1
|
Gonzalez-Hernandez AJ, Munguba H, Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci 2024; 47:635-650. [PMID: 38862331 PMCID: PMC11324403 DOI: 10.1016/j.tins.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
In the nervous system, G protein-coupled receptors (GPCRs) control neuronal excitability, synaptic transmission, synaptic plasticity, and, ultimately, behavior through spatiotemporally precise initiation of a variety of signaling pathways. However, despite their critical importance, there is incomplete understanding of how these receptors are regulated to tune their signaling to specific neurophysiological contexts. A deeper mechanistic picture of neuromodulatory GPCR function is needed to fully decipher their biological roles and effectively harness them for the treatment of neurological and psychiatric disorders. In this review, we highlight recent progress in identifying novel modes of regulation of neuromodulatory GPCRs, including G protein- and receptor-targeting mechanisms, receptor-receptor crosstalk, and unique features that emerge in the context of chemical synapses. These emerging principles of neuromodulatory GPCR tuning raise critical questions to be tackled at the molecular, cellular, synaptic, and neural circuit levels in the future.
Collapse
Affiliation(s)
| | - Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
2
|
Boutonnet M, Carpena C, Bouquier N, Chastagnier Y, Font-Ingles J, Moutin E, Tricoire L, Chemin J, Perroy J. Voltage tunes mGlu 5 receptor function, impacting synaptic transmission. Br J Pharmacol 2024; 181:1793-1811. [PMID: 38369690 DOI: 10.1111/bph.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Voltage sensitivity is a common feature of many membrane proteins, including some G-protein coupled receptors (GPCRs). However, the functional consequences of voltage sensitivity in GPCRs are not well understood. EXPERIMENTAL APPROACH In this study, we investigated the voltage sensitivity of the post-synaptic metabotropic glutamate receptor mGlu5 and its impact on synaptic transmission. Using biosensors and electrophysiological recordings in non-excitable HEK293T cells or neurons. KEY RESULTS We found that mGlu5 receptor function is optimal at resting membrane potentials. We observed that membrane depolarization significantly reduced mGlu5 receptor activation, Gq-PLC/PKC stimulation, Ca2+ release and mGlu5 receptor-gated currents through transient receptor potential canonical, TRPC6, channels or glutamate ionotropic NMDA receptors. Notably, we report a previously unknown activity of the NMDA receptor at the resting potential of neurons, enabled by mGlu5. CONCLUSIONS AND IMPLICATIONS Our findings suggest that mGlu5 receptor activity is directly regulated by membrane voltage which may have a significant impact on synaptic processes and pathophysiological functions.
Collapse
Affiliation(s)
- Marin Boutonnet
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Carpena
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Yan Chastagnier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Joan Font-Ingles
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- SpliceBio, Barcelona, Spain
| | - Enora Moutin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ludovic Tricoire
- Neuroscience Paris Seine, Institut de biologie Paris Seine, Sorbonne universite, CNRS, INSERM, Paris, France
| | - Jean Chemin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
3
|
Stamenkovic V, Lautz JD, Harsh FM, Smith SEP. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry 2024; 29:1392-1405. [PMID: 38297084 PMCID: PMC11524049 DOI: 10.1038/s41380-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Felicia M Harsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
5
|
Hoang TH, Manahan-Vaughan D. Differentiated somatic gene expression is triggered in the dorsal hippocampus and the anterior retrosplenial cortex by hippocampal synaptic plasticity prompted by spatial content learning. Brain Struct Funct 2024; 229:639-655. [PMID: 37690045 PMCID: PMC10978647 DOI: 10.1007/s00429-023-02694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Hippocampal afferent inputs, terminating on proximal and distal subfields of the cornus ammonis (CA), enable the functional discrimination of 'what' (item identity) and 'where' (spatial location) elements of a spatial representation. This kind of information is supported by structures such as the retrosplenial cortex (RSC). Spatial content learning promotes the expression of hippocampal synaptic plasticity, particularly long-term depression (LTD). In the CA1 region, this is specifically facilitated by the learning of item-place features of a spatial environment. Gene-tagging, by means of time-locked fluorescence in situ hybridization (FISH) to detect nuclear expression of immediate early genes, can reveal neuronal populations that engage in experience-dependent information encoding. In the current study, using FISH, we examined if learning-facilitated LTD results in subfield-specific information encoding in the hippocampus and RSC. Rats engaged in novel exploration of small items during stimulation of Schaffer collateral-CA1 synapses. This resulted in LTD (> 24 h). FISH, to detect nuclear expression of Homer1a, revealed that the distal-CA1 and proximal-CA3 subcompartments were particularly activated by this event. By contrast, all elements of the proximodistal cornus ammonis-axis showed equal nuclear Homer1a expression following LTD induction solely by means of afferent stimulation. The RSC exhibited stronger nuclear Homer1a expression in response to learning-facilitated LTD, and to novel item-place experience, compared to LTD induced by sole afferent stimulation in CA1. These results show that both the cornus ammonis and RSC engage in differentiated information encoding of item-place learning that is salient enough, in its own right, to drive the expression of hippocampal LTD. These results also reveal a novel role of the RSC in item-place learning.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
6
|
Elmeseiny OSA, Müller HK. A molecular perspective on mGluR5 regulation in the antidepressant effect of ketamine. Pharmacol Res 2024; 200:107081. [PMID: 38278430 DOI: 10.1016/j.phrs.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.
