1
|
Sorrells SF. Which neurodevelopmental processes continue in humans after birth? Front Neurosci 2024; 18:1434508. [PMID: 39308952 PMCID: PMC11412957 DOI: 10.3389/fnins.2024.1434508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Once we are born, the number and location of nerve cells in most parts of the brain remain unchanged. These types of structural changes are therefore a significant form of flexibility for the neural circuits where they occur. In humans, the postnatal birth of neurons is limited; however, neurons do continue to migrate into some brain regions throughout infancy and even into adolescence. In human infants, multiple migratory pathways deliver interneurons to destinations across the frontal and temporal lobe cortex. Shorter-range migration of excitatory neurons also appears to continue during adolescence, particularly near the amygdala paralaminar nucleus, a region that follows a delayed trajectory of growth from infancy to adulthood. The significance of the timing for when different brain regions recruit new neurons through these methods is unknown; however, both processes of protracted migration and maturation are prominent in humans. Mechanisms like these that reconfigure neuronal circuits are a substrate for critical periods of plasticity and could contribute to distinctive circuit functionality in human brains.
Collapse
|
2
|
Lai W, Luo R, Tang Y, Yu Z, Zhou B, Yang Z, Brown J, Hong G. Salidroside directly activates HSC70, revealing a new role for HSC70 in BDNF signalling and neurogenesis after cerebral ischemia. Phytother Res 2024; 38:2619-2640. [PMID: 38488455 DOI: 10.1002/ptr.8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 06/13/2024]
Abstract
Salidroside, a principal bioactive component of Rhodiola crenulata, is neuroprotective across a wide time window in stroke models. We investigated whether salidroside induced neurogenesis after cerebral ischemia and aimed to identify its primary molecular targets. Rats, subjected to transient 2 h of middle cerebral artery occlusion (MCAO), received intraperitoneal vehicle or salidroside ± intracerebroventricular HSC70 inhibitor VER155008 or TrkB inhibitor ANA-12 for up to 7 days. MRI, behavioural tests, immunofluorescent staining and western blotting measured effects of salidroside. Reverse virtual docking and enzymatic assays assessed interaction of salidroside with purified recombinant HSC70. Salidroside dose-dependently decreased cerebral infarct volumes and neurological deficits, with maximal effects by 50 mg/kg/day. This dose also improved performance in beam balance and Morris water maze tests. Salidroside significantly increased BrdU+/nestin+, BrdU+/DCX+, BrdU+/NeuN+, BrdU-/NeuN+ and BDNF+ cells in the peri-infarct cortex, with less effect in striatum and no significant effect in the subventricular zone. Salidroside was predicted to bind with HSC70. Salidroside dose-dependently increased HSC70 ATPase and HSC70-dependent luciferase activities, but it did not activate HSP70. HSC70 immunoreactivity concentrated in the peri-infarct cortex and was unchanged by salidroside. However, VER155008 prevented salidroside-dependent increases of neurogenesis, BrdU-/NeuN+ cells and BDNF+ cells in peri-infarct cortex. Salidroside also increased BDNF protein and p-TrkB/TrkB ratio in ischemic brain, changes prevented by VER155008 and ANA-12, respectively. Additionally, ANA-12 blocked salidroside-dependent neurogenesis and increased BrdU-/NeuN+ cells in the peri-infarct cortex. Salidroside directly activates HSC70, thereby stimulating neurogenesis and neuroprotection via BDNF/TrkB signalling after MCAO. Salidroside and similar activators of HSC70 might provide clinical therapies for ischemic stroke.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Luo
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuheng Tang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zelin Yang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
3
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2024:10.1007/s12035-024-04246-w. [PMID: 38816676 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
4
|
Parishar P, Rajagopalan M, Iyengar S. Changes in the dopaminergic circuitry and adult neurogenesis linked to reinforcement learning in corvids. Front Neurosci 2024; 18:1359874. [PMID: 38808028 PMCID: PMC11130420 DOI: 10.3389/fnins.2024.1359874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
The caudolateral nidopallium (NCL, an analog of the prefrontal cortex) is known to be involved in learning, memory, and discrimination in corvids (a songbird), whereas the involvement of other brain regions in these phenomena is not well explored. We used house crows (Corvus splendens) to explore the neural correlates of learning and decision-making by initially training them on a shape discrimination task followed by immunohistochemistry to study the immediate early gene expression (Arc), a dopaminoceptive neuronal marker (DARPP-32, Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa) to understand the involvement of the reward pathway and an immature neuronal marker (DCX, doublecortin) to detect learning-induced changes in adult neurogenesis. We performed neuronal counts and neuronal tracing, followed by morphometric analyses. Our present results have demonstrated that besides NCL, other parts of the caudal nidopallium (NC), avian basal ganglia, and intriguingly, vocal control regions in house crows are involved in visual discrimination. We have also found that training on the visual discrimination task can be correlated with neurite pruning in mature dopaminoceptive neurons and immature DCX-positive neurons in the NC of house crows. Furthermore, there is an increase in the incorporation of new neurons throughout NC and the medial striatum which can also be linked to learning. For the first time, our results demonstrate that a combination of structural changes in mature and immature neurons and adult neurogenesis are linked to learning in corvids.
Collapse
|
5
|
Foster M, Dwibhashyam S, Patel D, Gupta K, Matz OC, Billings BK, Bitterman K, Bertelson M, Tang CY, Mars RB, Raghanti MA, Hof PR, Sherwood CC, Manger PR, Spocter MA. Comparative anatomy of the caudate nucleus in canids and felids: Associations with brain size, curvature, cross-sectional properties, and behavioral ecology. J Comp Neurol 2024; 532:e25618. [PMID: 38686628 DOI: 10.1002/cne.25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.
Collapse
Affiliation(s)
- Michael Foster
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Sai Dwibhashyam
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Devan Patel
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kanika Gupta
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Olivia C Matz
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Mads Bertelson
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry, BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
- College of Veterinary Medicine, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
6
|
Valcárcel-Hernández V, Mayerl S, Guadaño-Ferraz A, Remaud S. Thyroid hormone action in adult neurogliogenic niches: the known and unknown. Front Endocrinol (Lausanne) 2024; 15:1347802. [PMID: 38516412 PMCID: PMC10954857 DOI: 10.3389/fendo.2024.1347802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.
Collapse
Affiliation(s)
- Victor Valcárcel-Hernández
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| | - Steffen Mayerl
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ana Guadaño-Ferraz
- Department of Neurological Diseases and Aging, Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
7
|
Janeckova L, Knotek T, Kriska J, Hermanova Z, Kirdajova D, Kubovciak J, Berkova L, Tureckova J, Camacho Garcia S, Galuskova K, Kolar M, Anderova M, Korinek V. Astrocyte-like subpopulation of NG2 glia in the adult mouse cortex exhibits characteristics of neural progenitor cells. Glia 2024; 72:245-273. [PMID: 37772368 DOI: 10.1002/glia.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
Collapse
Affiliation(s)
- Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Linda Berkova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Galuskova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Passarelli JP, Nimjee SM, Townsend KL. Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Transl Stroke Res 2024; 15:53-68. [PMID: 36462099 DOI: 10.1007/s12975-022-01109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory mediators and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to novel approaches for stimulating neuronal recovery after ischemic stroke.
