1
|
Hirai H, Konno K, Yamasaki M, Watanabe M, Sakaba T, Hashimotodani Y. Distinct release properties of glutamate/GABA co-transmission serve as a frequency-dependent filtering of supramammillary inputs. eLife 2024; 13:RP99711. [PMID: 39680436 DOI: 10.7554/elife.99711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Glutamate and GABA co-transmitting neurons exist in several brain regions; however, the mechanism by which these two neurotransmitters are co-released from the same synaptic terminals remains unclear. Here, we show that the supramammillary nucleus (SuM) to dentate granule cell synapses, which co-release glutamate and GABA, exhibit differences between glutamate and GABA release properties in paired-pulse ratio, Ca2+-sensitivity, presynaptic receptor modulation, and Ca2+ channel-vesicle coupling configuration. Moreover, uniquantal synaptic responses show independent glutamatergic and GABAergic responses. Morphological analysis reveals that most SuM terminals form distinct glutamatergic and GABAergic synapses in proximity, each characterized by GluN1 and GABAAα1 labeling, respectively. Notably, glutamate/GABA co-transmission exhibits distinct short-term plasticities, with frequency-dependent depression of glutamate and frequency-independent stable depression of GABA. Our findings suggest that glutamate and GABA are co-released from different synaptic vesicles within the SuM terminals, and reveal that distinct transmission modes of glutamate/GABA co-release serve as frequency-dependent filters of SuM inputs.
Collapse
Affiliation(s)
- Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | | |
Collapse
|
2
|
El Boustani M, Mouawad N, Abou Alezz M. AP3M2: A key regulator from the nervous system modulates autophagy in colorectal cancer. Tissue Cell 2024; 91:102593. [PMID: 39488930 DOI: 10.1016/j.tice.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Colorectal cancer (CRC) affects approximately a million people annually with a mortality rate of 50 %, accounting for 8 % of cancer-related deaths globally. Molecular characterization by The Cancer Genome Atlas could be useful in these tumor subtypes to reveal "druggable" genes. Our study focuses on the significance of the AP3M2 gene (adaptor-related protein complex 3 subunit mu 2) as a potential oncogene by employing RNA interference to inactivate AP3M2. AP3M2, inplicated in protein trafficking to lysosomes pathway and specialized organelles in neuronal cells, was amplified in CRC cell lines. The Knockdown of AP3M2 significantly reduced the viability of three CRC cell lines HCT-116, CACO2, and HT29. Intriguingly, our findings revealed an interaction between AP3M2 expression and autophagy-related genes, as well as reactive oxygen species (ROS) levels in CRC cell lines. These results suggest that targeting AP3M2 could provide a powerful strategy for CRC treatment through autophagy-ROS mechanism.
Collapse
Affiliation(s)
- Maguie El Boustani
- Nephrology and Dialysis Unit, Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nayla Mouawad
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Bolz S, Haucke V. Biogenesis and reformation of synaptic vesicles. J Physiol 2024. [PMID: 39367867 DOI: 10.1113/jp286554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research.
Collapse
Affiliation(s)
- Svenja Bolz
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Asmerian H, Alberts J, Sanetra AM, Diaz AJ, Silm K. Role of adaptor protein complexes in generating functionally distinct synaptic vesicle pools. J Physiol 2024. [PMID: 39034608 DOI: 10.1113/jp286179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
The synaptic vesicle (SV) cycle ensures the release of neurotransmitters and the replenishment of SVs to sustain neuronal activity. Multiple endocytosis and sorting pathways contribute to the recapture of the SV membrane and proteins after fusion. Adaptor protein (AP) complexes are among the critical components of the SV retrieval machinery. The canonical clathrin adaptor AP2 ensures the replenishment of most SVs across many neuronal populations. An alternative AP1/AP3-dependent process mediates the formation of a subset of SVs that differ from AP2 vesicles in molecular composition and respond preferentially during higher frequency firing. Furthermore, recent studies show that vesicular transporters for different neurotransmitters depend to a different extent on the AP3 pathway and this affects the release properties of the respective neurotransmitters. This review focuses on the current understanding of the AP-dependent molecular and functional diversity among SVs. We also discuss the contribution of these pathways to the regulation of neurotransmitter release across neuronal populations.
Collapse
Affiliation(s)
- Hrach Asmerian
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacob Alberts
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna M Sanetra
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexia J Diaz
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katlin Silm
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Jin Q, Feng J, Yan Y, Kuang Y. Prognostic and immunological role of adaptor related protein complex 3 subunit mu2 in colon cancer. Sci Rep 2024; 14:483. [PMID: 38177168 PMCID: PMC10767120 DOI: 10.1038/s41598-023-50452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
The expression levels and prognostic role of AP3M2 in colorectal adenocarcinoma (CRAC) have yet to be fully unveiled. Our study comprehensively investigated the clinical significance of AP3M2 in colorectal cancer through an extensive bioinformatics data mining process (TCGA, GEO, GEPIA, Timer, Ualcan, ROCPLOT, and David), followed by experimental validation. We found AP3M2 is a cancer gene, which can be used to distinguish between colorectal cancer and colorectal adenomas, liver metastasis, lung metastasis, colorectal polyp. Higher AP3M2 expression levels were associated with longer overall survival in colon adenocarcinoma. AP3M2 might be the primary biomarker for oxaliplatin in colon cancer and an acquired resistance biomarker for oxaliplatin and 5-fu. AP3M2 was positively associated with CD274, CTLA4. AP3M2 might be associated with T-cell, NF-kappaB transcription factor activity, and response to hypoxia. AP3M2 could predict chemotherapy effectiveness and prognosis for colon cancer patients. AP3M2 might inhibit tumor growth via influencing tumor-infiltrating immune cells in the context of Tumor microenvironment. AP3M2 plays as an oncogene in CRAC and is suggested as a new potential biotarget for therapy.