Collapse
Affiliation(s)
- Ola Sobhy A Elmeseiny
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
7
|
mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function. Nat Commun 2023; 14:244. [PMID: 36646691 PMCID: PMC9842668 DOI: 10.1038/s41467-022-35680-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
The unique perisynaptic distribution of postsynaptic metabotropic glutamate receptors (mGluRs) at excitatory synapses is predicted to directly shape synaptic function, but mechanistic insight into how this distribution is regulated and impacts synaptic signaling is lacking. We used live-cell and super-resolution imaging approaches, and developed molecular tools to resolve and acutely manipulate the dynamic nanoscale distribution of mGluR5. Here we show that mGluR5 is dynamically organized in perisynaptic nanodomains that localize close to, but not in the synapse. The C-terminal domain of mGluR5 critically controlled perisynaptic confinement and prevented synaptic entry. We developed an inducible interaction system to overcome synaptic exclusion of mGluR5 and investigate the impact on synaptic function. We found that mGluR5 recruitment to the synapse acutely increased synaptic calcium responses. Altogether, we propose that transient confinement of mGluR5 in perisynaptic nanodomains allows flexible modulation of synaptic function.
Collapse
|
8
|
Baldassarri SR, Asch RH, Hillmer AT, Pietrzak RH, DellaGioia N, Esterlis I, Davis MT. Nicotine Use and Metabotropic Glutamate Receptor 5 in Individuals With Major Depressive and Posttraumatic Stress Disorders. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2023; 7:24705470231154842. [PMID: 36843572 PMCID: PMC9943964 DOI: 10.1177/24705470231154842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) dysregulation has been implicated in the pathophysiology of many psychiatric disorders, as well as nicotine use and dependence. We used positron emission tomography with [18F]FPEB to measure mGluR5 availability in vivo in 6 groups: (1) nicotine users (NUs) without other psychiatric comorbidities (n = 23); (2) comparison controls (CCs) without nicotine use or psychiatric comorbidities (n = 38); (3) major depressive disorder subjects with concurrent nicotine use (MDD-NU; n = 19); (4) MDD subjects without concurrent nicotine use (MDD-CC; n = 20); (5) posttraumatic stress disorder subjects with concurrent nicotine use (PTSD-NU; n = 17); and (6) PTSD subjects without concurrent nicotine use (PTSD-CC; n = 16). The goal of the study was to test the hypothesis that mGluR5 availability in key corticolimbic regions of interest (ROIs) is different in NU with versus without comorbid psychiatric disorders (ROI: dorsolateral prefrontal cortex [dlPFC], orbitofrontal cortex [OFC], ventromedial prefrontal cortex [vmPFC], anterior cingulate cortex [ACC], amygdala, hippocampus). We found that NU had 11%-13% lower mGluR5 availability in OFC, vmPFC, dlPFC, and ACC as compared with CC, while PTSD-NU had 9%-11% higher mGluR5 availability in OFC, dlPFC, and ACC compared with PTSD. Furthermore, relationships between mGluR5 availability and psychiatric symptoms varied as a function of psychiatric diagnosis among NUs. NU showed a negative correlation between mGluR5 and smoking cravings and urges (r's = -0.58 to -0.70, p's = 0.011 - 0.047), while PTSD-NU had the reverse relationship (r's = 0.60-0.71, p's = 0.013-0.035 in ACC, vmPFC, and dlPFC). These findings have substantial implications for our understanding of glutamate homeostasis in psychiatric subgroups and for identifying key neural phenotypes among NU. mGluR5 is a potential treatment target for precision medicine in individuals with nicotine use.
Collapse
Affiliation(s)
- Stephen R. Baldassarri
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Department of Internal Medicine, Yale University School of
Medicine, New Haven, CT, USA
- Program in Addiction Medicine, Yale University School of
Medicine, New Haven, CT, USA
| | - Ruth H. Asch
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Ansel T. Hillmer
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Radiology, and
Biomedical Imaging, New Haven, CT, USA
| | - Robert H. Pietrzak
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- VA National Center for PTSD Clinical Neurosciences Division, New
Haven, CT, USA
| | - Nicole DellaGioia
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- VA National Center for PTSD Clinical Neurosciences Division, New
Haven, CT, USA
| | - Margaret T. Davis
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Terstege DJ, Epp JR. Network Neuroscience Untethered: Brain-Wide Immediate Early Gene Expression for the Analysis of Functional Connectivity in Freely Behaving Animals. BIOLOGY 2022; 12:34. [PMID: 36671727 PMCID: PMC9855808 DOI: 10.3390/biology12010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Studying how spatially discrete neuroanatomical regions across the brain interact is critical to advancing our understanding of the brain. Traditional neuroimaging techniques have led to many important discoveries about the nature of these interactions, termed functional connectivity. However, in animal models these traditional neuroimaging techniques have generally been limited to anesthetized or head-fixed setups or examination of small subsets of neuroanatomical regions. Using the brain-wide expression density of immediate early genes (IEG), we can assess brain-wide functional connectivity underlying a wide variety of behavioural tasks in freely behaving animal models. Here, we provide an overview of the necessary steps required to perform IEG-based analyses of functional connectivity. We also outline important considerations when designing such experiments and demonstrate the implications of these considerations using an IEG-based network dataset generated for the purpose of this review.
