1
|
Janampalli M, Kitchen ST, Vatolin S, Tang N, He M, Bearer CF. Choline supplementation mitigates effects of bilirubin in cerebellar granule neurons in vitro. Pediatr Res 2024; 96:97-103. [PMID: 38172213 DOI: 10.1038/s41390-023-02968-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Premature infants may suffer from high levels of bilirubin that could lead to neurotoxicity. Bilirubin has been shown to decrease L1-mediated ERK1/2 signaling, L1 phosphorylation, and L1 tyrosine 1176 dephosphorylation. Furthermore, bilirubin redistributes L1 into lipid rafts (LR) and decreases L1-mediated neurite outgrowth. We demonstrate that choline supplementation improves L1 function and signaling in the presence of bilirubin. METHODS Cerebellar granule neurons (CGN) were cultured with and without supplemental choline, and the effects on L1 signaling and function were measured in the presence of bilirubin. L1 activation of ERK1/2, L1 phosphorylation and dephosphorylation were measured. L1 distribution in LR was quantified and neurite outgrowth of CGN was determined. RESULTS Forty µM choline significantly reduced the effect of bilirubin on L1 activation of ERK1/2 by 220% (p = 0.04), and increased L1 triggered changes in tyrosine phosphorylation /dephosphorylation of L1 by 34% (p = 0.026) and 35% (p = 0.02) respectively. Choline ameliorated the redistribution of L1 in lipid rafts by 38% (p = 0.02) and increased L1-mediated mean neurite length by 11% (p = 0.04). CONCLUSION Choline pretreatment of CGN significantly reduced the disruption of L1 function by bilirubin. The supplementation of pregnant women and preterm infants with choline may increase infant resilience to the effects of bilirubin. IMPACT This article establishes choline as an intervention for the neurotoxic effects of bilirubin on lipid rafts. This article provides clear evidence toward establishing one intervention for bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into the mechanism of the ameliorative effect of choline on bilirubin neurotoxicity.
Collapse
Affiliation(s)
- Mrinaj Janampalli
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Spencer T Kitchen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Sergei Vatolin
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Division of Neonatology, Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Komatsuya K, Kikuchi N, Hirabayashi T, Kasahara K. The Regulatory Roles of Cerebellar Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2023; 24:ijms24065566. [PMID: 36982638 PMCID: PMC10058044 DOI: 10.3390/ijms24065566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1α, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Goα translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gsα, and L-type voltage-dependent calcium channels are discussed.
Collapse
|
3
|
Neonatal hypoxia ischemia redistributes L1 cell adhesion molecule into rat cerebellar lipid rafts. Pediatr Res 2022; 92:1325-1331. [PMID: 35152267 PMCID: PMC9372221 DOI: 10.1038/s41390-022-01974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a devastating disease with lifelong disabilities. Hypothermia is currently the only treatment. At term, the neonatal cerebellum may be particularly vulnerable to the effects of HIE. At this time, many developmental processes depend on lipid raft function. These microdomains of the plasma membrane are critical for cellular signaling and axon extension. We hypothesized that HIE alters the protein content of lipid rafts in the cerebellum. METHODS Postnatal day (PN) 10 animals, considered human term equivalent, underwent hypoxic-ischemic (HI) injury by a right carotid artery ligation followed by hypoxia. For some animals, LPS was administered on PN7, and hypothermia (HT) was conducted for 4 h post-hypoxia. Lipid rafts were isolated from the right and left cerebella. The percent of total L1 cell adhesion molecule in lipid rafts was determined 4 and 72 h after hypoxia. RESULTS No sex differences were found. HI alone caused significant increases in the percent of L1 in lipid rafts which persisted until 72 h in the right but not the left cerebellum. A small but significant effect of LPS was detected in the left cerebellum 72 h after HI. Hypothermia had no effect. CONCLUSIONS Lipid rafts may be a new target for interventions of HIE. IMPACT This article investigates the effect of neonatal exposure to hypoxic-ischemic encephalopathy (HIE) on the distribution of membrane proteins in the cerebellum. This article explores the effectiveness of hypothermia as a prevention for the harmful effects of HIE on membrane protein distribution. This article shows an area of potential detriment secondary to HIE that persists with current treatments, and explores ideas for new treatments.
Collapse
|
4
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
5
|
Waddell J, Rickman NC, He M, Tang N, Bearer CF. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr Res 2021; 89:1414-1419. [PMID: 33027804 PMCID: PMC8024424 DOI: 10.1038/s41390-020-01187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bilirubin is produced by the breakdown of hemoglobin and is normally catabolized and excreted. Neurotoxic accumulation of serum bilirubin often occurs in premature infants. The homozygous Gunn rat lacks uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), the enzyme needed to biotransform bilirubin. This rodent model of hyperbilirubinemia emulates many aspects of bilirubin toxicity observed in the human infant. We demonstrate that choline supplementation in early postnatal development is neuroprotective in the choline-restricted Gunn rat, when hyperbilirubinemia is induced on postnatal day 5. METHODS We first compared behaviors and cerebellar weight of pups born to dams consuming regular rat chow to those of dams consuming choline-restricted diets. Second, we measured behaviors and cerebellar weights of pups born to choline-restricted dams, reared on a choline-restricted diet, supplemented with or without choline, and treated with or without sulfadimethoxine (SDMX). RESULTS A choline-restricted diet did not change the behavioral outcomes, but cerebellar weight was reduced in the choline-restricted group regardless of genotype or SDMX administration. SDMX induced behavioral deficits in jj pups, and choline supplementation improved most behavioral effects and cerebellar weight in SDMX-treated jj rats. CONCLUSIONS These results suggest that choline may be used as a safe and effective neuroprotective intervention against hyperbilirubinemia in the choline-deficient premature infant. IMPACT This article investigates the effect of neonatal jaundice/bilirubin neurotoxicity on cerebellar-mediated behaviors. This article explores the potential use of choline as an intervention capable of ameliorating the effect of bilirubin on the choline-restricted developing brain. This article opens the door for future studies on the action of choline in the presence of hyperbilirubinemia, especially in preterm neonates.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas C Rickman
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cynthia F Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Kitchen ST, Tang N, He M, Ly E, Mooney SM, Bearer CF. Bilirubin inhibits lipid raft dependent functions of L1 cell adhesion molecule in rat pup cerebellar granule neurons. Pediatr Res 2021; 89:1389-1395. [PMID: 32937649 PMCID: PMC9323028 DOI: 10.1038/s41390-020-01156-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanism of bilirubin neurotoxicity is poorly understood. We hypothesize that bilirubin inhibits the function of lipid rafts (LR), microdomains of the plasma membrane critical for signal transduction. To test this hypothesis, we measured the effect of free bilirubin (Bf) between 7.6 and 122.5 nM on LR-dependent functions of L1 cell adhesion molecule (L1). METHODS Cerebellar granule neurons (CGN) were plated on poly-L-lysine overnight, and neurite length was determined after 1 h treatment with L1 alone or L1 and bilirubin. L1 activation of ERK1/2 was measured in CGN in the presence or absence of bilirubin. The effect of bilirubin on L1 distribution in LR was quantitated, and the localization of bilirubin to LR was determined. RESULTS The addition of bilirubin to CGN treated with L1 significantly decreased neurite length compared to L1 alone. L1 activation of ERK1/2 was inhibited by bilirubin. Bilirubin redistributed L1 into LR. Bilirubin was associated only with LR-containing fractions of a sucrose density gradient. CONCLUSION Bf significantly inhibits LR-dependent functions of L1 and are found only associated with LR, suggesting one mechanism by which bilirubin may exert neurotoxicity is through the dysfunction of protein-LR interactions. IMPACT This article establishes lipid rafts as a target for the neurotoxic effects of bilirubin. This article provides clear evidence toward establishing one mechanism of bilirubin neurotoxicity, where little is understood. This article paves the way for future investigation into lipid raft dependent functions, and its role in neurodevelopmental outcome.
Collapse
Affiliation(s)
- Spencer T. Kitchen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Ningfeng Tang
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Min He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21218
| | - Eric Ly
- Division of Neonatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Sandra M. Mooney
- Department of Nutrition, University of North Carolina School of Public Health, Chapel Hill, North Carolina, 27514
| | - Cynthia F. Bearer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106,Corresponding author: Cynthia F. Bearer, M.D., Ph.D., Department of Pediatrics, 2109 Adelbert Rd, 8th floor, Cleveland, OH 44106, Tel. (410) 328-6003, Fax. (410) 328-1076,
| |
Collapse
|
7
|
Ros O, Baudet S, Zagar Y, Loulier K, Roche F, Couvet S, Aghaie A, Atkins M, Louail A, Petit C, Metin C, Mechulam Y, Nicol X. SpiCee: A Genetic Tool for Subcellular and Cell-Specific Calcium Manipulation. Cell Rep 2021; 32:107934. [PMID: 32697983 DOI: 10.1016/j.celrep.2020.107934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium. This scavenger enables altering endogenous calcium signaling and functions in single cells in vitro and in vivo with biochemically controlled subcellular resolution. SpiCee paves the way to investigate local calcium signaling in vivo and directly manipulate this second messenger for therapeutic use.