Collapse
Affiliation(s)
- Qianqian Jin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, P. R. China
| | - Jiahao Feng
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, P. R. China.
| | - Yong Kuang
- Digestive Disease Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
7
|
Jain S, Yee AG, Maas J, Gierok S, Xu H, Stansil J, Eriksen J, Nelson AB, Silm K, Ford CP, Edwards RH. Adaptor protein-3 produces synaptic vesicles that release phasic dopamine. Proc Natl Acad Sci U S A 2023; 120:e2309843120. [PMID: 37812725 PMCID: PMC10589613 DOI: 10.1073/pnas.2309843120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high-frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a distinct population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.
Collapse
Affiliation(s)
- Shweta Jain
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Andrew G. Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO80045
| | - James Maas
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Sarah Gierok
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Hongfei Xu
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Jasmine Stansil
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Jacob Eriksen
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Alexandra B. Nelson
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Katlin Silm
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO80045
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Robert H. Edwards
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
8
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
9
|
Jain S, Yee AG, Maas J, Gierok S, Xu H, Stansil J, Eriksen J, Nelson A, Silm K, Ford CP, Edwards RH. Adaptor Protein-3 Produces Synaptic Vesicles that Release Phasic Dopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552338. [PMID: 37609166 PMCID: PMC10441354 DOI: 10.1101/2023.08.07.552338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a novel population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.
Collapse
Affiliation(s)
- Shweta Jain
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Andrew G. Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora USA
| | - James Maas
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Sarah Gierok
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Hongfei Xu
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Jasmine Stansil
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Jacob Eriksen
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Alexandra Nelson
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Katlin Silm
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora USA
| | - Robert H. Edwards
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| |
Collapse
|
10
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
12
|
Hansen N, Fitzner D, Stöcker W, Wiltfang J, Bartels C. Mild Cognitive Impairment in Chronic Brain Injury Associated with Serum Anti-AP3B2 Autoantibodies: Report and Literature Review. Brain Sci 2021; 11:1208. [PMID: 34573230 PMCID: PMC8471279 DOI: 10.3390/brainsci11091208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic traumatic brain injury is a condition that predisposes the brain to activate B-cells and produce neural autoantibodies. Anti-adaptor protein 3, subunit B2 (AP3B2) autoantibodies have thus far been associated with diseases affecting the cerebellum or vestibulocerebellum. Through this case report, we aim to broaden the spectrum of anti-AP3B2-associated disease. CASE DESCRIPTION We report on a 51-year-old woman with a brain injury approximately 28 years ago who recently underwent neuropsychological testing, magnetic resonance imaging of the brain (cMRI), and cerebrospinal fluid (CSF) analysis. Neural autoantibodies were determined in serum and CSF. Our patient suffered from mild cognitive impairment (amnestic MCI, multiple domains) with stable memory deficits and a decline in verbal fluency and processing speed within a two-year interval after the first presentation in our memory clinic. Brain MRI showed brain damage in the right temporoparietal, frontolateral region and thalamus, as well as in the left posterior border of the capsula interna and white matter in the frontal region. Since the brain damage, she suffered paresis of the upper extremities on the left side and lower extremities on the right side as well as gait disturbance. Our search for autoantibodies revealed anti-AP3B2 autoantibodies in serum. CONCLUSIONS Our report expands the spectrum of symptoms to mild cognitive impairment in addition to a gait disturbance associated with anti-AP3B2 autoantibodies. Furthermore, it is conceivable that a prior traumatic brain injury could initiate the development of anti-AP3B2-antibody-associated brain autoimmunity, reported here for the first time.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (J.W.); (C.B.)
| | - Dirk Fitzner
- Department of Neurology, University Medical Center Göttingen, Robert-Koch Str. 40, 37075 Goettingen, Germany;
| | - Winfried Stöcker
- Euroimmun Reference Laboratory, Seekamp 31, 23650 Luebeck, Germany;
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (J.W.); (C.B.)
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; (J.W.); (C.B.)
| |
Collapse
|
13
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
14
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Fletcher-Jones A, Hildick KL, Evans AJ, Nakamura Y, Henley JM, Wilkinson KA. Protein Interactors and Trafficking Pathways That Regulate the Cannabinoid Type 1 Receptor (CB1R). Front Mol Neurosci 2020; 13:108. [PMID: 32595453 PMCID: PMC7304349 DOI: 10.3389/fnmol.2020.00108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
The endocannabinoid system (ECS) acts as a negative feedback mechanism to suppress synaptic transmission and plays a major role in a diverse range of brain functions including, for example, the regulation of mood, energy balance, and learning and memory. The function and dysfunction of the ECS are strongly implicated in multiple psychiatric, neurological, and neurodegenerative diseases. Cannabinoid type 1 receptor (CB1R) is the most abundant G protein-coupled receptor (GPCR) expressed in the brain and, as for any synaptic receptor, CB1R needs to be in the right place at the right time to respond appropriately to changing synaptic circumstances. While CB1R is found intracellularly throughout neurons, its surface expression is highly polarized to the axonal membrane, consistent with its functional expression at presynaptic sites. Surprisingly, despite the importance of CB1R, the interacting proteins and molecular mechanisms that regulate the highly polarized distribution and function of CB1R remain relatively poorly understood. Here we set out what is currently known about the trafficking pathways and protein interactions that underpin the surface expression and axonal polarity of CB1R, and highlight key questions that still need to be addressed.
