function, and survival of Tregs. As Tregs play an essential role in maintaining immune homeostasis, their dysfunction contributes to the pathogenesis of autoimmune diseases. This review delves into the potential of employing Treg-based immunotherapy for the treatment of autoimmune diseases, transplant rejection, and cancer. By shedding light on these topics, this article aims to enhance our understanding of the regulation of Tregs by cytokines and their therapeutic potential for various pathological conditions.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kaihang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
7
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
8
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
10
|
Samani SL, Barlow SC, Freeburg LA, Jones TL, Poole M, Sarzynski MA, Zile MR, Shazly T, Spinale FG. Left ventricle function and post-transcriptional events with exercise training in pigs. PLoS One 2024; 19:e0292243. [PMID: 38306359 PMCID: PMC10836705 DOI: 10.1371/journal.pone.0292243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/14/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Standardized exercise protocols have been shown to improve overall cardiovascular fitness, but direct effects on left ventricular (LV) function, particularly diastolic function and relation to post-transcriptional molecular pathways (microRNAs (miRs)) are poorly understood. This project tested the central hypothesis that adaptive LV remodeling resulting from a large animal exercise training protocol, would be directly associated with specific miRs responsible for regulating pathways relevant to LV myocardial stiffness and geometry. METHODS AND RESULTS Pigs (n = 9; 25 Kg) underwent a 4 week exercise training protocol (10 degrees elevation, 2.5 mph, 10 min, 5 days/week) whereby LV chamber stiffness (KC) and regional myocardial stiffness (rKm) were measured by Doppler/speckle tracking echocardiography. Age and weight matched non-exercise pigs (n = 6) served as controls. LV KC fell by approximately 50% and rKm by 30% following exercise (both p < 0.05). Using an 84 miR array, 34 (40%) miRs changed with exercise, whereby 8 of the changed miRs (miR-19a, miR-22, miR-30e, miR-99a, miR-142, miR-144, miR-199a, and miR-497) were correlated to the change in KC (r ≥ 0.5 p < 0.05) and mapped to matrix and calcium handling processes. Additionally, miR-22 and miR-30e decreased with exercise and mapped to a localized inflammatory process, the inflammasome (NLRP-3, whereby a 2-fold decrease in NLRP-3 mRNA occurred with exercise (p < 0.05). CONCLUSION Chronic exercise reduced LV chamber and myocardial stiffness and was correlated to miRs that map to myocardial relaxation processes as well as local inflammatory pathways. These unique findings set the stage for utilization of myocardial miR profiling to identify underlying mechanisms by which exercise causes changes in LV myocardial structure and function.
Collapse
Affiliation(s)
- Stephanie L. Samani
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
| | - Shayne C. Barlow
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Lisa A. Freeburg
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
| | - Traci L. Jones
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Marlee Poole
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
| | - Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Michael R. Zile
- Division of Cardiology, RHJ Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC, United States of America
| | - Tarek Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, SC, United States of America
| | - Francis G. Spinale
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States of America
- Columbia VA Health Care System, Columbia, SC, United States of America
- College of Engineering and Computing, University of South Carolina, Columbia, SC, United States of America
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
11
|
Zhang Y, Wang J, Wang X, Li A, Lei Z, Li D, Xing D, Zhang Y, Su W, Jiao X. TXNIP aggravates cardiac fibrosis and dysfunction after myocardial infarction in mice by enhancing the TGFB1/Smad3 pathway and promoting NLRP3 inflammasome activation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1950-1960. [PMID: 37850269 PMCID: PMC10753373 DOI: 10.3724/abbs.2023150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/11/2023] [Indexed: 10/19/2023] Open
Abstract
Myocardial infarction (MI) results in high mortality. The size of fibrotic scar tissue following MI is an independent predictor of MI outcomes. Thioredoxin-interacting protein (TXNIP) is involved in various fibrotic diseases. Its role in post-MI cardiac fibrosis, however, remains poorly understood. In the present study, we investigate the biological role of TXNIP in post-MI cardiac fibrosis and the underlying mechanism using mouse MI models of the wild-type (WT), Txnip-knockout ( Txnip-KO) type and Txnip-knock-in ( Txnip-KI) type. After MI, the animals present with significantly upregulated TXNIP levels, and their fibrotic areas are remarkably expanded with noticeably impaired cardiac function. These changes are further aggravated under Txnip-KI conditions but are ameliorated in Txnip-KO animals. MI also leads to increased protein levels of the fibrosis indices Collagen I, Collagen III, actin alpha 2 (ACTA2), and connective tissue growth factor (CTGF). The Txnip-KI group exhibits the highest levels of these proteins, while the lowest levels are observed in the Txnip-KO mice. Furthermore, Txnip-KI significantly upregulates the levels of transforming growth factor (TGF)B1, p-Smad3, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), Cleaved Caspase-1, and interleukin (IL)1B after MI, but these effects are markedly offset by Txnip-KO. In addition, after MI, the Smad7 level significantly decreases, particularly in the Txnip-KI mice. TXNIP may aggravate the progression of post-MI fibrosis and cardiac dysfunction by activating the NLRP3 inflammasome, followed by IL1B generation and then the enhancement of the TGFB1/Smad3 pathway. As such, TXNIP might serve as a novel potential therapeutic target for the treatment of post-MI cardiac fibrosis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
- Department of Foreign LanguagesChangzhi Medical CollegeChangzhi046000China
| | - Jin Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xuejiao Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Aiyun Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Zhandong Lei
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Dongxue Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Dehai Xing
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Yichao Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Wanzhen Su
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
12
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
13
|
Sánchez-Duffhues G, Hiepen C. Human iPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023; 12:2200. [PMID: 37681932 PMCID: PMC10487005 DOI: 10.3390/cells12172200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Disturbances in bone morphogenetic protein (BMP) signalling contribute to onset and development of a number of rare genetic diseases, including Fibrodysplasia ossificans progressiva (FOP), Pulmonary arterial hypertension (PAH), and Hereditary haemorrhagic telangiectasia (HHT). After decades of animal research to build a solid foundation in understanding the underlying molecular mechanisms, the progressive implementation of iPSC-based patient-derived models will improve drug development by addressing drug efficacy, specificity, and toxicity in a complex humanized environment. We will review the current state of literature on iPSC-derived model systems in this field, with special emphasis on the access to patient source material and the complications that may come with it. Given the essential role of BMPs during embryonic development and stem cell differentiation, gain- or loss-of-function mutations in the BMP signalling pathway may compromise iPSC generation, maintenance, and differentiation procedures. This review highlights the need for careful optimization of the protocols used. Finally, we will discuss recent developments towards complex in vitro culture models aiming to resemble specific tissue microenvironments with multi-faceted cellular inputs, such as cell mechanics and ECM together with organoids, organ-on-chip, and microfluidic technologies.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), ISPA-HUCA, Avda. de Roma, s/n, 33011 Oviedo, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Christian Hiepen
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| |
Collapse
|
14
|
Hamang M, Yaden B, Dai G. Gastrointestinal pharmacology activins in liver health and disease. Biochem Pharmacol 2023; 214:115668. [PMID: 37364623 PMCID: PMC11234865 DOI: 10.1016/j.bcp.2023.115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Activins are a subgroup of the TGFβ superfamily of growth and differentiation factors, dimeric in nature and consisting of two inhibin beta subunits linked via a disulfide bridge. Canonical activin signaling occurs through Smad2/3, with negative feedback initiated by Smad6/7 following signal transduction, which binds activin type I receptor preventing phosphorylation of Smad2/3 and activation of downstream signaling. In addition to Smad6/7, other inhibitors of activin signaling have been identified as well, including inhibins (dimers of an inhibin alpha and beta subunit), BAMBI, Cripto, follistatin, and follistatin-like 3 (fstl3). To date, activins A, B, AB, C, and E have been identified and isolated in mammals, with activin A and B having the most characterization of biological activity. Activin A has been implicated as a regulator of several important functions of liver biology, including hepatocyte proliferation and apoptosis, ECM production, and liver regeneration; the role of other subunits of activin in liver physiology are less understood. There is mounting data to suggest a link between dysregulation of activins contributing to various hepatic diseases such as inflammation, fibrosis, and hepatocellular carcinoma, and emerging studies demonstrating the protective and regenerative effects of inhibiting activins in mouse models of liver disease. Due to their importance in liver biology, activins demonstrate utility as a therapeutic target for the treatment of hepatic diseases such as cirrhosis, NASH, NAFLD, and HCC; further research regarding activins may provide diagnostic or therapeutic opportunity for those suffering from various liver diseases.