Collapse
Affiliation(s)
- Oriol Ros
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sarah Baudet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Fiona Roche
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Sandrine Couvet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Alain Aghaie
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France
| | - Melody Atkins
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Alice Louail
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Christine Petit
- INSERM, Sorbonne Université, Institut Pasteur, UMR_S 1120, 75012 Paris, France; Collège de France, 75005 Paris, France
| | - Christine Metin
- INSERM, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, 75005 Paris, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS UMR 7654, 91128 Palaiseau, France
| | - Xavier Nicol
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
| |
Collapse
|
8
|
Potiris A, Manousopoulou A, Zouridis A, Sarli PM, Pervanidou P, Eliades G, Perrea DN, Deligeoroglou E, Garbis SD, Eleftheriades M. The Effect of Prenatal Food Restriction on Brain Proteome in Appropriately Grown and Growth Restricted Male Wistar Rats. Front Neurosci 2021; 15:665354. [PMID: 33935642 PMCID: PMC8079747 DOI: 10.3389/fnins.2021.665354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Fetal growth restriction (FGR) has been associated with a higher risk of developing adverse perinatal outcomes and distinct neurodevelopmental and neurobehavioral disorders. The aim of the present study was to investigate the impact of prenatal food restriction on the brain proteome in both FGR and appropriately grown rats and to identify potential pathways connecting maternal malnutrition with altered brain development. Methods Ten time-dated pregnant Wistar rats were housed individually at their 12th day of gestation. On the 15th day of gestation, the rats were randomly divided into two groups, namely the food restricted one (n = 6) and the control group (n = 4). From days 15 to 21 the control group had unlimited access to food and the food restricted group was given half the amount of food that was on average consumed by the control group, based on measurements taken place the day before. On the 21st day of gestation, all rats delivered spontaneously and after birth all newborn pups of the food restricted group were weighed and matched as appropriately grown (non-FGR) or growth restricted (FGR) and brain tissues were immediately collected. A multiplex experiment was performed analyzing brain tissues from 4 FGR, 4 non-FGR, and 3 control male offspring. Differentially expressed proteins (DEPs) were subjected to bioinformatics analysis in order to identify over-represented processes. Results Proteomic analysis resulted in the profiling of 3,964 proteins. Gene ontology analysis of the common DEPs using DAVID (https://david.ncifcrf.gov/) showed significant enrichment for terms related to cellular morphology, learning, memory and positive regulation of NF-kappaB signaling. Ingenuity Pathway Analysis showed significant induction of inflammation in FGR pups, whereas significant induction of cell migration and cell spreading were observed in non-FGR pups. Conclusion This study demonstrated that in both FGR and non-FGR neonates, a range of adaptive neurodevelopmental processes takes place, which may result in altered cellular morphology, chronic stress, poor memory and learning outcomes. Furthermore, this study highlighted that not only FGR, but also appropriately grown pups, which have been exposed to prenatal food deprivation may be at increased risk for impaired cognitive and developmental outcomes.
Collapse
Affiliation(s)
- Anastasios Potiris
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Manousopoulou
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Andreas Zouridis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni-Maria Sarli
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Eliades
- Biomaterials Laboratory, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Deligeoroglou
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros D Garbis
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Campos FSO, Piña-Rodrigues FM, Reis A, Atella GC, Mermelstein CS, Allodi S, Cavalcante LA. Lipid Rafts from Olfactory Ensheathing Cells: Molecular Composition and Possible Roles. Cell Mol Neurobiol 2021; 41:525-536. [PMID: 32415577 DOI: 10.1007/s10571-020-00869-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture. Gangliosides are common components of lipid rafts, where they participate in several cellular mechanisms, including cell migration. Here, we characterized OEC lipid rafts, analyzing the presence of specific proteins and gangliosides that are commonly expressed in motile neural cells, such as young neurons, oligodendrocyte progenitors, and glioma cells. Our results showed that lipid rafts isolated from OECs were enriched in cholesterol, sphingolipids, phosphatidylcholine, caveolin-1, flotillin-1, gangliosides GM1 and 9-O-acetyl GD3, A2B5-recognized gangliosides, CNPase, α-actinin, and β1-integrin. Analysis of the actin cytoskeleton of OECs revealed stress fibers, membrane spikes, ruffled membranes and lamellipodia during cell migration, as well as the distribution of α-actinin in membrane projections. This is the first description of α-actinin and flotillin-1 in lipid rafts isolated from OECs and suggests that, together with β1-integrin and gangliosides, membrane lipid rafts play a role during OEC migration. This study provides new information on the molecular composition of OEC membrane microdomains that can impact on our understanding of the role of OEC lipid rafts under physiological and pathological conditions of the nervous system, including inflammation, hypoxia, aging, neurodegenerative diseases, head trauma, brain tumor, and infection.
Collapse
Affiliation(s)
- Fernanda S O Campos
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe M Piña-Rodrigues
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alice Reis
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia S Mermelstein
- Laboratório de Diferenciação Muscular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil.
| | - Leny A Cavalcante
- Laboratório de Neurobiologia do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, CCS. Bloco G, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
10
|
Defourny J, Thiry M. Tricellular adherens junctions provide a cell surface delivery platform for connexin 26/30 oligomers in the cochlea. Hear Res 2020; 400:108137. [PMID: 33291008 DOI: 10.1016/j.heares.2020.108137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
In the cochlea, connexins 26 (Cx26) and 30 (Cx30) largely co-assemble into heteromeric gap junctions, which connect adjacent non-sensory epithelial cells. These channels are believed to ensure the rapid removal of K+ away from the base of sensory hair cells, resulting in K+ recycling back to the endolymph to maintain cochlear homeostasis. Many of the mutations in GJB2 and GJB6, which encode CX26 and CX30, impair the formation of membrane channels and cause autosomal hearing loss in humans. Although recent advances have been made, several important questions remain about connexin trafficking and gap junction biogenesis. Here we show that tricellular adherens junctions present at the crossroad between adjacent gap junction plaques, provide an unexpected cell surface delivery platform for Cx26/Cx30 oligomers. Using an in situ proximity ligation assay, we detected the presence of non-junctional Cx26/Cx30 oligomers within lipid raft-enriched tricellular junction sites. In addition, we observed that cadherin homophilic interactions are critically involved in microtubule-mediated trafficking of Cx26/Cx30 oligomers to the cell surface. Overall, our results unveil an unexpected role for tricellular junctions in the trafficking and assembly of membrane channels.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, C.H.U B36, B-4000 Liège, Belgium.
| | - Marc Thiry
- GIGA-Neurosciences, Unit of Cell and Tissue Biology, University of Liège, C.H.U B36, B-4000 Liège, Belgium
| |
Collapse
|
11
|
Davis NL, Tang N, He M, Lee D, Bearer CF. Choline ameliorates ethanol induced alterations in tyrosine phosphorylation and distribution in detergent-resistant membrane microdomains of L1 cell adhesion molecule in vivo. Birth Defects Res 2020; 112:480-489. [PMID: 32052941 PMCID: PMC9741483 DOI: 10.1002/bdr2.1657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exposure to ethanol during pregnancy is the cause of fetal alcohol spectrum disorder. The function of L1 cell adhesion molecule (L1), critical for proper brain development, is dependent on detergent-resistant membrane microdomains (DRM). Ethanol at low concentrations disrupts L1 function measured by inhibition of downstream signaling and alterations in L1-DRM distribution in cerebellum in vivo and in cerebellar granule neurons (CGN) in vitro. We have previously shown that choline pretreatment of CGN partially prevents ethanol toxicity through improving L1 function in vitro. Here we show that choline supplementation reduces the impact of ethanol on L1 in cerebellum in vivo. METHODS Pregnant rat dams were placed on choline free diet on gestational Day 5 (G5). Pups were treated with saline or choline from postnatal day (P) 1-5. On P5, pups were intubated twice 2 hr apart with ethanol or Intralipid® for a total dose of 6 g/kg/d and sacrificed 1 hr after the last intubation. The cerebella were harvested and L1 phosphorylation/dephosphorylation status and distribution in DRM were analyzed. RESULTS Ethanol reduced L1 tyrosine phosphorylation and L1-Y1176 dephosphorylation in cerebella, and caused an increase in the percent of L1 in DRM. Choline supplementation of pups reduced the ethanol-induced changes in L1 phosphorylation status and ameliorated ethanol-induced redistribution of L1 into DRM. CONCLUSION Choline supplementation before an acute dose of ethanol ameliorates changes in L1 in vivo.