Collapse
Affiliation(s)
- Alexandra Fletcher-Jones
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Keri L Hildick
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Ashley J Evans
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Yasuko Nakamura
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Jeremy M Henley
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Fukuyama K, Fukuzawa M, Shiroyama T, Okada M. Pathogenesis and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy with S284L-mutant α4 subunit of nicotinic ACh receptor. Br J Pharmacol 2020; 177:2143-2162. [PMID: 31901135 PMCID: PMC7161548 DOI: 10.1111/bph.14974] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The mechanisms causing spontaneous epileptic seizures, including carbamazepine-resistant/zonisamide -sensitive seizures and comorbidity in autosomal dominant sleep-related hypermotor epilepsy (ADSHE) are unclear. This study investigated functional abnormalities in thalamocortical transmission in transgenic rats bearing rat S286L-mutant Chrna4 (S286L-TG) of α4 subunit of the nicotinic ACh receptor (nAChR) that corresponds to the human S284L-mutant CHRNA4. EXPERIMENTAL APPROACH Effects of carbamazepine and zonisamide on epileptic discharges of S286L-TG rat were measured using telemetry electrocorticogram. Transmission abnormalities of L-glutamate and GABA in thalamocortical pathway of S286L-TG rats were investigated using multiprobe microdialysis and ultra-high-performance liquid-chromatography. KEY RESULTS Epileptic discharges in S286L-TG rats were reduced by zonisamide but not by carbamazepine, similar to that of S284L-ADSHE patients. Carbamazepine unaffected functional abnormality in transmission of S286L-TG rats. However, zonisamide was able to compensate for the attenuated S286L-mutant nAChR induced GABA release in frontal-cortex, without affecting attenuated thalamocortical glutamatergic transmission. Excitatory effects of S286L-mutant nAChR on thalamocortical transmission were attenuated compared with those of wild-type nAChR. Loss-of-function of S286L-nAChR enhanced transmission in thalamocortical motor pathway by predominantly attenuating GABAergic transmission. However, it attenuated transmission in thalamocortical cognitive pathway by reducing inhibitory GABAergic and excitatory glutamatergic transmission. CONCLUSION AND IMPLICATIONS Our results suggest that functional abnormalities of S286L-nAChR are associated with intra-frontal and thalamocortical transmission, possibly contributing to the pathogenesis of ADSHE-seizure and comorbidity of S284L-ADSHE. Selective compensation of impaired GABAergic transmission by zonisamide (but not by carbamazepine) in frontal cortex may be involved, at least partially, in carbamazepine-resistant ADSHE-seizure of S284L-ADSHE patients.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of MedicineMie UniversityTsuJapan
| | - Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of MedicineMie UniversityTsuJapan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of MedicineMie UniversityTsuJapan
| |
Collapse
|
18
|
Sanger A, Hirst J, Davies AK, Robinson MS. Adaptor protein complexes and disease at a glance. J Cell Sci 2019; 132:132/20/jcs222992. [PMID: 31636158 DOI: 10.1242/jcs.222992] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adaptor protein (AP) complexes are heterotetramers that select cargo for inclusion into transport vesicles. Five AP complexes (AP-1 to AP-5) have been described, each with a distinct localisation and function. Furthermore, patients with a range of disorders, particularly involving the nervous system, have now been identified with mutations in each of the AP complexes. In many cases this has been correlated with aberrantly localised membrane proteins. In this Cell Science at a Glance article and the accompanying poster, we summarize what is known about the five AP complexes and discuss how this helps to explain the clinical features of the different genetic disorders.
Collapse
Affiliation(s)
- Anneri Sanger
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Alexandra K Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
19
|
Ribeiro LF, Verpoort B, de Wit J. Trafficking mechanisms of synaptogenic cell adhesion molecules. Mol Cell Neurosci 2018; 91:34-47. [PMID: 29631018 DOI: 10.1016/j.mcn.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023] Open
Abstract
Nearly every aspect of neuronal function, from wiring to information processing, critically depends on the highly polarized architecture of neurons. Establishing and maintaining the distinct molecular composition of axonal and dendritic compartments requires precise control over the trafficking of the proteins that make up these cellular domains. Synaptic cell adhesion molecules (CAMs), membrane proteins with a critical role in the formation, differentiation and plasticity of synapses, require targeting to the correct pre- or postsynaptic compartment for proper functioning of neural circuits. However, the mechanisms that control the polarized trafficking, synaptic targeting, and synaptic abundance of CAMs are poorly understood. Here, we summarize current knowledge about the sequential trafficking events along the secretory pathway that control the polarized surface distribution of synaptic CAMs, and discuss how their synaptic targeting and abundance is additionally influenced by post-secretory determinants. The identification of trafficking-impairing mutations in CAMs associated with various neurodevelopmental disorders underscores the importance of correct protein trafficking for normal brain function.