Collapse
Affiliation(s)
- Matthew Hamang
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Benjamin Yaden
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| |
Collapse
|
15
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
16
|
Roles of TGF- β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24:e42. [PMID: 36345661 DOI: 10.1017/erm.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
17
|
Gao S, Li X, Jiang Q, Liang Q, Zhang F, Li S, Zhang R, Luan J, Zhu J, Gu X, Xiao T, Huang H, Chen S, Ning W, Yang G, Yang C, Zhou H. PKM2 promotes pulmonary fibrosis by stabilizing TGF-β1 receptor I and enhancing TGF-β1 signaling. SCIENCE ADVANCES 2022; 8:eabo0987. [PMID: 36129984 PMCID: PMC9491720 DOI: 10.1126/sciadv.abo0987] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease, and the molecular mechanisms remain poorly understood. Our findings demonstrated that pyruvate kinase M2 (PKM2) promoted fibrosis progression by directly interacting with Smad7 and reinforcing transforming growth factor-β1 (TGF-β1) signaling. Total PKM2 expression and the portion of the tetrameric form elevated in lungs and fibroblasts were derived from mice with bleomycin (BLM)-induced pulmonary fibrosis. Pkm2 deletion markedly alleviated BLM-induced fibrosis progression, myofibroblast differentiation, and TGF-β1 signaling activation. Further study showed that PKM2 tetramer enhanced TGF-β1 signaling by directly binding with Smad7 on its MH2 domain, and thus interfered with the interaction between Smad7 and TGF-β type I receptor (TβR1), decreased TβR1 ubiquitination, and stabilized TβR1. Pharmacologically enhanced PKM2 tetramer by TEPP-46 promoted BLM-induced pulmonary fibrosis, while tetramer disruption by compound 3k alleviated fibrosis progression. Our results demonstrate how PKM2 regulates TGF-β1 signaling and is a key factor in fibrosis progression.
Collapse
Affiliation(s)
- Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Qiuyan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Qing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Fangxia Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Ruiqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Jingyan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Shanshan Chen
- Respiratory department, The First Affiliated Hospital of Zhengzhou University, 450003 Zhangzhou, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, 300000 Tianjin, China
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, 300070 Tianjin, China
| |
Collapse
|
18
|
Smad-dependent pathways in the infarcted and failing heart. Curr Opin Pharmacol 2022; 64:102207. [DOI: 10.1016/j.coph.2022.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
|
19
|
Chen J, Chang R. Association of TGF-β Canonical Signaling-Related Core Genes With Aortic Aneurysms and Aortic Dissections. Front Pharmacol 2022; 13:888563. [PMID: 35517795 PMCID: PMC9065418 DOI: 10.3389/fphar.2022.888563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) signaling is essential for the maintenance of the normal structure and function of the aorta. It includes SMAD-dependent canonical pathways and noncanonical signaling pathways. Accumulated genetic evidence has shown that TGF-β canonical signaling-related genes have key roles in aortic aneurysms (AAs) and aortic dissections and many gene mutations have been identified in patients, such as those for transforming growth factor-beta receptor one TGFBR1, TGFBR2, SMAD2, SMAD3, SMAD4, and SMAD6. Aortic specimens from patients with these mutations often show paradoxically enhanced TGF-β signaling. Some hypotheses have been proposed and new AA models in mice have been constructed to reveal new mechanisms, but the role of TGF-β signaling in AAs is controversial. In this review, we focus mainly on the role of canonical signaling-related core genes in diseases of the aorta, as well as recent advances in gene-mutation detection, animal models, and in vitro studies.
Collapse
Affiliation(s)
- Jicheng Chen
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Rong Chang
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
20
|
Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022; 11:cells11091386. [PMID: 35563692 PMCID: PMC9102016 DOI: 10.3390/cells11091386] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022] Open
Abstract
The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart. During the inflammatory phase of infarct healing, the release of alarmins by necrotic cells promotes a pro-inflammatory and matrix-degrading fibroblast phenotype that may contribute to leukocyte recruitment. The clearance of dead cells and matrix debris from the infarct stimulates anti-inflammatory pathways and activates transforming growth factor (TGF)-β cascades, resulting in the conversion of fibroblasts to α-smooth muscle actin (α-SMA)-expressing myofibroblasts. Activated myofibroblasts secrete large amounts of matrix proteins and form a collagen-based scar that protects the infarcted ventricle from catastrophic complications, such as cardiac rupture. Moreover, infarct fibroblasts may also contribute to cardiac repair by stimulating angiogenesis. During scar maturation, fibroblasts disassemble α-SMA+ stress fibers and convert to specialized cells that may serve in scar maintenance. The prolonged activation of fibroblasts and myofibroblasts in the infarct border zone and in the remote remodeling myocardium may contribute to adverse remodeling and to the pathogenesis of heart failure. In addition to their phenotypic plasticity, fibroblasts exhibit remarkable heterogeneity. Subsets with distinct phenotypic profiles may be responsible for the wide range of functions of fibroblast populations in infarcted and remodeling hearts.
