1
|
Dabo AJ, Raghavan S, Ezegbunam W, Thankachen J, Evgrafov O, Majka S, Geraghty P, Foronjy RF. Cigarette smoke alters calcium flux to induce PP2A membrane trafficking and endothelial cell permeability. Sci Rep 2024; 14:28012. [PMID: 39543165 PMCID: PMC11564810 DOI: 10.1038/s41598-024-77776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Alveolar capillary barrier disruption induces local edema and inflammation that impairs pulmonary function and promotes alveolar destruction in COPD. This study aimed to determine how cigarette smoke modulated the serine-threonine phosphatase protein phosphatase 2 A (PP2A) to alter the barrier function of human lung microvascular endothelial cells (HLMVECs). Cigarette smoke exposure lowered overall PP2A activity and enhanced endothelial permeability in HLMVECs. However, directly decreasing PP2A activity with Fostriecin significantly reduced endothelial cell permeability. Protein fractionation studies determined that cigarette smoke diminished cytosolic PP2A activity but increased membrane and cytoskeletal activity. These changes coincided with the translocation of PP2A to the membrane, which reduced occludin phosphorylation in the membrane. Cigarette smoke decreased protein tyrosine phosphatase 1B (PTP1B) activity, a PP2A activator which also counters calcium intracellular influx. The decrease in PTP1B activity correlated with reduced calcium efflux in endothelial cells and these changes in calcium flux regulated PP2A activity. Indeed, culturing endothelial cells in low calcium medium prevented the decrease in cytosolic PP2A activity mediated by cigarette smoke. Together, these findings outline a mechanism whereby cigarette smoke acts via calcium to traffic PP2A from the cytosol to the membrane where it dephosphorylates occludin to increase endothelial cell permeability.
Collapse
Affiliation(s)
- Abdoulaye J Dabo
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sonya Raghavan
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wendy Ezegbunam
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jincy Thankachen
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oleg Evgrafov
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sue Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Robert F Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
- Division of Pulmonary & Critical Care Medicine, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| |
Collapse
|
2
|
Matsumoto R, Ogata K, Takahashi D, Kinashi Y, Yamada T, Morita R, Tanaka K, Hattori K, Endo M, Fujimura Y, Sasaki N, Ohno H, Ishihama Y, Kimura S, Hase K. AP-1B regulates interactions of epithelial cells and intraepithelial lymphocytes in the intestine. Cell Mol Life Sci 2024; 81:425. [PMID: 39369131 PMCID: PMC11455912 DOI: 10.1007/s00018-024-05455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Intraepithelial lymphocytes (IELs) reside in the epithelial layer and protect against foreign pathogens, maintaining the epithelial barrier function in the intestine. Interactions between IEL and epithelial cells are required for IELs to function effectively; however, the underlying molecular machinery remains to be elucidated. In this study, we found that intestinal epithelium-specific deficiency of the clathrin adaptor protein (AP)-1B, which regulates basolateral protein sorting, led to a massive reduction in IELs. Quantitative proteomics demonstrated that dozens of proteins, including known IEL-interacting proteins (E-cadherin, butyrophilin-like 2, and plexin B2), were decreased in the basolateral membrane of AP-1B-deficient epithelial cells. Among these proteins, CD166 interacted with CD6 on the surface of induced IEL. CD166 knockdown, using shRNA in intestinal organoid cultures, significantly inhibited IEL recruitment to the epithelial layer. These findings highlight the essential role of AP-1B-mediated basolateral sorting in IEL maintenance and survival within the epithelial layer. This study reveals a novel function of AP-1B in the intestinal immune system.
Collapse
Affiliation(s)
- Ryohtaroh Matsumoto
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kosuke Ogata
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yusuke Kinashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takahiro Yamada
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Ryo Morita
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Keisuke Tanaka
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kouya Hattori
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Mayumi Endo
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Nobuo Sasaki
- Laboratory of Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
| |
Collapse
|
3
|
Deng Y, Banerjee T, Pal DS, Banerjee P, Zhan H, Borleis J, Igleias PA, Devreotes PN. PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613115. [PMID: 39314378 PMCID: PMC11419139 DOI: 10.1101/2024.09.15.613115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin's involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
Collapse
Affiliation(s)
- Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A. Igleias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Ling P, Ju J, Zhang X, Wei W, Luo J, Li Y, Hai H, Shang B, Cheng H, Wang C, Zhang X, Su J. The Silencing of GhPIP5K2 and GhPIP5K22 Weakens Abiotic Stress Tolerance in Upland Cotton ( Gossypium hirsutum). Int J Mol Sci 2024; 25:1511. [PMID: 38338791 PMCID: PMC10855785 DOI: 10.3390/ijms25031511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks), essential enzymes in the phosphatidylinositol signaling pathway, are crucial for the abiotic stress responses and the overall growth and development of plants. However, the GhPIP5Ks had not been systematically studied, and their function in upland cotton was unknown. This study identified a total of 28 GhPIP5Ks, and determined their chromosomal locations, gene structures, protein motifs and cis-acting elements via bioinformatics analysis. A quantitative real-time PCR (qRT‒PCR) analysis showed that most GhPIP5Ks were upregulated under different stresses. A virus-induced gene silencing (VIGS) assay indicated that the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were significantly decreased, while malondialdehyde (MDA) content were significantly increased in GhPIP5K2- and GhPIP5K22-silenced upland cotton plants under abiotic stress. Furthermore, the expression of the stress marker genes GhHSFB2A, GhHSFB2B, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhBIN2, GhCBL3, GhNHX1, GhPP2C, GhCBF1, GhSnRK2.6 and GhCIPK6 was significantly decreased in the silenced plants after exposure to stress. These results revealed that the silencing of GhPIP5K2 and GhPIP5K22 weakened the tolerance to abiotic stresses. These discoveries provide a foundation for further inquiry into the actions of the GhPIP5K gene family in regulating the response and resistance mechanisms of cotton to abiotic stresses.
Collapse
Affiliation(s)
- Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Xueli Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Han Hai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Bowen Shang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Hongbo Cheng
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| |
Collapse
|
5
|
Jin Y, Xue J. Lipid kinases PIP5Ks and PIP4Ks: potential drug targets for breast cancer. Front Oncol 2023; 13:1323897. [PMID: 38156113 PMCID: PMC10753794 DOI: 10.3389/fonc.2023.1323897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Phosphoinositides, a small group of lipids found in all cellular membranes, have recently garnered heightened attention due to their crucial roles in diverse biological processes and different diseases. Among these, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the most abundant bis-phosphorylated phosphoinositide within the signaling system, stands notably connected to breast cancer. Not only does it serve as a key activator of the frequently altered phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer, but also its conversion to phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) is an important direction for breast cancer research. The generation and degradation of phosphoinositides intricately involve phosphoinositide kinases. PI(4,5)P2 generation emanates from the phosphorylation of PI4P or PI5P by two lipid kinase families: Type I phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and Type II phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). In this comprehensive review, we focus on these two lipid kinases and delineate their compositions and respective cellular localization. Moreover, we shed light on the expression patterns and functions of distinct isoforms of these kinases in breast cancer. For a deeper understanding of their functional dynamics, we expound upon various mechanisms governing the regulation of PIP5Ks and PIP4Ks activities. A summary of effective and specific small molecule inhibitors designed for PIP5Ks or PIP4Ks are also provided. These growing evidences support PIP5Ks and PIP4Ks as promising drug targets for breast cancer.
Collapse
Affiliation(s)
- Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou University Clinical Medical College, Yangzhou, China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou University Clinical Medical College, Yangzhou, China
| |
Collapse
|
6
|
Thapa N, Wen T, Cryns VL, Anderson RA. Regulation of Cell Adhesion and Migration via Microtubule Cytoskeleton Organization, Cell Polarity, and Phosphoinositide Signaling. Biomolecules 2023; 13:1430. [PMID: 37892112 PMCID: PMC10604632 DOI: 10.3390/biom13101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The capacity for cancer cells to metastasize to distant organs depends on their ability to execute the carefully choreographed processes of cell adhesion and migration. As most human cancers are of epithelial origin (carcinoma), the transcriptional downregulation of adherent/tight junction proteins (e.g., E-cadherin, Claudin and Occludin) with the concomitant gain of adhesive and migratory phenotypes has been extensively studied. Most research and reviews on cell adhesion and migration focus on the actin cytoskeleton and its reorganization. However, metastasizing cancer cells undergo the extensive reorganization of their cytoskeletal system, specifically in originating/nucleation sites of microtubules and their orientation (e.g., from non-centrosomal to centrosomal microtubule organizing centers). The precise mechanisms by which the spatial and temporal reorganization of microtubules are linked functionally with the acquisition of an adhesive and migratory phenotype as epithelial cells reversibly transition into mesenchymal cells during metastasis remains poorly understood. In this Special Issue of "Molecular Mechanisms Underlying Cell Adhesion and Migration", we highlight cell adhesion and migration from the perspectives of microtubule cytoskeletal reorganization, cell polarity and phosphoinositide signaling.