Collapse
Affiliation(s)
- Luís F Ribeiro
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Ben Verpoort
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Guardia CM, De Pace R, Mattera R, Bonifacino JS. Neuronal functions of adaptor complexes involved in protein sorting. Curr Opin Neurobiol 2018; 51:103-110. [PMID: 29558740 DOI: 10.1016/j.conb.2018.02.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 11/30/2022]
Abstract
Selective transport of transmembrane proteins to different intracellular compartments often involves the recognition of sorting signals in the cytosolic domains of the proteins by components of membrane coats. Some of these coats have as their key components a family of heterotetrameric adaptor protein (AP) complexes named AP-1 through AP-5. AP complexes play important roles in all cells, but their functions are most critical in neurons because of the extreme compartmental complexity of these cells. Accordingly, various diseases caused by mutations in AP subunit genes exhibit a range of neurological abnormalities as their most salient features. In this article, we discuss the properties of the different AP complexes, with a focus on their roles in neuronal physiology and pathology.
Collapse
Affiliation(s)
- Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaella De Pace
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Mattera
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Milosevic I. Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Front Cell Neurosci 2018; 12:27. [PMID: 29467622 PMCID: PMC5807904 DOI: 10.3389/fncel.2018.00027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Without robust mechanisms to efficiently form new synaptic vesicles (SVs), the tens to hundreds of SVs typically present at the neuronal synapse would be rapidly used up, even at modest levels of neuronal activity. SV recycling is thus critical for synaptic physiology and proper function of sensory and nervous systems. Yet, more than four decades after it was originally proposed that the SVs are formed and recycled locally at the presynaptic terminals, the mechanisms of endocytic processes at the synapse are heavily debated. Clathrin-mediated endocytosis, a type of endocytosis that capitalizes on the clathrin coat, a number of adaptor and accessory proteins, and the GTPase dynamin, is well understood, while the contributions of clathrin-independent fast endocytosis, kiss-and-run, bulk endocytosis and ultrafast endocytosis are still being evaluated. This review article revisits and summarizes the current knowledge on the SV reformation with a focus on clathrin-mediated endocytosis, and it discusses the modes of SV formation from endosome-like structures at the synapse. Given the importance of this topic, future advances in this active field are expected to contribute to better comprehension of neurotransmission, and to have general implications for neuroscience and medicine.
Collapse
Affiliation(s)
- Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
22
|
Di Sansebastiano GP, Barozzi F, Piro G, Denecke J, de Marcos Lousa C. Trafficking routes to the plant vacuole: connecting alternative and classical pathways. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:79-90. [PMID: 29096031 DOI: 10.1093/jxb/erx376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/27/2017] [Indexed: 05/02/2023]
Abstract
Due to the numerous roles plant vacuoles play in cell homeostasis, detoxification, and protein storage, the trafficking pathways to this organelle have been extensively studied. Recent evidence, however, suggests that our vision of transport to the vacuole is not as simple as previously imagined. Alternative routes have been identified and are being characterized. Intricate interconnections between routes seem to occur in various cases, complicating the interpretation of data. In this review, we aim to summarize the published evidence and link the emerging data with previous findings. We discuss the current state of information on alternative and classical trafficking routes to the plant vacuole.
Collapse
Affiliation(s)
- Gian Pietro Di Sansebastiano
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | - Fabrizio Barozzi
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | - Gabriella Piro
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | | | - Carine de Marcos Lousa
- Centre for Plant Sciences, Leeds University, UK
- Leeds Beckett University, School of Applied and Clinical Sciences, UK
| |
Collapse
|
23
|
Li H, Santos MS, Park CK, Dobry Y, Voglmaier SM. VGLUT2 Trafficking Is Differentially Regulated by Adaptor Proteins AP-1 and AP-3. Front Cell Neurosci 2017; 11:324. [PMID: 29123471 PMCID: PMC5662623 DOI: 10.3389/fncel.2017.00324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/28/2017] [Indexed: 01/25/2023] Open
Abstract
Release of the major excitatory neurotransmitter glutamate by synaptic vesicle exocytosis depends on glutamate loading into synaptic vesicles by vesicular glutamate transporters (VGLUTs). The two principal isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in adult brain that broadly distinguishes cortical (VGLUT1) and subcortical (VGLUT2) systems, and correlates with distinct physiological properties in synapses expressing these isoforms. Differential trafficking of VGLUT1 and 2 has been suggested to underlie their functional diversity. Increasing evidence suggests individual synaptic vesicle proteins use specific sorting signals to engage specialized biochemical mechanisms to regulate their recycling. We observed that VGLUT2 recycles differently in response to high frequency stimulation than VGLUT1. Here we further explore the trafficking of VGLUT2 using a pHluorin-based reporter, VGLUT2-pH. VGLUT2-pH exhibits slower rates of both exocytosis and endocytosis than VGLUT1-pH. VGLUT2-pH recycling is slower than VGLUT1-pH in both hippocampal neurons, which endogenously express mostly VGLUT1, and thalamic neurons, which endogenously express mostly VGLUT2, indicating that protein identity, not synaptic vesicle membrane or neuronal cell type, controls sorting. We characterize sorting signals in the C-terminal dileucine-like motif, which plays a crucial role in VGLUT2 trafficking. Disruption of this motif abolishes synaptic targeting of VGLUT2 and essentially eliminates endocytosis of the transporter. Mutational and biochemical analysis demonstrates that clathrin adaptor proteins (APs) interact with VGLUT2 at the dileucine-like motif. VGLUT2 interacts with AP-2, a well-studied adaptor protein for clathrin mediated endocytosis. In addition, VGLUT2 also interacts with the alternate adaptors, AP-1 and AP-3. VGLUT2 relies on distinct recycling mechanisms from VGLUT1. Abrogation of these differences by pharmacological and molecular inhibition reveals that these mechanisms are dependent on the adaptor proteins AP-1 and AP-3. Further, shRNA-mediated knockdown reveals differential roles for AP-1 and AP-3 in VGLUT2 recycling.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Magda S Santos
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Chihyung K Park
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Yuriy Dobry
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Susan M Voglmaier
- Department of Psychiatry, School of Medicine, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
24
|
Two Clathrin Adaptor Protein Complexes Instruct Axon-Dendrite Polarity. Neuron 2017; 90:564-80. [PMID: 27151641 DOI: 10.1016/j.neuron.2016.04.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/03/2016] [Accepted: 04/12/2016] [Indexed: 11/23/2022]
Abstract
The cardinal feature of neuronal polarization is the establishment and maintenance of axons and dendrites. How axonal and dendritic proteins are sorted and targeted to different compartments is poorly understood. Here, we identified distinct dileucine motifs that are necessary and sufficient to target transmembrane proteins to either the axon or the dendrite through direct interactions with the clathrin-associated adaptor protein complexes (APs) in C. elegans. Axonal targeting requires AP-3, while dendritic targeting is mediated by AP-1. The axonal dileucine motif binds to AP-3 with higher efficiency than to AP-1. Both AP-3 and AP-1 are localized to the Golgi but occupy adjacent domains. We propose that AP-3 and AP-1 directly select transmembrane proteins and target them to axon and dendrite, respectively, by sorting them into distinct vesicle pools.