Collapse
|
21
|
Tewari D, Priya A, Bishayee A, Bishayee A. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin Transl Med 2022; 12:e795. [PMID: 35384373 PMCID: PMC8982327 DOI: 10.1002/ctm2.795] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the world's second leading cause of death, but a significant advancement in cancer treatment has been achieved within the last few decades. However, major adverse effects and drug resistance associated with standard chemotherapy have led towards targeted treatment options. OBJECTIVES Transforming growth factor-β (TGF-β) signaling plays a key role in cell proliferation, differentiation, morphogenesis, regeneration, and tissue homeostasis. The prime objective of this review is to decipher the role of TGF-β in oncogenesis and to evaluate the potential of various natural and synthetic agents to target this dysregulated pathway to confer cancer preventive and anticancer therapeutic effects. METHODS Various authentic and scholarly databases were explored to search and obtain primary literature for this study. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria was followed for the review. RESULTS Here we provide a comprehensive and critical review of recent advances on our understanding of the effect of various bioactive natural molecules on the TGF-β signaling pathway to evaluate their full potential for cancer prevention and therapy. CONCLUSION Based on emerging evidence as presented in this work, TGF-β-targeting bioactive compounds from natural sources can serve as potential therapeutic agents for prevention and treatment of various human malignancies.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of PharmacognosySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anu Priya
- Department of PharmacologySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | | | - Anupam Bishayee
- College of Osteopathic MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| |
Collapse
|
22
|
Sun Y, Li ZJ. The multifunctional adaptor protein HIP-55 couples Smad7 to accelerate TGF-β type I receptor degradation. Acta Pharmacol Sin 2022; 43:634-644. [PMID: 34331017 PMCID: PMC8888702 DOI: 10.1038/s41401-021-00741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional polypeptide that plays critical roles in regulating a broad range of cellular functions and physiological processes. TGF-β signalling dysfunction contributes to many disorders, such as cardiovascular diseases, cancer and immunological diseases. The homoeostasis of negative feedback regulation is critical for signal robustness, duration and specificity, which precisely control physiological and pathophysiological processes. However, the underlying mechanism by which the negative regulation of TGF-β signalling is integrated and coordinated is still unclear. Here, we reveal that haematopoietic progenitor kinase-interacting protein of 55 kDa (HIP-55) was upregulated upon TGF-β stimulation, while the loss of HIP-55 caused TGF-β signalling overactivation and the abnormal accumulation of downstream extracellular matrix (ECM) genes. HIP-55 interacts with Smad7 and competes with Smad7/Axin complex formation to inhibit the Axin-mediated degradation of Smad7. HIP-55 further couples Smad7 to TβRI but not TβRII, driving TβRI degradation. Altogether, our findings demonstrate a new mechanism by which the effector and negative feedback functions of HIP-55 are coupled and may provide novel strategies for the treatment of TGF-β signalling-related human diseases.
Collapse
Affiliation(s)
- Yang Sun
- grid.419897.a0000 0004 0369 313XDepartment of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191 China
| | - Zi-jian Li
- grid.419897.a0000 0004 0369 313XDepartment of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191 China
| |
Collapse
|
23
|
Humeres C, Shinde AV, Hanna A, Alex L, Hernández SC, Li R, Chen B, Conway SJ, Frangogiannis NG. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest 2022; 132:146926. [PMID: 34905511 PMCID: PMC8803336 DOI: 10.1172/jci146926] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Repair of the infarcted heart requires TGF-β/Smad3 signaling in cardiac myofibroblasts. However, TGF-β-driven myofibroblast activation needs to be tightly regulated in order to prevent excessive fibrosis and adverse remodeling that may precipitate heart failure. We hypothesized that induction of the inhibitory Smad, Smad7, may restrain infarct myofibroblast activation, and we examined the molecular mechanisms of Smad7 actions. In a mouse model of nonreperfused infarction, Smad3 activation triggered Smad7 synthesis in α-SMA+ infarct myofibroblasts, but not in α-SMA-PDGFRα+ fibroblasts. Myofibroblast-specific Smad7 loss increased heart failure-related mortality, worsened dysfunction, and accentuated fibrosis in the infarct border zone and in the papillary muscles. Smad7 attenuated myofibroblast activation and reduced synthesis of structural and matricellular extracellular matrix proteins. Smad7 effects on TGF-β cascades involved deactivation of Smad2/3 and non-Smad pathways, without any effects on TGF-β receptor activity. Unbiased transcriptomic and proteomic analysis identified receptor tyrosine kinase signaling as a major target of Smad7. Smad7 interacted with ErbB2 in a TGF-β-independent manner and restrained ErbB1/ErbB2 activation, suppressing fibroblast expression of fibrogenic proteases, integrins, and CD44. Smad7 induction in myofibroblasts serves as an endogenous TGF-β-induced negative feedback mechanism that inhibits postinfarction fibrosis by restraining Smad-dependent and Smad-independent TGF-β responses, and by suppressing TGF-β-independent fibrogenic actions of ErbB2.
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Arti V. Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Linda Alex
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Silvia C. Hernández
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nikolaos G. Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
24
|
Suliman HB, Healy Z, Zobi F, Kraft BD, Welty-Wolf K, Smith J, Barkauskas C, Piantadosi CA. Nuclear respiratory factor-1 negatively regulates TGF-β1 and attenuates pulmonary fibrosis. iScience 2022; 25:103535. [PMID: 34977500 PMCID: PMC8683592 DOI: 10.1016/j.isci.2021.103535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/02/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
The preclinical model of bleomycin-induced lung fibrosis is useful to study mechanisms related to human pulmonary fibrosis. Using BLM in mice, we find low HO-1 expression. Although a unique Rhenium-CO-releasing molecule (ReCORM) up-regulates HO-1, NRF-1, CCN5, and SMAD7, it reduces TGFβ1, TGFβr1, collagen, α-SMA, and phosphorylated Smad2/3 levels in mouse lung and in human lung fibroblasts. ChIP assay studies confirm NRF-1 binding to the promoters of TGFβ1 repressors CCN5 and Smad7. ReCORM did not blunt lung fibrosis in Hmox1-deficient alveolar type 2 cell knockout mice, suggesting this gene participates in lung protection. In human lung fibroblasts, TGFβ1-dependent production of α-SMA is abolished by ReCORM or by NRF-1 gene transfection. We demonstrate effective HO-1/NRF-1 signaling in lung AT2 cells protects against BLM induced lung injury and fibrosis by maintaining mitochondrial health, function, and suppressing the TGFβ1 pathway. Thus, protection of AT2 cell mitochondrial integrity via HO-1/NRF-1 presents an innovative therapeutic target.
Collapse
Affiliation(s)
- Hagir B. Suliman
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Zachary Healy
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Bryan D. Kraft
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Karen Welty-Wolf
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Joshua Smith
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Christina Barkauskas
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
| | - Claude A. Piantadosi
- Department of Medicine, Duke University School of Medicine, 200 Trent Drive, Durham, NC 27710, USA
- Department of Anaesthesiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
25
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Fisher AL, Babitt JL. Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Dev Dyn 2022; 251:26-46. [PMID: 33993583 PMCID: PMC8594283 DOI: 10.1002/dvdy.372] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated to balance the iron requirement for erythropoiesis and other vital cellular functions, while preventing cellular injury from iron excess. The liver hormone hepcidin is the master regulator of systemic iron balance by controlling the degradation and function of the sole known mammalian iron exporter ferroportin. Liver hepcidin expression is coordinately regulated by several signals that indicate the need for more or less iron, including plasma and tissue iron levels, inflammation, and erythropoietic drive. Most of these signals regulate hepcidin expression by modulating the activity of the bone morphogenetic protein (BMP)-SMAD pathway, which controls hepcidin transcription. Genetic disorders of iron overload and iron deficiency have identified several hepatocyte membrane proteins that play a critical role in mediating the BMP-SMAD and hepcidin regulatory response to iron. However, the precise molecular mechanisms by which serum and tissue iron levels are sensed to regulate BMP ligand production and promote the physical and/or functional interaction of these proteins to modulate SMAD signaling and hepcidin expression remain uncertain. This critical commentary will focus on the current understanding and key unanswered questions regarding how the liver senses iron levels to regulate BMP-SMAD signaling and thereby hepcidin expression to control systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Jodie L Babitt
- Corresponding author: Jodie L Babitt, Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. Mailing address: 185 Cambridge St., CPZN-8208, Boston, MA 02114. Telephone: +1 (617) 643-3181.