Collapse
Affiliation(s)
- Natalie L. Davis
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Ningfeng Tang
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Min He
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Daniel Lee
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| | - Cynthia F. Bearer
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine
| |
Collapse
|
12
|
Egawa J, Zemljic-Harpf A, Mandyam CD, Niesman IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM, Head BP. Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cereb Cortex 2019; 28:3255-3266. [PMID: 28981594 DOI: 10.1093/cercor/bhx196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
A delicate interneuronal communication between pre- and postsynaptic membranes is critical for synaptic plasticity and the formation of memory. Evidence shows that membrane/lipid rafts (MLRs), plasma membrane microdomains enriched in cholesterol and sphingolipids, organize presynaptic proteins and postsynaptic receptors necessary for synaptic formation and signaling. MLRs establish a cell polarity that facilitates transduction of extracellular cues to the intracellular environment. Here we show that neuron-targeted overexpression of an MLR protein, caveolin-1 (SynCav1), in the adult mouse hippocampus increased the number of presynaptic vesicles per bouton, total excitatory type I glutamatergic synapses, number of same-dendrite multiple-synapse boutons, increased myelination, increased long-term potentiation, and increased MLR-localized N-methyl-d-aspartate receptor subunits (GluN1, GluN2A, and GluN2B). Immunogold electron microscopy revealed that Cav-1 localizes to both the pre- and postsynaptic membrane regions as well as in the synaptic cleft. These findings, which are consistent with a significant increase in ultrastructural and functional synaptic plasticity, provide a fundamental framework that underlies previously demonstrated improvements in learning and memory in adult and aged mice by SynCav1. Such observations suggest that Cav-1 and MLRs alter basic aspects of synapse biology that could serve as potential therapeutic targets to promote neuroplasticity and combat neurodegeneration in a number of neurological disorders.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Larisa V Lysenko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Matsuyama K, Seta Y, Kataoka S, Nakatomi M, Toyono T, Kawamoto T. Expression of N-cadherin and cell surface molecules in the taste buds of mouse circumvallate papillae. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Mandyam CD, Schilling JM, Cui W, Egawa J, Niesman IR, Kellerhals SE, Staples MC, Busija AR, Risbrough VB, Posadas E, Grogman GC, Chang JW, Roth DM, Patel PM, Patel HH, Head BP. Neuron-Targeted Caveolin-1 Improves Molecular Signaling, Plasticity, and Behavior Dependent on the Hippocampus in Adult and Aged Mice. Biol Psychiatry 2017; 81:101-110. [PMID: 26592463 PMCID: PMC4826329 DOI: 10.1016/j.biopsych.2015.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Studies in vitro demonstrate that neuronal membrane/lipid rafts (MLRs) establish cell polarity by clustering progrowth receptors and tethering cytoskeletal machinery necessary for neuronal sprouting. However, the effect of MLR and MLR-associated proteins on neuronal aging is unknown. METHODS Here, we assessed the impact of neuron-targeted overexpression of an MLR scaffold protein, caveolin-1 (Cav-1) (via a synapsin promoter, SynCav1), in the hippocampus in vivo in adult (6-month-old) and aged (20-month-old) mice on biochemical, morphologic, and behavioral changes. RESULTS SynCav1 resulted in increased expression of Cav-1, MLRs, and MLR-localization of Cav-1 and tropomyosin-related kinase B receptor independent of age and time post gene transfer. Cav-1 overexpression in adult mice enhanced dendritic arborization within the apical dendrites of hippocampal cornu ammonis 1 and granule cell neurons, effects that were also observed in aged mice, albeit to a lesser extent, indicating preserved impact of Cav-1 on structural plasticity of hippocampal neurons with age. Cav-1 overexpression enhanced contextual fear memory in adult and aged mice demonstrating improved hippocampal function. CONCLUSIONS Neuron-targeted overexpression of Cav-1 in the adult and aged hippocampus enhances functional MLRs with corresponding roles in cell signaling and protein trafficking. The resultant structural alterations in hippocampal neurons in vivo are associated with improvements in hippocampal-dependent learning and memory. Our findings suggest Cav-1 as a novel therapeutic strategy in disorders involving impaired hippocampal function.
Collapse
Affiliation(s)
- Chitra D. Mandyam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD,Committee on the Neurobiology of Addictive Disorders, TSRI
| | - Jan M. Schilling
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Weihua Cui
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| | - Junji Egawa
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Ingrid R. Niesman
- Department of Cellular and Molecular Medicine, UCSD, Sanford Consortium for Regenerative Medicine
| | - Sarah E. Kellerhals
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | | | - Anna R. Busija
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | | | - Edmund Posadas
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Grace C. Grogman
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Jamie W. Chang
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - David M. Roth
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Piyush M. Patel
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD
| | - Brian P. Head
- Veterans Affairs San Diego Healthcare System,Department of Anesthesiology, UCSD,Corresponding Author: Brian P. Head, Department of Anesthesiology, University of California San Diego, VASDHS (9125), 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| |
Collapse
|
15
|
White KM, Sabatino JA, He M, Davis N, Tang N, Bearer CF. Toluene disruption of the functions of L1 cell adhesion molecule at concentrations associated with occupational exposures. Pediatr Res 2016; 80:145-50. [PMID: 27027721 PMCID: PMC4929035 DOI: 10.1038/pr.2016.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 01/05/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal toluene exposure can cause neurodevelopmental disabilities similar to fetal alcohol syndrome. Both share neuroanatomic pathologies similar to children with mutations in L1 cell adhesion molecule (L1). L1 mediates neurite outgrowth (NOG) via signaling through ERK1/2, which require trafficking of L1 through lipid rafts. Our objective is to determine if toluene inhibits L1-mediated NOG and toluene inhibits L1 signaling at concentrations achieved during occupational exposure. METHODS Concentrations of toluene reflective of blood concentrations achieved in solvent abusers and occupational settings are used. Cerebellar granule neurons (CGN) harvested from postnatal day 6 rat pups are plated on coverslips coated with poly-L-lysine (PLL) alone or PLL followed by laminin. L1 is added to the media of CGN plated on PLL alone. Toluene is added 2 h after plating. Cells are fixed at 24 h and neurite length is measured. ERK1/2 activation by L1 in CGN is analyzed by immunoblot. RESULTS Toluene significantly reduced mean neurite length of CGN exposed to L1 but not laminin. Toluene significantly reduced L1-mediated ERK1/2 phosphorylation. CONCLUSION Results suggest that toluene inhibits L1-lipid raft interactions at occupationally relevant concentrations and may lead to a fetal solvent spectrum disorder similar to fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Kimberly M.R. White
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Julia A. Sabatino
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Min He
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Natalie Davis
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ningfeng Tang
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cynthia F Bearer
- Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Villar VAM, Cuevas S, Zheng X, Jose PA. Localization and signaling of GPCRs in lipid rafts. Methods Cell Biol 2016; 132:3-23. [DOI: 10.1016/bs.mcb.2015.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Bale AS, Lee JS. An overview of butanol-induced developmental neurotoxicity and the potential mechanisms related to these observed effects. Neurotoxicol Teratol 2015; 53:33-40. [PMID: 26582497 DOI: 10.1016/j.ntt.2015.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
The purpose of this article is to briefly review the published literature on the developmental neurotoxic effects, including potential mechanisms, of four butanols: n-butanol, sec-butanol, tert-butanol, isobutanol, and identify data gaps and research needs for evaluation of human health risks in this area. Exposure potential to these four butanols is considerable given the high production volume (>1 billion lb) of n- and tert-butanol and moderate production volumes (100-500 million lb) of sec- and isobutanol. With the impetus to derive cleaner gasoline blends, butanols are being considered for use as fuel oxygenates. Notable signs of neurotoxicity and developmental neurotoxicity have been observed in some studies where laboratory animals (rodents) were gestationally exposed to n- or tert-butanol. Mechanistic data relevant to the observed developmental neurotoxicity endpoints were also reviewed to hypothesize potential mechanisms associated with the developmental neurotoxicity outcome. Data from the related and highly characterized alcohol, ethanol, were included to examine consistencies between this compound and the four butanols. It is widely known that alcohols, including butanols, interact with several ion channels and modulate the function of these targets following both acute and chronic exposures. In addition, n- and sec-butanol have been demonstrated to inhibit fetal rat brain astroglial cell proliferation. Further, rat pups exposed to n-butanol in utero were also reported to have significant increases in brain levels of dopamine and serotonin, but decreases in serotonin levels were noted with gestational exposure to tert-butanol. tert-Butanol was reported to inhibit muscarinic receptor-stimulated phosphoinositide metabolism which has been hypothesized to be a possible target for the neurotoxic effects of ethanol during brain development. The mechanistic data for the butanols support developmental neurotoxicity that has been observed in some of the rodent studies. However, careful studies evaluating the neurobehavior of developing pups in sensitive strains, as well as characterizing the plausible mechanisms involved, need to be conducted in order to further elucidate the neurodevelopmental effects of butanols for risk evaluation.