Collapse
Affiliation(s)
| | - Jonathan R. Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
10
|
Tuduri P, Bouquier N, Girard B, Moutin E, Thouaye M, Perroy J, Bertaso F, Ster J. Modulation of Hippocampal Network Oscillation by PICK1-Dependent Cell Surface Expression of mGlu3 Receptors. J Neurosci 2022; 42:8897-8911. [PMID: 36202617 PMCID: PMC9698693 DOI: 10.1523/jneurosci.0063-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/29/2022] Open
Abstract
Metabotropic glutamate receptor Type 3 (mGlu3) controls the sleep/wake architecture, which plays a role in the glutamatergic pathophysiology of schizophrenia. Interestingly, mGlu3 receptor expression is decreased in the brain of schizophrenic patients. However, little is known about the molecular mechanisms regulating mGlu3 receptors at the cell membrane. Subcellular receptor localization is strongly dependent on protein-protein interactions. Here we show that mGlu3 interacts with PICK1 and that this scaffolding protein is important for mGlu3 surface expression and function in hippocampal primary cultures. Disruption of their interaction via an mGlu3 C-terminal mimicking peptide or an inhibitor of the PDZ domain of PICK1 altered the functional expression of mGlu3 receptors in neurons. We next investigated the impact of disrupting the mGlu3-PICK1 interaction on hippocampal theta oscillations in vitro and in vivo in WT male mice. We found a decreased frequency of theta oscillations in organotypic hippocampal slices, similar to what was previously observed in mGlu3 KO mice. In addition, hippocampal theta power was reduced during rapid eye movement sleep, non-rapid eye movement (NREM) sleep, and wake states after intraventricular administration of the mGlu3 C-terminal mimicking peptide. Targeting the mGlu3-PICK1 complex could thus be relevant to the pathophysiology of schizophrenia.SIGNIFICANCE STATEMENT Dysregulation of the glutamatergic system might play a role in the pathophysiology of schizophrenia. Metabotropic glutamate receptors Type 3 (mGlu3) have been proposed as potential targets for schizophrenia. Understanding the molecular mechanisms regulating mGlu3 receptor at the cell membrane is critical toward comprehending how their dysfunction contributes to the pathogenesis of schizophrenia. Here we describe that the binding of the signaling and scaffolding protein PICK1 to mGlu3 receptors is important for their localization and physiological functions. The identification of new proteins that associate specifically to mGlu3 receptors will advance our understanding of the regulatory mechanisms associated with their targeting and function and ultimately might provide new therapeutic strategies to counter these psychiatric conditions.
Collapse
Affiliation(s)
- Pola Tuduri
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34094, France
| | - Nathalie Bouquier
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34094, France
| | - Benoit Girard
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34094, France
| | - Enora Moutin
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34094, France
| | - Maxime Thouaye
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34094, France
| | - Julie Perroy
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34094, France
| | - Federica Bertaso
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34094, France
| | - Jeanne Ster
- Institut de Génomique Fonctionnelle, University of Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, 34094, France
| |
Collapse
|
11
|
Xu Y, Wang Y, Tong G, Li L, Cheng J, Zhang L, Xu Q, Wang L, Zhang P. Expression of SH3 and Multiple Ankyrin Repeat Domains Protein 3 in Mouse Retina. Front Cell Neurosci 2022; 16:795668. [PMID: 35401120 PMCID: PMC8990853 DOI: 10.3389/fncel.2022.795668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Synapse-associated gene mutations of SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) may lead to autism spectrum disorder (ASD). In some ASD cases, patients may also have vision disorders. However, the effects of SHANK3 in the retina are barely mentioned in the literature. In this study, we used wild-type mice to systematically map the distribution of SHANK3 expression in entire mouse retinas. Using Western blot analysis and immunofluorescence double labeling, we identified a large number of prominent cells expressing high levels of SHANK3 in the inner retina, in particular, the ganglion cell layer (GCL) and inner nucleus layer. The inner plexiform layer and outer nucleus layer were also exhibited positive SHANK3 signals. In the inner layer, GABAergic amacrine cells (ACs) labeled by glutamate decarboxylase were colocalized with SHANK3-positive cells. Dopaminergic ACs (labeled by tyrosine hydroxylase) and cholinergic ACs (labeled by choline acetyltransferase) were also found to contain SHANK3-positive signals. Additionally, most GCs (labeled by Brn3a) were also found to be SHANK3 positive. In the outer retina, bipolar cells (labeled by homeobox protein ChX10) and horizontal cells (labeled by calbindin) were SHANK3 positive. In the outer nucleus layers, the somata of blue cones (labeled by S-opsin) were weekly co-labeled with SHANK3. The inner segments of blue cones and the outer segments of red/green cones (labeled by L/M-opsin) were partially colocalized with SHANK3 and the outer segments of rods (labeled by Rho4D2) were partially SHANK3 positive too. Moreover, SHANK3-positive labeling was also observed in Müller cells (labeled by cellular retinaldehyde-binding protein). These wide expression patterns indicate that SHANK3 may play an important role in the visual signaling pathway.