Collapse
Affiliation(s)
- Narendra Thapa
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| | - Tianmu Wen
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| | - Vincent L. Cryns
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard A. Anderson
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| |
Collapse
|
7
|
Morleo M, Venditti R, Theodorou E, Briere LC, Rosello M, Tirozzi A, Tammaro R, Al-Badri N, High FA, Shi J, Putti E, Ferrante L, Cetrangolo V, Torella A, Walker MA, Tenconi R, Iascone M, Mei D, Guerrini R, van der Smagt J, Kroes HY, van Gassen KLI, Bilal M, Umair M, Pingault V, Attie-Bitach T, Amiel J, Ejaz R, Rodan L, Zollino M, Agrawal PB, Del Bene F, Nigro V, Sweetser DA, Franco B. De novo missense variants in phosphatidylinositol kinase PIP5KIγ underlie a neurodevelopmental syndrome associated with altered phosphoinositide signaling. Am J Hum Genet 2023; 110:1377-1393. [PMID: 37451268 PMCID: PMC10432144 DOI: 10.1016/j.ajhg.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy.
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II," Medical School, Naples, Italy
| | - Evangelos Theodorou
- Center for Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren C Briere
- Center for Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marion Rosello
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Alfonsina Tirozzi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nour Al-Badri
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Frances A High
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jiahai Shi
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Putti
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Luigi Ferrante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Viviana Cetrangolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Romano Tenconi
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy
| | - Maria Iascone
- Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Davide Mei
- Meyer Children's Hospital IRCCS, Neuroscience Department, Florence, Italy
| | - Renzo Guerrini
- Meyer Children's Hospital IRCCS, Neuroscience Department, Florence, Italy
| | - Jasper van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hester Y Kroes
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center & King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Veronica Pingault
- Service de Médecine Génomique des Maladies Rares, et Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Tania Attie-Bitach
- Service de Médecine Génomique des Maladies Rares, et Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Jeannine Amiel
- Service de Médecine Génomique des Maladies Rares, et Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Resham Ejaz
- Division of Genetics, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Marcella Zollino
- Institute of Medical Genetics, A. Gemelli School of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Filippo Del Bene
- Sorbonne Université, INSERM U968, CNRS UMR 7210, Institut de la Vision, Paris, France
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - David A Sweetser
- Center for Genomic Medicine, Divisions of Pediatric Hematology/Oncology and Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples "Federico II," Via Sergio Pansini, 80131 Naples, Italy
| |
Collapse
|
8
|
Mignani L, Facchinello N, Varinelli M, Massardi E, Tiso N, Ravelli C, Mitola S, Schu P, Monti E, Finazzi D, Borsani G, Zizioli D. Deficiency of AP1 Complex Ap1g1 in Zebrafish Model Led to Perturbation of Neurodevelopment, Female and Male Fertility; New Insight to Understand Adaptinopathies. Int J Mol Sci 2023; 24:ijms24087108. [PMID: 37108275 PMCID: PMC10138411 DOI: 10.3390/ijms24087108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In vertebrates, two homologous heterotetrameric AP1 complexes regulate the intracellular protein sorting via vesicles. AP-1 complexes are ubiquitously expressed and are composed of four different subunits: γ, β1, μ1 and σ1. Two different complexes are present in eukaryotic cells, AP1G1 (contains γ1 subunit) and AP1G2 (contains γ2 subunit); both are indispensable for development. One additional tissue-specific isoform exists for μ1A, the polarized epithelial cells specific to μ1B; two additional tissue-specific isoforms exist for σ1A: σ1B and σ1C. Both AP1 complexes fulfil specific functions at the trans-Golgi network and endosomes. The use of different animal models demonstrated their crucial role in the development of multicellular organisms and the specification of neuronal and epithelial cells. Ap1g1 (γ1) knockout mice cease development at the blastocyst stage, while Ap1m1 (μ1A) knockouts cease during mid-organogenesis. A growing number of human diseases have been associated with mutations in genes encoding for the subunits of adaptor protein complexes. Recently, a new class of neurocutaneous and neurometabolic disorders affecting intracellular vesicular traffic have been referred to as adaptinopathies. To better understand the functional role of AP1G1 in adaptinopathies, we generated a zebrafish ap1g1 knockout using CRISPR/Cas9 genome editing. Zebrafish ap1g1 knockout embryos cease their development at the blastula stage. Interestingly, heterozygous females and males have reduced fertility and showed morphological alterations in the brain, gonads and intestinal epithelium. An analysis of mRNA profiles of different marker proteins and altered tissue morphologies revealed dysregulated cadherin-mediated cell adhesion. These data demonstrate that the zebrafish model organism enables us to study the molecular details of adaptinopathies and thus also develop treatment strategies.
Collapse
Affiliation(s)
- Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Nicola Facchinello
- Neuroscience Institute, Italian Research Council (CNR), 35131 Padova, Italy
| | - Marco Varinelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Massardi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
- CN3 "Sviluppo di Terapia Genica e Farmaci con Tecnologia ad RNA", 25123 Brescia, Italy
| | - Peter Schu
- Department of Cellular Biochemistry, University Medical Center, Georg-August University, Humboldtallee 23, 37073 Gottingen, Germany
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
- Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giuseppe Borsani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123 Brescia, Italy
| |
Collapse
|
9
|
Davies EM, Gurung R, Le KQ, Roan KT, Harvey RP, Mitchell GM, Schwarz Q, Mitchell CA. PI(4,5)P 2-dependent regulation of endothelial tip cell specification contributes to angiogenesis. SCIENCE ADVANCES 2023; 9:eadd6911. [PMID: 37000875 PMCID: PMC10065449 DOI: 10.1126/sciadv.add6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Dynamic positioning of endothelial tip and stalk cells, via the interplay between VEGFR2 and NOTCH signaling, is essential for angiogenesis. VEGFR2 activates PI3K, which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, activating AKT; however, PI3K/AKT does not direct tip cell specification. We report that PI(4,5)P2 hydrolysis by the phosphoinositide-5-phosphatase, INPP5K, contributes to angiogenesis. INPP5K ablation disrupted tip cell specification and impaired embryonic angiogenesis associated with enhanced DLL4/NOTCH signaling. INPP5K degraded a pool of PI(4,5)P2 generated by PIP5K1C phosphorylation of PI(4)P in endothelial cells. INPP5K ablation increased PI(4,5)P2, thereby releasing β-catenin from the plasma membrane, and concurrently increased PI(3,4,5)P3-dependent AKT activation, conditions that licensed DLL4/NOTCH transcription. Suppression of PI(4,5)P2 in INPP5K-siRNA cells by PIP5K1C-siRNA, restored β-catenin membrane localization and normalized AKT signaling. Pharmacological NOTCH or AKT inhibition in vivo or genetic β-catenin attenuation rescued angiogenesis defects in INPP5K-null mice. Therefore, PI(4,5)P2 is critical for β-catenin/DLL4/NOTCH signaling, which governs tip cell specification during angiogenesis.
Collapse
Affiliation(s)
- Elizabeth M. Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Kai Qin Le
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Katherine T. T. Roan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Clinical Medicine and School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Geraldine M. Mitchell
- O’Brien Institute Department of St Vincent’s Institute and University of Melbourne, Department of Surgery, St. Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
- Health Sciences Faculty, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5001, Australia
| | - Christina A. Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
10
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Chen C, Hu J, Ling K. The Role of Primary Cilia-Associated Phosphoinositide Signaling in Development. J Dev Biol 2022; 10:51. [PMID: 36547473 PMCID: PMC9785882 DOI: 10.3390/jdb10040051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Primary cilia are microtube-based organelles that extend from the cell surface and function as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signaling pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently discovered in the context of primary cilia. Here, we review several cilium-associated PI kinases and phosphatases, including their localization along cilia, function in regulating the ciliary biology under normal conditions, as well as the connection of their disease-associated mutations with ciliopathies.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Carleton AE, Duncan MC, Taniguchi K. Human epiblast lumenogenesis: From a cell aggregate to a lumenal cyst. Semin Cell Dev Biol 2022; 131:117-123. [PMID: 35637065 PMCID: PMC9529837 DOI: 10.1016/j.semcdb.2022.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The formation of a central lumen in the human epiblast is a critical step for development. However, because the lumen forms in the epiblast coincident with implantation, the molecular and cellular events of this early lumenogenesis process cannot be studied in vivo. Recent developments using new model systems have revealed insight into the underpinnings of epiblast formation. To provide an up-to-date comprehensive review of human epiblast lumenogenesis, we highlight recent findings from human and mouse models with an emphasis on new molecular understanding of a newly described apicosome compartment, a novel 'formative' state of pluripotency that coordinates with epiblast polarization, and new evidence about the physical and polarized trafficking mechanisms contributing to lumenogenesis.