| |
Collapse
|
27
|
Genome-Wide Analysis of Smad7-Mediated Transcription in Mouse Embryonic Stem Cells. Int J Mol Sci 2021; 22:ijms222413598. [PMID: 34948395 PMCID: PMC8708723 DOI: 10.3390/ijms222413598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Smad7 has been identified as a negative regulator of the transforming growth factor TGF-β pathway by direct interaction with the TGF-β type I receptor (TβR-I). Although Smad7 has also been shown to play TGF-β unrelated functions in the cytoplasm and in the nucleus, a comprehensive analysis of its nuclear function has not yet been performed. Here, we show that in ESCs Smad7 is mainly nuclear and acts as a general transcription factor regulating several genes unrelated to the TGF-β pathway. Loss of Smad7 results in the downregulation of several key stemness master regulators, including Pou5f1 and Zfp42, and in the upregulation of developmental genes, with consequent loss of the stem phenotype. Integrative analysis of genome-wide mapping data for Smad7 and ESC self-renewal and pluripotency transcriptional regulators revealed that Smad7 co-occupies promoters of highly expressed key stemness regulators genes, by binding to a specific consensus response element NCGGAAMM. Altogether, our data establishes Smad7 as a new, integral component of the regulatory circuitry that controls ESC identity.
Collapse
|
28
|
Snyder LB, Lai Y, Doviak H, Freeburg LA, Laney VK, Moore A, Zellars KN, Matesic LE, Spinale FG. Ubiquitin ligase Wwp1 gene deletion attenuates diastolic dysfunction in pressure-overload hypertrophy. Am J Physiol Heart Circ Physiol 2021; 321:H976-H984. [PMID: 34559578 DOI: 10.1152/ajpheart.00032.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and accompanied by abnormal extracellular matrix (ECM) accumulation. The E3 ubiquitin ligase WWP1 is a fundamental determinant ECM turnover. We tested the hypothesis that genetic ablation of Wwp1 would alter the progression of LVPO-induced HFpEF. LV echocardiography in mice with global Wwp1 deletion (n = 23; Wwp1-/-) was performed at 12 wk of age (baseline) and then at 2 and 4 wk following LVPO (transverse aortic banding) or surgery without LVPO induction. Age-matched wild-type mice (Wwp1+/+; n = 23) underwent identical protocols. LV EF remained constant and unchanged with LVPO and LV mass increased in both groups but was lower in the Wwp1-/- mice. With LVPO, the E/A ratio, an index of LV filling, was 3.97 ± 0.46 in Wwp1+/+ but was 1.73 ± 0.19 in the Wwp1-/- group (P < 0.05). At the transcriptional level, mRNA for fibrillar collagens (types I and III) decreased by approximately 50% in Wwp1-/- compared with the Wwp1+/+ group at 4 wk post-LVPO (P < 0.05) and was paralleled by a similar difference in LV fibrillar collagen content as measured by histochemistry. Moreover, mRNA levels for determinants favoring ECM accumulation, such as transforming growth factor (TGF), increased with LVPO, but were lower in the Wwp1-/- group. The absence of Wwp1 reduced the development of left ventricular hypertrophy and subsequent progression to HFpEF. Modulating the WWP1 pathway could be a therapeutic target to alter the natural history of HFpEF.NEW & NOTEWORTHY Heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF) often arises from a prolonged LV pressure overload (LVPO) and is accompanied by abnormal extracellular matrix (ECM) accumulation. It is now recognized that the ECM is a dynamic entity that is regulated at multiple post-transcriptional levels, including the E3 ubiquitin ligases, such as WWP1. In the present study, WWP1 deletion in the context of an LVPO stimulus reduced functional indices of HFpEF progression and determinants of ECM remodeling.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Diastole
- Disease Models, Animal
- Disease Progression
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Female
- Fibrillar Collagens/genetics
- Fibrillar Collagens/metabolism
- Gene Deletion
- Heart Failure/enzymology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heart Ventricles/enzymology
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Time Factors
- Ubiquitin-Protein Ligases/deficiency
- Ubiquitin-Protein Ligases/genetics
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
Collapse
Affiliation(s)
- Laura B Snyder
- Cell Biology and Anatomy, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, South Carolina
| | - Yimu Lai
- Cell Biology and Anatomy, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, South Carolina
| | - Heather Doviak
- Cell Biology and Anatomy, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, South Carolina
| | - Lisa A Freeburg
- Cell Biology and Anatomy, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, South Carolina
| | - Valerie K Laney
- Cell Biology and Anatomy, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, South Carolina
| | - Amber Moore
- Cell Biology and Anatomy, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, South Carolina
| | - Kia N Zellars
- Cell Biology and Anatomy, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, South Carolina
| | - Lydia E Matesic
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Francis G Spinale
- Cell Biology and Anatomy, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, South Carolina
| |
Collapse
|
29
|
Abstract
The fibrocartilage chondrocyte phenotype has been recognized to attribute to osteoarthritis (OA) development. These chondrocytes express genes related to unfavorable OA outcomes, emphasizing its importance in OA pathology. BMP7 is being explored as a potential disease-modifying molecule and attenuates the chondrocyte hypertrophic phenotype. On the other hand, BMP7 has been demonstrated to relieve organ fibrosis by counteracting the pro-fibrotic TGFβ-Smad3-PAI1 axis and increasing MMP2-mediated Collagen type I turnover. Whether BMP7 has anti-fibrotic properties in chondrocytes is unknown. Human OA articular chondrocytes (HACs) were isolated from end-stage OA femoral cartilage (total knee arthroplasty; n = 18 individual donors). SW1353 cells and OA HACs were exposed to 1 nM BMP7 for 24 h, after which gene expression of fibrosis-related genes and fibrosis-mediating factors was determined by RT-qPCR. In SW1353, Collagen type I protein levels were determined by immunocytochemistry and western blotting. PAI1 and MMP2 protein levels and activity were measured with an ELISA and activity assays, respectively. MMP2 activity was inhibited with the selective MMP-2 inhibitor OA-Hy. SMAD3 activity was determined by a (CAGA)12-reporter assay, and pSMAD2 levels by western blotting. Following BMP7 exposure, the expression of fibrosis-related genes was reduced in SW1353 cells and OA HACs. BMP7 reduced Collagen type I protein levels in SW1353 cells. Gene expression of MMP2 was increased in SW1353 cells following BMP7 treatment. BMP7 reduced PAI1 protein levels and -activity, while MMP2 protein levels and -activity were increased by BMP7. BMP7-dependent inhibition of Collagen type I protein levels in SW1353 cells was abrogated when MMP2 activity was inhibited. Finally, BMP7 reduced pSMAD2 levels determined by western blotting and reduced SMAD3 transcriptional activity as demonstrated by decreased (CAGA)12 luciferase reporter activity. Our data demonstrate that short-term exposure to BMP7 decreases the fibrocartilage chondrocyte phenotype. The BMP7-dependent reduction of Collagen type I protein expression seems MMP2-dependent and inhibition of Smad2/3-PAI1 activity was identified as a potential pathway via which BMP7 exerts its anti-fibrotic action. This indicates that in chondrocytes BMP7 may have a double mode-of-action by targeting both the hypertrophic as well as the fibrotic chondrocyte phenotype, potentially adding to the clinical relevance of using BMP7 as an OA disease-modifying molecule.