Collapse
Affiliation(s)
- Ambuja S Bale
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Washington, DC 20460, United States
| | - Janice S Lee
- Research Triangle Park, NC, 27711, United States
| |
Collapse
|
18
|
Ghosh S, Mukherjee S, Basu A. Chandipura virus perturbs cholesterol homeostasis leading to neuronal apoptosis. J Neurochem 2015; 135:368-80. [PMID: 26118540 DOI: 10.1111/jnc.13208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022]
Abstract
Chandipura virus (CHPV; genus Vesiculovirus, family Rhabdoviridae) induces neuronal death through the Fas-mediated extrinsic apoptosis pathway. What propels this apoptosis remains unclear, although oxysterols have been reported to be key players in neurodegeneration. In our study of CHPV-infected brain samples, we observed over-expression of genes such as apolipoprotein E, Cyp46a1, Srebf-1 and Nsdhl. This backs up the hypothesis that CHPV replication demands cholesterol that is supplied by apolipoprotein E through low density lipid receptors, lipid metabolism being pivotal for viral replication. We were able to illustrate this with over-expression of low density lipid receptors in CHPV-infected neurons. An upsurge of cholesterol concentration has been observed in neurons, triggering the expression of Cyp46a1 enzyme and culminating into the conversion of cholesterol to 24(S)-hydroxycholesterol. Increased 24(S)-hydroxycholesterol concentration is toxic to neurons, propelling neuronal apoptosis through the Fas-mediated extrinsic apoptosis pathway. For the first time, perturbation of cholesterol homeostasis in brain is shown to be utilized by the viruses for both maturation and the release of its matured virions outside the cells for continuous neuropathogenesis.
Collapse
Affiliation(s)
- Sourish Ghosh
- National Brain Research Centre, Manesar, Haryana, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
19
|
Dou X, Charness ME. Effect of lipid raft disruption on ethanol inhibition of l1 adhesion. Alcohol Clin Exp Res 2015; 38:2707-11. [PMID: 25421507 PMCID: PMC4278581 DOI: 10.1111/acer.12556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/24/2014] [Indexed: 12/21/2022]
Abstract
Background Alcohol causes fetal alcohol spectrum disorders in part by disrupting the function of the neural cell adhesion molecule L1. Alcohol inhibits L1-mediated cell–cell adhesion in diverse cell types and inhibits L1-mediated neurite outgrowth in cerebellar granule neurons (CGNs). A recent report indicates that ethanol (EtOH) induces the translocation of L1 into CGN lipid rafts and that disruption of lipid rafts prevents EtOH inhibition of L1-mediated neurite outgrowth. The same butanol–pentanol cutoff was noted for alcohol-induced translocation of L1 into lipid rafts that was reported previously for alcohol inhibition of L1 adhesion, suggesting that EtOH might inhibit L1 adhesion by shifting L1 into lipid rafts. Methods The NIH/3T3 cell line, 2A2-L1s, is a well-characterized EtOH-sensitive clonal cell line that stably expresses human L1. Cells were treated with 25 mM EtOH, 5 μM filipin, or both. Lipid rafts were enriched in membrane fractions by preparation of detergent-resistant membrane (DRMs) fractions. Caveolin-1 was used as a marker of lipid rafts, and L1 and Src were quantified by Western blotting in lipid-raft-enriched membrane fractions and by immunohistochemistry. Results EtOH (25 mM) increased the percentage of L1, but not Src, in 2A2-L1s membrane fractions enriched in lipid rafts. Filipin, an agent known to disrupt lipid rafts, decreased the percentage of caveolin and L1 in DRMs from 2A2-L1s cells. Filipin also blocked EtOH-induced translocation of L1 into lipid rafts from 2A2-L1s cells but did not significantly affect L1 adhesion or EtOH inhibition of L1 adhesion. Conclusions These findings indicate that EtOH does not inhibit L1 adhesion in NIH/3T3 cells by inducing the translocation of L1 into lipid rafts.
Collapse
Affiliation(s)
- Xiaowei Dou
- VA Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts
| | | |
Collapse
|
20
|
Tang N, Bamford P, Jones J, He M, Kane MA, Mooney SM, Bearer CF. Choline partially prevents the impact of ethanol on the lipid raft dependent functions of l1 cell adhesion molecule. Alcohol Clin Exp Res 2015; 38:2722-30. [PMID: 25421509 DOI: 10.1111/acer.12554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/23/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder, the leading known cause of mental retardation, is caused by alcohol exposure during pregnancy. One mechanism of ethanol (EtOH) teratogenicity is the disruption of the functions of L1 cell adhesion molecule (L1). These functions include enhancement of neurite outgrowth, trafficking through lipid rafts, and signal transduction. Recent data have shown that choline supplementation of rat pups reduces the effects of EtOH on neurobehavior. We sought to determine whether choline could prevent the effect of EtOH on L1 function using a simple experimental system. METHODS Cerebellar granule neurons (CGN) from postnatal day 6 rat pups were cultured with and without supplemental choline, and the effects on L1 signaling, lipid raft distribution, and neurite outgrowth were measured in the presence or absence of EtOH. RESULTS Choline significantly reduced the effect of EtOH on L1 signaling, the distribution of L1 in lipid rafts and L1-mediated neurite outgrowth. However, choline supplemented EtOH-exposed cultures remained significantly different than controls. CONCLUSIONS Choline pretreatment of CGN significantly reduces the disruption of L1 function by EtOH, but does not completely return L1 function to baseline. This experimental system will enable discovery of the mechanism of the neuroprotective effect of choline.
Collapse
Affiliation(s)
- Ningfeng Tang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
21
|
Abad-Rodríguez J, Díez-Revuelta N. Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 2015; 40:385-96. [PMID: 25936977 DOI: 10.1016/j.tibs.2015.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Nervous system function relies on the capacity of neurons to organize specialized domains for impulse reception or transmission. Such a polarized architecture relies on highly discriminatory and efficient mechanisms for the transport and targeting of required molecules to their functional positions. Glycans play a central role in polarized traffic based on their extraordinary capacity to encrypt bio-information. Glycan-based interactions exquisitely regulate cargo selection, trafficking, and targeting to the axon membrane. This generates segregated functional domains, where basal nerve processes such as axon growth, synaptic activity, or myelination take place. Deciphering the details of the glycan structures and carbohydrate-binding molecules that underlie these mechanisms improves our knowledge of nerve physiology and defines novel specific approaches for neurological treatments.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
22
|
Stahley SN, Saito M, Faundez V, Koval M, Mattheyses AL, Kowalczyk AP. Desmosome assembly and disassembly are membrane raft-dependent. PLoS One 2014; 9:e87809. [PMID: 24498201 PMCID: PMC3907498 DOI: 10.1371/journal.pone.0087809] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 01/01/2014] [Indexed: 11/20/2022] Open
Abstract
Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV.
Collapse
Affiliation(s)
- Sara N. Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Masataka Saito
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Michael Koval
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Alexa L. Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andrew P. Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chlorhexidine inhibits L1 cell adhesion molecule-mediated neurite outgrowth in vitro. Pediatr Res 2014; 75:8-13. [PMID: 24126818 PMCID: PMC3946665 DOI: 10.1038/pr.2013.175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chlorhexidine is a skin disinfectant that reduces skin and mucous membrane bacterial colonization and inhibits organism growth. Despite numerous studies assessing chlorhexidine safety in term infants, residual concerns have limited its use in hospitalized neonates, especially low-birth-weight preterm infants. The aim of this study was to assess the potential neurotoxicity of chlorhexidine on the developing central nervous system using a well-established in vitro model of neurite outgrowth that includes laminin and L1 cell adhesion molecule (L1) as neurite outgrowth-promoting substrates. METHODS Cerebellar granule neurons are plated on poly L-lysine, L1, or laminin. Chlorhexidine, hexachlorophene, or their excipients are added to the media. Neurons are grown for 24 h, fixed, and neurite length is measured. RESULTS Chlorhexidine significantly reduced the length of neurites grown on L1 but not on laminin. Chlorhexidine concentrations as low as 125 ng/ml statistically significantly reduced neurite length on L1. Hexachlorophene did not affect neurite length. CONCLUSION Chlorhexidine at concentrations detected in the blood following topical applications in preterm infants specifically inhibited L1-mediated neurite outgrowth of cerebellar granule neurons. It is now vital to determine whether the blood-brain barrier is permeable to chlorhexidine in preterm infants.
Collapse
|
24
|
Velasco S, Díez-Revuelta N, Hernández-Iglesias T, Kaltner H, André S, Gabius HJ, Abad-Rodríguez J. Neuronal Galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J Neurochem 2013; 125:49-62. [DOI: 10.1111/jnc.12148] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/05/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia Velasco
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| | | | - Herbert Kaltner
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität; München Germany
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory; Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n; Toledo Spain
| |
Collapse
|
25
|
Kendall EL, Shao C, DeVoe DL. Visualizing the growth and dynamics of liquid-ordered domains during lipid bilayer folding in a microfluidic chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3613-3619. [PMID: 22888063 DOI: 10.1002/smll.201200831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/29/2012] [Indexed: 06/01/2023]
Abstract
A microfluidic platform enabling optical monitoring of bilayer lipid membrane formation by a new monolayer folding process is described. The thermoplastic chips integrate dried lipid films that are rehydrated by microfluidic perfusion, which enables delivery of lipid-laden air bubbles across a membrane-supporting aperture. As in traditional Montal-Mueller bilayer formation, lipid monolayers are delivered independently to each side of the aperture, thereby allowing asymmetric lipid composition in the resulting bilayer to be achieved. Confocal microscopy is used to image the monolayer folding process, and reveals the growth and dynamics of asymmetric liquid-ordered domains during bilayer stabilization.