Collapse
Affiliation(s)
- Amber E. Carleton
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA
| | - Mara C. Duncan
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan USA,Co-corresponding authors
| | - Kenichiro Taniguchi
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Co-corresponding authors
| |
Collapse
|
13
|
Moreno MR, Boswell K, Casbolt HL, Bulgakova NA. Multifaceted control of E-cadherin dynamics by Adaptor Protein Complex 1 during epithelial morphogenesis. Mol Biol Cell 2022; 33:ar80. [PMID: 35609212 DOI: 10.1091/mbc.e21-12-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds many specific cargoes. We examined roles of the AP-1 complex in epithelial morphogenesis, using the Drosophila wing as a paradigm. We found that AP-1 knockdown leads to ectopic tissue folding, which is consistent with the observed defects in integrin targeting to the basal cell-extracellular matrix adhesion sites. This occurs concurrently with an integrin-independent induction of cell death, which counteracts elevated proliferation and prevents hyperplasia. We discovered a distinct pool of AP-1 that localizes at the subapical adherens junctions. Upon AP-1 knockdown, E-cadherin is hyperinternalized from these junctions and becomes enriched at the Golgi and recycling endosomes. We then provide evidence that E-cadherin hyperinternalization acts upstream of cell death in a potential tumor-suppressive mechanism. Simultaneously, cells compensate for elevated internalization of E-cadherin by increasing its expression to maintain cell-cell adhesion.
Collapse
Affiliation(s)
- Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Katy Boswell
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Helen L Casbolt
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
14
|
Duncan MC. New directions for the clathrin adaptor AP-1 in cell biology and human disease. Curr Opin Cell Biol 2022; 76:102079. [DOI: 10.1016/j.ceb.2022.102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
|
15
|
Huang G, Yang C, Guo S, Huang M, Deng L, Huang Y, Chen P, Chen F, Huang X. Adipocyte-specific deletion of PIP5K1c reduces diet-induced obesity and insulin resistance by increasing energy expenditure. Lipids Health Dis 2022; 21:6. [PMID: 34996482 PMCID: PMC8742433 DOI: 10.1186/s12944-021-01616-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Phosphatidylinositol 4-phosphate 5-kinase type I c (PIP5K1c) catalyses the synthesis of phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphorylating phosphatidylinositol 4 phosphate, which plays multiple roles in regulating focal adhesion formation, invasion, and cell migration signal transduction cascades. Here, a new physiological mechanism of PIP5K1c in adipocytes and systemic metabolism is reported. Methods Adipose-specific conditional knockout mice were generated to delete the PIP5K1c gene in adipocytes. In addition, in vitro research investigated the effect of PIP5K1c deletion on adipogenesis. Results Deletion of PIP5K1c in adipocytes significantly alleviated high fat diet (HFD)-induced obesity, hyperlipidaemia, hepatic steatosis, and insulin resistance. PIP5K1c deficiency in adipocytes also decreased adipocyte volume in HFD-induced obese mice, whereas no significant differences were observed in body weight and adipose tissue weight under normal chow diet conditions. PIP5K1c knockout in adipocytes significantly enhanced energy expenditure, which protected mice from HFD-induced weight gain. In addition, adipogenesis was markedly impaired in mouse stromal vascular fraction (SVF) from PIP5K1c-deleted mice. Conclusion Under HFD conditions, PIP5K1c regulates adipogenesis and adipose tissue homeostasis. Together, these data indicate that PIP5K1c could be a novel potential target for regulating fat accumulation, which could provide novel insight into the treatment of obesity. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01616-4.
Collapse
Affiliation(s)
- Guan Huang
- Department of Pathology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Cuishan Yang
- Department of Nursing, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Sheng Guo
- Department of Medical Administration, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Miaoling Huang
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Liping Deng
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Ying Huang
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Puxin Chen
- Department of Metabolism and Endocrinology, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China
| | - Feng Chen
- Department of Plastic Surgy, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine; Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China.
| | - Xiaohong Huang
- Department of Nursing, Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China.
| |
Collapse
|
16
|
Bugda Gwilt K, Thiagarajah JR. Membrane Lipids in Epithelial Polarity: Sorting out the PIPs. Front Cell Dev Biol 2022; 10:893960. [PMID: 35712665 PMCID: PMC9197455 DOI: 10.3389/fcell.2022.893960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The de novo generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking. Historically, the process of epithelial polarity has been primarily described in relation to the localization and function of protein 'polarity complexes.' However, a critical and foundational role is emerging for plasma membrane lipids, and in particular phosphoinositide species. Here, we broadly review the evidence for a primary role for membrane lipids in the generation of epithelial polarity and highlight key areas requiring further research. We discuss the complex interchange that exists between lipid species and briefly examine how major membrane lipid constituents are generated and intersect with vesicular trafficking to be preferentially localized to different membrane domains with a focus on some of the key protein-enzyme complexes involved in these processes.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Seo H, Lee HW, Yoon SY, Chang SH, Park SH, Hwang JH, Park TI, Park KS. Effect of Cadherin-11 Expression on the Prognosis of a Newly Diagnosed Primary Glioblastoma. Brain Tumor Res Treat 2021; 9:63-69. [PMID: 34725986 PMCID: PMC8561220 DOI: 10.14791/btrt.2021.9.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cadherin-11, a cell-to-cell adhesion molecule, is associated with higher tumor grade and decreased patient survival. The purpose of this study was to investigate the clinical significance of cadherin-11 expression in the progression and prognosis of a newly diagnosed primary glioblastoma (GBL). Methods Between 2007 and 2016, 52 out of 178 patients diagnosed with a GBL and satisfied the following criteria: 1) a new primary GBL, 2) gross-total resection, 3) immunohistochemically-available tissue, and 4) standardized adjuvant treatment. Results In terms of staining intensity, the low-intensity cadherin-11 group showed longer progression-free survival (PFS) than the high-intensity cadherin-11 group (median PFS, 12.0 months [95% CI, 11.1–12.9] vs. median PFS, 6.0 months [95% CI, 3.7–8.3]; p<0.001). The low-intensity cadherin-11 group revealed longer overall survival (OS) than the high-intensity cadherin-11 group (median OS, 20.0 months [95% CI, 11.8–16.6] vs. median OS, 15.0 months [95% CI, 11.8–18.2]; p=0.003). The staining intensity of cadherin-11 was a statistically significant factor in PFS and OS in terms of univariate and multivariate analyses (univariate analysis: p<0.001 and p=0.005; multivariate analysis: p<0.001 and p=0.005). Conclusion Our clinical study demonstrates high cadherin-11 expression may be associated with poor PFS and OS for a newly diagnosed primary GBL.
Collapse
Affiliation(s)
- Hyunwoo Seo
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Sang-Youl Yoon
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sung Hyun Chang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong-Hyun Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong-Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae In Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ki-Su Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
18
|
Cai W, Yang L, Zhang R, Yang Y, Li S, Zhang J. Abnormally increased DNA methylation in chorionic tissue might play an important role in development of ectopic pregnancy. Reprod Biol Endocrinol 2021; 19:101. [PMID: 34215268 PMCID: PMC8252306 DOI: 10.1186/s12958-021-00785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Human Ectopic Pregnancy (hEP) is the second most common cause of pregnancy-related deaths in the first trimester. Without timely detection, EPs can lead to an increased rate of infertility and an elevated risk for future tubal EPs. In addition, most studies in the field focus on the effect of the fallopian tube (maternal factors) and ignore epigenetic changes in genes and proteins of the embryo, which may also cause EPs. Therefore, the present study hypothesized that embryos also play an important role in the development of EP. The study also speculated that DNA methylation is associated with ectopic pregnancy. Consequently, the effects of DNA methylation on the occurrence and development of ectopic pregnancy were investigated. Moreover, genome-wide DNA methylation of chorionic tissue from ectopic and intrauterine pregnancies was detected using Illumina HumanMethylation450 arrays. RESULTS Forty-three hypermethylated genes involved in the regulation of adhesion as well as gene transcription and translation were identified. Furthermore, the PPI network showed that AMOTL1, SDR42E1, CAMTA1, PIP5K1C, KIAA1614, TSTD1 and DNER may play important roles in the occurrence and development of ectopic pregnancy. In addition, SDR42E1, CAMTA1 and TSTD1 displayed higher levels of methylation in ectopic pregnancy while PIP5K1C and DNER showed low degrees of methylation. CONCLUSIONS The study reveals that abnormal increase in methylation may be an early indicator or an inducer of ectopic pregnancy. In addition, AMOTL1, SDR42E1, CAMTA1, PIP5K1C, KIAA1614, TSTD1 and DNER might play important roles in the occurrence and development of ectopic pregnancy. However, the specific molecular mechanisms are still unclear and require further studies.