Collapse
Affiliation(s)
| | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Rastoldo G, Tighilet B. The Vestibular Nuclei: A Cerebral Reservoir of Stem Cells Involved in Balance Function in Normal and Pathological Conditions. Int J Mol Sci 2024; 25:1422. [PMID: 38338702 PMCID: PMC10855768 DOI: 10.3390/ijms25031422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we explore the intriguing realm of neurogenesis in the vestibular nuclei-a critical brainstem region governing balance and spatial orientation. We retrace almost 20 years of research into vestibular neurogenesis, from its discovery in the feline model in 2007 to the recent discovery of a vestibular neural stem cell niche. We explore the reasons why neurogenesis is important in the vestibular nuclei and the triggers for activating the vestibular neurogenic niche. We develop the symbiotic relationship between neurogenesis and gliogenesis to promote vestibular compensation. Finally, we examine the potential impact of reactive neurogenesis on vestibular compensation, highlighting its role in restoring balance through various mechanisms.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
10
|
Gómez-Oliva R, Geribaldi-Doldán N, Domínguez-García S, Pardillo-Díaz R, Martínez-Ortega S, Oliva-Montero JM, Pérez-García P, García-Cózar FJ, Muñoz-Miranda JP, Sánchez-Gomar I, Nunez-Abades P, Castro C. Targeting epidermal growth factor receptor to recruit newly generated neuroblasts in cortical brain injuries. J Transl Med 2023; 21:867. [PMID: 38037126 PMCID: PMC10687845 DOI: 10.1186/s12967-023-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Neurogenesis is stimulated in the subventricular zone (SVZ) of mice with cortical brain injuries. In most of these injuries, newly generated neuroblasts attempt to migrate toward the injury, accumulating within the corpus callosum not reaching the perilesional area. METHODS We use a murine model of mechanical cortical brain injury, in which we perform unilateral cortical injuries in the primary motor cortex of adult male mice. We study neurogenesis in the SVZ and perilesional area at 7 and 14 dpi as well as the expression and concentration of the signaling molecule transforming growth factor alpha (TGF-α) and its receptor the epidermal growth factor (EGFR). We use the EGFR inhibitor Afatinib to promote neurogenesis in brain injuries. RESULTS We show that microglial cells that emerge within the injured area and the SVZ in response to the injury express high levels of TGF-α leading to elevated concentrations of TGF-α in the cerebrospinal fluid. Thus, the number of neuroblasts in the SVZ increases in response to the injury, a large number of these neuroblasts remain immature and proliferate expressing the epidermal growth factor receptor (EGFR) and the proliferation marker Ki67. Restraining TGF-α release with a classical protein kinase C inhibitor reduces the number of these proliferative EGFR+ immature neuroblasts in the SVZ. In accordance, the inhibition of the TGF-α receptor, EGFR promotes migration of neuroblasts toward the injury leading to an elevated number of neuroblasts within the perilesional area. CONCLUSIONS Our results indicate that in response to an injury, microglial cells activated within the injury and the SVZ release TGF-α, activating the EGFR present in the neuroblasts membrane inducing their proliferation, delaying maturation and negatively regulating migration. The inactivation of this signaling pathway stimulates neuroblast migration toward the injury and enhances the quantity of neuroblasts within the injured area. These results suggest that these proteins may be used as target molecules to regenerate brain injuries.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - Sergio Martínez-Ortega
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - José M Oliva-Montero
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Patricia Pérez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Francisco J García-Cózar
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Área de Inmunología, Universidad de Cádiz, Cádiz, Spain
| | - Juan P Muñoz-Miranda
- Servicios Centrales de Investigación Biomédica, Universidad de Cádiz, Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
- Departamento de Fisiología, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.
| |
Collapse
|
11
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
12
|
Higuchi Y, Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: Region-dependent and receptor-type specific roles on neurogenic cellular transformation. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100102. [PMID: 37638344 PMCID: PMC10458724 DOI: 10.1016/j.crneur.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 08/29/2023] Open
Abstract
Brain serotonin (5-hydroxytryptamine, 5-HT) is a key molecule for the mediation of depression-related brain states, but the neural mechanisms underlying 5-HT mediation need further investigation. A possible mechanism of the therapeutic antidepressant effects is neurogenic cell production, as stimulated by 5-HT signaling. Neurogenesis, the proliferation of neural stem cells (NSCs), and cell differentiation and maturation occur across brain regions, particularly the hippocampal dentate gyrus and the subventricular zone, throughout one's lifespan. 5-HT plays a major role in the mediation of neurogenic processes, which in turn leads to the therapeutic effect on depression-related states. In this review article, we aim to identify how the neuronal 5-HT system mediates the process of neurogenesis, including cell proliferation, cell-type differentiation and maturation. First, we will provide an overview of the neurogenic cell transformation that occurs in brain regions containing or lacking NSCs. Second, we will review brain region-specific mechanisms of 5-HT-mediated neurogenesis by comparing regions localized to NSCs, i.e., the hippocampus and subventricular zone, with those not containing NSCs. Highlighting these 5-HT mechanisms that mediate neurogenic cell production processes in a brain-region-specific manner would provide unique insights into the role of 5-HT in neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
13
|
Zhang Q, Shi R, Hao M, Feng D, Wu R, Shi M. NDRG2 regulates the formation of reactive astrocyte-derived progenitor cells via Notch signaling pathway after brain traumatic injury in rats. Front Mol Neurosci 2023; 16:1149683. [PMID: 37082656 PMCID: PMC10112515 DOI: 10.3389/fnmol.2023.1149683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
In response to traumatic brain injury, a subpopulation of cortical astrocytes is activated, resulting in acquisition of stem cell properties, known as reactive astrocytes-derived progenitor cells (Rad-PCs). However, the underlying mechanisms remain largely unknown during this process. In this study, we examined the role of N-myc downstream-regulated gene 2 (NDRG2), a differentiation- and stress-associated molecule, in Rad-PCs after cortical stab injury in adult rats. Immunohistochemical analysis showed that in the cerebral cortex of normal adult rats, NDRG2 was exclusively expressed in astrocytes. After liu cortical injury, the expression of NDRG2 was significantly elevated around the wound and most cells expressing NDRG2 also expressed GFAP, a reactive astrocyte marker. Importantly, NDRG2-expressing cells were co-labeled with Nestin, a marker for neural stem cells, some of which also expressed cell proliferation marker Ki67. Overexpression of NDRG2 further increased the number of NDRG2/Nestin double-labeling cells around the lesion. In contrast, shRNA knockdown of NDRG2 decreased the number of NDRG2+/Nestin+ cells. Intracerebroventricular administration of stab-injured rats with a Notch antagonist, DAPT, led to a significant decrease in Nestin+/NDRG2+ cells around the injured boundary, but did not affect NDRG2+ cells. Moreover, overexpression or knockdown of NDRG2 led to up- and down-regulation of the expression of Notch intracellular domain NICD and Notch target gene Hes1, respectively. Taken together, these results suggest that NDRG2 may play a role in controlling the formation of Rad-PCs in the cerebral cortex of adult rats following traumatic injury, and that Notch signaling pathway plays a key role in this process.
Collapse
Affiliation(s)
- Qinjun Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurology, Meishan Cardio-Cerebrovascular Disease Hospital, Meishan, Sichuan, China
| | - Rui Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minghua Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurology, Shandong Armed Police General Hospital, Jinan, Shandong, China
| | - Dongyun Feng
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Rui Wu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ming Shi,
| |
Collapse
|
14
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
15
|
Hu X, Geng P, Zhao X, Wang Q, Liu C, Guo C, Dong W, Jin X. The NG2-glia is a potential target to maintain the integrity of neurovascular unit after acute ischemic stroke. Neurobiol Dis 2023; 180:106076. [PMID: 36921779 DOI: 10.1016/j.nbd.2023.106076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The neurovascular unit (NVU) plays a critical role in health and disease. In the current review, we discuss the critical role of a class of neural/glial antigen 2 (NG2)-expressing glial cells (NG2-glia) in regulating NVU after acute ischemic stroke (AIS). We first introduce the role of NG2-glia in the formation of NVU during development as well as aging-induced damage to NVU and accompanying NG2-glia change. We then discuss the reciprocal interactions between NG2-glia and the other component cells of NVU, emphasizing the factors that could influence NG2-glia. Damage to the NVU integrity is the pathological basis of edema and hemorrhagic transformation, the most dreaded complication after AIS. The role of NG2-glia in AIS-induced NVU damage and the effect of NG2-glia transplantation on AIS-induced NVU damage are summarized. We next discuss the role of NG2-glia and the effect of NG2-glia transplantation in oligodendrogenesis and white matter repair as well as angiogenesis which is associated with the outcome of the patients after AIS. Finally, we review the current strategies to promote NG2-glia proliferation and differentiation and propose to use the dental pulp stem cells (DPSC)-derived exosome as a promising strategy to reduce AIS-induced injury and promote repair through maintaining the integrity of NVU by regulating endogenous NG2-glia proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyun Zhao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Changqing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Wen Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
16
|
Kim HS, Shin SM, Kim S, Nam Y, Yoo A, Moon M. Relationship between adult subventricular neurogenesis and Alzheimer’s disease: Pathologic roles and therapeutic implications. Front Aging Neurosci 2022; 14:1002281. [PMID: 36185481 PMCID: PMC9518691 DOI: 10.3389/fnagi.2022.1002281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by irreversible cognitive declines. Senile plaques formed by amyloid-β (Aβ) peptides and neurofibrillary tangles, consisting of hyperphosphorylated tau protein accumulation, are prominent neuropathological features of AD. Impairment of adult neurogenesis is also a well-known pathology in AD. Adult neurogenesis is the process by which neurons are generated from adult neural stem cells. It is closely related to various functions, including cognition, as it occurs throughout life for continuous repair and development of specific neural pathways. Notably, subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, transports neurons to several brain regions such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. These migrating neurons can affect cognitive function and behavior in different neurodegenerative diseases. Despite several studies indicating the importance of adult SVZ neurogenesis in neurodegenerative disorders, the pathological alterations and therapeutic implications of impaired adult neurogenesis in the SVZ in AD have not yet been fully explained. In this review, we summarize recent progress in understanding the alterations in adult SVZ neurogenesis in AD animal models and patients. Moreover, we discuss the potential therapeutic approaches for restoring impaired adult SVZ neurogenesis. Our goal is to impart to readers the importance of adult SVZ neurogenesis in AD and to provide new insights through the discussion of possible therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seong Min Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, South Korea
- *Correspondence: Minho Moon,
| |
Collapse
|
17
|
Liu H, Yang Z, Yu C, Dong H, Wang S, Wang G, Wang D. Tau aggravates stress-induced anxiety by inhibiting adult ventral hippocampal neurogenesis in mice. Cereb Cortex 2022; 33:3853-3865. [PMID: 36047921 DOI: 10.1093/cercor/bhac312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Ventral adult hippocampal neurogenesis may be a key factor in determining individual levels of vulnerability to stress and related psychiatric disorders. However, the underlying mechanism remains unclear. Here, we show that the expression of Tau and Tau isoforms is markedly increased in the ventral dentate gyrus (vDG) after social defeat stress in young adult mice. Furthermore, glycogen synthase kinase-3β and calcium/calmodulin-dependent protein kinase II-α activity and calcium/calmodulin-dependent protein kinase II-β upregulation substantially promote Tau phosphorylation, which disrupts the dendritic structural plasticity of granule cells in the vDG of the hippocampus, and this action is necessary and sufficient for the stress response. In addition, Tau substantially inhibits the proliferation of newborn neurons in the vDG by regulating the PI3K-AKT signaling pathway in a mouse model of social defeat stress. Taken together, our findings reveal a novel mechanism by which Tau exacerbates stress responses and anxiety-related behavior by inhibiting the proliferation and maturation of hippocampal vDG neurons, providing a potential molecular target for the treatment of anxiety-like behavior induced by stress.