Collapse
Affiliation(s)
- Eric L Kendall
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
26
|
Tian N, Leshchyns'ka I, Welch JH, Diakowski W, Yang H, Schachner M, Sytnyk V. Lipid raft-dependent endocytosis of close homolog of adhesion molecule L1 (CHL1) promotes neuritogenesis. J Biol Chem 2012; 287:44447-63. [PMID: 23144456 DOI: 10.1074/jbc.m112.394973] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify βII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between CHL1 and βII spectrin accompanies CHL1 endocytosis. Inhibition of the association of CHL1 with lipid rafts by pharmacological disruption of lipid rafts or by mutation of cysteine 1102 within the intracellular domain of CHL1 reduces endocytosis of CHL1. Endocytosis of CHL1 is also reduced by nifedipine, an inhibitor of the L-type voltage-dependent Ca(2+) channels. CHL1-dependent neurite outgrowth is reduced by inhibitors of lipid raft assembly, inhibitors of voltage-dependent Ca(2+) channels, and overexpression of CHL1 with mutated cysteine Cys-1102. Our results suggest that ligand-induced and lipid raft-dependent regulation of CHL1 adhesion via Ca(2+)-dependent remodeling of the CHL1-βII spectrin complex and CHL1 endocytosis are required for CHL1-dependent neurite outgrowth.
Collapse
Affiliation(s)
- Nan Tian
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
28
|
Littner Y, Tang N, He M, Bearer CF. L1 cell adhesion molecule signaling is inhibited by ethanol in vivo. Alcohol Clin Exp Res 2012; 37:383-9. [PMID: 23050935 DOI: 10.1111/j.1530-0277.2012.01944.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorder is an immense public health problem. In vitro studies support the hypothesis that L1 cell adhesion molecule (L1) is a target for ethanol (EtOH) developmental neurotoxicity. L1 is critical for the development of the central nervous system. It functions through signal transduction leading to phosphorylation and dephosphorylation of tyrosines on its cytoplasmic domain. The function of L1 is also dependent on trafficking through lipid rafts (LRs). Our hypothesis is that L1 is a target for EtOH neurotoxicity in vivo. Our objective is to demonstrate changes in L1 phosphorylation/dephosphorylation and LR association in vivo. METHODS Rat pups on postnatal day 6 are administered 4.5, 5.25, and 6 g/kg of EtOH divided into 2 doses 2 hours apart, then killed. Cerebella are rapidly frozen for assay. Blood is analyzed for blood EtOH concentration. L1 tyrosine phosphorylation is determined by immunoprecipitation and dephosphorylation of tyrosine 1176 determined by immunoblot. LRs are isolated by sucrose density gradient, and the distribution of L1 in LRs is determined. RESULTS EtOH at all doses reduced the relative amount of Y1176 dephosphorylation as well as the relative amount of L1 phosphorylated on other tyrosines. The proportion of L1 present in LRs is significantly increased in pups who received 6 g/kg EtOH compared to intubated controls. CONCLUSIONS L1 is a target for EtOH developmental neurotoxicity in vivo.
Collapse
Affiliation(s)
- Yoav Littner
- Department of Neuroscience, Lerner Research Institute, Children's Hospital, The Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
29
|
Shao C, Kendall E, DeVoe DL. Electro-optical BLM chips enabling dynamic imaging of ordered lipid domains. LAB ON A CHIP 2012; 12:3142-9. [PMID: 22728885 PMCID: PMC3411933 DOI: 10.1039/c2lc40077d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Studies of lipid rafts, ordered microdomains of sphingolipids and cholesterol within cell membranes, are essential in probing the relationships between membrane organization and cellular function. While in vitro studies of lipid phase separation are commonly performed using spherical vesicles as model membranes, the utility of these models is limited by a number of factors. Here we present a microfluidic device that supports simultaneous electrical measurements and confocal imaging of on-chip bilayer lipid membranes (BLMs), enabling real-time multi-domain imaging of membrane organization. The chips further support closed microfluidic access to both sides of the membrane, allowing the membrane boundary conditions to be rapidly changed and providing a mechanism for dynamically adjusting membrane curvature through application of a transmembrane pressure gradient. Here we demonstrate the platform through the study of dynamic generation and dissolution of ordered lipid domains as membrane components are transported to and from the supporting annulus containing solvated lipids and cholesterol.
Collapse
Affiliation(s)
- Chenren Shao
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eric Kendall
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Don L. DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
30
|
Tang N, Farah B, He M, Fox S, Malouf A, Littner Y, Bearer CF. Ethanol causes the redistribution of L1 cell adhesion molecule in lipid rafts. J Neurochem 2011; 119:859-67. [PMID: 21884525 DOI: 10.1111/j.1471-4159.2011.07467.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fetal alcohol spectrum disorder is estimated to affect 1% of live births. The similarities between children with fetal alcohol syndrome and those with mutations in the gene encoding L1 cell adhesion molecule (L1) implicates L1 as a target of ethanol developmental neurotoxicity. Ethanol specifically inhibits the neurite outgrowth promoting function of L1 at pharmacologic concentrations. Emerging evidence shows that localized disruption of the lipid rafts reduces L1-mediated neurite outgrowth. We hypothesize that ethanol impairment of the association of L1 with lipid rafts is a mechanism underlying ethanol's inhibition of L1-mediated neurite outgrowth. In this study, we examine the effects of ethanol on the association of L1 and lipid rafts. We show that, in vitro, L1 but not N-cadherin shifts into lipid rafts following treatment with 25 mM ethanol. The ethanol concentrations causing this effect are similar to those inhibiting L1-mediated neurite outgrowth. Increasing chain length of the alcohol demonstrates the same cutoff as that previously shown for inhibition of L1-L1 binding. In addition, in cerebellar granule neurons in which lipid rafts are disrupted with methyl-beta-cyclodextrin, the rate of L1-mediated neurite outgrowth on L1-Fc is reduced to background rate and that this background rate is not ethanol sensitive. These data indicate that ethanol may inhibit L1-mediated neurite outgrowth by retarding L1 trafficking through a lipid raft compartment.
Collapse
Affiliation(s)
- Ningfeng Tang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21209, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Resnik N, Sepcic K, Plemenitas A, Windoffer R, Leube R, Veranic P. Desmosome assembly and cell-cell adhesion are membrane raft-dependent processes. J Biol Chem 2010; 286:1499-507. [PMID: 21071449 DOI: 10.1074/jbc.m110.189464] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of our study was to investigate the association of desmosomal proteins with cholesterol-enriched membrane domains, commonly called membrane rafts, and the influence of cholesterol on desmosome assembly in epithelial Madin-Darby canine kidney cells (clone MDc-2). Biochemical analysis proved an association of desmosomal cadherin desmocollin 2 (Dsc2) in cholesterol-enriched fractions that contain membrane raft markers caveolin-1 and flotillin-1 and the novel raft marker ostreolysin. Cold detergent extraction of biotinylated plasma membranes revealed that ∼60% of Dsc2 associates with membrane rafts while the remainder is present in nonraft and cholesterol-poor membranes. The results of immunofluorescence microscopy confirmed colocalization of Dsc2 and ostreolysin. Partial depletion of cholesterol with methyl-β-cyclodextrin disturbs desmosome assembly, as revealed by sequential recordings of live cells. Moreover, cholesterol depletion significantly reduces the strength of cell-cell junctions and partially releases Dsc2 from membrane rafts. Our data indicate that a pool of Dsc2 is associated with membrane rafts, particularly with the ostreolysin type of membrane raft, and that intact membrane rafts are necessary for desmosome assembly. Taken together, these data suggest cholesterol as a potential regulator that promotes desmosome assembly.
Collapse
Affiliation(s)
- Natasa Resnik
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
32
|
Díez-Revuelta N, Velasco S, André S, Kaltner H, Kübler D, Gabius HJ, Abad-Rodríguez J. Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution. J Cell Sci 2010; 123:671-81. [PMID: 20124415 DOI: 10.1242/jcs.058198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Serine phosphorylation of the beta-galactoside-binding protein galectin-3 (Gal-3) impacts nuclear localization but has unknown consequences for extracellular activities. Herein, we reveal that the phosphorylated form of galectin-3 (pGal-3), adsorbed to substratum surfaces or to heparan sulphate proteoglycans, is instrumental in promoting axon branching in cultured hippocampal neurons by local actin destabilization. pGal-3 interacts with neural cell adhesion molecule L1, and enhances L1 association with Thy-1-rich membrane microdomains. Concomitantly, membrane-actin linker proteins ezrin-radixin-moesin (ERM) are recruited to the same membrane site via interaction with the intracellular domain of L1. We propose that the local regulation of the L1-ERM-actin pathway, at the level of the plasma membrane, underlies pGal-3-induced axon branching, and that galectin phosphorylation in situ could act as a molecular switch for the axon response to Gal-3.