Collapse
|
25
|
Epilepsy and synaptic proteins. Curr Opin Neurobiol 2017; 45:1-8. [DOI: 10.1016/j.conb.2017.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
|
26
|
Mestres I, Sung CH. Nervous system development relies on endosomal trafficking. NEUROGENESIS 2017; 4:e1316887. [PMID: 28573151 DOI: 10.1080/23262133.2017.1316887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/06/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022]
Abstract
Accumulating findings have begun to unveil the important role of the endosomal machinery in the nervous system development. Endosomes have been linked to the differential segregation of cell fate determining molecules in asymmetrically dividing progenitors during neurogenesis. Additionally, the precise removal and reinsertion of membrane components through endocytic trafficking regulates the spatial and temporal distribution of signaling receptors and adhesion molecules, which determine the morphology and motility of migrating neurons. Emerging evidence suggests that the role of the endosomal sorting adaptors is dependent upon cell type and developmental stage. The repertoire of the signaling receptors and/or adhesion molecules sorted by the endosome during these processes remains to be explored. In this commentary, we will briefly address the progress in this research field.
Collapse
Affiliation(s)
- Ivan Mestres
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU Dresden, Dresden, Germany
| | - Ching-Hwa Sung
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY, USA.,Departments of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
27
|
Uezu A, Kanak DJ, Bradshaw TWA, Soderblom EJ, Catavero CM, Burette AC, Weinberg RJ, Soderling SH. Identification of an elaborate complex mediating postsynaptic inhibition. Science 2017; 353:1123-9. [PMID: 27609886 DOI: 10.1126/science.aag0821] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Inhibitory synapses dampen neuronal activity through postsynaptic hyperpolarization. The composition of the inhibitory postsynapse and the mechanistic basis of its regulation, however, remain poorly understood. We used an in vivo chemico-genetic proximity-labeling approach to discover inhibitory postsynaptic proteins. Quantitative mass spectrometry not only recapitulated known inhibitory postsynaptic proteins but also revealed a large network of new proteins, many of which are either implicated in neurodevelopmental disorders or are of unknown function. Clustered regularly interspaced short palindromic repeats (CRISPR) depletion of one of these previously uncharacterized proteins, InSyn1, led to decreased postsynaptic inhibitory sites, reduced the frequency of miniature inhibitory currents, and increased excitability in the hippocampus. Our findings uncover a rich and functionally diverse assemblage of previously unknown proteins that regulate postsynaptic inhibition and might contribute to developmental brain disorders.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Daniel J Kanak
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Tyler W A Bradshaw
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Erik J Soderblom
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA. Duke Proteomics and Metabolomics Shared Resource and Duke Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Christina M Catavero
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Alain C Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott H Soderling
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA. The Department of Neurobiology, Duke University Medical School, Durham, NC 27703, USA.
| |
Collapse
|
28
|
Yuan Q, Yang F, Xiao Y, Tan S, Husain N, Ren M, Hu Z, Martinowich K, Ng JS, Kim PJ, Han W, Nagata KI, Weinberger DR, Je HS. Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1. Biol Psychiatry 2016; 80:312-322. [PMID: 26386481 DOI: 10.1016/j.biopsych.2015.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. METHODS We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. RESULTS A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. CONCLUSIONS Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia.