Collapse
|
30
|
Çelen S, Öngöz Dede F, Avşar C. Role of Inhibitor SMADs in Stage 3 Grade B periodontitis before and after periodontal treatment. J Periodontal Res 2021; 57:41-51. [PMID: 34581437 DOI: 10.1111/jre.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to examine the levels of transforming growth factor-beta (TGF-β) and inhibitory-Smads (I-Smads) in saliva and gingival crevicular fluid (GCF) in patients with Stage 3 Grade B periodontitis before and after non-surgical periodontal treatment. BACKGROUND Recently, it has been stated that Smads play an active role in all conditions where TGF-β is involved, including periodontal inflammation. METHODS Twenty healthy participants (control) and 20 patients with Stage 3, Grade B periodontitis were recruited. GCF and saliva samples and clinical periodontal recordings were investigated at the baseline and 1 month after treatment. TGF-β and I-Smads (Smads 6 and 7) were determined by ELISA. RESULTS Salivary Smad6 and Smad7 levels were significantly lower in the periodontitis group than healthy controls (p < .05), while there was no difference in salivary TGF-β levels between groups at baseline (p > .05). The total amounts and concentrations of GCF TGF-β, Smad6, and Smad7 were significantly lower in the periodontitis group than healthy controls at baseline (p < .05), and then decreased in concentration levels with treatment (p < .001). Positive correlations were found between total amounts and concentrations of GCF TGF-β, Smad6, and Smad7 (p < .05). CONCLUSION Our findings revealed that Smad6 and Smad7 in GCF and saliva decreased in periodontitis and then increased after periodontal treatment. Our study suggests that I-Smads act in parallel with TGF-β in periodontal inflammation and may have a role in the development of periodontitis.
Collapse
Affiliation(s)
- Selman Çelen
- Department of Periodontology, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Figen Öngöz Dede
- Department of Periodontology, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Candeğer Avşar
- Faculty of Medicine, Department of Medical Biochemistry, İzmir Katip Çelebi University, İzmir, Turkey
| |
Collapse
|
31
|
Van Gucht I, Meester JA, Bento JR, Bastiaansen M, Bastianen J, Luyckx I, Van Den Heuvel L, Neutel CH, Guns PJ, Vermont M, Fransen E, Perik MH, Velchev JD, Alaerts M, Schepers D, Peeters S, Pintelon I, Almesned A, Ferla MP, Taylor JC, Dallosso AR, Williams M, Evans J, Rosenfeld JA, Sluysmans T, Rodrigues D, Chikermane A, Bharmappanavara G, Vijayakumar K, Mottaghi Moghaddam Shahri H, Hashemi N, Torbati PN, Toosi MB, Al-Hassnan ZN, Vogt J, Revencu N, Maystadt I, Miller EM, Weaver KN, Begtrup A, Houlden H, Murphy D, Maroofian R, Pagnamenta AT, Van Laer L, Loeys BL, Verstraeten A, Verstraeten A. A human importin-β-related disorder: Syndromic thoracic aortic aneurysm caused by bi-allelic loss-of-function variants in IPO8. Am J Hum Genet 2021; 108:1115-1125. [PMID: 34010605 DOI: 10.1016/j.ajhg.2021.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Importin 8, encoded by IPO8, is a ubiquitously expressed member of the importin-β protein family that translocates cargo molecules such as proteins, RNAs, and ribonucleoprotein complexes into the nucleus in a RanGTP-dependent manner. Current knowledge of the cargoes of importin 8 is limited, but TGF-β signaling components such as SMAD1-4 have been suggested to be among them. Here, we report that bi-allelic loss-of-function variants in IPO8 cause a syndromic form of thoracic aortic aneurysm (TAA) with clinical overlap with Loeys-Dietz and Shprintzen-Goldberg syndromes. Seven individuals from six unrelated families showed a consistent phenotype with early-onset TAA, motor developmental delay, connective tissue findings, and craniofacial dysmorphic features. A C57BL/6N Ipo8 knockout mouse model recapitulates TAA development from 8-12 weeks onward in both sexes but most prominently shows ascending aorta dilatation with a propensity for dissection in males. Compliance assays suggest augmented passive stiffness of the ascending aorta in male Ipo8-/- mice throughout life. Immunohistological investigation of mutant aortic walls reveals elastic fiber disorganization and fragmentation along with a signature of increased TGF-β signaling, as evidenced by nuclear pSmad2 accumulation. RT-qPCR assays of the aortic wall in male Ipo8-/- mice demonstrate decreased Smad6/7 and increased Mmp2 and Ccn2 (Ctgf) expression, reinforcing a role for dysregulation of the TGF-β signaling pathway in TAA development. Because importin 8 is the most downstream TGF-β-related effector implicated in TAA pathogenesis so far, it offers opportunities for future mechanistic studies and represents a candidate drug target for TAA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem 2650, Belgium.
| |
Collapse
|
32
|
Cai C, Gu S, Yu Y, Zhu Y, Zhang H, Yuan B, Shen L, Yang B, Feng X. PRMT5 Enables Robust STAT3 Activation via Arginine Symmetric Dimethylation of SMAD7. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003047. [PMID: 34026434 PMCID: PMC8132155 DOI: 10.1002/advs.202003047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/06/2020] [Indexed: 05/30/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is the type II arginine methyltransferase that catalyzes the mono- and symmetrical dimethylation of protein substrates at the arginine residues. Emerging evidence reveals that PRMT5 is involved in the regulation of tumor cell proliferation and cancer development. However, the exact role of PRMT5 in human lung cancer cell proliferation and the underlying molecular mechanism remain largely elusive. Here, it is shown that PRMT5 promotes lung cancer cell proliferation through the Smad7-STAT3 axis. Depletion or inhibition of PRMT5 dramatically dampens STAT3 activation and thus suppresses the proliferation of human lung cancer cells. Furthermore, depletion of Smad7 blocks PRMT5-mediated STAT3 activation. Mechanistically, PRMT5 binds to and methylates Smad7 on Arg-57, enhances Smad7 binding to IL-6 co-receptor gp130, and consequently ensures robust STAT3 activation. The findings position PRMT5 as a critical regulator of STAT3 activation, and suggest it as a potential therapeutic target for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Congcong Cai
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Yezhang Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - HanChenxi Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Bo Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
| | - Xin‐Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- The Second Affiliated HospitalZhejiang UniversityHangzhouZhejiang310009China
| |
Collapse
|
33
|
Lorda-Diez CI, Duarte-Olivenza C, Hurle JM, Montero JA. Transforming growth factor beta signaling: The master sculptor of fingers. Dev Dyn 2021; 251:125-136. [PMID: 33871876 DOI: 10.1002/dvdy.349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta (TGFβ) constitutes a large and evolutionarily conserved superfamily of secreted factors that play essential roles in embryonic development, cancer, tissue regeneration, and human degenerative pathology. Studies of this signaling cascade in the regulation of cellular and tissue changes in the three-dimensional context of a developing embryo have notably advanced in the understanding of the action mechanism of these growth factors. In this review, we address the role of TGFβ signaling in the developing limb, focusing on its essential function in the morphogenesis of the autopod. As we discuss in this work, modern mouse genetic experiments together with more classical embryological approaches in chick embryos, provided very valuable information concerning the role of TGFβ and Activin family members in the morphogenesis of the digits of tetrapods, including the formation of phalanxes, digital tendons, and interphalangeal joints. We emphasize the importance of the Activin and TGFβ proteins as digit inducing factors and their critical interaction with the BMP signaling to sculpt the hand and foot morphology.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Cristina Duarte-Olivenza
