1
|
Gao L, Nowakowska MB, Selby K, Przykopanski A, Chen B, Krüger M, Douillard FP, Lam KH, Chen P, Huang T, Minton NP, Dorner MB, Dorner BG, Rummel A, Lindström M, Jin R. Botulinum neurotoxins exploit host digestive proteases to boost their oral toxicity via activating OrfXs/P47. Nat Struct Mol Biol 2025:10.1038/s41594-024-01479-0. [PMID: 39838108 DOI: 10.1038/s41594-024-01479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Botulinum neurotoxins (BoNTs) rank among the most potent toxins and many of them are produced by bacteria carrying the orfX gene cluster that also encodes four nontoxic proteins (OrfX1, OrfX2, OrfX3 and P47). The orfX gene cluster is also found in the genomes of many non-BoNT-producing bacteria, often alongside genes encoding oral insecticidal toxins. However, the functions of these OrfXs and P47 remain elusive. Here, we demonstrate that the combined action of all four components (OrfXs and P47) drastically boosts the oral toxicity of BoNT in mice, following proteolytic activation by digestive proteases that oral toxins regularly confront. In particular, OrfX2 adopts a self-inhibiting state, engaging with BoNT through another clostridial protein, nontoxic non-hemagglutinin (NTNH), only after proteolytic activation. Cryo-electron microscopy studies unveil that two molecules of protease-activated OrfX2 simultaneously associate with NTNH, a binding mode crucial for boosting BoNT oral toxicity. Collectively, these studies offer novel insights into the physiological functions and regulatory mechanisms of OrfXs and P47 of BoNTs, shedding light on the pathogenesis of other bacterial toxins associated with homologous OrfXs and P47.
Collapse
Affiliation(s)
- Linfeng Gao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Maria Barbara Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Maren Krüger
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - François Paul Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ting Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Nigel Peter Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Martin Bernhard Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Brigitte Gertrud Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Rummel
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Kumari P, Yadav S, Sarkar S, Satheeshkumar PK. Cleavage of cell junction proteins as a host invasion strategy in leptospirosis. Appl Microbiol Biotechnol 2024; 108:119. [PMID: 38204132 PMCID: PMC10781872 DOI: 10.1007/s00253-023-12945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
Infection and invasion are the prerequisites for developing the disease symptoms in a host. While the probable mechanism of host invasion and pathogenesis is known in many pathogens, very little information is available on Leptospira invasion/pathogenesis. For causing systemic infection Leptospira must transmigrate across epithelial barriers, which is the most critical and challenging step. Extracellular and membrane-bound proteases play a crucial role in the invasion process. An extensive search for the proteins experimentally proven to be involved in the invasion process through cell junction cleavage in other pathogens has resulted in identifying 26 proteins. The similarity searches on the Leptospira genome for counterparts of these 26 pathogenesis-related proteins identified at least 12 probable coding sequences. The proteins were either extracellular or membrane-bound with a proteolytic domain to cleave the cell junction proteins. This review will emphasize our current understanding of the pathogenic aspects of host cell junction-pathogenic protein interactions involved in the invasion process. Further, potential candidate proteins with cell junction cleavage properties that may be exploited in the diagnostic/therapeutic aspects of leptospirosis will also be discussed. KEY POINTS: • The review focussed on the cell junction cleavage proteins in bacterial pathogenesis • Cell junction disruptors from Leptospira genome are identified using bioinformatics • The review provides insights into the therapeutic/diagnostic interventions possible.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suhani Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sresha Sarkar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Yamamoto R, Sakakibara R, Kim MH, Fujinaga Y, Kino-Oka M. Growth prolongation of human induced pluripotent stem cell aggregate in three-dimensional suspension culture system by addition of botulinum hemagglutinin. J Biosci Bioeng 2024; 137:141-148. [PMID: 38110319 DOI: 10.1016/j.jbiosc.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) can be used in regenerative therapy as an irresistible cell source, and so the development of scalable production of hiPSCs for three-dimensional (3D) suspension culture is required. In this study, we established a simple culture strategy for improving hiPSC aggregate growth using botulinum hemagglutinin (HA), which disrupts cell-cell adhesion mediated by E-cadherin. When HA was added to the suspension culture of hiPSC aggregates, E-cadherin-mediated cell-cell adhesion was temporarily disrupted within 24 h, but then recovered. Phosphorylated myosin light chain, a contractile force marker, was also recovered at the periphery of hiPSC aggregates. The cell aggregates were suppressed the formation of collagen type I shell-like structures at the periphery by HA and collagen type I was homogenously distributed within the cell aggregates. In addition, these cell aggregates retained the proliferation marker Ki-67 throughout the cell aggregates. The apparent specific growth rate with HA addition was maintained continuously throughout the culture, and the final cell density was 1.7-fold higher than that in the control culture. These cells retained high expression levels of pluripotency markers. These observations indicated that relaxation of cell-cell adhesions by HA addition induced rearrangement of the mechanical tensions generated by actomyosin in hiPSC aggregates and suppression of collagen type I shell-like structure formation. These results suggest that this simple and readily culture strategy is a potentially useful tool for improving the scalable production of hiPSCs for 3D suspension cultures.
Collapse
Affiliation(s)
- Riku Yamamoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Sakakibara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, 13-1Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Kim MH, Thanuthanakhun N, Kino-Oka M. A simple tool for the synchronous differentiation of human induced pluripotent stem cells into pancreatic progenitors. Biotechnol J 2024; 19:e2300364. [PMID: 37955342 DOI: 10.1002/biot.202300364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Efficient differentiation of human induced pluripotent stem cells (hiPSCs) into functional pancreatic cells holds great promise for diabetes research and treatment. However, a robust culture strategy for producing pancreatic progenitors with high homogeneity is lacking. Here, we established a simple differentiation strategy for generating synchronous iPSC-derived pancreatic progenitors via a two-step method of sequential cell synchronization using botulinum hemagglutinin (HA), an E-cadherin function-blocking agent. Of the various methods tested, the first-step synchronization method with HA exposure induces a synchronous switch from E- to N-cadherin and N- to E-cadherin expression by spatially controlling heterogeneous cell distribution, subsequently improving their competency for directed differentiation into definitive endodermal cells from iPSCs. The iPSC-derived definitive endodermal cells can efficiently generate PDX1+ and NKX6.1+ pancreatic progenitor cells in high yields. The PDX1+ and PDX1+ /NKX6.1+ cell densities showed 1.6- and 2.2-fold increases, respectively, compared with those from unsynchronized cultures. The intra-run and inter-run coefficient of variation were below 10%, indicating stable and robust differentiation across different cultures and runs. Our approach is a simple and efficient strategy to produce large quantities of differentiated cells with the highest homogeneity during multistage pancreatic progenitor differentiation, providing a potential tool for guided differentiation of iPSCs to functional insulin-producing cells.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Research Base for Cell Manufacturability, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
6
|
Gao L, Lam KH, Liu S, Przykopanski A, Lübke J, Qi R, Krüger M, Nowakowska MB, Selby K, Douillard FP, Dorner MB, Perry K, Lindström M, Dorner BG, Rummel A, Jin R. Crystal structures of OrfX1, OrfX2 and the OrfX1-OrfX3 complex from the orfX gene cluster of botulinum neurotoxin E1. FEBS Lett 2023; 597:524-537. [PMID: 36653893 PMCID: PMC10019085 DOI: 10.1002/1873-3468.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023]
Abstract
Botulinum neurotoxins (BoNTs) are among the most lethal toxins known to humans, comprising seven established serotypes termed BoNT/A-G encoded in two types of gene clusters (ha and orfX) in BoNT-producing clostridia. The ha cluster encodes four non-toxic neurotoxin-associated proteins (NAPs) that assemble with BoNTs to protect and enhance their oral toxicity. However, the structure and function of the orfX-type NAPs remain largely unknown. Here, we report the crystal structures for OrfX1, OrfX2, and an OrfX1-OrfX3 complex, which are encoded in the orfX cluster of a BoNT/E1-producing Clostridium botulinum strain associated with human foodborne botulism. These structures lay the foundation for future studies on the potential roles of OrfX proteins in oral intoxication and pathogenesis of BoNTs.