Collapse
Affiliation(s)
- Qiang Yuan
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Feng Yang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Yixin Xiao
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Shawn Tan
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Nilofer Husain
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Ming Ren
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Zhonghua Hu
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Julia S Ng
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Paul J Kim
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Koh-Ichi Nagata
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - H Shawn Je
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 2016; 127:997-1006. [PMID: 26744459 DOI: 10.1182/blood-2015-09-671636] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/26/2015] [Indexed: 01/07/2023] Open
Abstract
Genetic disorders affecting biogenesis and transport of lysosome-related organelles are heterogeneous diseases frequently associated with albinism. We studied a patient with albinism, neutropenia, immunodeficiency, neurodevelopmental delay, generalized seizures, and impaired hearing but with no mutation in genes so far associated with albinism and immunodeficiency. Whole exome sequencing identified a homozygous mutation in AP3D1 that leads to destabilization of the adaptor protein 3 (AP3) complex. AP3 complex formation and the degranulation defect in patient T cells were restored by retroviral reconstitution. A previously described hypopigmented mouse mutant with an Ap3d1 null mutation (mocha strain) shares the neurologic phenotype with our patient and shows a platelet storage pool deficiency characteristic of Hermansky-Pudlak syndrome (HPS) that was not studied in our patient because of a lack of bleeding. HPS2 caused by mutations in AP3B1A leads to a highly overlapping phenotype without the neurologic symptoms. The AP3 complex exists in a ubiquitous and a neuronal form. AP3D1 codes for the AP3δ subunit of the complex, which is essential for both forms. In contrast, the AP3β3A subunit, affected in HPS2 patients, is substituted by AP3β3B in the neuron-specific heterotetramer. AP3δ deficiency thus causes a severe neurologic disorder with immunodeficiency and albinism that we propose to classify as HPS10.
Collapse
|
30
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. J Neuroinflammation 2015; 12:168. [PMID: 26377319 PMCID: PMC4573944 DOI: 10.1186/s12974-015-0358-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/23/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Yap CC, Winckler B. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 2015; 9:119. [PMID: 25904845 PMCID: PMC4389405 DOI: 10.3389/fncel.2015.00119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
32
|
Kononenko N, Haucke V. Molecular Mechanisms of Presynaptic Membrane Retrieval and Synaptic Vesicle Reformation. Neuron 2015; 85:484-96. [DOI: 10.1016/j.neuron.2014.12.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Nakatsu F, Hase K, Ohno H. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond. MEMBRANES 2014; 4:747-63. [PMID: 25387275 PMCID: PMC4289864 DOI: 10.3390/membranes4040747] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Abstract
The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn's disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, BCMM237, New Haven, CT 06510, USA.
| | - Koji Hase
- Department of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa 230-0045, Japan.
| |
Collapse
|
34
|
Affiliation(s)
- Yusong Guo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Daniel W. Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| |
Collapse
|
35
|
Abstract
The AP (adaptor protein) complexes are heterotetrameric protein complexes that mediate intracellular membrane trafficking along endocytic and secretory transport pathways. There are five different AP complexes: AP-1, AP-2 and AP-3 are clathrin-associated complexes; whereas AP-4 and AP-5 are not. These five AP complexes localize to different intracellular compartments and mediate membrane trafficking in distinct pathways. They recognize and concentrate cargo proteins into vesicular carriers that mediate transport from a donor membrane to a target organellar membrane. AP complexes play important roles in maintaining the normal physiological function of eukaryotic cells. Dysfunction of AP complexes has been implicated in a variety of inherited disorders, including: MEDNIK (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis and keratodermia) syndrome, Fried syndrome, HPS (Hermansky-Pudlak syndrome) and HSP (hereditary spastic paraplegia).
Collapse
Key Words
- adaptor protein complex
- arf1
- membrane trafficking
- polarized sorting
- signal recognition
- ampa, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid
- ap, adaptor protein
- app, amyloid precursor protein
- arf, adp-ribosylation factors
- bfa, brefeldin a
- casr, calcium-sensing receptor
- copi, coatamer protein i
- egfr, epidermal growth factor receptor
- fhh3, familial hypocalciuric hypercalcaemia type 3
- hps, hermansky–pudlak syndrome
- hsp, hereditary spastic paraplegia
- lro, lysosome-related organelle
- mednik, mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis and keratodermia
- pi4p, phosphatidylinositol 4 phosphate
- pip2, phosphatidylinositol (4,5)-bisphosphate
- re, recycling endosome
- spg, spastic paraplegia
- tgn, trans-golgi network
- vps41, vacuolar protein sorting 41
Collapse
Affiliation(s)
- Sang Yoon Park
- *Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, U.S.A
| | - Xiaoli Guo
- *Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, U.S.A
- 1To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Identification of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision genetics. Genetics 2014; 197:1377-93. [PMID: 24923803 DOI: 10.1534/genetics.114.166165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.
Collapse
|
37
|
Martinelli D, Dionisi-Vici C. AP1S1 defect causing MEDNIK syndrome: a new adaptinopathy associated with defective copper metabolism. Ann N Y Acad Sci 2014; 1314:55-63. [DOI: 10.1111/nyas.12426] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Diego Martinelli
- Unit of Metabolism; Department of Pediatrics; Bambino Gesu Children's Hospital; Rome Italy
- Section on Translational Neuroscience; Molecular Medicine Program; NICHD/NIH; Bethesda Maryland
| | - Carlo Dionisi-Vici
- Unit of Metabolism; Department of Pediatrics; Bambino Gesu Children's Hospital; Rome Italy
| |
Collapse
|
38
|
Shetty A, Sytnyk V, Leshchyns'ka I, Puchkov D, Haucke V, Schachner M. The neural cell adhesion molecule promotes maturation of the presynaptic endocytotic machinery by switching synaptic vesicle recycling from adaptor protein 3 (AP-3)- to AP-2-dependent mechanisms. J Neurosci 2013; 33:16828-45. [PMID: 24133283 PMCID: PMC6618524 DOI: 10.1523/jneurosci.2192-13.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/27/2013] [Accepted: 09/13/2013] [Indexed: 02/05/2023] Open
Abstract
Newly formed synapses undergo maturation during ontogenetic development via mechanisms that remain poorly understood. We show that maturation of the presynaptic endocytotic machinery in CNS neurons requires substitution of the adaptor protein 3 (AP-3) with AP-2 at the presynaptic plasma membrane. In mature synapses, AP-2 associates with the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes binding of AP-2 over binding of AP-3 to presynaptic membranes, thus favoring the substitution of AP-3 for AP-2 during formation of mature synapses. The presynaptic endocytotic machinery remains immature in adult NCAM-deficient (NCAM-/-) mice accumulating AP-3 instead of AP-2 and its partner protein AP180 in synaptic membranes and vesicles. NCAM deficiency or disruption of the NCAM/AP-2 complex in wild-type (NCAM+/+) neurons by overexpression of AP-2 binding-defective mutant NCAM interferes with efficient retrieval of the synaptic vesicle v-SNARE synaptobrevin 2. Abnormalities in synaptic vesicle endocytosis and recycling may thus contribute to neurological disorders associated with mutations in NCAM.