Collapse
Affiliation(s)
- Wen Cai
- grid.16821.3c0000 0004 0368 8293Department of Obstetris and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Yang
- grid.16821.3c0000 0004 0368 8293Department of Obstetris and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- grid.413087.90000 0004 1755 3939Department of Obstetris and Gynecology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Ruiqing Zhang
- grid.413087.90000 0004 1755 3939Department of Obstetris and Gynecology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yixia Yang
- grid.16821.3c0000 0004 0368 8293Department of Obstetris and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangdi Li
- grid.459512.eShanghai First Maternity and Infant Hospital, Shanghai, China
| | - Jiarong Zhang
- grid.16821.3c0000 0004 0368 8293Department of Obstetris and Gynecology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- grid.413087.90000 0004 1755 3939Department of Obstetris and Gynecology, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wang S, Lin CW, Carleton AE, Cortez CL, Johnson C, Taniguchi LE, Sekulovski N, Townshend RF, Basrur V, Nesvizhskii AI, Zou P, Fu J, Gumucio DL, Duncan MC, Taniguchi K. Spatially resolved cell polarity proteomics of a human epiblast model. SCIENCE ADVANCES 2021; 7:7/17/eabd8407. [PMID: 33893097 PMCID: PMC8064645 DOI: 10.1126/sciadv.abd8407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/05/2021] [Indexed: 05/08/2023]
Abstract
Critical early steps in human embryonic development include polarization of the inner cell mass, followed by formation of an expanded lumen that will become the epiblast cavity. Recently described three-dimensional (3D) human pluripotent stem cell-derived cyst (hPSC-cyst) structures can replicate these processes. To gain mechanistic insights into the poorly understood machinery involved in epiblast cavity formation, we interrogated the proteomes of apical and basolateral membrane territories in 3D human hPSC-cysts. APEX2-based proximity bioinylation, followed by quantitative mass spectrometry, revealed a variety of proteins without previous annotation to specific membrane subdomains. Functional experiments validated the requirement for several apically enriched proteins in cyst morphogenesis. In particular, we found a key role for the AP-1 clathrin adaptor complex in expanding the apical membrane domains during lumen establishment. These findings highlight the robust power of this proximity labeling approach for discovering novel regulators of epithelial morphogenesis in 3D stem cell-based models.
Collapse
Affiliation(s)
- Sicong Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chari L Cortez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ryan F Townshend
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
20
|
Lucken-Ardjomande Häsler S, Vallis Y, Pasche M, McMahon HT. GRAF2, WDR44, and MICAL1 mediate Rab8/10/11-dependent export of E-cadherin, MMP14, and CFTR ΔF508. J Cell Biol 2021; 219:151714. [PMID: 32344433 PMCID: PMC7199855 DOI: 10.1083/jcb.201811014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
In addition to the classical pathway of secretion, some transmembrane proteins reach the plasma membrane through alternative routes. Several proteins transit through endosomes and are exported in a Rab8-, Rab10-, and/or Rab11-dependent manner. GRAFs are membrane-binding proteins associated with tubules and vesicles. We found extensive colocalization of GRAF1b/2 with Rab8a/b and partial with Rab10. We identified MICAL1 and WDR44 as direct GRAF-binding partners. MICAL1 links GRAF1b/2 to Rab8a/b and Rab10, and WDR44 binds Rab11. Endogenous WDR44 labels a subset of tubular endosomes, which are closely aligned with the ER via binding to VAPA/B. With its BAR domain, GRAF2 can tubulate membranes, and in its absence WDR44 tubules are not observed. We show that GRAF2 and WDR44 are essential for the export of neosynthesized E-cadherin, MMP14, and CFTR ΔF508, three proteins whose exocytosis is sensitive to ER stress. Overexpression of dominant negative mutants of GRAF1/2, WDR44, and MICAL1 also interferes with it, facilitating future studies of Rab8/10/11-dependent exocytic pathways of central importance in biology.
Collapse
Affiliation(s)
| | - Yvonne Vallis
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Mathias Pasche
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
21
|
Kell MJ, Ang SF, Pigati L, Halpern A, Fölsch H. Novel function for AP-1B during cell migration. Mol Biol Cell 2020; 31:2475-2493. [PMID: 32816642 PMCID: PMC7851849 DOI: 10.1091/mbc.e20-04-0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epithelial cell-specific clathrin adaptor protein (AP)-1B has a well-established role in polarized sorting of cargos to the basolateral membrane. Here we show that β1 integrin was dependent on AP-1B and its coadaptor, autosomal recessive hypercholesterolemia protein (ARH), for sorting to the basolateral membrane. We further demonstrate an unprecedented role for AP-1B at the basal plasma membrane during collective cell migration of epithelial sheets. During wound healing, expression of AP-1B (and ARH in AP–1B-positive cells) slowed epithelial-cell migration. We show that AP-1B colocalized with β1 integrin in focal adhesions during cell migration using confocal microscopy and total internal reflection fluorescence microscopy on fixed specimens. Further, AP-1B labeling in cell protrusions was distinct from labeling for the endocytic adaptor complex AP-2. Using stochastic optical reconstruction microscopy we identified numerous AP–1B-coated structures at or close to the basal plasma membrane in cell protrusions. In addition, immunoelectron microscopy showed AP-1B in coated pits and vesicles at the plasma membrane during cell migration. Lastly, quantitative real-time reverse transcription PCR analysis of human epithelial-derived cell lines revealed a loss of AP-1B expression in highly migratory metastatic cancer cells suggesting that AP-1B’s novel role at the basal plasma membrane during cell migration might be an anticancer mechanism.
Collapse
Affiliation(s)
- Margaret Johnson Kell
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Su Fen Ang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lucy Pigati
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Abby Halpern
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Heike Fölsch
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
22
|
Beziau A, Brand D, Piver E. The Role of Phosphatidylinositol Phosphate Kinases during Viral Infection. Viruses 2020; 12:v12101124. [PMID: 33022924 PMCID: PMC7599803 DOI: 10.3390/v12101124] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositides account for only a small proportion of cellular phospholipids, but have long been known to play an important role in diverse cellular processes, such as cell signaling, the establishment of organelle identity, and the regulation of cytoskeleton and membrane dynamics. As expected, given their pleiotropic regulatory functions, they have key functions in viral replication. The spatial restriction and steady-state levels of each phosphoinositide depend primarily on the concerted action of specific phosphoinositide kinases and phosphatases. This review focuses on a number of remarkable examples of viral strategies involving phosphoinositide kinases to ensure effective viral replication.
Collapse
Affiliation(s)
- Anne Beziau
- INSERM U1259, University of Tours, 37000 Tours, France
| | - Denys Brand
- INSERM U1259, University of Tours, 37000 Tours, France
- Virology Laboratory, Tours University Hospital, 3700 Tours, France
| | - Eric Piver
- INSERM U1259, University of Tours, 37000 Tours, France
- Biochemistry and Molecular Biology, Tours University Hospital, 3700 Tours, France
| |
Collapse
|
23
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
24
|
Genome-wide systematic characterization and expression analysis of the phosphatidylinositol 4-phosphate 5-kinases in plants. Gene 2020; 756:144915. [PMID: 32580009 DOI: 10.1016/j.gene.2020.144915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are key enzymes in the process of phosphatidylinositol signaling pathway and have essential functions in growth, development, and biotic and abiotic stresses responses in plants. However, the evolutionary history and patterns of PIP5K genes in plants have not been examined systematically. Here, we use whole-genome sequences from eight plant species of land plants and algae to define the evolutionary relationships between these proteins in plants. 85 PIP5K genes were identified and divided into two subfamilies based on phylogenetic analyses. PIP5K members in subfamily II underwent several duplication events in land plants, resulting in multiple gene copies in angiosperms, while PIP5K members in subfamily I displayed low-copy numbers and lost in eudicots. Furthermore, PIP5K genes within the same subfamily had similar motifs and intron/exon features. Nine duplicated soybean gene pairs, four duplicated Arabidopsis gene pairs and two rice duplicated gene pairs were identified and many of them localized in synteny genomic regions. These duplicate events were formed by Whole-genome duplication (WGD)/segmental duplications. In addition, the ratios of non-synonymous to synonymous substitutions (Ka/Ks) showed that the PIP5K family had undergone purifying selection in higher plants. Expression analysis showed that PIP5K genes had complex and variable expression patterns in different developmental stages. The specificity of these genes is utilized to provide evidence for selective expression in the evolutionary process.