Collapse
Affiliation(s)
- Yue Xu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ya’nan Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guang’an Tong
- Department of Neurology, The Affiliated Hospital of the Neurology Institute, Anhui University of Chinese Medicine, Hefei, China
| | - Lin Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qi Xu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Liecheng Wang,
| | - Pingping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Pingping Zhang,
| |
Collapse
|
12
|
Stillman M, Lautz JD, Johnson RS, MacCoss MJ, Smith SEP. Activity dependent dissociation of the Homer1 interactome. Sci Rep 2022; 12:3207. [PMID: 35217690 PMCID: PMC8881602 DOI: 10.1038/s41598-022-07179-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022] Open
Abstract
Neurons encode information by rapidly modifying synaptic protein complexes, which changes the strength of specific synaptic connections. Homer1 is abundantly expressed at glutamatergic synapses, and is known to alter its binding to metabotropic glutamate receptor 5 (mGlu5) in response to synaptic activity. However, Homer participates in many additional known interactions whose activity-dependence is unclear. Here, we used co-immunoprecipitation and label-free quantitative mass spectrometry to characterize activity-dependent interactions in the cerebral cortex of wildtype and Homer1 knockout mice. We identified a small, high-confidence protein network consisting of mGlu5, Shank2 and 3, and Homer1–3, of which only mGlu5 and Shank3 were significantly reduced following neuronal depolarization. We identified several other proteins that reduced their co-association in an activity-dependent manner, likely mediated by Shank proteins. We conclude that Homer1 dissociates from mGlu5 and Shank3 following depolarization, but our data suggest that direct Homer1 interactions in the cortex may be more limited than expected.
Collapse
Affiliation(s)
- Mason Stillman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Dartmouth-Hitchcock Medical Center Psychiatry Residency Program, Dartmouth, NH, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA. .,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Integration and Spatial Organization of Signaling by G Protein-Coupled Receptor Homo- and Heterodimers. Biomolecules 2021; 11:biom11121828. [PMID: 34944469 PMCID: PMC8698773 DOI: 10.3390/biom11121828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023] Open
Abstract
Information flow from a source to a receiver becomes informative when the recipient can process the signal into a meaningful form. Information exchange and interpretation is essential in biology and understanding how cells integrate signals from a variety of information-coding molecules into complex orchestrated responses is a major challenge for modern cell biology. In complex organisms, cell to cell communication occurs mostly through neurotransmitters and hormones, and receptors are responsible for signal recognition at the membrane level and information transduction inside the cell. The G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, with nearly 800 genes coding for these proteins. The recognition that GPCRs may physically interact with each other has led to the hypothesis that their dimeric state can provide the framework for temporal coincidence in signaling pathways. Furthermore, the formation of GPCRs higher order oligomers provides the structural basis for organizing distinct cell compartments along the plasma membrane where confined increases in second messengers may be perceived and discriminated. Here, we summarize evidence that supports these conjectures, fostering new ideas about the physiological role played by receptor homo- and hetero-oligomerization in cell biology.
Collapse
|
14
|
Membrane trafficking and positioning of mGluRs at presynaptic and postsynaptic sites of excitatory synapses. Neuropharmacology 2021; 200:108799. [PMID: 34592242 DOI: 10.1016/j.neuropharm.2021.108799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The plethora of functions of glutamate in the brain are mediated by the complementary actions of ionotropic and metabotropic glutamate receptors (mGluRs). The ionotropic glutamate receptors carry most of the fast excitatory transmission, while mGluRs modulate transmission on longer timescales by triggering multiple intracellular signaling pathways. As such, mGluRs mediate critical aspects of synaptic transmission and plasticity. Interestingly, at synapses, mGluRs operate at both sides of the cleft, and thus bidirectionally exert the effects of glutamate. At postsynaptic sites, group I mGluRs act to modulate excitability and plasticity. At presynaptic sites, group II and III mGluRs act as auto-receptors, modulating release properties in an activity-dependent manner. Thus, synaptic mGluRs are essential signal integrators that functionally couple presynaptic and postsynaptic mechanisms of transmission and plasticity. Understanding how these receptors reach the membrane and are positioned relative to the presynaptic glutamate release site are therefore important aspects of synapse biology. In this review, we will discuss the currently known mechanisms underlying the trafficking and positioning of mGluRs at and around synapses, and how these mechanisms contribute to synaptic functioning. We will highlight outstanding questions and present an outlook on how recent technological developments will move this exciting research field forward.