Collapse
Affiliation(s)
- Hao Liu
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhi Yang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chunyan Yu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Gang Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotheraoy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
18
|
Bartkowska K, Tepper B, Turlejski K, Djavadian R. Postnatal and Adult Neurogenesis in Mammals, Including Marsupials. Cells 2022; 11:cells11172735. [PMID: 36078144 PMCID: PMC9455070 DOI: 10.3390/cells11172735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/11/2022] Open
Abstract
In mammals, neurogenesis occurs during both embryonic and postnatal development. In eutherians, most brain structures develop embryonically; conversely, in marsupials, a number of brain structures develop after birth. The exception is the generation of granule cells in the dentate gyrus, olfactory bulb, and cerebellum of eutherian species. The formation of these structures starts during embryogenesis and continues postnatally. In both eutherians and marsupials, neurogenesis continues in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus of the hippocampal formation throughout life. The majority of proliferated cells from the SVZ migrate to the olfactory bulb, whereas, in the dentate gyrus, cells reside within this structure after division and differentiation into neurons. A key aim of this review is to evaluate advances in understanding developmental neurogenesis that occurs postnatally in both marsupials and eutherians, with a particular emphasis on the generation of granule cells during the formation of the olfactory bulb, dentate gyrus, and cerebellum. We debate the significance of immature neurons in the piriform cortex of young mammals. We also synthesize the knowledge of adult neurogenesis in the olfactory bulb and the dentate gyrus of marsupials by considering whether adult-born neurons are essential for the functioning of a given area.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Beata Tepper
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Ruzanna Djavadian
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
19
|
Marszalek-Grabska M, Zakrocka I, Budzynska B, Marciniak S, Kaszubska K, Lemieszek MK, Winiarczyk S, Kotlinska JH, Rzeski W, Turski WA. Binge-like mephedrone treatment induces memory impairment concomitant with brain kynurenic acid reduction in mice. Toxicol Appl Pharmacol 2022; 454:116216. [PMID: 36057403 DOI: 10.1016/j.taap.2022.116216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 10/31/2022]
Abstract
While mephedrone (4-methylmethcathinone), a synthetic cathinone derivative, is widely abused by adolescents and young adults, the knowledge about its long-term effects on memory processes is limited. Kynurenic acid (KYNA) is a neuroactive metabolite of the kynurenine pathway of tryptophan degradation. KYNA is considered an important endogenous modulator influencing physiological and pathological processes, including learning and memory processes. The aim of this study was to determine whether (A) binge-like mephedrone administration (10.0 and 30.0 mg/kg, intraperitoneally, in 4 doses separated by 2 h) induces memory impairments, assessed 2, 8 and 15 days after mephedrone cessation in the passive avoidance test in mice, and whether (B) KYNA is involved in these memory processes. To clarify the role of KYNA in the mephedrone effects, its level in the murine brain in vivo, and in cortical slices in vitro, as well as the activities of kynurenine aminotransferases (KATs) I and II were assessed. Furthermore, cell line experiments were conducted to investigate the effects of mephedrone on normal human brain cells. Our results showed memory impairments 8 and 15 days after binge-like mephedrone administration. At the same time, reduction in the KYNA level in the murine brain was noted. In vitro studies showed no effect of mephedrone on the production of KYNA in cortical slices or on the activity of the KAT I and II enzymes. Finally, exposure of normal cells to mephedrone in vitro resulted in a modest reduction of cell viability and proliferation.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Izabela Zakrocka
- Department of Nephrology, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Barbara Budzynska
- Independent Laboratory of Behavioral Studies, Medical University, Chodzki 4a, 20-090 Lublin, Poland
| | - Sebastian Marciniak
- Department of Pharmacology, Medical University, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Kaszubska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Sylwia Winiarczyk
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
20
|
Neurogenic effects of rotarod walking exercise in subventricular zone, subgranular zone, and substantia nigra in MPTP-induced Parkinson's disease mice. Sci Rep 2022; 12:10544. [PMID: 35732806 PMCID: PMC9217938 DOI: 10.1038/s41598-022-14823-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, and its incidence is predicted to increase worldwide. Striatal dopamine depletion caused by substantia nigra (SN) degeneration is a pathological hallmark of PD and is strongly associated with cardinal motor and non-motor symptoms. Previous studies have reported that exercise increases neuroplasticity and promotes neurorestoration by increasing neurotrophic factors and synaptic strength and stimulating neurogenesis in PD. In the present study, we found that rotarod walking exercise, a modality of motor skill learning training, improved locomotor disturbances and reduced nigrostriatal degeneration in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In addition, our exercise regimen improved MPTP-induced perturbation of adult neurogenesis in some areas of the brain, including the subventricular zone, subgranular zone, SN, and striatum. Moreover, rotarod walking activated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and induced brain-derived neurotrophic factor (BDNF) expression in these regions. The results suggest that motor skill learning training using rotarod walking improves adult neurogenesis and restores motor performance by modulating the AMPK/BDNF pathway. Therefore, our findings provide evidence for neuroprotective effects and improved neuroplasticity in PD through motor skill learning training.
Collapse
|
21
|
Ghibaudi M, Bonfanti L. How Widespread Are the “Young” Neurons of the Mammalian Brain? Front Neurosci 2022; 16:918616. [PMID: 35733930 PMCID: PMC9207312 DOI: 10.3389/fnins.2022.918616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
After the discovery of adult neurogenesis (stem cell-driven production of new neuronal elements), it is conceivable to find young, undifferentiated neurons mixed with mature neurons in the neural networks of the adult mammalian brain. This “canonical” neurogenesis is restricted to small stem cell niches persisting from embryonic germinal layers, yet, the genesis of new neurons has also been reported in various parenchymal brain regions. Whichever the process involved, several populations of “young” neurons can be found at different locations of the brain. Across the years, further complexity emerged: (i) molecules of immaturity can also be expressed by non-dividing cells born during embryogenesis, then maintaining immature features later on; (ii) remarkable interspecies differences exist concerning the types, location, amount of undifferentiated neurons; (iii) re-expression of immaturity can occur in aging (dematuration). These twists are introducing a somewhat different definition of neurogenesis than normally assumed, in which our knowledge of the “young” neurons is less sharp. In this emerging complexity, there is a need for complete mapping of the different “types” of young neurons, considering their role in postnatal development, plasticity, functioning, and interspecies differences. Several important aspects are at stake: the possible role(s) that the young neurons may play in maintaining brain efficiency and in prevention/repair of neurological disorders; nonetheless, the correct translation of results obtained from laboratory rodents. Hence, the open question is: how many types of undifferentiated neurons do exist in the brain, and how widespread are they?