Collapse
Affiliation(s)
- Linfeng Gao
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Kwok-ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Shun Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Adina Przykopanski
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Johanna Lübke
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Ruifeng Qi
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Maren Krüger
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Maria B. Nowakowska
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P. O. Box 66, 00014 University of Helsinki, Finland
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P. O. Box 66, 00014 University of Helsinki, Finland
| | - François P. Douillard
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P. O. Box 66, 00014 University of Helsinki, Finland
| | - Martin B. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P. O. Box 66, 00014 University of Helsinki, Finland
| | - Brigitte G. Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Andreas Rummel
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Amatsu S, Matsumura T, Zuka M, Fujinaga Y. Molecular engineering of a minimal E-cadherin inhibitor protein derived from Clostridium botulinum hemagglutinin. J Biol Chem 2023; 299:102944. [PMID: 36707052 PMCID: PMC9958082 DOI: 10.1016/j.jbc.2023.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Hemagglutinin (HA), a nontoxic component of the botulinum neurotoxin (BoNT) complex, binds to E-cadherin and inhibits E-cadherin-mediated cell-cell adhesion. HA is a 470 kDa protein complex comprising six HA1, three HA2, and three HA3 subcomponents. Thus, to prepare recombinant full-length HA in vitro, it is necessary to reconstitute the macromolecular complex from purified HA subcomponents, which involves multiple purification steps. In this study, we developed NanoHA, a minimal E-cadherin inhibitor protein derived from Clostridium botulinum HA with a simple purification strategy needed for production. NanoHA, containing HA2 and a truncated mutant of HA3 (amino acids 380-626; termed as HA3mini), is a 47 kDa single polypeptide (one-tenth the molecular weight of full-length HA, 470 kDa) engineered with three types of modifications: (i) a short linker sequence between the C terminus of HA2 and N terminus of HA3; (ii) a chimeric complex composed of HA2 derived from the serotype C BoNT complex and HA3mini from the serotype B BoNT complex; and (iii) three amino acid substitutions from hydrophobic to hydrophilic residues on the protein surface. We demonstrated that NanoHA inhibits E-cadherin-mediated cell-cell adhesion of epithelial cells (e.g., Caco-2 and Madin-Darby canine kidney cells) and disrupts their epithelial barrier. Finally, unlike full-length HA, NanoHA can be transported from the basolateral side to adherens junctions via passive diffusion. Overall, these results indicate that the rational design of NanoHA provides a minimal E-cadherin inhibitor with a wide variety of applications as a lead molecule and for further molecular engineering.
Collapse
Affiliation(s)
- Sho Amatsu
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan; Department of Forensic Medicine and Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| | - Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Masahiko Zuka
- Department of Forensic Medicine and Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
8
|
Kobayashi N, Abe K, Akagi S, Kitamura M, Shiraishi Y, Yamaguchi A, Yutani M, Amatsu S, Matsumura T, Nomura N, Ozaki N, Obana N, Fujinaga Y. Membrane Vesicles Derived From Clostridium botulinum and Related Clostridial Species Induce Innate Immune Responses via MyD88/TRIF Signaling in vitro. Front Microbiol 2022; 13:720308. [PMID: 35185840 PMCID: PMC8851338 DOI: 10.3389/fmicb.2022.720308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin complexes that cause botulism. Previous studies elucidated the molecular pathogenesis of botulinum neurotoxin complexes; however, it currently remains unclear whether other components of the bacterium affect host cells. Recent studies provided insights into the role of bacterial membrane vesicles (MVs) produced by some bacterial species in host immunity and pathology. We herein examined and compared the cellular effects of MVs isolated from four strains of C. botulinum with those of closely related Clostridium sporogenes and two strains of the symbiont Clostridium scindens. MVs derived from all strains induced inflammatory cytokine expression in intestinal epithelial and macrophage cell lines. Cytokine expression was dependent on myeloid differentiation primary response (MyD) 88 and TIR-domain-containing adapter-inducing interferon-β (TRIF), essential adaptors for toll-like receptors (TLRs), and TLR1/2/4. The inhibition of actin polymerization impeded the uptake of MVs in RAW264.7 cells, however, did not reduce the induction of cytokine expression. On the other hand, the inhibition of dynamin or phosphatidylinositol-3 kinase (PI3K) suppressed the induction of cytokine expression by MVs, suggesting the importance of these factors downstream of TLR signaling. MVs also induced expression of Reg3 family antimicrobial peptides via MyD88/TRIF signaling in primary cultured mouse small intestinal epithelial cells (IECs). The present results indicate that MVs from C. botulinum and related clostridial species induce host innate immune responses.
Collapse
Affiliation(s)
- Nobuhide Kobayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kimihiro Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sachiyo Akagi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mayu Kitamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshitake Shiraishi
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Aki Yamaguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahiro Yutani
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sho Amatsu
- Department of Forensic Medicine and Pathology, Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nozomu Obana
- Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Cai S, Kumar R, Singh BR. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021; 9:2206. [PMID: 34835332 PMCID: PMC8618262 DOI: 10.3390/microorganisms9112206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure-function relationship of bacterial toxins. Here, we critically review the recent progress of the structure-function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.
Collapse
Affiliation(s)
- Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| |
Collapse
|
10
|
Polacco MA, Singleton AE, Barnes CH, Maas C, Maas CS. A Double-Blind, Randomized Clinical Trial to Determine Effects of Increasing Doses and Dose-Response Relationship of IncobotulinumtoxinA in the Treatment of Glabellar Rhytids. Aesthet Surg J 2021; 41:NP500-NP511. [PMID: 32722793 DOI: 10.1093/asj/sjaa220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND IncobotulinumtoxinA is an effective neuromodulator for treating glabellar rhytids. The relationship between dose and reduction in rhytid severity is well established. However, the effects of escalating doses on the treatment duration response are less understood. OBJECTIVES The aim of this study was to assess the effects of increasing doses of incobotulinumtoxinA on the treatment duration for glabellar rhytids. METHODS A randomized, double-blind, Phase IV study was conducted at a fully accredited, outpatient surgical facility. Subjects (31 female, 7 male) with moderate to severe glabellar rhytids were randomized to 1 of 3 incobotulinumtoxinA dose groups: 20, 60, or 100 U. Effect duration was determined by calculating the time to return to baseline for dynamic glabellar lines during maximal contraction. Follow-up was completed through 1 year, and adverse events were monitored. RESULTS The median duration of effect was 120 days (95% confidence interval [CI] [90, 180 days]), 180 days (95% CI [180, 210 days]), and 270 days (95% CI [240, 330 days]) for the 20-, 60-, and 100-U groups, respectively. A Wald chi-square test from the Cox regression on the primary efficacy variable indicated a statistically significant effect of dose group on time to baseline (chi square = 54.63; df = 2; P < 0.001). Hazard ratios were HR = 0.21 (95% CI [0.10; 0.43] for the 60-U vs the 20-U group, and HR = 0.06 (95% CI [0.10; 0.43]) for the 100-U vs the 20-U group, indicating a statistically longer return to baseline for both the 60- and 100-U cohorts. CONCLUSIONS There is a dose-dependent relationship between incobotulinumtoxinA and duration of effect in the glabella. LEVEL OF EVIDENCE: 2
Collapse
|
11
|
Dash S, Duraivelan K, Samanta D. Cadherin-mediated host-pathogen interactions. Cell Microbiol 2021; 23:e13316. [PMID: 33543826 DOI: 10.1111/cmi.13316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Cell adhesion molecules mediate cell-to-cell and cell-to-matrix adhesions and play an immense role in a myriad of physiological processes during the growth and development of a multicellular organism. Cadherins belong to a major group of membrane-bound cell surface proteins that, in coordination with nectins, drive the formation and maintenance of adherens junctions for mediating cell to cell adhesion, cellular communication and signalling. Alongside adhesive function, the involvement of cadherins in mediating host-pathogen interactions has been extensively explored in recent years. In this review, we provide an in-depth understanding of microbial pathogens and their virulence factors that exploit cadherins for their strategical invasion into the host cell. Furthermore, macromolecular interactions involving cadherins and various microbial factors such as secretory toxins and adhesins lead to the disintegration of host cell junctions followed by the entry of the pathogen or triggering downstream signalling pathways responsible for successful invasion of the pathogenic microbes are discussed. Besides providing a comprehensive insight into some of the structural complexes involving cadherins and microbial factors to offer the mechanistic details of host-pathogen interactions, the current review also highlights novel constituents of various cell signalling events such as endocytosis machinery elicited upon microbial infections.