Collapse
Affiliation(s)
- Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory. Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, E-45071 Toledo, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Gibson NJ, Tolbert LP, Oland LA. Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing olfactory system. PLoS One 2009; 4:e7222. [PMID: 19787046 PMCID: PMC2746287 DOI: 10.1371/journal.pone.0007222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 09/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
34
|
Giannone G, Mège RM, Thoumine O. Multi-level molecular clutches in motile cell processes. Trends Cell Biol 2009; 19:475-86. [PMID: 19716305 DOI: 10.1016/j.tcb.2009.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 01/09/2023]
Abstract
To trigger cell motility, forces generated by the cytoskeleton must be transmitted physically to the external environment through transmembrane adhesion molecules. One model put forward twenty years ago to describe this process is the molecular clutch by which a modular interface of adaptor proteins mediates a dynamic mechanical connection between the actin flow and cell adhesion complexes. Recent optical imaging experiments have identified key clutch molecules linked to specific chemical and mechanical signal transduction pathways, particularly regarding integrins in migrating cells, IgCAMs in neuronal growth cones, and cadherins at intercellular junctions. We propose here the concept of a multi-level clutch as a useful analogy to grasp the complexity of the dynamic molecular interactions involved in a panel of motile behaviors and shapes.
Collapse
Affiliation(s)
- Grégory Giannone
- CNRS UMR 5091, Institut Magendie, Université Bordeaux 2, 33077 Bordeaux, France
| | | | | |
Collapse
|
35
|
Akiyama H, Matsu-ura T, Mikoshiba K, Kamiguchi H. Control of neuronal growth cone navigation by asymmetric inositol 1,4,5-trisphosphate signals. Sci Signal 2009; 2:ra34. [PMID: 19602704 DOI: 10.1126/scisignal.2000196] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is generally viewed as a global messenger that increases cytosolic calcium ion (Ca(2+)) concentration. However, the spatiotemporal dynamics of IP(3) and the functional significance of localized IP(3) production in cell polarity remain largely unknown. Here, we demonstrate the critical role of spatially restricted IP(3) signals in axon guidance. We found that IP(3) and ensuing Ca(2+) signals were produced asymmetrically across growth cones exposed to an extracellular gradient of nerve growth factor (NGF) and mediated growth cone turning responses to NGF. Moreover, photolysis-induced production of IP(3) on one side of a growth cone was sufficient to initiate growth cone turning toward the side with the higher concentration of IP(3). Thus, locally produced IP(3) encodes spatial information that polarizes the growth cone for guided migration.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Neuronal Growth Mechanisms, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
36
|
Riedle S, Kiefel H, Gast D, Bondong S, Wolterink S, Gutwein P, Altevogt P. Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/gamma-secretase activity. Biochem J 2009; 420:391-402. [PMID: 19260824 PMCID: PMC2782312 DOI: 10.1042/bj20081625] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 02/19/2009] [Accepted: 03/05/2009] [Indexed: 12/31/2022]
Abstract
L1-CAM (L1 cell-adhesion molecule), or more simply L1, plays an important role in the progression of human carcinoma. Overexpression promotes tumour-cell invasion and motility, growth in nude mice and tumour metastasis. It is feasible that L1-dependent signalling contributes to these effects. However, little is known about its mechanism in tumour cells. We reported previously that L1 is cleaved by ADAM (a disintegrin and metalloprotease) and that the cytoplasmic part is essential for L1 function. Here we analysed more closely the role of proteolytic cleavage in L1-mediated nuclear signalling. Using OVMz carcinoma cells and L1-transfected cells as a model, we found that ADAM10-mediated cleavage of L1 proceeds in lipid raft and non-raft domains. The cleavage product, L1-32, is further processed by PS (presenilin)/gamma-secretase to release L1-ICD, an L1 intracellular domain of 28 kDa. Overexpression of dominant-negative PS1 or use of a specific gamma-secretase inhibitor leads to an accumulation of L1-32. Fluorescence and biochemical analysis revealed a nuclear localization for L1-ICD. Moreover, inhibition of ADAM10 and/or gamma-secretase blocks nuclear translocation of L1-ICD and L1-dependent gene regulation. Overexpression of recombinant L1-ICD mediates gene regulation in a similar manner to full-length L1. Our results establish for the first time that regulated proteolytic processing by ADAM10 and PS/gamma-secretase is essential for the nuclear signalling of L1 in human carcinoma cell lines.
Collapse
Key Words
- a disintegrin and metalloprotease 10 (adam10)
- l1 cell-adhesion molecule (l1-cam)
- nuclear translocation
- presenilin (ps)/γ-secretase activity
- raft
- signalling
- adam, a disintegrin and metalloprotease
- app, amyloid precursor protein
- cho, chinese-hamster ovary
- crabpii, cellular retinoic acid-binding protein ii
- ctf, c-terminal fragment
- dapt, n-[n-(3,5-difluorophenacetyl)-l-alanyl]-(s)-phenylglycine t-butyl ester (also known as presenilin inhibitor ix)
- drm, detergent-resistant membrane
- ecl®, enhanced chemiluminescence
- erk, extracellular-signal-regulated kinase
- fcs, fetal-calf serum
- fniii, fibronectin iii
- hek-293, human embryonic kidney-293
- hl1, human l1
- hrp, horseradish peroxidase
- icd, intracellular domain
- lamp-1, lysosomal-associated membrane protein 1
- l1, l1 cell-adhesion molecule
- l1cyt, the cytoplasmic part of l1
- mab, monoclonal antibody
- mdk, midkine or neurite growth-promoting factor 2
- mt1-mmp, membrane type-1 matrix metalloproteinase
- pab, polyclonal antibody
- ps(1), presenilin(-1)
- qrt-pcr, quantitative real-time pcr
- rip, regulated intramembrane proteolysis
- sirna, small interfering rna
- tace, tumour-necrosis factor-α converting enzyme
- tapi-0, n-(r)-[2-(hydroxyaminocarbonyl)methyl]-4-methylpentanoyl-l-naphthylalanyl-l-alanine amide
Collapse
Affiliation(s)
- Svenja Riedle
- *Translational Immunology, D015, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Federal Republic of Germany
| | - Helena Kiefel
- *Translational Immunology, D015, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Federal Republic of Germany
| | - Daniela Gast
- *Translational Immunology, D015, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Federal Republic of Germany
| | - Sandra Bondong
- *Translational Immunology, D015, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Federal Republic of Germany
| | - Silke Wolterink
- *Translational Immunology, D015, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Federal Republic of Germany
| | - Paul Gutwein
- †Center for Pharmacology, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Federal Republic of Germany
| | - Peter Altevogt
- *Translational Immunology, D015, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Federal Republic of Germany
| |
Collapse
|
37
|
Yeaney NK, He M, Tang N, Malouf AT, O'Riordan MA, Lemmon V, Bearer CF. Ethanol inhibits L1 cell adhesion molecule tyrosine phosphorylation and dephosphorylation and activation of pp60(src). J Neurochem 2009; 110:779-90. [PMID: 19457108 DOI: 10.1111/j.1471-4159.2009.06143.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fetal alcohol syndrome is a leading cause of mental retardation. The neuropathology found in patients with fetal alcohol syndrome overlaps with those with mutations in the gene for cell adhesion molecule (L1). We have previously shown that L1-mediated neurite outgrowth and L1 activation of extracellular receptor kinases 1/2 are inhibited at low concentrations of ethanol. One possible mechanism for this effect is through disruption of a tyrosine-based sorting signal, Y(1176)RSLE, on the cytoplasmic domain of L1. Our goal was to determine if ethanol inhibited the sorting signal or its phosphorylation state. Using cerebellar granule neurons and dorsal root ganglion neurons, we found that ethanol had no effect on L1 distribution to the growth cone or its ability to be expressed on the cell surface as determined by confocal microscopy. In cerebellar granule neurons, clustering of L1 resulted in increased dephosphorylation of Y(1176), increased L1 tyrosine phosphorylation, and an increase in the activation of pp60(src) as measured by immunoblot. All changes were inhibited by 25 mM ethanol. Using PP2 to inhibit pp60(src) activation resulted in inhibition of increases in L1 tyrosine and extracellular receptor kinases 1/2 phosphorylation, and Y(1176) dephosphorylation. We conclude that ethanol disrupts L1 trafficking/signaling following its expression on the surface of the growth cone, and prior to its activation of pp60(src).