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- *Correspondence: Luca Bonfanti,
| |
Collapse
|
22
|
Fawcett JW, Kwok JCF. Proteoglycan Sulphation in the Function of the Mature Central Nervous System. Front Integr Neurosci 2022; 16:895493. [PMID: 35712345 PMCID: PMC9195417 DOI: 10.3389/fnint.2022.895493] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulphate and heparan sulphate proteoglycans (CSPGS and HSPGs) are found throughout the central nervous system (CNS). CSPGs are ubiquitous in the diffuse extracellular matrix (ECM) between cells and are a major component of perineuronal nets (PNNs), the condensed ECM present around some neurons. HSPGs are more associated with the surface of neurons and glia, with synapses and in the PNNs. Both CSPGs and HSPGs consist of a protein core to which are attached repeating disaccharide chains modified by sulphation at various positions. The sequence of sulphation gives the chains a unique structure and local charge density. These sulphation codes govern the binding properties and biological effects of the proteoglycans. CSPGs are sulphated along their length, the main forms being 6- and 4-sulphated. In general, the chondroitin 4-sulphates are inhibitory to cell attachment and migration, while chondroitin 6-sulphates are more permissive. HSPGs tend to be sulphated in isolated motifs with un-sulphated regions in between. The sulphation patterns of HS motifs and of CS glycan chains govern their binding to the PTPsigma receptor and binding of many effector molecules to the proteoglycans, such as growth factors, morphogens, and molecules involved in neurodegenerative disease. Sulphation patterns change as a result of injury, inflammation and ageing. For CSPGs, attention has focussed on PNNs and their role in the control of plasticity and memory, and on the soluble CSPGs upregulated in glial scar tissue that can inhibit axon regeneration. HSPGs have key roles in development, regulating cell migration and axon growth. In the adult CNS, they have been associated with tau aggregation and amyloid-beta processing, synaptogenesis, growth factor signalling and as a component of the stem cell niche. These functions of CSPGs and HSPGs are strongly influenced by the pattern of sulphation of the glycan chains, the sulphation code. This review focuses on these sulphation patterns and their effects on the function of the mature CNS.
Collapse
Affiliation(s)
- James W. Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia
| | - Jessica C. F. Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
23
|
Benedetti B, Couillard-Despres S. Why Would the Brain Need Dormant Neuronal Precursors? Front Neurosci 2022; 16:877167. [PMID: 35464307 PMCID: PMC9026174 DOI: 10.3389/fnins.2022.877167] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Dormant non-proliferative neuronal precursors (dormant precursors) are a unique type of undifferentiated neuron, found in the adult brain of several mammalian species, including humans. Dormant precursors are fundamentally different from canonical neurogenic-niche progenitors as they are generated exquisitely during the embryonic development and maintain a state of protracted postmitotic immaturity lasting up to several decades after birth. Thus, dormant precursors are not pluripotent progenitors, but to all effects extremely immature neurons. Recently, transgenic models allowed to reveal that with age virtually all dormant precursors progressively awaken, abandon the immature state, and become fully functional neurons. Despite the limited common awareness about these cells, the deep implications of recent discoveries will likely lead to revisit our understanding of the adult brain. Thus, it is timely to revisit and critically assess the essential evidences that help pondering on the possible role(s) of these cells in relation to cognition, aging, and pathology. By highlighting pivoting findings as well as controversies and open questions, we offer an exciting perspective over the field of research that studies these mysterious cells and suggest the next steps toward the answer of a crucial question: why does the brain need dormant neuronal precursors?
Collapse
Affiliation(s)
- Bruno Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- *Correspondence: Sebastien Couillard-Despres,
| |
Collapse
|
24
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
25
|
Colombaioni L, Campanella B, Nieri R, Onor M, Benedetti E, Bramanti E. Time-dependent influence of high glucose environment on the metabolism of neuronal immortalized cells. Anal Biochem 2022; 645:114607. [DOI: 10.1016/j.ab.2022.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
|
26
|
p27, The Cell Cycle and Alzheimer´s Disease. Int J Mol Sci 2022; 23:ijms23031211. [PMID: 35163135 PMCID: PMC8835212 DOI: 10.3390/ijms23031211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
The cell cycle consists of successive events that lead to the generation of new cells. The cell cycle is regulated by different cyclins, cyclin-dependent kinases (CDKs) and their inhibitors, such as p27Kip1. At the nuclear level, p27Kip1 has the ability to control the evolution of different phases of the cell cycle and oppose cell cycle progression by binding to CDKs. In the cytoplasm, diverse functions have been described for p27Kip1, including microtubule remodeling, axonal transport and phagocytosis. In Alzheimer’s disease (AD), alterations to cycle events and a purported increase in neurogenesis have been described in the early disease process before significant pathological changes could be detected. However, most neurons cannot progress to complete their cell division and undergo apoptotic cell death. Increased levels of both the p27Kip1 levels and phosphorylation status have been described in AD. Increased levels of Aβ42, tau hyperphosphorylation or even altered insulin signals could lead to alterations in p27Kip1 post-transcriptional modifications, causing a disbalance between the levels and functions of p27Kip1 in the cytoplasm and nucleus, thus inducing an aberrant cell cycle re-entry and alteration of extra cell cycle functions. Further studies are needed to completely understand the role of p27Kip1 in AD and the therapeutic opportunities associated with the modulation of this target.
Collapse
|
27
|
Amateur singing benefits speech perception in aging under certain conditions of practice: behavioural and neurobiological mechanisms. Brain Struct Funct 2022; 227:943-962. [PMID: 35013775 DOI: 10.1007/s00429-021-02433-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Limited evidence has shown that practising musical activities in aging, such as choral singing, could lessen age-related speech perception in noise (SPiN) difficulties. However, the robustness and underlying mechanism of action of this phenomenon remain unclear. In this study, we used surface-based morphometry combined with a moderated mediation analytic approach to examine whether singing-related plasticity in auditory and dorsal speech stream regions is associated with better SPiN capabilities. 36 choral singers and 36 non-singers aged 20-87 years underwent cognitive, auditory, and SPiN assessments. Our results provide important new insights into experience-dependent plasticity by revealing that, under certain conditions of practice, amateur choral singing is associated with age-dependent structural plasticity within auditory and dorsal speech regions, which is associated with better SPiN performance in aging. Specifically, the conditions of practice that were associated with benefits on SPiN included frequent weekly practice at home, several hours of weekly group singing practice, singing in multiple languages, and having received formal singing training. These results suggest that amateur choral singing is associated with improved SPiN through a dual mechanism involving auditory processing and auditory-motor integration and may be dose dependent, with more intense singing associated with greater benefit. Our results, thus, reveal that the relationship between singing practice and SPiN is complex, and underscore the importance of considering singing practice behaviours in understanding the effects of musical activities on the brain-behaviour relationship.
Collapse
|
28
|
Noorjahan N, Cattini PA. Neurogenesis in the Maternal Rodent Brain: Impacts of Gestation-Related Hormonal Regulation, Stress, and Obesity. Neuroendocrinology 2022; 112:702-722. [PMID: 34510034 DOI: 10.1159/000519415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
In order to maintain maternal behavior, it is important that the maternal rodent brain promotes neurogenesis. Maternal neurogenesis is altered by the dynamic shifts in reproductive hormone levels during pregnancy. Thus, lifestyle events such as gestational stress and obesity that can affect hormone production will affect neuroendocrine control of maternal neurogenesis. However, there is a lack of information about the regulation of maternal neurogenesis by placental hormones, which are key components of the reproductive hormonal profile during pregnancy. There is also little known about how maternal neurogenesis can be affected by health concerns such as gestational stress and obesity, and its relationship to peripartum mental health disorders. This review summarizes the changing levels of neurogenesis in mice and rats during gestation and postpartum as well as regulation of neurogenesis by pregnancy-related hormones. The influence of neurogenesis on maternal behavior is also discussed while bringing attention to the effect of health-related concerns during gestation, such as stress and obesity on neuroendocrine control of maternal neurogenesis. In doing so, this review identifies the gaps in the literature and specifically emphasizes the importance of further research on maternal brain physiology to address them.