Collapse
Affiliation(s)
- Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
12
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
13
|
Abstract
Botulinum neurotoxin (BoNT), produced by Clostridium botulinum, is the most potent toxin and produced as a complex with non-toxic components. Food-borne botulism is caused by the ingestion of these BoNT complexes. Hemagglutinin (HA), one of the non-toxic components, is known to have lectin (carbohydrate binding) activity and E-cadherin-binding activity. These activities promote the intestinal absorption of BoNT. To elucidate the mechanism of the onset of food-borne botulism, we focused on the role of HA in the intestinal absorption of BoNT. We describe the functional analysis methods for HA, including the expression of recombinant proteins, binding to glycoproteins and epithelial cells, and localization in mouse intestinal tissue.
Collapse
Affiliation(s)
- Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
14
|
Amatsu S, Fujinaga Y. Botulinum Hemagglutinin: Critical Protein for Adhesion and Absorption of Neurotoxin Complex in Host Intestine. Methods Mol Biol 2020; 2132:183-190. [PMID: 32306327 DOI: 10.1007/978-1-0716-0430-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Botulinum hemagglutinin (HA) is one of the auxiliary protein components of the botulinum neurotoxin (BoNT) complex, the most lethal toxin known. HA promotes the intestinal absorption of BoNT by at least two mechanisms, resulting in high oral toxicity. One of the mechanisms is the attachment of large progenitor toxin complexes (L-PTCs) to the cell surface of the intestinal epithelium by the carbohydrate-binding activity of HA. The other is epithelial barrier disruption by the E-cadherin-binding activity of HA. The carbohydrate-binding activity of HA also promotes attachment to the basolateral cell surface, which increases the frequency of contact between HA and E-cadherin. Together, the carbohydrate-binding activity of HA is critical for the intestinal absorption of BoNTs. The trimeric triskelion-shaped structure of HA confers the multivalent binding to its ligands and increases the pathogenic biological activities of HA.
Collapse
Affiliation(s)
- Sho Amatsu
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.,Department of Forensic Medicine and Pathology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| |
Collapse
|
15
|
Steward L, Brin MF, Brideau-Andersen A. Novel Native and Engineered Botulinum Neurotoxins. Handb Exp Pharmacol 2020; 263:63-89. [PMID: 32274579 DOI: 10.1007/164_2020_351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridia and other bacteria, are the most potent toxins known. Their cleavage of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins in neurons prevents the release of neurotransmitters, thus resulting in the muscle paralysis that is characteristic of botulism. This mechanism of action has been exploited for a variety of therapeutic and cosmetic applications of BoNTs. This chapter provides an overview of the native BoNTs, including the classical serotypes and their clinical use, mosaic BoNTs, and novel BoNTs that have been recently identified in clostridial and non-clostridial strains. In addition, the modular structure of native BoNTs, which are composed of a light chain and a heavy chain, is amenable to a multitude of novel fusions and mutations using molecular biology techniques. These novel recombinant BoNTs have been used or are being developed to further characterize the biology of toxins, to assist in vaccine production, to serve as delivery vehicles to neurons, and to be utilized as novel therapeutics for both neuronal and non-neuronal cells.
Collapse
Affiliation(s)
| | - Mitchell F Brin
- Allergan plc, Irvine, CA, USA.,University of California, Irvine, CA, USA
| | | |
Collapse
|
16
|
Rossetto O, Pirazzini M, Fabris F, Montecucco C. Botulinum Neurotoxins: Mechanism of Action. Handb Exp Pharmacol 2020; 263:35-47. [PMID: 32277300 DOI: 10.1007/164_2020_355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are a growing family of bacterial protein toxins that cause botulism, a rare but often fatal animal and human disease. They are the most potent toxins known owing to their molecular architecture, which underlies their mechanism of action. BoNTs target peripheral nerve terminals by a unique mode of binding and enter into their cytosol where they cleave SNARE proteins, thus inhibiting the neurotransmitter release. The specificity and rapidity of binding, which limits the anatomical area of its neuroparalytic action, and its reversible action make BoNT a valuable pharmaceutical to treat neurological and non-neurological diseases determined by hyperactivity of cholinergic nerve terminals. This review reports the progress on our understanding of how BoNTs cause nerve paralysis highlighting the different steps of their molecular mechanism of action as key aspects to explain their extreme toxicity but also their unique pharmacological properties.
Collapse
Affiliation(s)
- O Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - M Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - F Fabris
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - C Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy. .,Institute of Neuroscience, National Research Council, Padova, Italy.
| |
Collapse
|
17
|
Matsumura T. [Mechanism of intestinal absorption of botulinum neurotoxin complex]. Nihon Saikingaku Zasshi 2019; 74:167-175. [PMID: 31787706 DOI: 10.3412/jsb.74.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Botulinum neurotoxins (BoNTs) produced by the anaerobic bacterium Clostridium botulinum and related species cause botulism, a neuroparalytic disease associated with a high mortality. BoNTs are always produced as large protein complexes (progenitor toxin complexes, PTCs) through association with non-toxic components (NAPs) including hemagglutinin (HA) and non-toxic non-hemagglutinin (NTNHA). Food-borne botulism is caused by the ingestion of PTCs. PTCs in the gastrointestinal tract cross the intestinal epithelial barrier, enter the blood stream, and reach the nerve endings, where BoNTs cleave the SNAREs required for vesicle fusion. Consequently, BoNTs inhibit neurotransmitter release and cause paralysis. To cause food-borne botulism, BoNTs must traverse the intestinal epithelial barrier. However, the mechanism used to cross this barrier remains unclear. Using an in vitro epithelial barrier system, we previously showed that the interaction of HA with E-cadherin results in disruption of tight junctions. Furthermore, we previously reported that microfold (M) cells in the follicle-associated epithelium (FAE) of mouse Peyer's patches (PPs) are major sites where type A1 BoNT breaches the intestinal epithelial barrier. Here, I would like to demonstrate an ingenious invasion mechanism of the BoNT complex.
Collapse
Affiliation(s)
- Takuhiro Matsumura
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
18
|
Gut microbiota as an "invisible organ" that modulates the function of drugs. Biomed Pharmacother 2019; 121:109653. [PMID: 31810138 DOI: 10.1016/j.biopha.2019.109653] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Gut microbiota plays an important role in the gut and have become a hotspot of recent research interests. Commensal microbiota in gut exert a variety of effects on the host, from shaping the structure and function of the gut and the immune system to the modulation of nutrient status of the host and the treatment outcomes of some drugs. Gut microbiota and its enzyme product and subsequent products, such as short-chain fatty acid and bile acid, play important roles in the biotransformation of drugs via directly or indirectly affecting drug absorption, toxicity, metabolism and bioavailability. Drugs, especially antibiotics, also affect the homeostasis of probiotics and the integrity and function of the intestinal mucosa. These interplaying processes produce a variety of important metabolites of the host and drugs and affect the balance of microbiota and the mucosal barrier then modulate the function of drugs. Gut microbiota imbalance is associated with a broad range of disease mechanisms, and this association denotes a new drug-therapeutic avenue. The present review summarizes how gut microbiota acts as an "invisible organ" to directly or indirectly modulate the function of drugs, on the aspects of probiotic homeostasis, drugs and host nutritional metabolism, AJC, mucus layer and microfold cells.