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Juan A Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
34
|
Elmasry K, Habib S, Moustafa M, Al-Shabrawey M. Bone Morphogenetic Proteins and Diabetic Retinopathy. Biomolecules 2021; 11:biom11040593. [PMID: 33919531 PMCID: PMC8073699 DOI: 10.3390/biom11040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in bone formation and repair. Recent studies underscored their essential role in the normal development of several organs and vascular homeostasis in health and diseases. Elevated levels of BMPs have been linked to the development of cardiovascular complications of diabetes mellitus. However, their particular role in the pathogenesis of microvascular dysfunction associated with diabetic retinopathy (DR) is still under-investigated. Accumulated evidence from our and others’ studies suggests the involvement of BMP signaling in retinal inflammation, hyperpermeability and pathological neovascularization in DR and age-related macular degeneration (AMD). Therefore, targeting BMP signaling in diabetes is proposed as a potential therapeutic strategy to halt the development of microvascular dysfunction in retinal diseases, particularly in DR. The goal of this review article is to discuss the biological functions of BMPs, their underlying mechanisms and their potential role in the pathogenesis of DR in particular.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Samar Habib
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt;
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Moustafa
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)721-4278 or +1-(706)721-4279
| |
Collapse
|
35
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
36
|
Abstract
Spinal cord injury (SCI) is a debilitating injury that results from traumatic or non-traumatic insults to the spinal cord, causing significant impairment of the patient's activity and quality of life. Bone morphogenic proteins (BMPs) are a group of polyfunctional cytokines belonging to the transforming growth factor beta superfamily that regulates a wide variety of cellular functions in healthy and disease states. Recent studies suggest that dysregulation of BMP signaling is involved in neuronal demyelination and death after traumatic SCI. The focus of this article is to describe our current understanding of the role of BMP signaling in the regulation of cell fate, proliferation, apoptosis, autophagy, and inflammation in traumatic SCI. First, we will describe the expression of BMPs and pattern of BMP signaling before and after traumatic SCI in rodent models and in vitro. Next, we will discuss the role of BMP in the regulation of neuronal and glial cell differentiation, survival, functional recovery from traumatic SCI, and the gap in knowledge in this area that requires further investigation to improve SCI prognosis.
Collapse
Affiliation(s)
- Nadia Al-Sammarraie
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
37
|
Wu J, Chen X, Sehgal P, Zhang T, Jackson-Weaver O, Gou Y, Bautch V, Frenkel B, Sun H, Xu J. Arginine methylation of R81 in Smad6 confines BMP-induced Smad1 signaling. J Biol Chem 2021; 296:100496. [PMID: 33667543 PMCID: PMC8050389 DOI: 10.1016/j.jbc.2021.100496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) secreted by a variety of cell types are known to play essential roles in cell differentiation and matrix formation in the bone, cartilage, muscle, blood vessel, and neuronal tissue. BMPs activate intracellular effectors via C-terminal phosphorylation of Smad1, Smad5, and Smad9, which relay the signaling by forming a complex with Smad4 and translocate to the nucleus for transcriptional activation. Smad6 inhibits BMP signaling through diverse mechanisms operative at the membrane, cytosolic, and nuclear levels. However, the mechanistic underpinnings of Smad6 functional diversity remain unclear. Here, using a biochemical approach and cell differentiation systems, we report a cytosolic mechanism of action for Smad6 that requires arginine methylation at arginine 81 (R81) and functions through association with Smad1 and interference with the formation of Smad1–Smad4 complexes. By mutating the methylated arginine residue, R81, and by silencing the expression of protein arginine methyltransferase 1, we show that protein arginine methyltransferase 1 catalyzes R81 methylation of Smad6 upon BMP treatment, R81 methylation subsequently facilitates Smad6 interaction with the phosphorylated active Smad1, and R81 methylation facilitates Smad6-mediated interruption of Smad1–Smad4 complex formation and nuclear translocation. Furthermore, Smad6 WT but not the methylation-deficient R81A mutant inhibited BMP-responsive transcription, attenuated BMP-mediated osteogenic differentiation, and antagonized BMP-mediated inhibition of cell invasion. Taken together, our results suggest that R81 methylation plays an essential role in Smad6-mediated inhibition of BMP responses.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Xi Chen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA; College of Stomatology, China Medical University, Shenyang, China
| | - Prerna Sehgal
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Yongchao Gou
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Victoria Bautch
- Department of Biology and McAllister Heart Institute, University of Northern Carolina, Chapel Hill, North Carolina, USA
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hongchen Sun
- College of Stomatology, China Medical University, Shenyang, China.
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
38
|
Lin H, Dong B, Qi L, Wei Y, Zhang Y, Cai X, Zhang Q, Li J, Li L. Inhibitory Smads suppress pancreatic stellate cell activation through negative feedback in chronic pancreatitis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:384. [PMID: 33842605 PMCID: PMC8033383 DOI: 10.21037/atm-20-4282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Activation of pancreatic stellate cells (PSCs) is a key cause of chronic pancreatitis (CP), while inhibition of transforming growth factor-β (TGF-β) signaling renders PSCs inactive. Inhibitory Smads (I-Smads) impede TGF-β intracellular signaling and may provide a way to alleviate CP. Thus, we aimed to investigate the molecular mechanism of I-Smads in CP animals and freshly-isolated PSCs. Methods Sixteen male C57BL/6 mice were randomly divided into two groups; a control group (treated with saline) and a CP group (treated with caerulein) for 6 weeks. Masson’s staining was performed to identify fibrosis, and immunohistochemistry (IHC) was performed to measure the levels of Smad6 between the two groups. An improved method derived from internal digestion was used to isolate PSCs from male Sprague Dawley rats. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence staining were used to measure the messenger ribonucleic acid (mRNA) and protein levels of alpha-smooth muscle actin (α-SMA). Plasmids of I-Smads or SB431542 were transfected into freshly-isolated PSCs, and relative mRNA levels of marker genes were quantified by qRT-PCR. The two-tailed Student’s t-test was performed to assess significance. Results The Smad6 protein level was significantly higher in the pancreas tissue of CP mice compared to the control group. A large number of PSCs were isolated from rat pancreas using an improved isolating method and were confirmed by quiescent and active PSC markers including cluster differentiation antigen 133 (CD133), perilipin 2 (Plin2), α-SMA, Desmin, and collagen 1 (Col1). The mRNA levels of both Smad6 and Smad7 were down-regulated during freshly-isolated PSC activation. Over-expression of both Smad6 and Smad7 in freshly-isolated PSC reduced the mRNA level of α-SMA, glial fibrillary acidic protein (GFAP), Desmin, Col1, Col3, and fibronectin 1 (Fn1) significantly. SB431542 reduced the mRNA level of α-SMA, Col1, Col3, and Fn1 significantly in freshly-isolated PSCs. Conclusions This study demonstrated that CP promoted the expression of I-Smads, which suppressed the activation of freshly-isolated PSCs via a negative feedback loop.