Collapse
|
15
|
Moutin E, Sakkaki S, Compan V, Bouquier N, Giona F, Areias J, Goyet E, Hemonnot-Girard AL, Seube V, Glasson B, Benac N, Chastagnier Y, Raynaud F, Audinat E, Groc L, Maurice T, Sala C, Verpelli C, Perroy J. Restoring glutamate receptosome dynamics at synapses rescues autism-like deficits in Shank3-deficient mice. Mol Psychiatry 2021; 26:7596-7609. [PMID: 34331007 DOI: 10.1038/s41380-021-01230-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Shank3 monogenic mutations lead to autism spectrum disorders (ASD). Shank3 is part of the glutamate receptosome that physically links ionotropic NMDA receptors to metabotropic mGlu5 receptors through interactions with scaffolding proteins PSD95-GKAP-Shank3-Homer. A main physiological function of the glutamate receptosome is to control NMDA synaptic function that is required for plasticity induction. Intact glutamate receptosome supports glutamate receptors activation and plasticity induction, while glutamate receptosome disruption blocks receptors activity, preventing the induction of subsequent plasticity. Despite possible impact on metaplasticity and cognitive behaviors, scaffold interaction dynamics and their consequences are poorly defined. Here, we used mGlu5-Homer interaction as a biosensor of glutamate receptosome integrity to report changes in synapse availability for plasticity induction. Combining BRET imaging and electrophysiology, we show that a transient neuronal depolarization inducing NMDA-dependent plasticity disrupts glutamate receptosome in a long-lasting manner at synapses and activates signaling pathways required for the expression of the initiated neuronal plasticity, such as ERK and mTOR pathways. Glutamate receptosome disruption also decreases the NMDA/AMPA ratio, freezing the sensitivity of the synapse to subsequent changes of neuronal activity. These data show the importance of a fine-tuning of protein-protein interactions within glutamate receptosome, driven by changes of neuronal activity, to control plasticity. In a mouse model of ASD, a truncated mutant form of Shank3 prevents the integrity of the glutamate receptosome. These mice display altered plasticity, anxiety-like, and stereotyped behaviors. Interestingly, repairing the integrity of glutamate receptosome and its sensitivity to the neuronal activity rescued synaptic transmission, plasticity, and some behavioral traits of Shank3∆C mice. Altogether, our findings characterize mechanisms by which Shank3 mutations cause ASD and highlight scaffold dynamics as new therapeutic target.
Collapse
Affiliation(s)
- Enora Moutin
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Sophie Sakkaki
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Compan
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Julie Areias
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Elise Goyet
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, Centre Broca Nouvelle-Aquitaine, 33076, Bordeaux, France
| | | | - Vincent Seube
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Bastien Glasson
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nathan Benac
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, Centre Broca Nouvelle-Aquitaine, 33076, Bordeaux, France
| | - Yan Chastagnier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Fabrice Raynaud
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.,PhyMedExp, Univ Montpellier, INSERM, CNRS, CHU de Montpellier, France
| | - Etienne Audinat
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Groc
- Interdisciplinary Institute for NeuroScience, CNRS, UMR 5297, Centre Broca Nouvelle-Aquitaine, 33076, Bordeaux, France
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Carlo Sala
- Cnr Neuroscience Institute, 3220129, Milan, Italy
| | | | - Julie Perroy
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
16
|
NMDA receptors elicit flux-independent intracellular Ca 2+ signals via metabotropic glutamate receptors and flux-dependent nitric oxide release in human brain microvascular endothelial cells. Cell Calcium 2021; 99:102454. [PMID: 34454368 DOI: 10.1016/j.ceca.2021.102454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022]
Abstract
The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-d-aspartate (NMDA) receptors (NMDARs) to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO and trigger neurovascular coupling (NVC). Neuronal and glial NMDARs may also operate in a flux-independent manner, although it is unclear whether their non-ionotropic mode of action is involved in NVC. Recently, endothelial NMDARs were found to trigger Ca2+-dependent NO production and induce NVC, but the underlying mode of signaling remains elusive. Herein, we report that GluN1 protein, as well as GluN2C and GluN3B transcripts and proteins, were expressed and that NMDA did not elicit inward currents, but induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in the human brain microvascular endothelial cell line, hCMEC/D3. A multidisciplinary approach, including live cell imaging, whole-cell patch-clamp recordings, pharmacological manipulation and gene targeting, revealed that NMDARs increase the [Ca2+]i in a flux-independent manner in hCMEC/D3 cells. The Ca2+ response to NMDA was triggered by endogenous Ca2+ release from the endoplasmic reticulum and the lysosomal Ca2+ stores and sustained by store-operated Ca2+ entry. Unexpectedly, pharmacological and genetic blockade of mGluR1 and mGluR5 dramatically impaired NMDARs-mediated Ca2+ signals. These findings indicate that NMDARs may increase the endothelial [Ca2+]i in a flux-independent manner via group 1 mGluRs. However, imaging of DAF-FM fluorescence revealed that NMDARs may also induce Ca2+-dependent NO release by signaling in a flux-dependent manner. These findings, therefore, shed novel light on the mechanisms whereby brain microvascular endothelium decodes glutamatergic signaling and regulates NVC.