Collapse
|
19
|
Rasetti-Escargueil C, Popoff MR. Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. Toxins (Basel) 2019; 11:toxins11090528. [PMID: 31547338 PMCID: PMC6783819 DOI: 10.3390/toxins11090528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is produced by the anaerobic, Gram-positive bacterium Clostridium botulinum. As one of the most poisonous toxins known and a potential bioterrosism agent, BoNT is characterized by a complex mode of action comprising: internalization, translocation and proteolytic cleavage of a substrate, which inhibits synaptic exocytotic transmitter release at neuro-muscular nerve endings leading to peripheral neuroparalysis of the skeletal and autonomic nervous systems. There are seven major serologically distinct toxinotypes (A-G) of BoNT which act on different substrates. Human botulism is generally caused by BoNT/A, B and E. Due to its extreme lethality and potential use as biological weapon, botulism remains a global public health concern. Vaccination against BoNT, although an effective strategy, remains undesirable due to the growing expectation around therapeutic use of BoNTs in various pathological conditions. This review focuses on the current approaches for botulism control by immunotherapy, highlighting the future challenges while the molecular underpinnings among subtypes variants and BoNT sequences found in non-clostridial species remain to be elucidated.
Collapse
Affiliation(s)
- Christine Rasetti-Escargueil
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Michel R Popoff
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
20
|
Kobayashi H, Seike S, Yamaguchi M, Ueda M, Takahashi E, Okamoto K, Yamanaka H. Aeromonas sobria serine protease decreases epithelial barrier function in T84 cells and accelerates bacterial translocation across the T84 monolayer in vitro. PLoS One 2019; 14:e0221344. [PMID: 31419250 PMCID: PMC6697317 DOI: 10.1371/journal.pone.0221344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023] Open
Abstract
Aeromonas sobria is a pathogen causing food-borne illness. In immunocompromised patients and the elderly, A. sobria can leave the intestinal tract, and this opportunistically leads to severe extraintestinal diseases including sepsis, peritonitis, and meningitis. To cause such extraintestinal diseases, A. sobria must pass through the intestinal epithelial barrier. The mechanism of such bacterial translocation has not been established. Herein we used intestinal (T84) cultured cells to investigate the effect of A. sobria serine protease (ASP) on junctional complexes that maintain the intercellular adhesion of the intestinal epithelium. When several A. sobria strains were inoculated into T84 monolayer grown on Transwell inserts, the strain with higher ASP production largely decreased the value of transepithelial electrical resistance exhibited by the T84 monolayer and markedly caused bacterial translocation from the apical surface into the basolateral side of T84 monolayer. Further experiments revealed that ASP acts on adherens junctions (AJs) and causes the destruction of both nectin-2 and afadin, which are protein components constituting AJs. Other studies have not revealed the bacterial pathogenic factors that cause the destruction of both nectin-2 and afadin, and our present results thus provide the first report that the bacterial extracellular protease ASP affects these molecules. We speculate that the destruction of nectin-2 and afadin by the action of ASP increases the ability of A. sobria to pass through intestinal epithelial tissue and contributes to the severity of pathological conditions.
Collapse
Affiliation(s)
- Hidetomo Kobayashi
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Soshi Seike
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Masafumi Yamaguchi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Mitsunobu Ueda
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Eizo Takahashi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera Enteric Diseases, Kolkata, India
| | - Hiroyasu Yamanaka
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
21
|
Kutschenko A, Bigalke H, Wegner F, Wohlfarth K. The role of human serum albumin and neurotoxin associated proteins in the formulation of BoNT/A products. Toxicon 2019; 168:158-163. [PMID: 31323228 DOI: 10.1016/j.toxicon.2019.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 11/28/2022]
Abstract
Botulinum neurotoxin (BoNT) is synthesized as a progenitor toxin complex (PTC) by Clostridium botulinum. This PTC comprises, in addition to the neurotoxin itself, neurotoxin associated proteins (NAPs) which are composed of three hemagglutinins and one non-toxic, non-hemagglutinin protein. After oral ingestion, these NAPs protect the neurotoxin from the low pH and proteases in the gastrointestinal tract and play a role in the entry via the intestinal barrier. Two of the three therapeutically used botulinum neurotoxin serotype A (BoNT/A) products (onabotulinumtoxinA and abobotulinumtoxinA) contain different amounts of NAPs, while incobotulinumtoxinA, lacks these proteins. In addition, human serum albumin (HSA) that is supposed to stabilize BoNT/A is added at different concentrations. Up to now, the function of the NAPs and HSA after parenteral therapeutic application is not completely understood. To investigate the influence of NAPs and HSA on potency of BoNT/A, we used the ex vivo mouse phrenic nerve hemidiaphragm assay. Increasing doses of HSA resulted dose-dependently in a more pronounced effect of BoNT/A. Though, a plateau was reached with concentrations of 0.8 mg/ml HSA and higher, the accessory addition of NAPs in a relevant amount (4 ng/ml) did not further enhance the effect of BoNT/A. In conclusion, in our ex vivo assay an adequate concentration of HSA prevented BoNT/A from loss of effect and supplementary NAPs did not alter this effect. A confirmation of these data in an in vivo assay is still lacking. However, it might be supposed that even in clinically applied BoNT/A products an increase of HSA accompanied by the avoidance of NAPs could potentially reduce the injected dose and, thus, the risk of unwanted side effects, the treatment costs as well as the risk of a secondary therapy failure due to BoNT/A neutralizing antibodies.
Collapse
Affiliation(s)
- Anna Kutschenko
- Department of Neurology, Hannover Medical School, Hannover, Germany.
| | - Hans Bigalke
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Kai Wohlfarth
- Department of Neurology, BG Hospital Bergmannstrost, Halle (Saale), Germany
| |
Collapse
|
22
|
Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, Chen J, Stenmark P, Gill SS. A neurotoxin that specifically targets Anopheles mosquitoes. Nat Commun 2019; 10:2869. [PMID: 31253776 PMCID: PMC6599013 DOI: 10.1038/s41467-019-10732-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/23/2019] [Indexed: 11/24/2022] Open
Abstract
Clostridial neurotoxins, including tetanus and botulinum neurotoxins, generally target vertebrates. We show here that this family of toxins has a much broader host spectrum, by identifying PMP1, a clostridial-like neurotoxin that selectively targets anopheline mosquitoes. Isolation of PMP1 from Paraclostridium bifermentans strains collected in anopheline endemic areas on two continents indicates it is widely distributed. The toxin likely evolved from an ancestral form that targets the nervous system of similar organisms, using a common mechanism that disrupts SNARE-mediated exocytosis. It cleaves the mosquito syntaxin and employs a unique receptor recognition strategy. Our research has an important impact on the study of the evolution of clostridial neurotoxins and provides the basis for the use of P. bifermentans strains and PMP1 as innovative, environmentally friendly approaches to reduce malaria through anopheline control. So far identified clostridial neurotoxins target vertebrates. Here, Contreras et al. isolate the clostridial-like neurotoxin PMP1 from Paraclostridium bifermentans strains and show that it selectively targets anopheline mosquitoes by targeting mosquito syntaxin.
Collapse
Affiliation(s)
- Estefania Contreras
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Nadia Qureshi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Swati Chawla
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Harpal S Dhillon
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Han Lim Lee
- Unit of Medical Entomology, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Jianwu Chen
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden. .,Department of Experimental Medical Science, Lund University, Lund, 22100, Sweden.
| | - Sarjeet S Gill
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
23
|
Maintenance of an undifferentiated state of human-induced pluripotent stem cells through botulinum hemagglutinin-mediated regulation of cell behavior. J Biosci Bioeng 2019; 127:744-751. [PMID: 30660482 DOI: 10.1016/j.jbiosc.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/14/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Applications of human induced pluripotent stem cell (hiPSC) culture are impaired by problems with long term maintenance of pluripotency. In this study, we report that exposure to botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, suppressed deviation from an undifferentiated state in hiPSC colonies. Time-lapse imaging of live cells revealed that cells in central regions of colonies moved slowly and underwent a morphological change to a cobblestone-like shape via interaction between contacting cells, forming dense, multiple layers. Staining and migration analysis showed that actin stress fibers and paxillin spots were diminished in colony central regions, and this was associated with alteration of cellular morphology and migratory behavior. However, in culture with HA exposure, cells in the central and peripheral regions of hiPSC colonies were migratory and arranged in loose monolayers, resulting in relatively uniform dispersion of cells in colonies. We also found that a well-organized network of actin stress fibers was of significance in the central and peripheral regions of a colony, resulting in activation of paxillin and E-cadherin expression in hiPSCs. After routine application of HA for serial passages, hiPSCs remained pluripotent and capable of differentiating into all three germ layers. These observations indicate that relaxation of cell-cell junctions by HA induced rearrangements of the cytoskeleton and cell adhesion in hiPSC colonies by promoting migratory behaviors. These results suggest that this simple and readily reproducible culture strategy is a potentially useful tool for improving the robust and scalable maintenance of undifferentiated hiPSC cultures.