Collapse
Affiliation(s)
- Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Pancreas, Southeast University, Nanjing, China
| | - Beibei Dong
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingxiang Wei
- Department of Ultrasound, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yusha Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiaotian Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Qi Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Jia Li
- Department of Ultrasound, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Li
- Institute of Pancreas, Southeast University, Nanjing, China.,Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
39
|
Abarca-Buis RF, Mandujano-Tinoco EA, Cabrera-Wrooman A, Krötzsch E. The complexity of TGFβ/activin signaling in regeneration. J Cell Commun Signal 2021; 15:7-23. [PMID: 33481173 DOI: 10.1007/s12079-021-00605-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
The role of transforming growth factor β TGFβ/activin signaling in wound repair and regeneration is highly conserved in the animal kingdom. Various studies have shown that TGF-β/activin signaling can either promote or inhibit different aspects of the regeneration process (i.e., proliferation, differentiation, and re-epithelialization). It has been demonstrated in several biological systems that some of the different cellular responses promoted by TGFβ/activin signaling depend on the activation of Smad-dependent or Smad-independent signal transduction pathways. In the context of regeneration and wound healing, it has been shown that the type of R-Smad stimulated determines the different effects that can be obtained. However, neither the possible roles of Smad-independent pathways nor the interaction of the TGFβ/activin pathway with other complex signaling networks involved in the regenerative process has been studied extensively. Here, we review the important aspects concerning the TGFβ/activin signaling pathway in the regeneration process. We discuss data regarding the role of TGF-β/activin in the most common animal regenerative models to demonstrate how this signaling promotes or inhibits regeneration, depending on the cellular context.
Collapse
Affiliation(s)
- René Fernando Abarca-Buis
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico.
| | - Edna Ayerim Mandujano-Tinoco
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Alejandro Cabrera-Wrooman
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra Ibarra", Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| |
Collapse
|
40
|
SMAD6 transduces endothelial cell flow responses required for blood vessel homeostasis. Angiogenesis 2021; 24:387-398. [PMID: 33779885 PMCID: PMC8206051 DOI: 10.1007/s10456-021-09777-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/25/2021] [Indexed: 01/29/2023]
Abstract
Fluid shear stress provided by blood flow instigates a transition from active blood vessel network expansion during development, to vascular homeostasis and quiescence that is important for mature blood vessel function. Here we show that SMAD6 is required for endothelial cell flow-mediated responses leading to maintenance of vascular homeostasis. Concomitant manipulation of the mechanosensor Notch1 pathway and SMAD6 expression levels revealed that SMAD6 functions downstream of ligand-induced Notch signaling and transcription regulation. Mechanistically, full-length SMAD6 protein was needed to rescue Notch loss-induced flow misalignment. Endothelial cells depleted for SMAD6 had defective barrier function accompanied by upregulation of proliferation-associated genes and down regulation of junction-associated genes. The vascular protocadherin PCDH12 was upregulated by SMAD6 and required for proper flow-mediated endothelial cell alignment, placing it downstream of SMAD6. Thus, SMAD6 is a required transducer of flow-mediated signaling inputs downstream of Notch1 and upstream of PCDH12, as vessels transition from an angiogenic phenotype to maintenance of a homeostatic phenotype.
Collapse
|
41
|
van Dorst DCH, de Wagenaar NP, van der Pluijm I, Roos-Hesselink JW, Essers J, Danser AHJ. Transforming Growth Factor-β and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment. Cardiovasc Drugs Ther 2020; 35:1233-1252. [PMID: 33283255 PMCID: PMC8578102 DOI: 10.1007/s10557-020-07116-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Thoracic aortic aneurysms (TAAs) are permanent pathological dilatations of the thoracic aorta, which can lead to life-threatening complications, such as aortic dissection and rupture. TAAs frequently occur in a syndromic form in individuals with an underlying genetic predisposition, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). Increasing evidence supports an important role for transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS) in TAA pathology. Eventually, most patients with syndromic TAAs require surgical intervention, as the ability of present medical treatment to attenuate aneurysm growth is limited. Therefore, more effective medical treatment options are urgently needed. Numerous clinical trials investigated the therapeutic potential of angiotensin receptor blockers (ARBs) and β-blockers in patients suffering from syndromic TAAs. This review highlights the contribution of TGF-β signaling, RAS, and impaired mechanosensing abilities of aortic VSMCs in TAA formation. Furthermore, it critically discusses the most recent clinical evidence regarding the possible therapeutic benefit of ARBs and β-blockers in syndromic TAA patients and provides future research perspectives and therapeutic implications.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathalie P de Wagenaar
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands. .,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Murayama K, Kato-Murayama M, Itoh Y, Miyazono K, Miyazawa K, Shirouzu M. Structural basis for inhibitory effects of Smad7 on TGF-β family signaling. J Struct Biol 2020; 212:107661. [PMID: 33166654 DOI: 10.1016/j.jsb.2020.107661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
Smad6 and Smad7 are classified as inhibitory Smads (I-Smads). They are crucial in the fine-tuning of signals by cytokines of the transforming growth factor-β (TGF-β) family. They are negative feedback regulators and principally target the activated type I receptors as well as the activated Smad complexes, but with distinct specificities. Smad7 inhibits Smad signaling from all seven type I receptors of the TGF-β family, whereas Smad6 preferentially inhibits Smad signaling from the bone morphogenetic protein (BMP) type I receptors, BMPR1A and BMPR1B. The target specificities are attributed to the C-terminal MH2 domain. Notably, Smad7 utilizes two alternative molecular surfaces for its inhibitory function against type I receptors. One is a basic groove composed of the first α-helix and the L3 loop, a structure that is shared with Smad6 and receptor-regulated Smads (R-Smads). The other is a three-finger-like structure (consisting of residues 331-361, 379-387, and the L3 loop) that is unique to Smad7. The underlying structural basis remains to be elucidated in detail. Here, we report the crystal structure of the MH2 domain of mouse Smad7 at 1.9 Å resolution. The three-finger-like structure is stabilized by a network of hydrogen bonds between residues 331-361 and 379-387, thus forming a molecular surface unique to Smad7. Furthermore, we discuss how Smad7 antagonizes the activated Smad complexes composed of R-Smad and Smad4, a common partner Smad.