Collapse
|
38
|
Ichikawa N, Iwabuchi K, Kurihara H, Ishii K, Kobayashi T, Sasaki T, Hattori N, Mizuno Y, Hozumi K, Yamada Y, Arikawa-Hirasawa E. Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci 2009; 122:289-99. [PMID: 19118221 DOI: 10.1242/jcs.030338] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Laminin-1, an extracellular matrix molecule, promotes neurite outgrowth through the interaction of integrin and actin. Monosialoganglioside GM1 in the lipid rafts associates with and activates the NGF receptor TrkA, and enhances neurite outgrowth. However, the role of GM1 in laminin-1-induced neurite outgrowth was still unclear. Here, we describe that laminin-1 binds to GM1 through a carbohydrate moiety and a specific conformation of GM1, induces focal formation of large clusters of GM1, and enhances the relocation of TrkA in the membrane of dorsal root ganglion (DRG) and PC12 cells. We found that laminin-1-mediated clustering of GM1 causes the translocation and enrichment of beta1 integrin in lipid rafts--where TrkA colocalizes with beta1 integrin--and the activation of Lyn, Akt and MAPK to promote the outgrowth of neurites. Our results suggest that the binding of laminin-1 to GM1 facilitates the formation of a focal microdomain in the membrane, and enhances signal transduction that promotes neurite outgrowth by linking NGF-TrkA signaling with the laminin-integrin signaling pathways.
Collapse
Affiliation(s)
- Naoki Ichikawa
- Research Institute for Diseases of Old Age, Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kamiguchi H. The role of cell adhesion molecules in axon growth and guidance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 621:95-103. [PMID: 18269213 DOI: 10.1007/978-0-387-76715-4_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During development, axons elongate along the correct path toward their final targets. Growing axons maintain adhesive interactions with specific environmental cues via cell adhesion molecules (CAMs). The axon-environment adhesion must be dynamically controlled, both temporally and spatially, to enable the axons to navigate and migrate correctly. In this way, CAMs play a central role in mediating contact-dependent regulation of motile behavior of the axons. This chapter examines the mechanisms underlying how CAMs control axon growth and guidance, with a particular focus on intracellular signaling, trafficking, and interactions with the actin cytoskeleton.
Collapse
Affiliation(s)
- Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
40
|
Optical Tweezers and Fluorescence Recovery After Photo-Bleaching to Measure Molecular Interactions at the Cell Surface. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
41
|
Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS. Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 2008; 87:251-63. [DOI: 10.1002/jbm.b.31000] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Hoffman EJ, Mintz CD, Wang S, McNickle DG, Salton SRJ, Benson DL. Effects of ethanol on axon outgrowth and branching in developing rat cortical neurons. Neuroscience 2008; 157:556-65. [PMID: 18926887 DOI: 10.1016/j.neuroscience.2008.08.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/26/2022]
Abstract
Humans exposed prenatally to ethanol can exhibit brain abnormalities and cognitive impairment similar to those seen in patients expressing mutant forms of the L1 cell adhesion molecule (L1CAM). The resemblance suggests that L1CAM may be a target for ethanol, and consistent with this idea, ethanol can inhibit L1CAM adhesion in cell lines and L1CAM-mediated outgrowth and signaling in cerebellar granule neurons. However, it is not known whether ethanol inhibits L1CAM function in other neuron types known to require L1CAM for appropriate development. Here we asked whether ethanol alters L1CAM function in neurons of the rat cerebral cortex. We find that ethanol does not alter axonal polarization, L1CAM-dependent axon outgrowth or branching, or L1CAM recycling in axonal growth cones. Thus, ethanol inhibition of L1CAM is highly dependent on neuronal context.
Collapse
Affiliation(s)
- E J Hoffman
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
43
|
Rossier-Pansier L, Baruthio F, Rüegg C, Mariotti A. Compartmentalization in membrane rafts defines a pool of N-cadherin associated with catenins and not engaged in cell-cell junctions in melanoma cells. J Cell Biochem 2008; 103:957-71. [PMID: 17668445 DOI: 10.1002/jcb.21463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Melanoma progression is associated with changes in adhesion receptor expression, in particular upregulation of N-cadherin which promotes melanoma cell survival and invasion. Plasma membrane lipid rafts contribute to the compartmentalization of signaling complexes thereby regulating their function, but how they may affect the properties of adhesion molecules remains elusive. In this study, we addressed the question whether lipid rafts in melanoma cells may contribute to the compartmentalization of N-cadherin. We show that a fraction of N-cadherin in a complex with catenins is associated with cholesterol/sphingolipid-rich membrane microdomains in aggressive melanoma cells in vitro and experimental melanomas in vivo. Partitioning of N-cadherin in membrane rafts is not modulated by growth factors and signaling pathways relevant to melanoma progression, is not necessary for cell-cell junctions' establishment or maintenance, and is not affected by cell-cell junctions' and actin cytoskeleton disruption. These results reveal that two independent pools of N-cadherin exist on melanoma cell surface: one pool is independent of lipid rafts and is engaged in cell-cell junctions, while a second pool is localized in membrane rafts and does not participate in cell-cell adhesions. Targeting to membrane rafts may represent a previously unrecognized mechanism regulating N-cadherin function in melanoma cells.
Collapse
Affiliation(s)
- Laetitia Rossier-Pansier
- Division of Experimental Oncology, Centre Pluridisciplinaire d'Oncologie, Lausanne Cancer Center and Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges s/Lausanne, Switzerland
| | | | | | | |
Collapse
|
44
|
Levitan I, Gooch KJ. Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics: actions of oxLDL. Antioxid Redox Signal 2007; 9:1519-34. [PMID: 17576163 DOI: 10.1089/ars.2007.1686] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane-cytoskeleton coupling is known to play major roles in a plethora of cellular responses, such as cell growth, differentiation, polarization, motility, and others. In this review, the authors discuss the growing amount of evidence indicating that membrane-cytoskeleton interactions are regulated by the lipid composition of the plasma membrane, suggesting that cholesterol-rich membrane domains (lipid rafts), including caveolae, are essential for membrane-cytoskeleton coupling. Several models for raft-cytoskeleton interactions are discussed. Also described is the evidence suggesting that raft-cytoskeleton interactions play key roles in several cytoskeleton-dependent processes, particularly in the regulation of cellular biomechanical properties. To address further the physiological significance of raft-cytoskeleton coupling, the authors focus on the impact of oxidized low density lipoproteins, one of the major cholesterol carriers and proatherogenic factors, on the integrity of lipid rafts/caveolae, and on the organization of the cytoskeleton. Finally, the authors review the recent studies showing that oxLDL and cholesterol depletion have similar impacts on the biomechanical properties of vascular endothelial cells, which in turn affect endothelial angiogenic potential.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
45
|
Tomomura M, Morita N, Yoshikawa F, Konishi A, Akiyama H, Furuichi T, Kamiguchi H. Structural and functional analysis of the apoptosis-associated tyrosine kinase (AATYK) family. Neuroscience 2007; 148:510-21. [PMID: 17651901 DOI: 10.1016/j.neuroscience.2007.05.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/25/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Apoptosis-associated tyrosine kinase (AATYK) is a protein kinase that is predominantly expressed in the nervous system and is involved in apoptosis and neurite growth of cerebellar granule cells. In this study, we cloned three new members of the mouse AATYK family, AATYK1B, AATYK2 and AATYK3. AATYK1B is a splicing variant of the previously reported AATYK1 (referred to as AATYK1A hereafter). In comparison with AATYK1A, these three AATYK members were characterized by having an extra N-terminal region that consists of a signal peptide-like sequence and a predicted transmembrane (TM) region, which is followed by a kinase domain and a long C-terminal domain. Both TM-containing AATYK isoforms (AATYK(+)TM: AATYK1B, 2, and 3) and TM-lacking isoform (AATYK(-)TM: AATYK1A) were recovered in membrane fractions, suggesting that AATYK(+)TM and AATYK(-)TM are transmembrane- and peripheral-membrane protein kinases, respectively. AATYK1A was recovered in the soluble fraction when the cells were treated with 2-bromo palmitate, suggesting that AATYK1A associates with membrane via palmitoylation. The kinase domain was highly conserved among all AATYK members and was shown to be catalytically active. Three AATYK family members were predominantly expressed in adult mouse brains with almost similar expression profiles: widespread distribution over the various brain regions, especially in the cerebellum and hippocampus, and up-regulated expression during development of the cerebellum. In cultured cerebellar granule cells, AATYK1 was abundantly localized in both soma and axons, AATYK2 distribution was restricted to soma, and AATYK3 was punctately present over the cells. AATYK1 was concentrated in the central domain of growth cones of dorsal root ganglion neurons. Our results indicate that AATYK family members are brain-dominant and membrane-associated kinases with slightly different distribution patterns in the developing and adult mouse brain, which may be involved in fine regulation of neuronal functions including neurite extension and apoptosis.