Collapse
Affiliation(s)
- Aparna Shetty
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | - Vladimir Sytnyk
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Iryna Leshchyns'ka
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dmytro Puchkov
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie and Freie Universität Berlin, 13125 Berlin, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
- Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, and
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, People's Republic of China
| |
Collapse
|
39
|
Morgan JR, Comstra HS, Cohen M, Faundez V. Presynaptic membrane retrieval and endosome biology: defining molecularly heterogeneous synaptic vesicles. Cold Spring Harb Perspect Biol 2013; 5:a016915. [PMID: 24086045 DOI: 10.1101/cshperspect.a016915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The release and uptake of neurotransmitters by synaptic vesicles is a tightly controlled process that occurs in response to diverse stimuli at morphologically disparate synapses. To meet these architectural and functional synaptic demands, it follows that there should be diversity in the mechanisms that control their secretion and retrieval and possibly in the composition of synaptic vesicles within the same terminal. Here we pay particular attention to areas where such diversity is generated, such as the variance in exocytosis/endocytosis coupling, SNAREs defining functionally diverse synaptic vesicle populations and the adaptor-dependent sorting machineries capable of generating vesicle diversity. We argue that there are various synaptic vesicle recycling pathways at any given synapse and discuss several lines of evidence that support the role of the endosome in synaptic vesicle recycling.
Collapse
Affiliation(s)
- Jennifer R Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | | | |
Collapse
|
40
|
Sorting of the vesicular GABA transporter to functional vesicle pools by an atypical dileucine-like motif. J Neurosci 2013; 33:10634-46. [PMID: 23804087 DOI: 10.1523/jneurosci.0329-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence indicates that individual synaptic vesicle proteins may use different signals, endocytic adaptors, and trafficking pathways for sorting to distinct pools of synaptic vesicles. Here, we report the identification of a unique amino acid motif in the vesicular GABA transporter (VGAT) that controls its synaptic localization and activity-dependent recycling. Mutational analysis of this atypical dileucine-like motif in rat VGAT indicates that the transporter recycles by interacting with the clathrin adaptor protein AP-2. However, mutation of a single acidic residue upstream of the dileucine-like motif leads to a shift to an AP-3-dependent trafficking pathway that preferentially targets the transporter to the readily releasable and recycling pool of vesicles. Real-time imaging with a VGAT-pHluorin fusion provides a useful approach to explore how unique sorting sequences target individual proteins to synaptic vesicles with distinct functional properties.
Collapse
|
41
|
Gu M, Liu Q, Watanabe S, Sun L, Hollopeter G, Grant BD, Jorgensen EM. AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis. eLife 2013; 2:e00190. [PMID: 23482940 PMCID: PMC3591783 DOI: 10.7554/elife.00190] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/25/2013] [Indexed: 11/13/2022] Open
Abstract
The clathrin adaptor complex AP2 is thought to be an obligate heterotetramer. We identify null mutations in the α subunit of AP2 in the nematode Caenorhabditis elegans. α-adaptin mutants are viable and the remaining μ2/β hemicomplex retains some function. Conversely, in μ2 mutants, the alpha/sigma2 hemicomplex is localized and is partially functional. α-μ2 double mutants disrupt both halves of the complex and are lethal. The lethality can be rescued by expression of AP2 components in the skin, which allowed us to evaluate the requirement for AP2 subunits at synapses. Mutations in either α or μ2 subunits alone reduce the number of synaptic vesicles by about 30%; however, simultaneous loss of both α and μ2 subunits leads to a 70% reduction in synaptic vesicles and the presence of large vacuoles. These data suggest that AP2 may function as two partially independent hemicomplexes. DOI:http://dx.doi.org/10.7554/eLife.00190.001.