Collapse
Affiliation(s)
- Kazutaka Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryomachi, Aoba, Sendai 980-8575, Japan
| | - Miyuki Kato-Murayama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
43
|
Hanna A, Humeres C, Frangogiannis NG. The role of Smad signaling cascades in cardiac fibrosis. Cell Signal 2020; 77:109826. [PMID: 33160018 DOI: 10.1016/j.cellsig.2020.109826] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
Abstract
Most myocardial pathologic conditions are associated with cardiac fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix (ECM) proteins. Although replacement fibrosis plays a reparative role after myocardial infarction, excessive, unrestrained or dysregulated myocardial ECM deposition is associated with ventricular dysfunction, dysrhythmias and adverse prognosis in patients with heart failure. The members of the Transforming Growth Factor (TGF)-β superfamily are critical regulators of cardiac repair, remodeling and fibrosis. TGF-βs are released and activated in injured tissues, bind to their receptors and transduce signals in part through activation of cascades involving a family of intracellular effectors the receptor-activated Smads (R-Smads). This review manuscript summarizes our knowledge on the role of Smad signaling cascades in cardiac fibrosis. Smad3, the best-characterized member of the family plays a critical role in activation of a myofibroblast phenotype, stimulation of ECM synthesis, integrin expression and secretion of proteases and anti-proteases. In vivo, fibroblast Smad3 signaling is critically involved in scar organization and exerts matrix-preserving actions. Although Smad2 also regulates fibroblast function in vitro, its in vivo role in rodent models of cardiac fibrosis seems more limited. Very limited information is available on the potential involvement of the Smad1/5/8 cascade in cardiac fibrosis. Dissection of the cellular actions of Smads in cardiac fibrosis, and identification of patient subsets with overactive or dysregulated myocardial Smad-dependent fibrogenic responses are critical for design of successful therapeutic strategies in patients with fibrosis-associated heart failure.
Collapse
Affiliation(s)
- Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
44
|
de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55:691-715. [PMID: 33081543 DOI: 10.1080/10409238.2020.1828260] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | - Maureen Spit
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
45
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
46
|
Thakur N, Hamidi A, Song J, Itoh S, Bergh A, Heldin CH, Landström M. Smad7 Enhances TGF-β-Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells. iScience 2020; 23:101470. [PMID: 32888405 PMCID: PMC7520897 DOI: 10.1016/j.isci.2020.101470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β (TGF-β) enhances migration and invasion of cancer cells, causing life-threatening metastasis. Smad7 expression is induced by TGF-β to control TGF-β signaling in a negative feedback manner. Here we report an additional function of Smad7, i.e., to enhance TGF-β induction of c-Jun and HDAC6 via binding to their regulatory regions, promoting migration and invasion of prostate cancer cells. Lysine 102 in Smad7 is crucial for binding to specific consensus sites in c-Jun and HDAC6, even when endogenous Smad2, 3, and 4 were silenced by siRNA. A correlation between the mRNA expression of Smad7 and HDAC6, Smad7 and c-Jun, and c-Jun and HDAC6 was found in public databases from analyses of prostate cancer tissues. High expression of Smad7, HDAC6, and c-Jun correlated with poor prognosis for patients with prostate cancer. The knowledge that Smad7 can activate transcription of proinvasive genes leading to prostate cancer progression provides clinically relevant information.
Collapse
Affiliation(s)
- Noopur Thakur
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
| | - Anahita Hamidi
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Jie Song
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Anders Bergh
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Maréne Landström
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
47
|
Calpena E, Cuellar A, Bala K, Swagemakers SMA, Koelling N, McGowan SJ, Phipps JM, Balasubramanian M, Cunningham ML, Douzgou S, Lattanzi W, Morton JEV, Shears D, Weber A, Wilson LC, Lord H, Lester T, Johnson D, Wall SA, Twigg SRF, Mathijssen IMJ, Boardman-Pretty F, Boyadjiev SA, Wilkie AOM. SMAD6 variants in craniosynostosis: genotype and phenotype evaluation. Genet Med 2020; 22:1498-1506. [PMID: 32499606 PMCID: PMC7462747 DOI: 10.1038/s41436-020-0817-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure.
Collapse
Affiliation(s)
- Eduardo Calpena
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Araceli Cuellar
- Department of Pediatrics, University of California-Davis, Sacramento, CA, USA
| | - Krithi Bala
- Department of Pediatrics, University of California-Davis, Sacramento, CA, USA
| | - Sigrid M A Swagemakers
- Departments of Pathology and Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nils Koelling
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Simon J McGowan
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Julie M Phipps
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Michael L Cunningham
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and Health, University of Manchester, Manchester, UK
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jenny E V Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Louise C Wilson
- Clinical Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Helen Lord
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - Tracy Lester
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Stephen R F Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Freya Boardman-Pretty
- Genomics England, London, UK
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California-Davis, Sacramento, CA, USA
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
48
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
49
|
Li W, Wang Y, Deng Y, Ni H, Shen G, Liu X, Li J, Wang F. Epigenetic Control of circHNRNPH1 in Postischemic Myocardial Fibrosis through Targeting of TGF-β Receptor Type I. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 25:93-104. [PMID: 34258105 PMCID: PMC8250456 DOI: 10.1016/j.omtn.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/07/2020] [Indexed: 01/17/2023]
Abstract
Postischemic myocardial fibrosis is a factor for the development of cardiac dysfunction and malignant cardiac arrhythmias, and no effective therapy is currently available. Circular RNAs are emerging as important epigenetic players in various biological functions; however, their roles in cardiac fibrosis are unknown. With the use of a rat model of postischemic myocardial fibrosis, we identified an increase in circHNRNPH1 in the ischemic myocardium after myocardial infarction, particularly in cardiac fibroblasts. In cardiac fibroblasts, circHNRNPH1 was responsive to transforming growth factor β1 (TGF-β1), the principal profibrotic factor. The downregulation of circHNRNPH1, in contrast to its overexpression, promoted myofibroblast migration and α-smooth muscle actin and collagen I expression and inhibited myofibroblast apoptosis. The recombinant adeno-associated virus 9 (rAAV9)-mediated, cardiac-specific knockdown of circHNNRPH1 accordingly facilitated cardiac fibrosis and aggravated cardiac dysfunction. Mechanistically, circHNRNPH1 colocalized with and sponged microRNA (miR)-216-5p in the cytoplasm of cardiac fibroblasts to induce SMAD7 (protein family of signal transduction component of the canonical transforming growth factor-β signaling pathway) expression, accelerating the degradation of TGF-β receptor I. Thus, our results indicated that circHNRNPH1 negatively regulates the fibrogenesis of cardiac fibroblasts and may provide a new therapeutic strategy for postischemic myocardial fibrosis.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Hongkou District, Shanghai, China
| | - Yue Wang
- Department of Cardiology, Nanjing Medical University, Nanjing, China
| | - Yunfei Deng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Hongkou District, Shanghai, China
| | - Huaner Ni
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Hongkou District, Shanghai, China
| | - Gu Shen
- Department of Cardiology, Nanjing Medical University, Nanjing, China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Hongkou District, Shanghai, China
| | - Jun Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Hongkou District, Shanghai, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Hongkou District, Shanghai, China
| |
Collapse
|
50
|
Wang W, Rigueur D, Lyons KM. TGFβ as a gatekeeper of BMP action in the developing growth plate. Bone 2020; 137:115439. [PMID: 32442550 PMCID: PMC7891678 DOI: 10.1016/j.bone.2020.115439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
The ligands that comprise the Transforming Growth Factor β superfamily highly govern the development of the embryonic growth plate. Members of this superfamily activate canonical TGFβ and/or BMP (Bone Morphogenetic Protein) signaling pathways. How these pathways interact with one another is an area of active investigation. These two signaling pathways have been described to negatively regulate one another through crosstalk involving Smad proteins, the primary intracellular effectors of canonical signaling. More recently, a mechanism for regulation of the BMP pathway through TGFβ and BMP receptor interactions has been described. Here in this review, we demonstrate examples of how TGFβ is a gatekeeper of BMP action in the developing growth plate at both the receptor and transcriptional levels.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Diana Rigueur
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Karen M Lyons
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America; Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America.
| |
Collapse
|