Collapse
|
24
|
Abstract
Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
25
|
Abstract
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) are the most potent toxins known and cause botulism and tetanus, respectively. BoNTs are also widely utilized as therapeutic toxins. They contain three functional domains responsible for receptor-binding, membrane translocation, and proteolytic cleavage of host proteins required for synaptic vesicle exocytosis. These toxins also have distinct features: BoNTs exist within a progenitor toxin complex (PTC), which protects the toxin and facilitates its absorption in the gastrointestinal tract, whereas TeNT is uniquely transported retrogradely within motor neurons. Our increasing knowledge of these toxins has allowed the development of engineered toxins for medical uses. The discovery of new BoNTs and BoNT-like proteins provides additional tools to understand the evolution of the toxins and to engineer toxin-based therapeutics. This review summarizes the progress on our understanding of BoNTs and TeNT, focusing on the PTC, receptor recognition, new BoNT-like toxins, and therapeutic toxin engineering.
Collapse
Affiliation(s)
- Min Dong
- Department of Urology, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Microbiology and Immunobiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; .,Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
26
|
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Grando SA, Zachary CB. The non-neuronal and nonmuscular effects of botulinum toxin: an opportunity for a deadly molecule to treat disease in the skin and beyond. Br J Dermatol 2018; 178:1011-1019. [PMID: 29086923 DOI: 10.1111/bjd.16080] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2017] [Indexed: 01/19/2023]
Abstract
There is growing evidence that botulinum neurotoxins (BoNTs) exhibit biological effects on various human cell types with a host of associated clinical implications. This review aims to provide an update on the non-neuronal and nonmuscular effects of botulinum toxin. We critically analysed recent reports on the structure and function of cellular signalling systems subserving biological effects of BoNTs. The BoNT receptors and intracellular targets are not unique for neurotransmission. They have been found in both neuronal and non-neuronal cells, but there are differences in how BoNT binds to, and acts on, neuronal vs. non-neuronal cells. The non-neuronal cells that express one or more BoNT/A-binding proteins, and/or cleavage target synaptosomal-associated protein 25, include: epidermal keratinocytes; mesenchymal stem cells from subcutaneous adipose; nasal mucosal cells; urothelial cells; intestinal, prostate and alveolar epithelial cells; breast cell lines; neutrophils; and macrophages. Serotype BoNT/A can also elicit specific biological effects in dermal fibroblasts, sebocytes and vascular endothelial cells. Nontraditional applications of BoNT have been reported for the treatment of the following dermatological conditions: hyperhidrosis, Hailey-Hailey disease, Darier disease, inversed psoriasis, aquagenic palmoplantar keratoderma, pachyonychia congenita, multiple eccrine hydrocystomas, eccrine angiomatous hamartoma, eccrine sweat gland naevi, congenital eccrine naevus, Raynaud phenomenon and cutaneous leiomyomas. Experimental studies have demonstrated the ability of BoNT/A to protect skin flaps, facilitate wound healing, decrease thickness of hypertrophic scars, produce an anti-ageing effect, improve a mouse model of psoriasiform dermatitis, and have also revealed extracutaneous effects of BoNT arising from its anti-inflammatory and anticancer properties. BoNTs have a much wider range of applications than originally understood, and the individual cellular responses to the cholinergic impacts of BoNTs could provide fertile ground for future studies.
Collapse
Affiliation(s)
- S A Grando
- Department of Dermatology, University of California, Irvine, Irvine, CA, U.S.A
| | - C B Zachary
- Department of Dermatology, University of California, Irvine, Irvine, CA, U.S.A
| |
Collapse
|
28
|
Amatsu S, Matsumura T, Yutani M, Fujinaga Y. Multivalency effects of hemagglutinin component of type B botulinum neurotoxin complex on epithelial barrier disruption. Microbiol Immunol 2018; 62:80-89. [DOI: 10.1111/1348-0421.12565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sho Amatsu
- Department of Bacteriology; Graduate School of Medical Sciences; Kanazawa University; Ishikawa 920-8640 Japan
| | - Takuhiro Matsumura
- Department of Bacteriology; Graduate School of Medical Sciences; Kanazawa University; Ishikawa 920-8640 Japan
| | - Masahiro Yutani
- Department of Bacteriology; Graduate School of Medical Sciences; Kanazawa University; Ishikawa 920-8640 Japan
| | - Yukako Fujinaga
- Department of Bacteriology; Graduate School of Medical Sciences; Kanazawa University; Ishikawa 920-8640 Japan
| |
Collapse
|
29
|
Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host Microbe 2018; 23:169-176.e6. [PMID: 29396040 DOI: 10.1016/j.chom.2017.12.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Botulinum neurotoxins (BoNTs), produced by various Clostridium strains, are a family of potent bacterial toxins and potential bioterrorism agents. Here we report that an Enterococcus faecium strain isolated from cow feces carries a BoNT-like toxin, designated BoNT/En. It cleaves both VAMP2 and SNAP-25, proteins that mediate synaptic vesicle exocytosis in neurons, at sites distinct from known BoNT cleavage sites on these two proteins. Comparative genomic analysis determines that the E. faecium strain carrying BoNT/En is a commensal type and that the BoNT/En gene is located within a typical BoNT gene cluster on a 206 kb putatively conjugative plasmid. Although the host species targeted by BoNT/En remains to be determined, these findings establish an extended member of BoNTs and demonstrate the capability of E. faecium, a commensal organism ubiquitous in humans and animals and a leading cause of hospital-acquired multi-drug-resistant (MDR) infections, to horizontally acquire, and possibly disseminate, a unique BoNT gene cluster.