Collapse
Affiliation(s)
- Mingyu Gu
- Department of Biology , Howard Hughes Medical Institute, University of Utah , Salt Lake City , United States
| | | | | | | | | | | | | |
Collapse
|
42
|
Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res 2012; 26:176-92. [DOI: 10.1111/pcmr.12051] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022]
Affiliation(s)
| | - Wei Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics & Developmental Biology; Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
43
|
Körber C, Horstmann H, Sätzler K, Kuner T. Endocytic Structures and Synaptic Vesicle Recycling at a Central Synapse in Awake Rats. Traffic 2012; 13:1601-11. [DOI: 10.1111/tra.12007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/05/2012] [Accepted: 09/13/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Christoph Körber
- Institute of Anatomy and Cell Biology; Heidelberg University; Im Neuenheimer Feld 307 Heidelberg 69120 Germany
| | - Heinz Horstmann
- Institute of Anatomy and Cell Biology; Heidelberg University; Im Neuenheimer Feld 307 Heidelberg 69120 Germany
| | - Kurt Sätzler
- School of Biomedical Sciences; University of Ulster; Coleraine BT52 1SA Co. Londonderry UK
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology; Heidelberg University; Im Neuenheimer Feld 307 Heidelberg 69120 Germany
| |
Collapse
|
44
|
Abstract
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
45
|
Muthusamy N, Faundez V, Bergson C. Calcyon, a mammalian specific NEEP21 family member, interacts with adaptor protein complex 3 (AP-3) and regulates targeting of AP-3 cargoes. J Neurochem 2012; 123:60-72. [PMID: 22650988 DOI: 10.1111/j.1471-4159.2012.07814.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcyon is a neural enriched, single transmembrane protein that interacts with clathrin light chain and stimulates clathrin assembly and clathrin-mediated endocytosis. A similar property is shared by the heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, and AP-3 which recruit cargoes for insertion into clathrin coated transport vesicles. Here we report that AP medium (μ) subunits interact with a YXXØ-type tyrosine motif located at residues 133-136 in the cytoplasmic domain of calcyon. Site specific mutagenesis of the critical tyrosine and bulky hydrophobic residues tyrosine 133 and methionine 136 preferentially abrogated binding of the ubiquitous and neuronal isoforms of μ3, and also impacted μ1 and μ2 binding to a lesser degree. The relevance of these interactions was explored in vivo using mice harboring null alleles of calcyon. As seen in the mutagenesis studies, calcyon deletion in mice preferentially altered the subcellular distribution of AP-3 suggesting that calcyon could regulate membrane-bound pools of AP-3 and AP-3 function. To test this hypothesis, we focused on the hilar region of hippocampus, where levels of calcyon, AP-3, and AP-3 cargoes are abundant. We analyzed brain cryosections from control and calcyon null mice for zinc transporter 3 (ZnT3), and phosphatidylinositol-4-kinase type II alpha (PI4KIIα), two well-defined AP-3 cargoes. Confocal microscopy indicated that ZnT3 and PI4KIIα are significantly reduced in the hippocampal mossy fibers of calcyon knock-out brain, a phenotype previously described in AP-3 deficiencies. Altogether, our data suggest that calcyon directly interacts with μ3A and μ3B, and regulates the subcellular distribution of AP-3 and the targeting of AP-3 cargoes.
Collapse
Affiliation(s)
- Nagendran Muthusamy
- Graduate Program in Neuroscience Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
46
|
Adaptor protein complexes 1 and 3 are essential for generation of synaptic vesicles from activity-dependent bulk endosomes. J Neurosci 2012; 32:6014-23. [PMID: 22539861 DOI: 10.1523/jneurosci.6305-11.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle pool. We have identified an essential requirement for both adaptor protein complexes 1 and 3 in this process by employing morphological and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein 1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.
Collapse
|
47
|
Henningsen K, Palmfeldt J, Christiansen S, Baiges I, Bak S, Jensen ON, Gregersen N, Wiborg O. Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression. Mol Cell Proteomics 2012; 11:M111.016428. [PMID: 22311638 DOI: 10.1074/mcp.m111.016428] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Susceptibility to stress plays a crucial role in the development of psychiatric disorders such as unipolar depression and post-traumatic stress disorder. In the present study the chronic mild stress rat model of depression was used to reveal stress-susceptible and stress-resilient rats. Large-scale proteomics was used to map hippocampal protein alterations in different stress states. Membrane proteins were successfully captured by two-phase separation and peptide based proteomics. Using iTRAQ labeling coupled with mass spectrometry, more than 2000 proteins were quantified and 73 proteins were found to be differentially expressed. Stress susceptibility was associated with increased expression of a sodium-channel protein (SCN9A) currently investigated as a potential antidepressant target. Differential protein profiling also indicated stress susceptibility to be associated with deficits in synaptic vesicle release involving SNCA, SYN-1, and AP-3. Our results indicate that increased oxidative phosphorylation (COX5A, NDUFB7, NDUFS8, COX5B, and UQCRB) within the hippocampal CA regions is part of a stress-protection mechanism.
Collapse
Affiliation(s)
- Kim Henningsen
- Centre for Psychiatric Research, Institute of Clinical Medicine, Aarhus University Hospital, University of Aarhus, Risskov, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schüler S, Müller A, Angenstein F, Ahmed T, Diesler A, Moser M, Tom Dieck S, Spessert R, Boeckers TM, Fässler R, Hübner CA, Balschun D, Gloveli T, Kessels MM, Qualmann B. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J 2011; 30:4955-69. [PMID: 21926968 DOI: 10.1038/emboj.2011.339] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/23/2011] [Indexed: 02/03/2023] Open
Abstract
Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.
Collapse
Affiliation(s)
- Dennis Koch
- Institute of Biochemistry I, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Synaptogyrin-dependent modulation of synaptic neurotransmission in Caenorhabditis elegans. Neuroscience 2011; 190:75-88. [DOI: 10.1016/j.neuroscience.2011.05.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 05/20/2011] [Accepted: 05/28/2011] [Indexed: 01/31/2023]
|
50
|
Ohoyama K, Yamamura S, Hamaguchi T, Nakagawa M, Motomura E, Shiroyama T, Tanii H, Okada M. Effect of novel atypical antipsychotic, blonanserin, on extracellular neurotransmitter level in rat prefrontal cortex. Eur J Pharmacol 2011; 653:47-57. [DOI: 10.1016/j.ejphar.2010.11.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
|