Collapse
Affiliation(s)
- Noshin Noorjahan
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Catlin JP, Marziali LN, Rein B, Yan Z, Feltri ML, Schaner Tooley CE. Age-related neurodegeneration and cognitive impairments of NRMT1 knockout mice are preceded by misregulation of RB and abnormal neural stem cell development. Cell Death Dis 2021; 12:1014. [PMID: 34711807 PMCID: PMC8553844 DOI: 10.1038/s41419-021-04316-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
N-terminal methylation is an important posttranslational modification that regulates protein/DNA interactions and plays a role in many cellular processes, including DNA damage repair, mitosis, and transcriptional regulation. Our generation of a constitutive knockout mouse for the N-terminal methyltransferase NRMT1 demonstrated its loss results in severe developmental abnormalities and premature aging phenotypes. As premature aging is often accompanied by neurodegeneration, we more specifically examined how NRMT1 loss affects neural pathology and cognitive behaviors. Here we find that Nrmt1-/- mice exhibit postnatal enlargement of the lateral ventricles, age-dependent striatal and hippocampal neurodegeneration, memory impairments, and hyperactivity. These morphological and behavior abnormalities are preceded by alterations in neural stem cell (NSC) development. Early expansion and differentiation of the quiescent NSC pool in Nrmt1-/- mice is followed by its subsequent depletion and many of the resulting neurons remain in the cell cycle and ultimately undergo apoptosis. These cell cycle phenotypes are reminiscent to those seen with loss of the NRMT1 target retinoblastoma protein (RB). Accordingly, we find misregulation of RB phosphorylation and degradation in Nrmt1-/- mice, and significant de-repression of RB target genes involved in cell cycle. We also identify novel de-repression of Noxa, an RB target gene that promotes apoptosis. These data identify Nα-methylation as a novel regulatory modification of RB transcriptional repression during neurogenesis and indicate that NRMT1 and RB work together to promote NSC quiescence and prevent neuronal apoptosis.
Collapse
Affiliation(s)
- James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Leandro N Marziali
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Benjamin Rein
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - M Laura Feltri
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
30
|
Leal-Galicia P, Chávez-Hernández ME, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-de-Jesús A, Buenrostro-Jáuregui MH. Adult Neurogenesis: A Story Ranging from Controversial New Neurogenic Areas and Human Adult Neurogenesis to Molecular Regulation. Int J Mol Sci 2021; 22:11489. [PMID: 34768919 PMCID: PMC8584254 DOI: 10.3390/ijms222111489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.
Collapse
Affiliation(s)
- Perla Leal-Galicia
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Florencia Mata
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Jesús Mata-Luévanos
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
- Laboratorio de Neurobiología de la Alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Alejandro Tapia-de-Jesús
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico; (M.E.C.-H.); (F.M.); (J.M.-L.); (L.M.R.-S.); (A.T.-d.-J.)
| |
Collapse
|
31
|
Martins-Macedo J, Salgado AJ, Gomes ED, Pinto L. Adult brain cytogenesis in the context of mood disorders: From neurogenesis to the emergent role of gliogenesis. Neurosci Biobehav Rev 2021; 131:411-428. [PMID: 34555383 DOI: 10.1016/j.neubiorev.2021.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Psychiatric disorders severely impact patients' lives. Motivational, cognitive and emotional deficits are the most common symptoms observed in these patients and no effective treatment is still available, either due to the adverse side effects or the low rate of efficacy of currently available drugs. Neurogenesis recovery has been one important focus in the treatment of psychiatric disorders, which undeniably contributes to the therapeutic action of antidepressants. However, glial plasticity is emerging as a new strategy to explore the deficits observed in mood disorders and the efficacy of therapeutic interventions. Thus, it is crucial to understand the mechanisms behind glio- and neurogenesis to better define treatments and preventive therapies, once adult cytogenesis is of pivotal importance to cognitive and emotional components of behavior, both in healthy and pathological contexts, including in psychiatric disorders. Here, we review the concepts and history of neuro- and gliogenesis, providing as well a reflection on the functional importance of cytogenesis in the context of disease.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
32
|
Wang J, Zhang Z, Fu S, Li X, Li X, Wang S, Yuan L. Overexpression of EphB4 promotes neurogenesis, but inhibits neuroinflammation in mice with acute ischemic stroke. Mol Med Rep 2021; 24:756. [PMID: 34476505 PMCID: PMC8436223 DOI: 10.3892/mmr.2021.12396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
Ischemic stroke is one of the most common diseases that has a high rate of mortality, and has become a burden to the healthcare system. Previous research has shown that EPH receptor B4 (EphB4) promotes neural stem cell proliferation and differentiation in vitro. However, little is known regarding its role in the neurogenesis of ischemic stroke in vivo. Thus, the present study aimed to verify whether EphB4 was a key regulator of neurogenesis in ischemic stroke in vivo. Cerebral ischemia was induced in C57BL/6J mice via middle cerebral artery occlusion (MCAO), followed by reperfusion. Immunofluorescence staining was performed to evaluate the effect of EphB4 on the neurogenesis in cerebral cortex. The levels of inflammatory cytokines were determined using an ELISA kit. The expression levels of ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1)/Cyclin D1 signaling pathway-related proteins were detected via western blotting. The current findings indicated that EphB4 expression was significantly increased in the cerebral cortex of MCAO model mice in comparison with sham-operated mice. Moreover, EphB4 appeared to be expressed in neural stem cells (Nestin+), and persisted as these cells became neuronal progenitors (Sox2+), neuroblasts [doublecortin (DCX)+], and eventually mature neurons [neuronal nuclei (NeuN)+]. Overexpression of EphB4 elevated the number of proliferating (bromodeoxyuridine+, Ki67+) and differentiated cells (Nestin+, Sox2+, DCX+ and NeuN+), indicating the promoting effect of EphB4 on the neurogenesis of ischemic stroke. Furthermore, EphB4 overexpression alleviated the inflammation injury in MCAO model mice. The expression levels of proteins-related to the ABL1/Cyclin D1 signaling pathway were significantly increased by the overexpression of EphB4, which suggested that restoration of EphB4 promoted the activation of the ABL1/Cyclin D1 signaling pathway. In conclusion, this study contributes to the current understanding of the mechanisms of EphB4 in exerting neurorestorative effects and may recommend a potential new strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Jin Wang
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Zun Zhang
- Department of Orthopedics, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Shaojing Fu
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Xiaojie Li
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Xinhui Li
- Department of Neurology, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014016, P.R. China
| | - Shaobin Wang
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| | - Lihe Yuan
- Department of Neurology, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia 014010, P.R. China
| |
Collapse
|
33
|
Ceanga M, Dahab M, Witte OW, Keiner S. Adult Neurogenesis and Stroke: A Tale of Two Neurogenic Niches. Front Neurosci 2021; 15:700297. [PMID: 34447293 PMCID: PMC8382802 DOI: 10.3389/fnins.2021.700297] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023] Open
Abstract
In the aftermath of an acute stroke, numerous signaling cascades that reshape the brain both in the perilesional zone as well as in more distal regions are activated. Despite continuous improvement in the acute treatment of stroke and the sustained research efforts into the pathophysiology of stroke, we critically lag in our integrated understanding of the delayed and chronic responses to ischemic injury. As such, the beneficial or maladaptive effect of some stroke-induced cellular responses is unclear, restricting the advancement of therapeutic strategies to target long-term complications. A prominent delayed effect of stroke is the robust increase in adult neurogenesis, which raises hopes for a regenerative strategy to counter neurological deficits in stroke survivors. In the adult brain, two regions are known to generate new neurons from endogenous stem cells: the subventricular zone (SVZ) and the dentate subgranular zone (SGZ) of the hippocampus. While both niches respond with an increase in neurogenesis post-stroke, there are significant regional differences in the ensuing stages of survival, migration, and maturation, which may differently influence functional outcome. External interventions such as rehabilitative training add a further layer of complexity by independently modulating the process of adult neurogenesis. In this review we summarize the current knowledge regarding the effects of ischemic stroke on neurogenesis in the SVZ and in the SGZ, and the influence of exogenous stimuli such as motor activity or enriched environment (EE). In addition, we discuss the contribution of SVZ or SGZ post-stroke neurogenesis to sensory, motor and cognitive recovery.