Collapse
|
30
|
Nath SC, Tokura T, Kim M, Kino‐oka M. Botulinum hemagglutinin‐mediated in situ break‐up of human induced pluripotent stem cell aggregates for high‐density suspension culture. Biotechnol Bioeng 2018; 115:910-920. [DOI: 10.1002/bit.26526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Suman C. Nath
- Department of BiotechnologyGraduate School of EngineeringOsaka UniversitySuitaOsakaJapan
| | - Tomohiro Tokura
- Department of BiotechnologyGraduate School of EngineeringOsaka UniversitySuitaOsakaJapan
- Fujimori Kogyo Co. Ltd.ShinjukuTokyoJapan
| | - Mee‐Hae Kim
- Department of BiotechnologyGraduate School of EngineeringOsaka UniversitySuitaOsakaJapan
| | - Masahiro Kino‐oka
- Department of BiotechnologyGraduate School of EngineeringOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
31
|
Gustafsson R, Berntsson RPA, Martínez-Carranza M, El Tekle G, Odegrip R, Johnson EA, Stenmark P. Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster. FEBS Lett 2017; 591:3781-3792. [PMID: 29067689 DOI: 10.1002/1873-3468.12889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/08/2022]
Abstract
Botulinum neurotoxins are highly toxic substances and are all encoded together with one of two alternative gene clusters, the HA or the OrfX gene cluster. Very little is known about the function and structure of the proteins encoded in the OrfX gene cluster, which in addition to the toxin contains five proteins (OrfX1, OrfX2, OrfX3, P47, and NTNH). We here present the structures of OrfX2 and P47, solved to 2.1 and 1.8 Å, respectively. We show that they belong to the TULIP protein superfamily, which are often involved in lipid binding. OrfX1 and OrfX2 were both found to bind phosphatidylinositol lipids.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | | | - Geniver El Tekle
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Richard Odegrip
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
32
|
Kim MH, Matsubara Y, Fujinaga Y, Kino-Oka M. A Simple and Robust Method for Culturing Human-Induced Pluripotent Stem Cells in an Undifferentiated State Using Botulinum Hemagglutinin. Biotechnol J 2017; 13. [PMID: 29027750 DOI: 10.1002/biot.201700384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/24/2017] [Indexed: 01/18/2023]
Abstract
Clinical and industrial applications of human-induced pluripotent stem cells (hiPSCs) is hindered by the lack of robust culture strategies capable of sustaining a culture in an undifferentiated state. Here, a simple and robust hiPSC-culture-propagation strategy incorporating botulinum hemagglutinin (HA)-mediated selective removal of cells deviating from an undifferentiated state is developed. After HA treatment, cell-cell adhesion is disrupted, and deviated cells detached from the central region of the colony to subsequently form tight monolayer colonies following prolonged incubation. The authors find that the temporal and dose-dependent activity of HA regulated deviated-cell removal and recoverability after disruption of cell-cell adhesion in hiPSC colonies. The effects of HA are confirmed under all culture conditions examined, regardless of hiPSC line and feeder-dependent or -free culture conditions. After routine application of our HA-treatment paradigm for serial passages, hiPSCs maintains expression of pluripotent markers and readily forms embryoid bodies expressing markers for all three germ-cell layers. This method enables highly efficient culturing of hiPSCs and use of entire undifferentiated portions without having to pick deviated cells manually. This simple and readily reproducible culture strategy is a potentially useful tool for improving the robust and scalable maintenance of undifferentiated hiPSC cultures.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Matsubara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukako Fujinaga
- Laboratory for Infection Cell Biology, International Research Centre for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara, Kanazawa, Ishikawa, 920-8640, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
33
|
Fujinaga Y, Popoff MR. Translocation and dissemination of botulinum neurotoxin from the intestinal tract. Toxicon 2017; 147:13-18. [PMID: 29074396 DOI: 10.1016/j.toxicon.2017.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are potent toxins which induce flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. They associate with non-toxic proteins (ANTPs or NAPs) to form complexes of various sizes which are resistant to acidic pH and protease degradation. BoNT trafficking from the digestive tract to the target neurons is still a matter of debate. BoNTs use different strategies to pass through the intestinal barrier including passage of BoNT complexes containing hemagglutinins (HAs) via M cells, HA-dependent perturbation of E-cadherin intercellular junctions between enterocytes and paracellular passage of BoNT complexes, and transcytosis of BoNT free of NAPs through certain intestinal epithelial cells. Then, BoNTs target neuronal cells, preferentially cholinergic neurons, in the intestinal mucosa and submucosa. The precise mode of BoNT dissemination until the final target neuro-muscular junctions is still elusive.
Collapse
Affiliation(s)
- Yukako Fujinaga
- Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France.
| |
Collapse
|
34
|
The hypothetical protein P47 of Clostridium botulinum E1 strain Beluga has a structural topology similar to bactericidal/permeability-increasing protein. Toxicon 2017; 147:19-26. [PMID: 29042313 DOI: 10.1016/j.toxicon.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022]
Abstract
Botulinum neurotoxins (BoNTs) are causative agents of the life-threatening disease botulism. They are naturally produced by species of the bacteria Clostridium botulinum as stable and non-covalent complexes, in which the BoNT molecule is assembled with several auxiliary non-toxic proteins. Some BoNT serotypes, represented by the well-studied BoNT serotype A (BoNT/A), are produced by Clostridium strains that carry the ha gene cluster, which encodes four neurotoxin-associated proteins (NTNHA, HA17, HA33, and HA70) that play an important role to deliver and protect BoNTs in the gastrointestinal tract during oral intoxication. In contrast, BoNT/E- and BoNT/F-producing strains carry a distinct gene cluster that encodes five proteins (NTNHA, P47, OrfX1, OrfX2, and OrfX3, termed the orfX cluster). The structures and functions of these proteins remain largely unknown. Here, we report the crystal structure of P47 resolved at 2.8 Å resolution. Surprisingly, P47 displays a structural topology that is similar to bactericidal/permeability-increasing (BPI) like proteins, which were previously identified only in eukaryotes. The similarity of a hydrophobic cleft of P47 with the phospholipid-binding groove of BPI suggests that P47 might be involved in lipid association to exert its function. Consistently, P47 associates and induces aggregation of asolectin-containing liposomes in a protein- and lipid-concentration dependent manner. These findings laid the foundation for future structural and functional studies of the potential roles of P47 and OrfX proteins in facilitating oral intoxication of BoNTs.
Collapse
|
35
|
Rasetti-Escargueil C, Avril A, Miethe S, Mazuet C, Derman Y, Selby K, Thullier P, Pelat T, Urbain R, Fontayne A, Korkeala H, Sesardic D, Hust M, Popoff MR. The European AntibotABE Framework Program and Its Update: Development of Innovative Botulinum Antibodies. Toxins (Basel) 2017; 9:toxins9100309. [PMID: 28974033 PMCID: PMC5666356 DOI: 10.3390/toxins9100309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
The goal of the AntiBotABE Program was the development of recombinant antibodies that neutralize botulinum neurotoxins (BoNT) A, B and E. These serotypes are lethal and responsible for most human botulinum cases. To improve therapeutic efficacy, the heavy and light chains (HC and LC) of the three BoNT serotypes were targeted to achieve a synergistic effect (oligoclonal antibodies). For antibody isolation, macaques were immunized with the recombinant and non-toxic BoNT/A, B or E, HC or LC, followed by the generation of immune phage-display libraries. Antibodies were selected from these libraries against the holotoxin and further analyzed in in vitro and ex vivo assays. For each library, the best ex vivo neutralizing antibody fragments were germline-humanized and expressed as immunoglobulin G (IgGs). The IgGs were tested in vivo, in a standardized model of protection, and challenged with toxins obtained from collections of Clostridium strains. Protective antibody combinations against BoNT/A and BoNT/B were evidenced and for BoNT/E, the anti-LC antibody alone was found highly protective. The combination of these five antibodies as an oligoclonal antibody cocktail can be clinically and regulatorily developed while their high “humanness” predicts a high tolerance in humans.
Collapse
Affiliation(s)
| | - Arnaud Avril
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Maladies Infectieuses, Unité Biothérapies anti-Infectieuses et Immunité, 1 Place du Général Valérie André, BP73, 91220 Brétigny-sur-Orge, France.
| | - Sebastian Miethe
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Christelle Mazuet
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Katja Selby
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA), Département de Microbiologie, Unité de Biotechnologie des Anticorps et Des Toxins, Cedex 38702 La Tronche, France.
- BIOTEM, Parc d'activité Bièvre Dauphine 885, Rue Alphonse Gourju, 38140 Apprieu, France.
| | - Remi Urbain
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
- Ecdysis Pharma, Bioincubateur Eurasanté, 70 Rue du Dr Yersin, 59120 Loos, France.
| | - Alexandre Fontayne
- LFB Biotechnologies, Therapeutic Innovation Department, 59, Rue de Trévise, BP 2006-59011 Lille Cedex, France.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), a Center of the Medicines and Healthcare Products Regulatory Agency, Division of Bacteriology, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany and YUMAB GmbH, Rebenring 33, Braunschweig 38106, Germany.