Collapse
|
17
|
Reshetnikov VV, Bondar NP. The Role of Stress-Induced Changes of Homer1 Expression in Stress Susceptibility. BIOCHEMISTRY (MOSCOW) 2021; 86:613-626. [PMID: 34225586 DOI: 10.1134/s0006297921060018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stress negatively affects processes of synaptic plasticity and is a major risk factor of various psychopathologies such as depression and anxiety. HOMER1 is an important component of the postsynaptic density: constitutively expressed long isoforms HOMER1b and HOMER1c bind to group I metabotropic glutamate receptors MGLUR1 (GRM1) and MGLUR5 and to other effector proteins, thereby forming a postsynaptic protein scaffold. Activation of the GLUR1-HOMER1b,c and/or GLUR5-HOMER1b,c complex regulates activity of the NMDA and AMPA receptors and Ca2+ homeostasis, thus modulating various types of synaptic plasticity. Dominant negative transcript Homer1a is formed as a result of activity-induced alternative termination of transcription. Expression of this truncated isoform in response to neuronal activation impairs interactions of HOMER1b,c with adaptor proteins, triggers ligand-independent signal transduction through MGLUR1 and/or MGLUR5, leads to suppression of the AMPA- and NMDA-mediated signal transmission, and thereby launches remodeling of the postsynaptic protein scaffold and inhibits long-term potentiation. The studies on animal models confirm that the HOMER1a-dependent remodeling most likely plays an important part in the stress susceptibility, whereas HOMER1a itself can be regarded as a neuroprotector. In this review article, we consider the effects of different stressors in various animal models on HOMER1 expression as well as impact of different HOMER1 variants on human behavior as well as structural and functional characteristics of the brain.
Collapse
Affiliation(s)
- Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Bockaert J, Perroy J, Ango F. The Complex Formed by Group I Metabotropic Glutamate Receptor (mGluR) and Homer1a Plays a Central Role in Metaplasticity and Homeostatic Synaptic Scaling. J Neurosci 2021; 41:5567-5578. [PMID: 34193623 PMCID: PMC8244974 DOI: 10.1523/jneurosci.0026-21.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-coupled receptors can be constitutively activated following physical interaction with intracellular proteins. The first example described was the constitutive activation of Group I metabotropic glutamate receptors (mGluR: mGluR1,5) following their interaction with Homer1a, an activity-inducible early-termination variant of the scaffolding protein Homer that lacks dimerization capacity (Ango et al., 2001). Homer1a disrupts the links, maintained by the long form of Homer (cross-linking Homers), between mGluR1,5 and the Shank-GKAP-PSD-95-ionotropic glutamate receptor network. Two characteristics of the constitutive activation of the Group I mGluR-Homer1a complex are particularly interesting: (1) it affects a large number of synapses in which Homer1a is upregulated following enhanced, long-lasting neuronal activity; and (2) it mainly depends on Homer1a protein turnover. The constitutively active Group I mGluR-Homer1a complex is involved in the two main forms of non-Hebbian neuronal plasticity: "metaplasticity" and "homeostatic synaptic scaling," which are implicated in a large series of physiological and pathologic processes. Those include non-Hebbian plasticity observed in visual system, synapses modulated by addictive drugs (rewarded synapses), chronically overactivated synaptic networks, normal sleep, and sleep deprivation.
Collapse
Affiliation(s)
- Joël Bockaert
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Julie Perroy
- Institut de Génomique Fonctionnelle, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34094 Montpellier, France
| | - Fabrice Ango
- Institut des Neurosciences de Montpellier, Université Montpellier, Center National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 34295 Montpellier, France
| |
Collapse
|
19
|
Burada AP, Vinnakota R, Lambolez B, Tricoire L, Kumar J. Structural biology of ionotropic glutamate delta receptors and their crosstalk with metabotropic glutamate receptors. Neuropharmacology 2021; 196:108683. [PMID: 34181979 DOI: 10.1016/j.neuropharm.2021.108683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Enigmatic orphan glutamate delta receptors (GluD) are one of the four classes of the ionotropic glutamate receptors (iGluRs) that play key roles in synaptic transmission and plasticity. While members of other iGluR families viz AMPA, NMDA, and kainate receptors are gated by glutamate, the GluD receptors neither bind glutamate nor evoke ligand-induced currents upon binding of glycine and D-serine. Thus, the GluD receptors were considered to function as structural proteins that facilitate the formation, maturation, and maintenance of synapses in the hippocampus and cerebellum. Recent work has revealed that GluD receptors have extensive crosstalk with metabotropic glutamate receptors (mGlus) and are also gated by their activation. The latest development of a novel optopharamcological tool and the cryoEM structures of GluD receptors would help define the molecular and chemical basis of the GluD receptor's role in synaptic physiology. This article is part of the special Issue on "Glutamate Receptors - Orphan iGluRs".