Collapse
Affiliation(s)
- M Tomomura
- Laboratory for Molecular Neurogenesis, Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Yuyama K, Sekino-Suzuki N, Sanai Y, Kasahara K. Translocation of activated heterotrimeric G protein Galpha(o) to ganglioside-enriched detergent-resistant membrane rafts in developing cerebellum. J Biol Chem 2007; 282:26392-400. [PMID: 17623667 DOI: 10.1074/jbc.m705046200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The association of gangliosides with specific proteins in the central nervous system was examined by co-immunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 immunoprecipitated phosphoproteins of 40, 53, 56, and 80 kDa from the rat cerebellum. Of these proteins, the 40-kDa protein was identified as the alpha-subunit of a heterotrimeric G protein, G(o) (Galpha(o)). Using sucrose density gradient analysis of cerebellar membranes, Galpha(o), but not Gbetagamma, was observed in detergent-resistant membrane (DRM) raft fractions in which GD3 was abundant after the addition of guanosine 5'-O-(thiotriphosphate) (GTPgammaS), which stabilizes G(o) in its active form. On the other hand, both Galpha(o) and Gbetagamma were excluded from the DRM raft fractions in the presence of guanyl-5'-yl thiophosphate, which stabilizes G(o) in its inactive form. Only Galpha(o) was observed in the DRM fractions from the cerebellum on postnatal day 7, but not from that in adult. After pertussis toxin treatment, Galpha(o) was not observed in the DRM fractions, even from the cerebellum on postnatal day 7. These results indicate the activation-dependent translocation of Galpha(o) into the DRM rafts. Furthermore, Galpha(o) was concentrated in the neuronal growth cones. Treatment with stromal cell-derived factor-1alpha, a physiological ligand for the G protein-coupled receptor, stimulated [(35)S]GTPgammaS binding to Galpha(o) and caused Galpha(o) translocation to the DRM fractions and RhoA translocation to the membrane fraction, leading to the growth cone collapse of cerebellar granule neurons. The collapse was partly prevented by pretreatment with the cholesterol-sequestering and raft-disrupting agent methyl-beta-cyclodextrin. These results demonstrate the involvement of signal-dependent Galpha(o) translocation to the DRM in the growth cone behavior of cerebellar granule neurons.
Collapse
Affiliation(s)
- Kohei Yuyama
- Biomembrane Signaling Project 2, Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, 3-18-22 Honkomagome Bunkyo-ku, Tokyo, 113-8613 Japan
| | | | | | | |
Collapse
|
47
|
Wang W, Mullikin-Kilpatrick D, Crandall JE, Gronostajski RM, Litwack ED, Kilpatrick DL. Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci 2007; 27:6115-27. [PMID: 17553984 PMCID: PMC6672151 DOI: 10.1523/jneurosci.0180-07.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A central question is how various stages of neuronal development are integrated as a differentiation program. Here we show that the nuclear factor I (NFI) family of transcriptional regulators is expressed and functions throughout the postmitotic development of cerebellar granule neurons (CGNs). Expression of an NFI dominant repressor in CGN cultures blocked axon outgrowth and dendrite formation and decreased CGN migration. Inhibition of NFI transactivation also disrupted extension and fasciculation of parallel fibers as well as CGN migration to the internal granule cell layer in cerebellar slices. In postnatal day 17 Nfia-deficient mice, parallel fibers were greatly diminished and disoriented, CGN dendrite formation was dramatically impaired, and migration from the external germinal layer (EGL) was retarded. Axonal marker expression also was disrupted within the EGL of embryonic day 18 Nfib-null mice. NFI regulation of axon extension was observed under conditions of homotypic cell contact, implicating cell surface proteins as downstream mediators of its actions in CGNs. Consistent with this, the cell adhesion molecules ephrin B1 and N-cadherin were identified as NFI gene targets in CGNs using inhibitor and Nfi mutant analysis as well as chromatin immunoprecipitation. Functional inhibition of ephrin B1 or N-cadherin interfered with CGN axon extension and guidance, migration, and dendritogenesis in cell culture as well as in situ. These studies define NFI as a key regulator of postmitotic CGN development, in particular of axon formation, dendritogenesis, and migratory behavior. Furthermore, they reveal how a single transcription factor family can control and integrate multiple aspects of neuronal differentiation through the regulation of cell adhesion molecules.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cellular and Molecular Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
48
|
Yamanaka H, Obata K, Kobayashi K, Dai Y, Fukuoka T, Noguchi K. Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain. Eur J Neurosci 2007; 25:1097-111. [PMID: 17331206 PMCID: PMC1891330 DOI: 10.1111/j.1460-9568.2007.05344.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cell adhesion molecule L1 (L1-CAM) plays important functional roles in the developing and adult nervous systems. Here we show that peripheral nerve injury induced dynamic post-transcriptional alteration of L1-CAM in the rat dorsal root ganglia (DRGs) and spinal cord. Sciatic nerve transection (SCNT) changed the expression of L1-CAM protein but not L1-CAM mRNA. In DRGs, SCNT induced accumulation of the L1-CAM into the surface of somata, which resulted in the formation of immunoreactive ring structures in a number of unmyelinated C-fiber neurons. These neurons with L1-CAM-immunoreactive ring structures were heavily colocalized with phosphorylated p38 MAPK. Western blot analysis revealed the increase of full-length L1-CAM and decrease of fragments of L1-CAM after SCNT in DRGs. Following SCNT, L1-CAM-immunoreactive profiles in the dorsal horn showed an increase mainly in pre-synaptic areas of laminae I–II with a delayed onset and colocalized with growth-associated protein 43. In contrast to DRGs, SCNT increased the proteolytic 80-kDa fragment of L1-CAM and decreased full-length L1-CAM in the spinal cord. The intrathecal injection of L1-CAM antibody for the extracellular domain of L1-CAM inhibited activation of p38 MAPK and emergence of ring structures of L1-CAM immunoreactivity in injured DRG neurons. Moreover, inhibition of extracellular L1-CAM binding by intrathecal administration of antibody suppressed the mechanical allodynia and thermal hyperalgesia induced by partial SCNT. Collectively, these data suggest that the modification of L1-CAM in nociceptive pathways might be an important pathomechanism of neuropathic pain.
Collapse
Affiliation(s)
- Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Saglietti L, Dequidt C, Kamieniarz K, Rousset MC, Valnegri P, Thoumine O, Beretta F, Fagni L, Choquet D, Sala C, Sheng M, Passafaro M. Extracellular Interactions between GluR2 and N-Cadherin in Spine Regulation. Neuron 2007; 54:461-77. [PMID: 17481398 DOI: 10.1016/j.neuron.2007.04.012] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 02/13/2007] [Accepted: 04/16/2007] [Indexed: 12/16/2022]
Abstract
Via its extracellular N-terminal domain (NTD), the AMPA receptor subunit GluR2 promotes the formation and growth of dendritic spines in cultured hippocampal neurons. Here we show that the first N-terminal 92 amino acids of the extracellular domain are necessary and sufficient for GluR2's spine-promoting activity. Moreover, overexpression of this extracellular domain increases the frequency of miniature excitatory postsynaptic currents (mEPSCs). Biochemically, the NTD of GluR2 can interact directly with the cell adhesion molecule N-cadherin, in cis or in trans. N-cadherin-coated beads recruit GluR2 on the surface of hippocampal neurons, and N-cadherin immobilization decreases GluR2 lateral diffusion on the neuronal surface. RNAi knockdown of N-cadherin prevents the enhancing effect of GluR2 on spine morphogenesis and mEPSC frequency. Our data indicate that in hippocampal neurons N-cadherin and GluR2 form a synaptic complex that stimulates presynaptic development and function as well as promoting dendritic spine formation.
Collapse
Affiliation(s)
- Laura Saglietti
- DTI Dulbecco Telethon Institute, CNR Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mariotti A, Perotti A, Sessa C, Rüegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 2007; 16:451-65. [PMID: 17371194 DOI: 10.1517/13543784.16.4.451] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During tumor progression, cancer cells undergo dramatic changes in the expression profile of adhesion molecules resulting in detachment from original tissue and acquisition of a highly motile and invasive phenotype. A hallmark of this change, also referred to as the epithelial-mesenchymal transition, is the loss of E- (epithelial) cadherin and the de novo expression of N- (neural) cadherin adhesion molecules. N-cadherin promotes tumor cell survival, migration and invasion, and a high level of its expression is often associated with poor prognosis. N-cadherin is also expressed in endothelial cells and plays an essential role in the maturation and stabilization of normal vessels and tumor-associated angiogenic vessels. Increasing experimental evidence suggests that N-cadherin is a potential therapeutic target in cancer. A peptidic N-cadherin antagonist (ADH-1) has been developed and has entered clinical testing. In this review, the authors discuss the biochemical and functional features of N-cadherin, its potential role in cancer and angiogenesis, and summarize the preclinical and clinical results achieved with ADH-1.
Collapse
Affiliation(s)
- Agnese Mariotti
- Centre Pluridisciplinaire d'Oncologie, Division of Experimental Oncology, Lausanne Cancer Center, and Swiss Institute for Experimental Cancer Research (ISREC), NCCR Molecular Oncology, Epalinges, Switzerland.
| | | | | | | |
Collapse
|