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 Avenue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
36
|
Bianchi MV, Awaja F, Altankov G. Dynamic adhesive environment alters the differentiation potential of young and ageing mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:467-474. [DOI: 10.1016/j.msec.2017.04.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/27/2022]
|
37
|
Identification and characterization of a novel botulinum neurotoxin. Nat Commun 2017; 8:14130. [PMID: 28770820 PMCID: PMC5543303 DOI: 10.1038/ncomms14130] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins are known to have seven serotypes (BoNT/A-G). Here we report a new BoNT serotype, tentatively named BoNT/X, which has the lowest sequence identity with other BoNTs and is not recognized by antisera against known BoNTs. Similar to BoNT/B/D/F/G, BoNT/X cleaves vesicle-associated membrane proteins (VAMP) 1, 2 and 3, but at a novel site (Arg66-Ala67 in VAMP2). Remarkably, BoNT/X is the only toxin that also cleaves non-canonical substrates VAMP4, VAMP5 and Ykt6. To validate its activity, a small amount of full-length BoNT/X was assembled by linking two non-toxic fragments using a transpeptidase (sortase). Assembled BoNT/X cleaves VAMP2 and VAMP4 in cultured neurons and causes flaccid paralysis in mice. Thus, BoNT/X is a novel BoNT with a unique substrate profile. Its discovery posts a challenge to develop effective countermeasures, provides a novel tool for studying intracellular membrane trafficking, and presents a new potential therapeutic toxin for modulating secretions in cells.
Collapse
|
38
|
Hernández-Nava E, Cuellar P, Nava P, Chávez-Munguía B, Schnoor M, Orozco E, Betanzos A. Adherens junctions and desmosomes are damaged by Entamoeba histolytica: Participation of EhCPADH complex and EhCP112 protease. Cell Microbiol 2017; 19. [PMID: 28656597 DOI: 10.1111/cmi.12761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
Entamoeba histolytica trophozoites adhere to epithelium at the cell-cell contact and perturb tight junctions disturbing the transepithelial electrical resistance. Behind tight junctions are the adherens junctions (AJs) that reinforce them and the desmosomes (DSMs) that maintain the epithelium integrity. The damage produced to AJs and DMSs by this parasite is unknown. Here, we studied the effect of the trophozoites, the EhCPADH complex, and the EhCP112 recombinant enzyme (rEhCP112) on AJ and DSM proteins. We found that trophozoites degraded β-cat, E-cad, Dsp l/ll, and Dsg-2 with the participation of EhCPADH and EhCP112. After contact of epithelial cells with trophozoites, immunofluorescence and transmission electron microscopy assays revealed EhCPADH and rEhCP112 at the intercellular space where they colocalised with β-cat, E-cad, Dsp l/ll, and Dsg-2. Moreover, our results suggested that rEhCP112 could be internalised by caveolae and clathrin-coated vesicles. Immunoprecipitation assays showed the interaction of EhCPADH with β-cat and Dsp l/ll. Besides, in vivo assays demonstrated that rEhCP112 concentrates at the cellular borders of the mouse intestine degrading E-cad and Dsp I/II. Our research gives the first clues on the trophozoite attack to AJs and DSMs and point out the role of the EhCPADH and EhCP112 in the multifactorial event of trophozoites virulence.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Patricia Cuellar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| |
Collapse
|
39
|
Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins. Toxins (Basel) 2017; 9:toxins9060193. [PMID: 28617306 PMCID: PMC5488043 DOI: 10.3390/toxins9060193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/26/2017] [Accepted: 06/09/2017] [Indexed: 11/20/2022] Open
Abstract
Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs), toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC), alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs) to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH), and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC), but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs) which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.
Collapse
|
40
|
Nath SC, Horie M, Nagamori E, Kino-Oka M. Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate. J Biosci Bioeng 2017; 124:469-475. [PMID: 28601606 DOI: 10.1016/j.jbiosc.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 101-(2.8 ± 0.5) × 101 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 101-(6.8 ± 1.1) × 102 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 103-(3.5 ± 1.1) × 103 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masanobu Horie
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eiji Nagamori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
41
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 459] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects.
Novel BoNTs are being discovered owing to next generation sequencing, but their
biologic and pharmacological properties remain largely unknown. The molecular
structure of the large protein complexes that the toxin forms with accessory
proteins, which are included in some BoNT type A1 and B1 pharmacological
preparations, have been determined. By far the largest effort has been dedicated to
the testing and validation of BoNTs as therapeutic agents in an ever increasing
number of applications, including pain therapy. BoNT type A1 has been also exploited
in a variety of cosmetic treatments, alone or in combination with other agents, and
this specific market has reached the size of the one dedicated to the treatment of
medical syndromes. The pharmacological properties and mode of action of BoNTs have
shed light on general principles of neuronal transport and protein-protein
interactions and are stimulating basic science studies. Moreover, the wide array of
BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed
with specific properties suggest novel uses in therapeutics with increasing
disease/symptom specifity. These recent developments are reviewed here to provide an
updated picture of the biologic mechanism of action of BoNTs, of their increasing use
in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|
42
|
Connan C, Voillequin M, Chavez CV, Mazuet C, Leveque C, Vitry S, Vandewalle A, Popoff MR. Botulinum neurotoxin type B uses a distinct entry pathway mediated by CDC42 into intestinal cells versus neuronal cells. Cell Microbiol 2017; 19. [PMID: 28296078 DOI: 10.1111/cmi.12738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. BoNT type B (BoNT/B) most often induces mild forms of botulism with predominant dysautonomic symptoms. In food borne botulism and botulism by intestinal colonisation such as infant botulism, which are the most frequent naturally acquired forms of botulism, the digestive tract is the main entry route of BoNTs into the organism. We previously showed that BoNT/B translocates through mouse intestinal barrier by an endocytosis-dependent mechanism and subsequently targets neuronal cells, mainly cholinergic neurons, in the intestinal mucosa and musculosa. Here, we investigated the entry pathway of BoNT/B using fluorescent C-terminal domain of the heavy chain (HcB), which is involved in the binding to specific receptor(s) and entry process into target cells. While the combination of gangliosides GD1a /GD1b /GT1b and synaptotagmin I and to a greater extent synaptotagmin II constitutes the functional HcB receptor on NG108-15 neuronal cells, HcB only uses the gangliosides GD1a /GD1b /GT1b to efficiently bind to m-ICcl2 intestinal cells. HcB enters both cell types by a dynamin-dependent endocytosis, which is efficiently prevented by Dynasore, a dynamin inhibitor, and reaches a common early endosomal compartment labeled by early endosome antigen (EEA1). In contrast to neuronal cells, HcB uses a Cdc42-dependent pathway to enter intestinal cells. Then, HcB is transported to late endosomes in neuronal cells, whereas it exploits a nonacidified pathway from apical to basal lateral side of m-ICcl2 cells supporting a transcytotic route in epithelial intestinal cells.
Collapse
Affiliation(s)
- Chloé Connan
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Marie Voillequin
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | | | | | - Christian Leveque
- INSERM, UMR_S 1072 (UNIS), Faculté de Médecine -Secteur Nord, Aix Marseille Université, Marseille, France
| | - Sandrine Vitry
- Neuro-Immunologie Virale, Institut Pasteur, Paris, France
| | | | - Michel R Popoff
- Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
43
|
Botulinum hemagglutinin-mediated selective removal of cells deviating from the undifferentiated state in hiPSC colonies. Sci Rep 2017; 7:93. [PMID: 28273902 PMCID: PMC5428320 DOI: 10.1038/s41598-017-00083-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/31/2017] [Indexed: 01/05/2023] Open
Abstract
The undifferentiated state of human induced pluripotent stem cells (hiPSCs) depends on their cell–cell and cell–substrate adhesions. In this study, we report that exposure to botulinum hemagglutinin (HA), an E-cadherin function-blocking agent, selectively removed cells that deviated from the undifferentiated state in hiPSC colonies. After HA treatment, cell–cell adhesion was disrupted, deviated cells detached from colony centers, and dividing cells filled these spaces. Because E-cadherin-mediated adhesion was disrupted in undifferentiated cells, stress-fiber formation and focal adhesions were diminished; however, these were subsequently restored, and the cells retained expression of undifferentiated stem cell markers and their differentiation potential. In contrast, actin structures and focal adhesions were lost from deviated cells, and they subsequently died. In undifferentiated and deviated cells, the cadherin/integrin-regulator Rap1 was localized at cell–cell adhesions and in the cytoplasm, respectively. Concurrent HA and Rap1-inhibitor treatment accelerated the deviated-cell detachment and delayed the recovery of hiPSC morphology, but this effect was significantly attenuated by co-treatment with Rap1 activator. Thus, Rap1 regulated E-cadherin–integrin interplay in hiPSC colonies exhibiting deviation, while HA-mediated selective removal of these deviated cells helped maintain the undifferentiated state in the remaining hiPSCs.