Collapse
Affiliation(s)
- Ananth Prasad Burada
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India
| | - Rajesh Vinnakota
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India
| | - Bertrand Lambolez
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France
| | - Ludovic Tricoire
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
20
|
Imbriglio T, Verhaeghe R, Antenucci N, Maccari S, Battaglia G, Nicoletti F, Cannella M. Developmental up-regulation of NMDA receptors in the prefrontal cortex and hippocampus of mGlu5 receptor knock-out mice. Mol Brain 2021; 14:77. [PMID: 33962661 PMCID: PMC8106212 DOI: 10.1186/s13041-021-00784-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 12/02/2022] Open
Abstract
mGlu5 metabotropic glutamate receptors are highly expressed and functional in the early postnatal life, and are known to positively modulate NMDA receptor function. Here, we examined the expression of NMDA receptor subunits and interneuron-related genes in the prefrontal cortex and hippocampus of mGlu5-/- mice and wild-type littermates at three developmental time points (PND9, - 21, and - 75). We were surprised to find that expression of all NMDA receptor subunits was greatly enhanced in mGlu5-/- mice at PND21. In contrast, at PND9, expression of the GluN2B subunit was enhanced, whereas expression of GluN2A and GluN2D subunits was reduced in both regions. These modifications were transient and disappeared in the adult life (PND75). Changes in the transcripts of interneuron-related genes (encoding parvalbumin, somatostatin, vasoactive intestinal peptide, reelin, and the two isoforms of glutamate decarboxylase) were also observed in mGlu5-/- mice across postnatal development. For example, the transcript encoding parvalbumin was up-regulated in the prefrontal cortex of mGlu5-/- mice at PND9 and PND21, whereas it was significantly reduced at PND75. These findings suggest that in mGlu5-/- mice a transient overexpression of NMDA receptor subunits may compensate for the lack of the NMDA receptor partner, mGlu5. Interestingly, in mGlu5-/- mice the behavioral response to the NMDA channel blocker, MK-801, was significantly increased at PND21, and largely reduced at PND75. The impact of adaptive changes in the expression of NMDA receptor subunits should be taken into account when mGlu5-/- mice are used for developmental studies.
Collapse
Affiliation(s)
| | | | - Nico Antenucci
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Stefania Maccari
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, Lille, France
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| | | |
Collapse
|
21
|
Akkus F, Terbeck S, Haggarty CJ, Treyer V, Dietrich JJ, Hornschuh S, Hasler G. The role of the metabotropic glutamate receptor 5 in nicotine addiction. CNS Spectr 2020; 26:1-6. [PMID: 32713396 DOI: 10.1017/s1092852920001704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review summarizes the evidence for the potential involvement of metabotropic glutamate receptor 5 (mGluR5) in the development of nicotine addiction. Nicotine is consumed worldwide and is highly addictive. Previous research has extensively investigated the role of dopamine in association with reward learning and addiction, which has provided strong evidence for the involvement of dopaminergic neuronal circuitry in nicotine addiction. More recently, researchers focused on glutamatergic transmission after nicotine abuse, and its involvement in the reinforcing and rewarding effects of nicotine addiction. A number of robust preclinical and clinical studies have shown mGluR5 signaling as a facilitating mechanism of nicotine addiction and nicotine withdrawal. Specifically, clinical studies have illustrated lower cortical mGluR5 density in smokers compared to nonsmokers in the human brain. In addition, mGluR5 might selectively regulate craving and withdrawal. This suggests that mGluR5 could be a key receptor in the development of nicotine addiction and therefore clinical trials to examine the therapeutic potential of mGluR5 agents could help to contribute to reduce nicotine addiction in society.