Collapse
Affiliation(s)
- Mihai Ceanga
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Mahmoud Dahab
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Silke Keiner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
34
|
Navarrete-Yañez V, Garate-Carrillo A, Ayala M, Rodriguez-Castañeda A, Mendoza-Lorenzo P, Ceballos G, Ordoñez-Razo R, Dugar S, Schreiner G, Villarreal F, Ramirez-Sanchez I. Stimulatory effects of (-)-epicatechin and its enantiomer (+)-epicatechin on mouse frontal cortex neurogenesis markers and short-term memory: proof of concept. Food Funct 2021; 12:3504-3515. [PMID: 33900336 DOI: 10.1039/d0fo03084h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Consumption of (-)-epicatechin (Epi), a cacao flavanol improves cognition. The aim was to compare the effects of (-)-Epi or its stereoisomer (+)-Epi on mouse frontal cortex-dependent short-term working memory and modulators of neurogenesis. Three-month-old male mice (n = 7 per group) were provided by gavage either water (vehicle; Veh), (-)-Epi, at 1 mg kg-1 or (+)-Epi at 0.1 mg per kg of body weight for 15 days. After treatment, spontaneous alternation was evaluated by Y-maze. Brain frontal cortex was isolated for nitrate/nitrite measurements, Western blotting for nerve growth factor (NGF), microtubule associated protein 2 (MAP2), endothelial and neuronal nitric oxide synthase (eNOS and nNOS) and immunohistochemistry for neuronal specific protein (NeuN), doublecortin (DCX), capillary (CD31) and neurofilaments (NF200). Results demonstrate the stimulatory capacity of (-)-Epi and (+)-Epi on markers of neuronal proliferation as per increases in immunoreactive cells for NeuN (74 and 120% respectively), DCX (70 and 124%) as well as in NGF (34.4, 63.6%) and MAP2 (41.8, 63.8%). Capillary density yielded significant increases with (-)-Epi (∼80%) vs. (+)-Epi (∼160%). CD31 protein levels increased with (-)-Epi (∼70%) and (+)-Epi (∼140%). Effects correlated with nitrate/nitrite stimulation by (-)-Epi and (+)-Epi (110.2, 246.5%) and enhanced eNOS phosphorylation (Ser1177) with (-)-Epi and (+)-Epi (21.4, 41.2%) while nNOS phosphorylation only increased with (+)-Epi (18%). Neurofilament staining was increased in (-)-Epi by 135.6 and 84% with (+)-Epi. NF200 increased with (-)-Epi (116%) vs. (+)-Epi (84.5%). Frontal cortex-dependent short-term spatial working improved with (-)-Epi and (+)-Epi (15, 13%). In conclusion, results suggest that both enantiomers, but more effectively (+)-Epi, upregulate neurogenesis markers likely through stimulation of capillary formation and NO triggering, improvements in memory.
Collapse
Affiliation(s)
- Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Alejandra Garate-Carrillo
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico. and School of Medicine, University of California, San Diego, California, USA
| | - Marcos Ayala
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Antonio Rodriguez-Castañeda
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Patricia Mendoza-Lorenzo
- Division Academica de Ciencias Basicas, Unidad Chontalpa, Universidad Juarez, Autonoma de Tabasco, Tabasco, Mexico
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Rosa Ordoñez-Razo
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico SXXI, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | | | | | - Francisco Villarreal
- School of Medicine, University of California, San Diego, California, USA and VA San Diego Health Care System, San Diego, California, USA
| | - Israel Ramirez-Sanchez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| |
Collapse
|
35
|
Petryszyn S, Saidi L, Gagnon D, Parent A, Parent M. The density of calretinin striatal interneurons is decreased in 6-OHDA-lesioned mice. Brain Struct Funct 2021; 226:1879-1891. [PMID: 34018041 DOI: 10.1007/s00429-021-02298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/08/2021] [Indexed: 11/30/2022]
Abstract
Interneurons play a significant role in the functional organization of the striatum and some of them display marked plastic changes in dopamine-depleted conditions. Here, we applied immunohistochemistry on brain sections from 6-hydroxydopamine (6-OHDA) mouse model of Parkinson's disease and sham animals to characterize the regional distribution and the morphological and neurochemical changes of striatal interneurons expressing the calcium-binding protein calretinin (CR). Two morphological subtypes of calretinin-immunostained (CR +) interneurons referred, respectively, as small- and medium-sized CR + interneurons were detected in 6-OHDA- and sham-lesioned animals. The small cells (9-12 µm) prevail in the anterior and dorsal striatal regions; they stain intensely for CR and display a single slightly varicose and moderately arborized process. The medium-sized CR + interneurons (15-20 µm) are more numerous than the small CR + cells and rather uniformly distributed within the striatum; they stain weakly for CR and display 2-3 long, slightly varicose and poorly branched dendrites. The density of medium CR + interneurons is significantly decreased in the dopamine-depleted striatum (158 ± 15 neurons/mm3), when compared to sham animals (370 ± 41 neurons/mm3), whereas that of the small-sized CR + interneurons is unchanged (174 ± 46 neurons/mm3 in 6-OHDA-lesioned striatum and 164 ± 22 neurons/mm3 in sham-lesioned striatum). The nucleus accumbens is populated only by medium-sized CR + interneurons, which are distributed equally among the core and shell compartments and whose density is unaltered after dopamine denervation. Our results provide the first evidence that the medium-sized striatal interneurons expressing low level of CR are specifically targeted by dopamine denervation, while the small and intensely immunoreactive CR + cells remain unaffected. These findings suggest that high expression of the calcium-binding protein CR might protect striatal interneurons against an increase in intracellular calcium level that is believed to arise from altered glutamate corticostriatal transmission in Parkinson's disease.
Collapse
Affiliation(s)
- S Petryszyn
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - L Saidi
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - D Gagnon
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - A Parent
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - M Parent
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, 2601, Chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
| |
Collapse
|
36
|
The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders. Antioxidants (Basel) 2021; 10:antiox10050739. [PMID: 34067012 PMCID: PMC8151966 DOI: 10.3390/antiox10050739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress is a well-known common pathological process involved in mediating acute neurological injuries, such as stroke, traumatic brain injury, epilepsy, and hypoglycemia-related neuronal injury. However, effective therapeutic measures aimed at scavenging free reactive oxygen species have shown little success in clinical trials. Recent studies have revealed that NADPH oxidase, a membrane-bound enzyme complex that catalyzes the production of a superoxide free radical, is one of the major sources of cellular reactive oxygen species in acute neurological disorders. Furthermore, several studies, including our previous ones, have shown that the inhibition of NADPH oxidase can reduce subsequent neuronal injury in neurological disease. Moreover, maintaining appropriate levels of NADPH oxidase has also been shown to be associated with proper neurogenesis after neuronal injury. This review aims to present a comprehensive overview of the role of NADPH oxidase in neuronal death and neurogenesis in multiple acute neurological disorders and to explore potential pharmacological strategies targeting the NADPH-related oxidative stress pathways.
Collapse
|
37
|
Tamura Y, Takata K, Eguchi A, Maeda M, Kataoka Y. Age-related changes in NG2-expressing telocytes of rat stomach. PLoS One 2021; 16:e0249729. [PMID: 33822814 PMCID: PMC8023479 DOI: 10.1371/journal.pone.0249729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
NG2 immunoreactive cells (NG2 cells) are found in the brain and peripheral tissues including the skin, intestinal tracts, and bladder. In a previous study, we observed the presence of NG2 cells in the stomach using bioluminescence imaging techniques in NG2-firefly luciferase (fLuc) transgenic (Tg) rats. Here, we aimed to identify and characterize NG2 cells in the adult rat stomach. Immunohistochemical studies showed that NG2 cells were mainly present in the lamina propria and most of the cells were gastric telocytes, co-expressing CD34, and platelet-derived growth factor receptor alpha (PDGFRα), with a small oval-shaped cell body and extremely long and thin cellular prolongations. In the rat stomach, NG2-expressing telocytes comprised two subpopulations: NG2+/CD34+/PDGFRα+ and NG2+/CD34+/PDGFRα-. Furthermore, we showed that the expression of NG2 gene in the aged rat stomach decreased relative to that of the young rat stomach and the decline of NG2 expression in aged rats was mainly observed in NG2+/CD34+/PDGFRα+ telocytes. These findings suggested age-related alterations in NG2+/CD34+/PDGFRα+ telocytes of rat stomach.
Collapse
Affiliation(s)
- Yasuhisa Tamura
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Kumi Takata
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Asami Eguchi
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Mitsuyo Maeda
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Japan
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Chuo-ku, Kobe, Japan
| |
Collapse
|
38
|
Houben S, Homa M, Yilmaz Z, Leroy K, Brion JP, Ando K. Tau Pathology and Adult Hippocampal Neurogenesis: What Tau Mouse Models Tell us? Front Neurol 2021; 12:610330. [PMID: 33643196 PMCID: PMC7902892 DOI: 10.3389/fneur.2021.610330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) has been widely confirmed in mammalian brains. A growing body of evidence points to the fact that AHN sustains hippocampal-dependent functions such as learning and memory. Impaired AHN has been reported in post-mortem human brain hippocampus of Alzheimer's disease (AD) and is considered to contribute to defects in learning and memory. Neurofibrillary tangles (NFTs) and amyloid plaques are the two key neuropathological hallmarks of AD. NFTs are composed of abnormal tau proteins accumulating in many brain areas during the progression of the disease, including in the hippocampus. The physiological role of tau and impact of tau pathology on AHN is still poorly understood. Modifications in AHN have also been reported in some tau transgenic and tau-deleted mouse models. We present here a brief review of advances in the relationship between development of tau pathology and AHN in AD and what insights have been gained from studies in tau mouse models.