Collapse
|
44
|
Connan C, Popoff MR. Uptake of Clostridial Neurotoxins into Cells and Dissemination. Curr Top Microbiol Immunol 2017; 406:39-78. [PMID: 28879524 DOI: 10.1007/82_2017_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.
Collapse
Affiliation(s)
- Chloé Connan
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
45
|
Shimizu T, Fujinaga Y, Takaya A, Ashida H, Kodama T, Hatakeyama M. [Molecular targets of bacterial effectors and toxins that underlie vulnerability to diseases]. Nihon Saikingaku Zasshi 2016; 70:319-28. [PMID: 26028212 DOI: 10.3412/jsb.70.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogenic bacteria produce a variety of effectors and/or toxins, which subvert target cell/tissue functions in the infected hosts. Some of those effectors/toxins also perturb host defense mechanism, thereby making up more complicated pathophysiological conditions. Such bacterial effectors/toxins may have been positively selected during evolution because they directly strike vulnerable points in the host system. In turn, this indicates that systemic exploration of molecules and signaling pathways targeted by bacterial effectors/toxins provides a powerful tool in digging up an unexpected Achilles' heel(s), malfunctioning of which gives rise to disorders not restricted to infectious diseases. Based on this viewpoint, this review shows molecular basis underlying host susceptibility and vulnerability to diseases through the studies of host molecules targeted by bacterial effectors and toxins.
Collapse
|
46
|
Miyashita SI, Sagane Y, Suzuki T, Matsumoto T, Niwa K, Watanabe T. "Non-Toxic" Proteins of the Botulinum Toxin Complex Exert In-vivo Toxicity. Sci Rep 2016; 6:31043. [PMID: 27507612 PMCID: PMC4978960 DOI: 10.1038/srep31043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
The botulinum neurotoxin (BoNT) causes muscle paralysis and is the most potent toxin in nature. BoNT is associated with a complex of auxiliary “Non-Toxic” proteins, which constitute a large-sized toxin complex (L-TC). However, here we report that the “Non-Toxic” complex of serotype D botulinum L-TC, when administered to rats, exerts in-vivo toxicity on small-intestinal villi. Moreover, Serotype C and D of the “Non-Toxic” complex, but not BoNT, induced vacuole-formation in a rat intestinal epithelial cell line (IEC-6), resulting in cell death. Our results suggest that the vacuole was formed in a manner distinct from the mechanism by which Helicobacter pylori vacuolating toxin (VacA) and Vibrio cholerae haemolysin induce vacuolation. We therefore hypothesise that the serotype C and D botulinum toxin complex is a functional hybrid of the neurotoxin and vacuolating toxin (VT) which arose from horizontal gene transfer from an ancestral BoNT-producing bacterium to a hypothetical VT-producing bacterium.
Collapse
Affiliation(s)
- Shin-Ichiro Miyashita
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Yoshimasa Sagane
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Tomonori Suzuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | - Koichi Niwa
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Toshihiro Watanabe
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| |
Collapse
|
47
|
Hirose S, Ono HK, Omoe K, Hu DL, Asano K, Yamamoto Y, Nakane A. Goblet cells are involved in translocation of staphylococcal enterotoxin A in the intestinal tissue of house musk shrew (Suncus murinus). J Appl Microbiol 2016; 120:781-9. [PMID: 26669704 DOI: 10.1111/jam.13029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022]
Abstract
AIMS To elucidate an entry site of staphylococcal enterotoxin A (SEA), which is a major toxin for staphylococcal foodborne poisoning, into gastrointestinal tissue using a house musk shrew model. METHODS AND RESULTS House musk shrews were per orally administered with recombinant SEA and localization of SEA in gastrointestinal tissues was investigated by immunohistochemistry and immunoelectron microscopy 30 min after administration. SEA was detected in a subset of intestinal epithelial cells and lamina propria in the villi of jejunum and ileum. This observation was also found in gastrointestinal loops. Morphological characteristics of the SEA-immunopositive cells indicated that goblet cells are an entry site of SEA.SEA entered mucus-expelling goblet cells and the induction of mucus secretion by alyll isothiocyanate resulted in an intensive SEA signal. These results suggest that mucus secretion by goblet cells is important for the translocation of SEA. CONCLUSIONS SEA can translocate across intestinal epithelia via mucus-expelling goblet cells. SIGNIFICANCE AND IMPACTS OF THE STUDY An entry site of SEA during translocation across the gastrointestinal mucosal barrier was investigated. This study was the first to demonstrate the significance of goblet cells as an entry site of this bacterial toxin.
Collapse
Affiliation(s)
- S Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - H K Ono
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - K Omoe
- Laboratory of Food Safety Science, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.,Department of Basic Veterinary Science, United Graduate School of Veterinary Medicine, Gifu University, Gifu, Japan
| | - D-L Hu
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - K Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Y Yamamoto
- Department of Basic Veterinary Science, United Graduate School of Veterinary Medicine, Gifu University, Gifu, Japan.,Laboratory of Veterinary Anatomy and Cell Biology, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - A Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
48
|
Connan C, Varela-Chavez C, Mazuet C, Molgó J, Haustant GM, Disson O, Lecuit M, Vandewalle A, Popoff MR. Translocation and dissemination to target neurons of botulinum neurotoxin type B in the mouse intestinal wall. Cell Microbiol 2015; 18:282-301. [DOI: 10.1111/cmi.12502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Chloé Connan
- Unité des Bactéries anaérobies et Toxines; Institut Pasteur; Paris 75724 France
| | | | - Christelle Mazuet
- Unité des Bactéries anaérobies et Toxines; Institut Pasteur; Paris 75724 France
| | - Jordi Molgó
- Service d'Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies; CEA, iBiTec-S; bâtiment 152, courrier N° 24 Gif-sur-Yvette 91191 France
- Institut des Neurosciences Paris-Saclay, UMR 9197; CNRS; Gif-sur-Yvette 91190 France
| | | | - Olivier Disson
- Unité de Biologie des Infections; Institut Pasteur; Paris 75724 France
| | - Marc Lecuit
- Unité de Biologie des Infections; Institut Pasteur; Paris 75724 France
| | - Alain Vandewalle
- Centre de Recherche sur l'Inflammation (CRI), UMRS 1149; Université Paris 7-Denis Diderot; site Bichat Paris 75018 France
| | - Michel R. Popoff
- Unité des Bactéries anaérobies et Toxines; Institut Pasteur; Paris 75724 France
| |
Collapse
|
49
|
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015; 107:9-24. [PMID: 26363288 DOI: 10.1016/j.toxicon.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| |
Collapse
|
50
|
Rodríguez-Fernández JL, de Lacoba MG. Plasma membrane-associated superstructure: Have we overlooked a new type of organelle in eukaryotic cells? J Theor Biol 2015; 380:346-58. [PMID: 26066286 DOI: 10.1016/j.jtbi.2015.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
A variety of intriguing plasma membrane-associated regions, including focal adhesions, adherens junctions, tight junctions, immunological synapses, neuromuscular junctions and the primary cilia, among many others, have been described in eukaryotic cells. Emphasizing their importance, alteration in their molecular structures induces or correlates with different pathologies. These regions display surface proteins connected to intracellular molecules, including cytoskeletal component, which maintain their cytoarchitecture, and signalling proteins, which regulate their organization and functions. Based on the molecular similarities and other common features observed, we suggest that, despite differences in external appearances, all these regions are just the same superstructure that appears in different locations and cells. We hypothesize that this superstructure represents an overlooked new type of organelle that we call plasma membrane-associated superstructure (PMAS). Therefore, we suggest that eukaryotic cells include classical organelles (e.g. mitochondria, Golgi and others) and also PMAS. We speculate that this new type of organelle might be an innovation associated to the emergence of eukaryotes. Finally we discuss the implications of the hypothesis proposed.
Collapse
Affiliation(s)
- José Luis Rodríguez-Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| | - Mario García de Lacoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid 28040, Spain
| |
Collapse
|