Collapse
|
25
|
Morris RG, Husain KB, Budnar S, Yap AS. Anillin: The First Proofreading-like Scaffold? Bioessays 2020; 42:e2000055. [PMID: 32735042 DOI: 10.1002/bies.202000055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/15/2020] [Indexed: 01/17/2023]
Abstract
Scaffolds are fundamental to many cellular signaling pathways. In this essay, a novel class of scaffolds are proposed, whose action bears striking resemblance to kinetic proofreading. Commonly, scaffold proteins are thought to work as tethers, bringing different components of a pathway together to improve the likelihood of their interaction. However, recent studies show that the cytoskeletal scaffold, anillin, supports contractile signaling by a novel, non-tethering mechanism that controls the membrane dissociation kinetics of RhoA. More generally, such proof-reading-like scaffolds are distinguished from tethers by a rare type of cooperativity, manifest as a super-linear relationship between scaffold concentration and signaling efficiency. The evidence for this hypothesis is reviewed, its conceptual ramifications are considered, and research questions for the future are discussed.
Collapse
Affiliation(s)
- Richard G Morris
- School of Physics and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kabir B Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, USA
| | - Srikanth Budnar
- Department of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Alpha S Yap
- Department of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
26
|
Teo JL, Gomez GA, Weeratunga S, Davies EM, Noordstra I, Budnar S, Katsuno-Kambe H, McGrath MJ, Verma S, Tomatis V, Acharya BR, Balasubramaniam L, Templin RM, McMahon KA, Lee YS, Ju RJ, Stebhens SJ, Ladoux B, Mitchell CA, Collins BM, Parton RG, Yap AS. Caveolae Control Contractile Tension for Epithelia to Eliminate Tumor Cells. Dev Cell 2020; 54:75-91.e7. [PMID: 32485139 DOI: 10.1016/j.devcel.2020.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/17/2020] [Accepted: 05/01/2020] [Indexed: 01/24/2023]
Abstract
Epithelia are active materials where mechanical tension governs morphogenesis and homeostasis. But how that tension is regulated remains incompletely understood. We now report that caveolae control epithelial tension and show that this is necessary for oncogene-transfected cells to be eliminated by apical extrusion. Depletion of caveolin-1 (CAV1) increased steady-state tensile stresses in epithelial monolayers. As a result, loss of CAV1 in the epithelial cells surrounding oncogene-expressing cells prevented their apical extrusion. Epithelial tension in CAV1-depleted monolayers was increased by cortical contractility at adherens junctions. This reflected a signaling pathway, where elevated levels of phosphoinositide-4,5-bisphosphate (PtdIns(4,5)P2) recruited the formin, FMNL2, to promote F-actin bundling. Steady-state monolayer tension and oncogenic extrusion were restored to CAV1-depleted monolayers when tension was corrected by depleting FMNL2, blocking PtdIns(4,5)P2, or disabling the interaction between FMNL2 and PtdIns(4,5)P2. Thus, caveolae can regulate active mechanical tension for epithelial homeostasis by controlling lipid signaling to the actin cytoskeleton.
Collapse
Affiliation(s)
- Jessica L Teo
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Guillermo A Gomez
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Saroja Weeratunga
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Elizabeth M Davies
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ivar Noordstra
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Srikanth Budnar
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hiroko Katsuno-Kambe
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Meagan J McGrath
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Suzie Verma
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Vanesa Tomatis
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Bipul R Acharya
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | | | - Rachel M Templin
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kerrie-Ann McMahon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Yoke Seng Lee
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Robert J Ju
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Samantha J Stebhens
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris, CNRS UMR 7592, 75013 Paris, France
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Brett M Collins
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Robert G Parton
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
27
|
Sun M, Luong G, Plastikwala F, Sun Y. Control of Rab7a activity and localization through endosomal type Igamma PIP 5-kinase is required for endosome maturation and lysosome function. FASEB J 2019; 34:2730-2748. [PMID: 31908013 DOI: 10.1096/fj.201901830r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/22/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023]
Abstract
The small GTPase Ras-related protein Rab-7a (Rab7a) serves as a key organizer of the endosomal-lysosomal system. However, molecular mechanisms controlling Rab7a activation levels and subcellular translocation are still poorly defined. Here, we demonstrate that type Igamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an endosome-localized enzyme that produces phosphatidylinositol 4,5-bisphosphate, directly interacts with Rab7a and plays critical roles in the control of the endosomal-lysosomal system. The loss of PIPKIγi5 blocks Rab7a recruitment to early endosomes, which prevents the maturation of early to late endosomes. PIPKIγi5 loss disturbs retromer complex connection with Rab7a, which blocks the retrograde sorting of Cation-independent Mannose 6-Phosphate Receptor from late endosomes. This leads to the decreased sorting of hydrolases to lysosomes and reduces the autophagic degradation. By modulating the retromer-Rab7a connection, PIPKIγi5 is also required for the recruitment of the GTPase-activating protein TBC1 domain family member 5 to late endosomes, which controls the conversion of Rab7a from the active state to the inactive state. Thus, PIPKIγi5 is critical for the modulation of Rab7a activity, localization, and function in the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Ming Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gary Luong
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Faiz Plastikwala
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
28
|
The membrane environment of cadherin adhesion receptors: a working hypothesis. Biochem Soc Trans 2019; 47:985-995. [DOI: 10.1042/bst20180012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Classical cadherin cell adhesion receptors are integral membrane proteins that mediate cell–cell interactions, tissue integrity and morphogenesis. Cadherins are best understood to function as membrane-spanning molecular composites that couple adhesion to the cytoskeleton. On the other hand, the membrane lipid environment of the cadherins is an under-investigated aspect of their cell biology. In this review, we discuss two lines of research that show how the membrane can directly or indirectly contribute to cadherin function. Firstly, we consider how modification of its local lipid environment can potentially influence cadherin signalling, adhesion and dynamics, focusing on a role for phosphoinositide-4,5-bisphosphate. Secondly, we discuss how caveolae may indirectly regulate cadherins by modifying either the lipid composition and/or mechanical tension of the plasma membrane. Thus, we suggest that the membrane is a frontier of cadherin biology that is ripe for re-exploration.
Collapse
|
29
|
DiTirro D, Philbrook A, Rubino K, Sengupta P. The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition. eLife 2019; 8:48789. [PMID: 31259686 PMCID: PMC6624019 DOI: 10.7554/elife.48789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Plasticity in sensory signaling is partly mediated via regulated trafficking of signaling molecules to and from primary cilia. Tubby-related proteins regulate ciliary protein transport; however, their roles in remodeling cilia properties are not fully understood. We find that the C. elegans TUB-1 Tubby homolog regulates membrane morphogenesis and signaling protein transport in specialized sensory cilia. In particular, TUB-1 is essential for sensory signaling-dependent reshaping of olfactory cilia morphology. We show that compromised sensory signaling alters cilia membrane phosphoinositide composition via TUB-1-dependent trafficking of a PIP5 kinase. TUB-1 regulates localization of this lipid kinase at the cilia base in part via localization of the AP-2 adaptor complex subunit DPY-23. Our results describe new functions for Tubby proteins in the dynamic regulation of cilia membrane lipid composition, morphology, and signaling protein content, and suggest that this conserved family of proteins plays a critical role in mediating cilia structural and functional plasticity.
Collapse
Affiliation(s)
- Danielle DiTirro
- Department of Biology, Brandeis University, Waltham, United States
| | - Alison Philbrook
- Department of Biology, Brandeis University, Waltham, United States
| | - Kendrick Rubino
- Department of Biology, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
30
|
Phosphoinositides: multipurpose cellular lipids with emerging roles in cell death. Cell Death Differ 2019; 26:781-793. [PMID: 30742090 DOI: 10.1038/s41418-018-0269-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Phosphorylated phosphatidylinositol lipids, or phosphoinositides, critically regulate diverse cellular processes, including signalling transduction, cytoskeletal reorganisation, membrane dynamics and cellular trafficking. However, phosphoinositides have been inadequately investigated in the context of cell death, where they are mainly regarded as signalling secondary messengers. However, recent studies have begun to highlight the importance of phosphoinositides in facilitating cell death execution. Here, we cover the latest phosphoinositide research with a particular focus on phosphoinositides in the mechanisms of cell death. This progress article also raises key questions regarding the poorly defined role of phosphoinositides, particularly during membrane-associated events in cell death such as apoptosis and secondary necrosis. The review then further discusses important future directions for the phosphoinositide field, including therapeutically targeting phosphoinositides to modulate cell death.