Collapse
Affiliation(s)
- Sarah Houben
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Mégane Homa
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
39
|
Akay LA, Effenberger AH, Tsai LH. Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. Genes Dev 2021; 35:180-198. [PMID: 33526585 PMCID: PMC7849363 DOI: 10.1101/gad.344218.120] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are not merely a transitory progenitor cell type, but rather a distinct and heterogeneous population of glia with various functions in the developing and adult central nervous system. In this review, we discuss the fate and function of OPCs in the brain beyond their contribution to myelination. OPCs are electrically sensitive, form synapses with neurons, support blood-brain barrier integrity, and mediate neuroinflammation. We explore how sex and age may influence OPC activity, and we review how OPC dysfunction may play a primary role in numerous neurological and neuropsychiatric diseases. Finally, we highlight areas of future research.
Collapse
Affiliation(s)
- Leyla Anne Akay
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Audrey H Effenberger
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
40
|
Neurogenesis of medium spiny neurons in the nucleus accumbens continues into adulthood and is enhanced by pathological pain. Mol Psychiatry 2021; 26:4616-4632. [PMID: 32612250 PMCID: PMC8589654 DOI: 10.1038/s41380-020-0823-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
In mammals, most adult neural stem cells (NSCs) are located in the ventricular-subventricular zone (V-SVZ) along the wall of the lateral ventricles and they are the source of olfactory bulb interneurons. Adult NSCs exhibit an apico-basal polarity; they harbor a short apical process and a long basal process, reminiscent of radial glia morphology. In the adult mouse brain, we detected extremely long radial glia-like fibers that originate from the anterior-ventral V-SVZ and that are directed to the ventral striatum. Interestingly, a fraction of adult V-SVZ-derived neuroblasts dispersed in close association with the radial glia-like fibers in the nucleus accumbens (NAc). Using several in vivo mouse models, we show that newborn neurons integrate into preexisting circuits in the NAc where they mature as medium spiny neurons (MSNs), i.e., a type of projection neurons formerly believed to be generated only during embryonic development. Moreover, we found that the number of newborn neurons in the NAc is dynamically regulated by persistent pain, suggesting that adult neurogenesis of MSNs is an experience-modulated process.
Collapse
|
41
|
Ribeiro FF, Xapelli S. An Overview of Adult Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:77-94. [PMID: 34453294 DOI: 10.1007/978-3-030-74046-7_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurogenesis is maintained in the mammalian brain throughout adulthood in two main regions: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Adult neurogenesis is a process composed of multiple steps by which neurons are generated from dividing adult neural stem cells and migrate to be integrated into existing neuronal circuits. Alterations in any of these steps impair neurogenesis and may compromise brain function, leading to cognitive impairment and neurodegenerative diseases. Therefore, understanding the cellular and molecular mechanisms that modulate adult neurogenesis is the centre of attention of regenerative research. In this chapter, we review the main properties of the adult neurogenic niches.
Collapse
Affiliation(s)
- Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
42
|
Martins-Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L. Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia 2020; 69:513-531. [PMID: 33052610 DOI: 10.1002/glia.23922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Helena S Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
43
|
Jurkowski MP, Bettio L, K. Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front Cell Neurosci 2020; 14:576444. [PMID: 33132848 PMCID: PMC7550688 DOI: 10.3389/fncel.2020.576444] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Convincing evidence has repeatedly shown that new neurons are produced in the mammalian brain into adulthood. Adult neurogenesis has been best described in the hippocampus and the subventricular zone (SVZ), in which a series of distinct stages of neuronal development has been well characterized. However, more recently, new neurons have also been found in other brain regions of the adult mammalian brain, including the hypothalamus, striatum, substantia nigra, cortex, and amygdala. While some studies have suggested that these new neurons originate from endogenous stem cell pools located within these brain regions, others have shown the migration of neurons from the SVZ to these regions. Notably, it has been shown that the generation of new neurons in these brain regions is impacted by neurologic processes such as stroke/ischemia and neurodegenerative disorders. Furthermore, numerous factors such as neurotrophic support, pharmacologic interventions, environmental exposures, and stem cell therapy can modulate this endogenous process. While the presence and significance of adult neurogenesis in the human brain (and particularly outside of the classical neurogenic regions) is still an area of debate, this intrinsic neurogenic potential and its possible regulation through therapeutic measures present an exciting alternative for the treatment of several neurologic conditions. This review summarizes evidence in support of the classic and novel neurogenic zones present within the mammalian brain and discusses the functional significance of these new neurons as well as the factors that regulate their production. Finally, it also discusses the potential clinical applications of promoting neurogenesis outside of the classical neurogenic niches, particularly in the hypothalamus, cortex, striatum, substantia nigra, and amygdala.
Collapse
Affiliation(s)
- Michal P. Jurkowski
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Luis Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma K. Woo
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
| | - Anna Patten
- Centre for Interprofessional Clinical Simulation Learning (CICSL), Royal Jubilee Hospital, Victoria, BC, Canada
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Joana Gil-Mohapel
- Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
44
|
Role of Excitatory Amino Acid Carrier 1 ( EAAC1) in Neuronal Death and Neurogenesis After Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21165676. [PMID: 32784778 PMCID: PMC7460875 DOI: 10.3390/ijms21165676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Although there have been substantial advances in knowledge regarding the mechanisms of neuron death after stroke, effective therapeutic measures for stroke are still insufficient. Excitatory amino acid carrier 1 (EAAC1) is a type of neuronal glutamate transporter and considered to have an additional action involving the neuronal uptake of cysteine, which acts as a crucial substrate for glutathione synthesis. Previously, our lab demonstrated that genetic deletion of EAAC1 leads to decreased neuronal glutathione synthesis, increased oxidative stress, and subsequent cognitive impairment. Therefore, we hypothesized that reduced neuronal transport of cysteine due to deletion of the EAAC1 gene might exacerbate neuronal injury and impair adult neurogenesis in the hippocampus after transient cerebral ischemia. EAAC1 gene deletion profoundly increased ischemia-induced neuronal death by decreasing the antioxidant capacity. In addition, genetic deletion of EAAC1 also decreased the overall neurogenesis processes, such as cell proliferation, differentiation, and survival, after cerebral ischemia. These studies strongly support our hypothesis that EAAC1 is crucial for the survival of newly generated neurons, as well as mature neurons, in both physiological and pathological conditions. Here, we present a comprehensive review of the role of EAAC1 in neuronal death and neurogenesis induced by ischemic stroke, focusing on its potential cellular and molecular mechanisms.