Collapse
|
31
|
Ikenouchi J. Roles of membrane lipids in the organization of epithelial cells: Old and new problems. Tissue Barriers 2018; 6:1-8. [PMID: 30156967 DOI: 10.1080/21688370.2018.1502531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial cells have characteristic membrane domains. Identification of membrane proteins playing an important role in these membrane domains has progressed and numerous studies have been performed on the functional analysis of these membrane proteins. On the other hand, the precise roles of membrane lipids in the organization of these membrane domains are largely unknown. Historically, the concept of lipid raft arose from the analysis of lipid composition of the apical membrane, and it can be said that epithelial cells are an optimal experimental model for elucidating the functions of lipids. In this review, I discuss the role of lipids in the formation of epithelial polarity and in the formation of cell membrane structures of epithelial cells such as microvilli in the apical domain, cell-cell adhesion apparatus in the lateral domain and cell-matrix adhesion in the basal domain.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- a Department of Biology, Faculty of Sciences , Kyushu University , Fukuoka , Nishi-ku , Japan.,b AMED-PRIME, Japan Agency for Medical Research and Development , Tokyo , Japan
| |
Collapse
|
32
|
Polgar N, Fogelgren B. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031401. [PMID: 28264817 DOI: 10.1101/cshperspect.a031401] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One requirement for establishing polarity within a cell is the asymmetric trafficking of intracellular vesicles to the plasma membrane. This tightly regulated process creates spatial and temporal differences in both plasma membrane composition and the membrane-associated proteome. Asymmetric membrane trafficking is also a critical mechanism to regulate cell differentiation, signaling, and physiology. Many eukaryotic cell types use the eight-protein exocyst complex to orchestrate polarized vesicle trafficking to certain membrane locales. Members of the exocyst were originally discovered in yeast while screening for proteins required for the delivery of secretory vesicles to the budding daughter cell. The same eight exocyst genes are conserved in mammals, in which the specifics of exocyst-mediated trafficking are highly cell-type-dependent. Some exocyst members bind to certain Rab GTPases on intracellular vesicles, whereas others localize to the plasma membrane at the site of exocytosis. Assembly of the exocyst holocomplex is responsible for tethering these vesicles to the plasma membrane before their soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated exocytosis. In this review, we will focus on the role and regulation of the exocyst complex in targeted vesicular trafficking as related to the establishment and maintenance of cellular polarity. We will contrast exocyst function in apicobasal epithelial polarity versus front-back mesenchymal polarity, and the dynamic regulation of exocyst-mediated trafficking during cell phenotype transitions.
Collapse
Affiliation(s)
- Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
33
|
Predicting the Functional Impact of CDH1 Missense Mutations in Hereditary Diffuse Gastric Cancer. Int J Mol Sci 2017; 18:ijms18122687. [PMID: 29231860 PMCID: PMC5751289 DOI: 10.3390/ijms18122687] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
The role of E-cadherin in Hereditary Diffuse Gastric Cancer (HDGC) is unequivocal. Germline alterations in its encoding gene (CDH1) are causative of HDGC and occur in about 40% of patients. Importantly, while in most cases CDH1 alterations result in the complete loss of E-cadherin associated with a well-established clinical impact, in about 20% of cases the mutations are of the missense type. The latter are of particular concern in terms of genetic counselling and clinical management, as the effect of the sequence variants in E-cadherin function is not predictable. If a deleterious variant is identified, prophylactic surgery could be recommended. Therefore, over the last few years, intensive research has focused on evaluating the functional consequences of CDH1 missense variants and in assessing E-cadherin pathogenicity. In that context, our group has contributed to better characterize CDH1 germline missense variants and is now considered a worldwide reference centre. In this review, we highlight the state of the art methodologies to categorize CDH1 variants, as neutral or deleterious. This information is subsequently integrated with clinical data for genetic counseling and management of CDH1 variant carriers.
Collapse
|
34
|
Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res 2017; 358:78-85. [PMID: 28412244 PMCID: PMC5544584 DOI: 10.1016/j.yexcr.2017.04.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Cadherins are homophilic adhesion molecules with important functions in cell-cell adhesion, tissue morphogenesis, and cancer. In epithelial cells, E-cadherin accumulates at areas of cell-cell contact, coalesces into macromolecular complexes to form the adherens junctions (AJs), and associates via accessory partners with a subcortical ring of actin to form the apical zonula adherens (ZA). As a master regulator of the epithelial phenotype, E-cadherin is essential for the overall maintenance and homeostasis of polarized epithelial monolayers. Its expression is regulated by a host of genetic and epigenetic mechanisms related to cancer, and its function is modulated by mechanical forces at the junctions, by direct binding and phosphorylation of accessory proteins collectively termed catenins, by endocytosis, recycling and degradation, as well as, by multiple signaling pathways and developmental processes, like the epithelial to mesenchymal transition (EMT). Nuclear signaling mediated by the cadherin associated proteins β-catenin and p120 promotes growth, migration and pluripotency. Receptor tyrosine kinase, PI3K/AKT, Rho GTPase, and HIPPO signaling, are all regulated by E-cadherin mediated cell-cell adhesion. Finally, the recruitment of the microprocessor complex to the ZA by PLEKHA7, and the subsequent regulation of a small subset of miRNAs provide an additional mechanism by which the state of epithelial cell-cell adhesion affects translation of target genes to maintain the homeostasis of polarized epithelial monolayers. Collectively, the data indicate that loss of E-cadherin function, especially at the ZA, is a common and crucial step in cancer progression.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ruifeng Lu
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Lindy J Pence
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
35
|
Chen C, Wang X, Fang J, Xue J, Xiong X, Huang Y, Hu J, Ling K. EGFR-induced phosphorylation of type Iγ phosphatidylinositol phosphate kinase promotes pancreatic cancer progression. Oncotarget 2017; 8:42621-42637. [PMID: 28388589 PMCID: PMC5522093 DOI: 10.18632/oncotarget.16730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/24/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the deadliest malignancies and effective treatment has always been lacking. In current study, we investigated how the type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) participates in the progression of pancreatic ductal adenocarcinoma (PDAC) for novel therapeutic potentials against this lethal disease. We found that PIPKIγ is up-regulated in all tested PDAC cell lines. The growth factor (including EGFR)-induced tyrosine phosphorylation of PIPKIγ is significantly elevated in in situ and metastatic PDAC tissues. Loss of PIPKIγ inhibits the aggressiveness of PDAC cells by restraining the activities of AKT and STAT3, as well as MT1-MMP expression. Therefore when planted into the pancreas of nude mice, PIPKIγ-depleted PDAC cells exhibits substantially repressed tumor growth and metastasis comparing to control PDAC cells. Results from further studies showed that the phosphorylation-deficient PIPKIγ mutant, unlike its wild-type counterpart, cannot rescue PDAC progression inhibited by PIPKIγ depletion. These findings indicate that PIPKIγ, functioning downstream of EGFR signaling, is critical to the progression of PDAC, and suggest that PIPKIγ is potentially a valuable therapeutic target for PDAC treatment.
Collapse
Affiliation(s)
- Chunhua Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- These authors have contributed equally to this work
| | - Xiangling Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- These authors have contributed equally to this work
| | - Juemin Fang
- Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- These authors have contributed equally to this work
| | - Junli Xue
- Shanghai East Hospital, Tongji University, Shanghai, China
| | - Xunhao Xiong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
36
|
Yoshida A, Hayashi H, Tanabe K, Fujita A. Segregation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate into distinct microdomains on the endosome membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28648675 DOI: 10.1016/j.bbamem.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4-phosphate (PtdIns(4)P) is the immediate precursor of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which is located on the cytoplasmic leaflet of the plasma membrane and has been reported to possess multiple cellular functions. Although PtdIns(4)P and PtdIns(4,5)P2 have been reported to localize to multiple intracellular compartments and to each function as regulatory molecules, their generation, regulation and functions in most intracellular compartments are not well-defined. To analyze PtdIns(4)P and PtdIns(4,5)P2 distributions, at a nanoscale, we employed an electron microscopy technique that specifically labels PtdIns(4)P and PtdIns(4,5)P2 on the freeze-fracture replica of intracellular biological membranes. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P was localized to the cytoplasmic leaflet of Golgi apparatus and vesicular-shaped structures. The PtdIns(4,5)P2 labeling was observed in the cytoplasmic leaflet of the mitochondrial inner membrane and vesicular-shaped structures. Double labeling of PtdIns(4)P and PtdIns(4,5)P2 with endosome markers illustrated that PtdIns(4)P and PtdIns(4,5)P2 were mainly localized to the late endosome/lysosome and early endosome, respectively. PtdIns(4)P and PtdIns(4,5)P2 were colocalized in some endosomes, with the two phospholipids separated into distinct microdomains on the same endosomes. This is the first report showing, at a nanoscale, segregation of PtdIns(4)P- and PtdIns(4,5)P2-enriched microdomains in the endosome, of likely importance for endosome functionality.
Collapse
Affiliation(s)
- Akane Yoshida
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Hiroki Hayashi
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
37
|
Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIγ. Oncogene 2017; 36:5668-5680. [DOI: 10.1038/onc.2017.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022]
|
38
|
Brüser L, Bogdan S. Adherens Junctions on the Move-Membrane Trafficking of E-Cadherin. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029140. [PMID: 28096264 DOI: 10.1101/cshperspect.a029140] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherin-based adherens junctions are conserved structures that mediate epithelial cell-cell adhesion in invertebrates and vertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and undergoes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed conserved, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling.
Collapse
Affiliation(s)
- Lena Brüser
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
39
|
Thapa N, Tan X, Choi S, Wise T, Anderson RA. PIPKIγ and talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition. Oncogene 2017; 36:899-911. [PMID: 27452517 PMCID: PMC6344042 DOI: 10.1038/onc.2016.267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
Epithelial cells acquire migratory/invasive and stemness traits upon conversion to the mesenchymal phenotype. The expression of E-cadherin is a key to this transition; yet precise understanding of the pathways involved in integrating E-cadherin loss to the gain of mesenchymal traits remains poorly understood. Here, we show that phosphoinositide-generating enzyme, PIPKIγ, expression is upregulated upon epithelial-mesenchymal transition (EMT) and together with the cytoskeletal protein talin assemble into a signaling complex upon E-cadherin loss. PIPKIγ and talin together control the adhesion and phosphoinositide signaling that regulates conversion to the mesenchymal phenotypes. PIPKIγ and talin regulate the stability of E-cadherin transcriptional repressors, snail and slug, induced by transforming growth factor-β1 or extracellular matrix protein. Loss of PIPKIγ or talin or their interaction impaired EMT and the acquisition of cell motility and stemness. This demonstrates a mechanism where a phosphoinositide-generating enzyme PIPKIγ couples with a cytoskeletal protein talin to control the acquisition of mesenchymal phenotypes.
Collapse
Affiliation(s)
- N Thapa
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - X Tan
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - S Choi
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - T Wise
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - R A Anderson
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
40
|
Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases. Nat Cell Biol 2016; 18:1324-1335. [PMID: 27870828 DOI: 10.1038/ncb3441] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Generation of the lipid messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) is crucial for development, cell growth and survival, and motility, and it becomes dysfunctional in many diseases including cancers. Here we reveal a mechanism for PtdIns(3,4,5)P3 generation by scaffolded phosphoinositide kinases. In this pathway, class I phosphatidylinositol-3-OH kinase (PI(3)K) is assembled by IQGAP1 with PI(4)KIIIα and PIPKIα, which sequentially generate PtdIns(3,4,5)P3 from phosphatidylinositol. By scaffolding these kinases into functional proximity, the PtdIns(4,5)P2 generated is selectively used by PI(3)K for PtdIns(3,4,5)P3 generation, which then signals to PDK1 and Akt that are also in the complex. Moreover, multiple receptor types stimulate the assembly of this IQGAP1-PI(3)K signalling complex. Blockade of IQGAP1 interaction with PIPKIα or PI(3)K inhibited PtdIns(3,4,5)P3 generation and signalling, and selectively diminished cancer cell survival, revealing a target for cancer chemotherapy.
Collapse
|
41
|
Cadwell CM, Su W, Kowalczyk AP. Cadherin tales: Regulation of cadherin function by endocytic membrane trafficking. Traffic 2016; 17:1262-1271. [PMID: 27624909 DOI: 10.1111/tra.12448] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
Cadherins are the primary adhesion molecules in adherens junctions and desmosomes and play essential roles in embryonic development. Although significant progress has been made in understanding cadherin structure and function, we lack a clear vision of how cells confer plasticity upon adhesive junctions to allow for cellular rearrangements during development, wound healing and metastasis. Endocytic membrane trafficking has emerged as a fundamental mechanism by which cells confer a dynamic state to adhesive junctions. Recent studies indicate that the juxtamembrane domain of classical cadherins contains multiple endocytic motifs, or "switches," that can be used by cellular membrane trafficking machinery to regulate adhesion. The cadherin-binding protein p120-catenin (p120) appears to be the master regulator of access to these switches, thereby controlling cadherin endocytosis and turnover. This review focuses on p120 and other cadherin-binding proteins, ubiquitin ligases, and growth factors as key modulators of cadherin membrane trafficking.
Collapse
Affiliation(s)
- Chantel M Cadwell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Wenji Su
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia.,Biochemistry, Cell, and Developmental Biology Graduate Training Program, Emory University, Atlanta, Georgia
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
42
|
Jafari N, Zheng Q, Li L, Li W, Qi L, Xiao J, Gao T, Huang C. p70S6K1 (S6K1)-mediated Phosphorylation Regulates Phosphatidylinositol 4-Phosphate 5-Kinase Type I γ Degradation and Cell Invasion. J Biol Chem 2016; 291:25729-25741. [PMID: 27780861 DOI: 10.1074/jbc.m116.742742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/22/2016] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) ubiquitination and subsequent degradation regulate focal adhesion assembly, cell migration, and invasion. However, it is unknown how upstream signals control PIPKIγ90 ubiquitination or degradation. Here we show that p70S6K1 (S6K1), a downstream target of mechanistic target of rapamycin (mTOR), phosphorylates PIPKIγ90 at Thr-553 and Ser-555 and that S6K1-mediated PIPKIγ90 phosphorylation is essential for cell migration and invasion. Moreover, PIPKIγ90 phosphorylation is required for the development of focal adhesions and invadopodia, key machineries for cell migration and invasion. Surprisingly, substitution of Thr-553 and Ser-555 with Ala promoted PIPKIγ90 ubiquitination but enhanced the stability of PIPKIγ90, and depletion of S6K1 also enhanced the stability of PIPKIγ90, indicating that PIPKIγ90 ubiquitination alone is insufficient for its degradation. These data suggest that S6K1-mediated PIPKIγ90 phosphorylation regulates cell migration and invasion by controlling PIPKIγ90 degradation.
Collapse
Affiliation(s)
- Naser Jafari
- From the Markey Cancer Center and.,the Veterans Affairs Medical Center, Lexington, Kentucky 40502
| | | | | | - Wei Li
- From the Markey Cancer Center and
| | - Lei Qi
- From the Markey Cancer Center and
| | | | | | - Cai Huang
- From the Markey Cancer Center and .,the Veterans Affairs Medical Center, Lexington, Kentucky 40502.,the Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40506 and
| |
Collapse
|
43
|
Tan X, Thapa N, Liao Y, Choi S, Anderson RA. PtdIns(4,5)P2 signaling regulates ATG14 and autophagy. Proc Natl Acad Sci U S A 2016; 113:10896-901. [PMID: 27621469 PMCID: PMC5047215 DOI: 10.1073/pnas.1523145113] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a regulated self-digestion pathway with fundamental roles in cell homeostasis and diseases. Autophagy is regulated by coordinated actions of a series of autophagy-related (ATG) proteins. The Barkor/ATG14(L)-VPS34 (a class III phosphatidylinositol 3-kinase) complex and its product phosphatidylinositol 3-phosphate [PtdIns(3)P] play key roles in autophagy initiation. ATG14 contains a C-terminal Barkor/ATG14(L) autophagosome-targeting sequence (BATS) domain that senses the curvature of PtdIns(3)P-containing membrane. The BATS domain also strongly binds PtdIns(4,5)P2, but the functional significance has been unclear. Here we show that ATG14 specifically interacts with type Iγ PIP kinase isoform 5 (PIPKIγi5), an enzyme that generates PtdIns(4,5)P2 in mammalian cells. Autophagosomes have associated PIPKIγi5 and PtdIns(4,5)P2 that are colocalized with late endosomes and the endoplasmic reticulum. PtdIns(4,5)P2 generation at these sites requires PIPKIγi5. Loss of PIPKIγi5 results in a loss of ATG14, UV irradiation resistance-associated gene, and Beclin 1 and a block of autophagy. PtdIns(4,5)P2 binding to the ATG14-BATS domain regulates ATG14 interaction with VPS34 and Beclin 1, and thus plays a key role in ATG14 complex assembly and autophagy initiation. This study identifies an unexpected role for PtdIns(4,5)P2 signaling in the regulation of ATG14 complex and autophagy.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Yihan Liao
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Suyong Choi
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
44
|
Thapa N, Tan X, Choi S, Lambert PF, Rapraeger AC, Anderson RA. The Hidden Conundrum of Phosphoinositide Signaling in Cancer. Trends Cancer 2016; 2:378-390. [PMID: 27819060 DOI: 10.1016/j.trecan.2016.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) generation of PI(3,4,5)P3 from PI(4,5)P2 and the subsequent activation of Akt and its downstream signaling cascades (e.g. mTORC1) dominates the landscape of phosphoinositide signaling axis in cancer research. However, PI(4,5)P2 is breaking its boundary as merely a substrate for PI3K and phospholipase C (PLC), and is now an established lipid messenger pivotal for different cellular events in cancer. Here, we review the phosphoinositide signaling axis in cancer, giving due weight to PI(4,5)P2 and its generating enzymes, the phosphatidylinositol phosphate (PIP) kinases (PIPKs). We highlighted how PI(4,5)P2 and PIP kinases serve as a proximal node in phosphoinositide signaling axis and how its interaction with cytoskeletal proteins regulates migratory and invasive nexus of metastasizing tumor cells.