Collapse
|
45
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
46
|
La Rosa C, Cavallo F, Pecora A, Chincarini M, Ala U, Faulkes CG, Nacher J, Cozzi B, Sherwood CC, Amrein I, Bonfanti L. Phylogenetic variation in cortical layer II immature neuron reservoir of mammals. eLife 2020; 9:55456. [PMID: 32690132 PMCID: PMC7373429 DOI: 10.7554/elife.55456] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
The adult mammalian brain is mainly composed of mature neurons. A limited amount of stem cell-driven neurogenesis persists in postnatal life and is reduced in large-brained species. Another source of immature neurons in adult brains is cortical layer II. These cortical immature neurons (cINs) retain developmentally undifferentiated states in adulthood, though they are generated before birth. Here, the occurrence, distribution and cellular features of cINs were systematically studied in 12 diverse mammalian species spanning from small-lissencephalic to large-gyrencephalic brains. In spite of well-preserved morphological and molecular features, the distribution of cINs was highly heterogeneous, particularly in neocortex. While virtually absent in rodents, they are present in the entire neocortex of many other species and their linear density in cortical layer II generally increased with brain size. These findings suggest an evolutionary developmental mechanism for plasticity that varies among mammalian species, granting a reservoir of young cells for the cerebral cortex. To acquire new skills or recover after injuries, the mammalian brain relies on plasticity, the ability for the brain to change its architecture and its connections during the lifetime of an animal. Creating new nerve cells is one way to achieve plasticity, but this process is rarer in humans than it is in mammals with smaller brains. In particular, it is absent in the human cortex: this region is enlarged in species with large brains, where it carries out complex tasks such as learning and memory. Producing new cells in the cortex would threaten the stability of the structures that retain long-term memories. Another route to plasticity is to reshape the connections between existing, mature nerve cells. This process takes place in the human brain during childhood and adolescence, as some connections are strengthened and others pruned away. An alternative mechanism relies on keeping some nerve cells in an immature, ‘adolescent’ state. When needed, these nerve cells emerge from their state of arrested development and ‘grow up’, connecting with the appropriate brain circuits. This mechanism does not involve producing new nerve cells, and so it would be suitable to maintain plasticity in the cortex. Consistent with this idea, in mice some dormant nerve cells are present in a small, primitive part of the cortex. La Rosa et al. therefore wanted to determine if the location and number of immature cells in the cortex differed between mammals, and if so, whether these differences depended on brain size. The study spanned 12 mammal species, from small-brained species like mice to larger-brained animals including sheep and non-human primates. Microscopy imaging was used to identify immature nerve cells in brain samples, which revealed that the cortex in larger-brained species contained more adolescent cells than its mouse counterpart. The difference was greatest in a region called the neocortex, which has evolved most recently. This area is most pronounced in primates – especially humans – where it carries out high-level cognitive tasks. These results identify immature nerve cells as a potential mechanism for plasticity in the cortex. La Rosa et al. hope that the work will inspire searches for similar reservoirs of young cells in humans, which could perhaps lead to new treatments for brain disorders like dementia.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Torino, Italy
| | - Francesca Cavallo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Alessandra Pecora
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Matteo Chincarini
- Università degli Studi di Teramo, Facoltà di Medicina Veterinaria, Teramo, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Torino, Italy
| | - Chris G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Juan Nacher
- Neurobiology Unit, BIOTECMED, Universitat de València, and Spanish Network for Mental Health Research CIBERSAM, València, Spain
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, United States
| | - Irmgard Amrein
- D-HEST, ETH, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Torino, Italy
| |
Collapse
|
47
|
Santopolo G, Magnusson JP, Lindvall O, Kokaia Z, Frisén J. Blocking Notch-Signaling Increases Neurogenesis in the Striatum after Stroke. Cells 2020; 9:E1732. [PMID: 32698472 PMCID: PMC7409130 DOI: 10.3390/cells9071732] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
Stroke triggers neurogenesis in the striatum in mice, with new neurons deriving in part from the nearby subventricular zone and in part from parenchymal astrocytes. The initiation of neurogenesis by astrocytes within the striatum is triggered by reduced Notch-signaling, and blocking this signaling pathway by deletion of the gene encoding the obligate Notch coactivator Rbpj is sufficient to activate neurogenesis by striatal astrocytes in the absence of an injury. Here we report that blocking Notch-signaling in stroke increases the neurogenic response to stroke 3.5-fold in mice. Deletion of Rbpj results in the recruitment of a larger number of parenchymal astrocytes to neurogenesis and over larger areas of the striatum. These data suggest inhibition of Notch-signaling as a potential translational strategy to promote neuronal regeneration after stroke.
Collapse
Affiliation(s)
- Giuseppe Santopolo
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; (G.S.); (J.P.M.)
| | - Jens P. Magnusson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; (G.S.); (J.P.M.)
| | - Olle Lindvall
- Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden; (O.L.); (Z.K.)
| | - Zaal Kokaia
- Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden; (O.L.); (Z.K.)
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; (G.S.); (J.P.M.)
| |
Collapse
|
48
|
Sánchez-González R, Bribián A, López-Mascaraque L. Cell Fate Potential of NG2 Progenitors. Sci Rep 2020; 10:9876. [PMID: 32555386 PMCID: PMC7303219 DOI: 10.1038/s41598-020-66753-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/26/2020] [Indexed: 11/11/2022] Open
Abstract
Determining the origin of different glial subtypes is crucial to understand glial heterogeneity, and to enhance our knowledge of glial and progenitor cell behavior in embryos and adults. NG2-glia are homogenously distributed in a grid-like manner in both, gray and white matter of the adult brain. While some NG2-glia in the CNS are responsible for the generation of mature oligodendrocytes (OPCs), most of them do not differentiate and they can proliferate outside of adult neurogenic niches. Thus, NG2-glia constitute a heterogeneous population containing different subpopulations with distinct functions. We hypothesized that their diversity emerges from specific progenitors during development, as occurs with other glial cell subtypes. To specifically target NG2-pallial progenitors and to define the NG2-glia lineage, as well as the NG2-progenitor potential, we designed two new StarTrack strategies using the NG2 promoter. These approaches label NG2 expressing progenitor cells, permitting the cell fates of these NG2 progenitors to be tracked in vivo. StarTrack labelled cells producing different neural phenotypes in different regions depending on the age targeted, and the strategy selected. This specific genetic targeting of neural progenitors in vivo has provided new data on the heterogeneous pool of NG2 progenitors at both embryonic and postnatal ages.
Collapse
|
49
|
Gómez-Oliva R, Geribaldi-Doldán N, Domínguez-García S, Carrascal L, Verástegui C, Nunez-Abades P, Castro C. Vitamin D deficiency as a potential risk factor for accelerated aging, impaired hippocampal neurogenesis and cognitive decline: a role for Wnt/β-catenin signaling. Aging (Albany NY) 2020; 12:13824-13844. [PMID: 32554862 PMCID: PMC7377904 DOI: 10.18632/aging.103510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D is an essential fat-soluble vitamin that participates in several homeostatic functions in mammalian organisms. Lower levels of vitamin D are produced in the older population, vitamin D deficiency being an accelerating factor for the progression of the aging process. In this review, we focus on the effect that vitamin D exerts in the aged brain paying special attention to the neurogenic process. Neurogenesis occurs in the adult brain in neurogenic regions, such as the dentate gyrus of the hippocampus (DG). This region generates new neurons that participate in cognitive tasks. The neurogenic rate in the DG is reduced in the aged brain because of a reduction in the number of neural stem cells (NSC). Homeostatic mechanisms controlled by the Wnt signaling pathway protect this pool of NSC from being depleted. We discuss in here the crosstalk between Wnt signaling and vitamin D, and hypothesize that hypovitaminosis might cause failure in the control of the neurogenic homeostatic mechanisms in the old brain leading to cognitive impairment. Understanding the relationship between vitamin D, neurogenesis and cognitive performance in the aged brain may facilitate prevention of cognitive decline and it can open a door into new therapeutic fields by perspectives in the elderly.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Verástegui
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| |
Collapse
|
50
|
Sun L, Fleetwood-Walker S, Mitchell R, Joosten EA, Cheung CW. Prolonged Analgesia by Spinal Cord Stimulation Following a Spinal Injury Associated With Activation of Adult Neural Progenitors. Pain Pract 2020; 20:859-877. [PMID: 32474998 DOI: 10.1111/papr.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Responses of spinal progenitors to spinal cord stimulation (SCS) following spinal cord injury (SCI) in rats were assessed to reveal their potential contribution to SCS-induced analgesia. METHODS Spinal epidural electrodes were implanted in rats at T12 rostral to a quadrant dorsal horn injury at T13. Further groups additionally received either a microlesion to the dorsolateral funiculus (DLF) or gabapentin (10 mg/kg). SCS was performed at 25 Hz for 10 minutes on day 4 (early SCS) and at 10 Hz for 10 minutes on day 8 (late SCS) after injury. Paw withdrawal threshold (PWT) was measured before injury, 30 minutes before or after SCS, and before cull on day 14, followed by immunostaining assessment. RESULTS Paw withdrawal thresholds in uninjured animals (51.0 ± 4.0 g) were markedly reduced after SCI (17.3 ± 2.2 g). This was significantly increased by early SCS (38.5 ± 5.2 g, P < 0.01) and further enhanced by late SCS (50.9 ± 1.9 g, P < 0.01) over 6 days. Numbers of neural progenitors expressing nestin, Sox2, and doublecortin (DCX) in the spinal dorsal horn were increased 6 days after SCS by 6-fold, 2-fold, and 2.5-fold, respectively (P < 0.05 to 0.01). The elevated PWT evoked by SCS was abolished by DLF microlesions (48.9 ± 2.6 g vs. 19.0 ± 3.9 g, P < 0.01) and the number of nestin-positive cells was reduced to the level without SCS (P < 0.05). Gabapentin enhanced late SCS-induced analgesia from 37.0 ± 3.9 g to 54.0 ± 0.8 g (P < 0.01) and increased gamma-aminobutyric acid (GABA)-ergic neuronal marker vesicular GABA transporter-positive newborn cells 2-fold (P < 0.01). CONCLUSIONS Spinal progenitor cells appear to be activated by SCS via descending pathways, which may be enhanced by gabapentin and potentially contributes to relief of SCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Liting Sun
- Brain and Spinal Cord Innovation Research Center, The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai, China
| | - Sue Fleetwood-Walker
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Rory Mitchell
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Elbert A Joosten
- Department of Anesthesiology/Pain Management, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, University of Hong Kong, HKSAR, China
| |
Collapse
|