Collapse
Affiliation(s)
- Narendra Thapa
- University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Paul F Lambert
- Department of Oncology, 1300 University Avenue, Madison, WI 53706, USA; McArdle Laboratory for Cancer Research, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Alan C Rapraeger
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA; Department of Human Oncology, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, 1300 University Avenue, Madison, WI 53706, USA; University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
45
|
Mestre T, Figueiredo J, Ribeiro AS, Paredes J, Seruca R, Sanches JM. Quantification of topological features in cell meshes to explore E-cadherin dysfunction. Sci Rep 2016; 6:25101. [PMID: 27151223 PMCID: PMC4858654 DOI: 10.1038/srep25101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/08/2016] [Indexed: 01/23/2023] Open
Abstract
In cancer, defective E-cadherin leads to cell detachment, migration and metastization. Further, alterations mediated by E-cadherin dysfunction affect cell topology and tissue organization. Herein, we propose a novel quantitative approach, based on microscopy images, to analyse abnormal cellular distribution patterns. We generated undirected graphs composed by sets of triangles which accurately reproduce cell positioning and structural organization within each image. Network analysis was developed by exploring triangle geometric features, namely area, edges length and formed angles, as well as their variance, when compared with the respective equilateral triangles. We generated synthetic networks, mimicking the diversity of cell-cell interaction patterns, and evaluated the applicability of the selected metrics to study topological features. Cells expressing wild-type E-cadherin and cancer-related mutants were used to validate our strategy. Specifically, A634V, R749W and P799R cancer-causing mutants present more disorganized spatial distribution when compared with wild-type cells. Moreover, P799R exhibited higher length and angle distortions and abnormal cytoskeletal organization, suggesting the formation of very dynamic and plastic cellular interactions. Hence, topological analysis of cell network diagrams is an effective tool to quantify changes in cell-cell interactions and, importantly, it can be applied to a myriad of processes, namely tissue morphogenesis and cancer.
Collapse
Affiliation(s)
- Tânia Mestre
- Institute for Systems and Robotics, Instituto Superior Técnico, Lisboa, Portugal
| | - Joana Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal
| | - Raquel Seruca
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal
| | - João Miguel Sanches
- Institute for Systems and Robotics, Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
46
|
Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun 2016; 7:10777. [PMID: 26916822 PMCID: PMC4773430 DOI: 10.1038/ncomms10777] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/19/2016] [Indexed: 02/08/2023] Open
Abstract
Defective primary cilia are causative to a wide spectrum of human genetic disorders, termed ciliopathies. Although the regulation of ciliogenesis is intensively studied, how it is initiated remains unclear. Here we show that type Iγ phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (PIPKIγ) and inositol polyphosphate-5-phosphatase E (INPP5E), a Joubert syndrome protein, localize to the centrosome and coordinate the initiation of ciliogenesis. PIPKIγ counteracts INPP5E in regulating tau-tubulin kinase-2 (TTBK2) recruitment to the basal body, which promotes the removal of microtubule capping protein CP110 and the subsequent axoneme elongation. Interestingly, INPP5E and its product—PtdIns(4)P—accumulate at the centrosome/basal body in non-ciliated, but not ciliated, cells. PtdIns(4)P binding to TTBK2 and the distal appendage protein CEP164 compromises the TTBK2-CEP164 interaction and inhibits the recruitment of TTBK2. Our results reveal that PtdIns(4)P homoeostasis, coordinated by PIPKIγ and INPP5E at the centrosome/ciliary base, is vital for ciliogenesis by regulating the CEP164-dependent recruitment of TTBK2. The primary cilium is essential for embryonic development and tissue pattern formation. Here the authors show that PIPKIγ localizes to the basal body of the primary cilium and cooperates with the Joubert Syndrome associated protein INPP5E to regulate the initiation of ciliogenesis.
Collapse
|
47
|
Whitfield ST, Burston HE, Bean BDM, Raghuram N, Maldonado-Báez L, Davey M, Wendland B, Conibear E. The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting. Mol Biol Cell 2015; 27:588-98. [PMID: 26658609 PMCID: PMC4751606 DOI: 10.1091/mbc.e15-09-0621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
Adaptor complexes are important for cargo sorting in clathrin-coated vesicles. The µ adaptor subunits Apm1 and Apm2 create functionally distinct versions of the yeast AP-1 complex. A novel regulatory protein is identified that selectively binds Apm2-containing complexes and contributes to their membrane recruitment. Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes.
Collapse
Affiliation(s)
- Shawn T Whitfield
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Helen E Burston
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nandini Raghuram
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218-2685
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
48
|
Tan X, Thapa N, Choi S, Anderson RA. Emerging roles of PtdIns(4,5)P2--beyond the plasma membrane. J Cell Sci 2015; 128:4047-56. [PMID: 26574506 PMCID: PMC4712784 DOI: 10.1242/jcs.175208] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phosphoinositides are a collection of lipid messengers that regulate most subcellular processes. Amongst the seven phosphoinositide species, the roles for phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at the plasma membrane, such as in endocytosis, exocytosis, actin polymerization and focal adhesion assembly, have been extensively studied. Recent studies have argued for the existence of PtdIns(4,5)P2 at multiple intracellular compartments, including the nucleus, endosomes, lysosomes, autolysosomes, autophagic precursor membranes, ER, mitochondria and the Golgi complex. Although the generation, regulation and functions of PtdIns(4,5)P2 are less well-defined in most other intracellular compartments, accumulating evidence demonstrates crucial roles for PtdIns(4,5)P2 in endolysosomal trafficking, endosomal recycling, as well as autophagosomal pathways, which are the focus of this Commentary. We summarize and discuss how phosphatidylinositol phosphate kinases, PtdIns(4,5)P2 and PtdIns(4,5)P2-effectors regulate these intracellular protein and membrane trafficking events.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA Program in Cellular and Molecular Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
49
|
Loyer N, Kolotuev I, Pinot M, Le Borgne R. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth. Proc Natl Acad Sci U S A 2015; 112:12717-22. [PMID: 26424451 PMCID: PMC4611665 DOI: 10.1073/pnas.1504455112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intercellular bridges called "ring canals" (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs' anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin-containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs' anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin-dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth.
Collapse
Affiliation(s)
- Nicolas Loyer
- CNRS, UMR 6290, F-35000 Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, F-35000 Rennes, France
| | - Irina Kolotuev
- CNRS, UMR 6290, F-35000 Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, F-35000 Rennes, France; CNRS, Structure Fédérative de Recherche BIOSIT, Microscopy Rennes Imaging Center-Electron Microscopy Facility, F-35000 Rennes, France
| | - Mathieu Pinot
- CNRS, UMR 6290, F-35000 Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, F-35000 Rennes, France
| | - Roland Le Borgne
- CNRS, UMR 6290, F-35000 Rennes, France; Institut de Génétique et Développement de Rennes, Université Rennes 1, F-35000 Rennes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, F-35000 Rennes, France;
| |
Collapse
|
50
|
Fölsch H. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity. CELLULAR LOGISTICS 2015; 5:e1074331. [PMID: 27057418 DOI: 10.1080/21592799.2015.1074331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Epithelial cells are important for organ development and function. To this end, they polarize their plasma membrane into biochemically and physically distinct membrane domains. The apical membrane faces the luminal site of an organ and the basolateral domain is in contact with the basement membrane and neighboring cells. To establish and maintain this polarity it is important that newly synthesized and endocytic cargos are correctly sorted according to their final destinations at either membrane. Sorting takes place at one of 2 major sorting stations in the cells, the trans-Golgi network (TGN) and recycling endosomes (REs). Polarized sorting may involve epithelial cell-specific sorting adaptors like the AP-1B clathrin adaptor complex. AP-1B facilitates basolateral sorting from REs. This review will discuss various aspects of basolateral sorting in epithelial cells with a special emphasis on AP-1B.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine ; Chicago, IL USA
| |
Collapse
|