Collapse
Affiliation(s)
- Funda Akkus
- Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
- Psychiatrie St. Gallen Nord, Wil, Switzerland
| | - Sylvia Terbeck
- School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
| | - Connor J Haggarty
- School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Janan J Dietrich
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefanie Hornschuh
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gregor Hasler
- Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
22
|
Lai TKY, Zhai D, Su P, Jiang A, Boychuk J, Liu F. The receptor-receptor interaction between mGluR1 receptor and NMDA receptor: a potential therapeutic target for protection against ischemic stroke. FASEB J 2019; 33:14423-14439. [DOI: 10.1096/fj.201900417r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Terence K. Y. Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Dongxu Zhai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Anlong Jiang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jay Boychuk
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Stansley BJ, Fisher NM, Gogliotti RG, Lindsley CW, Conn PJ, Niswender CM. Contextual Fear Extinction Induces Hippocampal Metaplasticity Mediated by Metabotropic Glutamate Receptor 5. Cereb Cortex 2019; 28:4291-4304. [PMID: 29136107 DOI: 10.1093/cercor/bhx282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Dysregulated fear memory can lead to a broad spectrum of anxiety disorders. The brain systems underlying fear memory are manifold, with the hippocampus being prominently involved by housing fear-related spatial memories as engrams, which are created and stored through neural changes such as synaptic plasticity. Although metabotropic glutamate (mGlu) receptors contribute significantly to both fear behavior and hippocampal synaptic plasticity, the relationship between these two phenomena has not been fully elucidated. Here, we report that contextual fear extinction induces a novel form of metaplasticity mediated by mGlu5 at the hippocampal SC-CA1 synapse. Further, blockade of mGlu5 prevents both contextual fear extinction and expression of this metaplasticity. This form of metaplasticity was absent in a mouse model of MECP2-duplication syndrome, corresponding to a complete deficit in extinction learning. These findings suggest that mGlu5-dependent metaplasticity within the hippocampus may play a critical role in extinction of contextual fear.
Collapse
Affiliation(s)
- Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Dal Prà I, Armato U, Chiarini A. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Front Pharmacol 2019; 10:1282. [PMID: 31719824 PMCID: PMC6826475 DOI: 10.3389/fphar.2019.01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides (Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, and progressive death of neurons and oligodendrocytes. Mounting evidences suggest that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that dysfunction in AD. This review updates the available knowledge about the roles of GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/LOAD onset and progression, taking stock of their respective mechanisms of action and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders a pathological signaling that crucially promotes the surplus synthesis and release of Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. Altogether these effects progressively kill human cortical neurons in vitro and likely also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic benefits in AD patients. Further basic and clinical investigations on these hot topics are needed taking always heed that activation of the several brain family C GPCRs may elicit divergent upshots according to the models studied.
Collapse
Affiliation(s)
- Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| | - Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical School, Verona, Italy
| |
Collapse
|
25
|
Holz A, Mülsch F, Schwarz MK, Hollmann M, Döbrössy MD, Coenen VA, Bartos M, Normann C, Biber K, van Calker D, Serchov T. Enhanced mGlu5 Signaling in Excitatory Neurons Promotes Rapid Antidepressant Effects via AMPA Receptor Activation. Neuron 2019; 104:338-352.e7. [DOI: 10.1016/j.neuron.2019.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/14/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
|
26
|
Chokshi V, Gao M, Grier BD, Owens A, Wang H, Worley PF, Lee HK. Input-Specific Metaplasticity in the Visual Cortex Requires Homer1a-Mediated mGluR5 Signaling. Neuron 2019; 104:736-748.e6. [PMID: 31563294 DOI: 10.1016/j.neuron.2019.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
Effective sensory processing depends on sensory experience-dependent metaplasticity, which allows homeostatic maintenance of neural network activity and preserves feature selectivity. Following a strong increase in sensory drive, plasticity mechanisms that decrease the strength of excitatory synapses are preferentially engaged to maintain stability in neural networks. Such adaptation has been demonstrated in various model systems, including mouse primary visual cortex (V1), where excitatory synapses on layer 2/3 (L2/3) neurons undergo rapid reduction in strength when visually deprived mice are reexposed to light. Here, we report that this form of plasticity is specific to intracortical inputs to V1 L2/3 neurons and depends on the activity of NMDA receptors (NMDARs) and group I metabotropic glutamate receptor 5 (mGluR5). Furthermore, we found that expression of the immediate early gene (IEG) Homer1a (H1a) and its subsequent interaction with mGluR5s are necessary for this input-specific metaplasticity.
Collapse
Affiliation(s)
- Varun Chokshi
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ming Gao
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryce D Grier
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Owens
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Wang
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
28
|
Clifton NE, Trent S, Thomas KL, Hall J. Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity. MOLECULAR NEUROPSYCHIATRY 2019; 5:147-161. [PMID: 31312636 DOI: 10.1159/000500267] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Jin DZ, Mao LM, Wang JQ. The Role of Extracellular Signal-Regulated Kinases (ERK) in the Regulation of mGlu5 Receptors in Neurons. J Mol Neurosci 2018; 66:629-638. [PMID: 30430306 PMCID: PMC6312115 DOI: 10.1007/s12031-018-1193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
The metabotropic glutamate (mGlu) receptor 5 is a G protein-coupled receptor and is densely expressed in the mammalian brain. Like other glutamate receptors, mGlu5 receptors are tightly regulated by posttranslational modifications such as phosphorylation, although underlying mechanisms are incompletely investigated. In this study, we investigated the role of a prime kinase, extracellular signal-regulated kinase 1 (ERK1), in the phosphorylation and regulation of mGlu5 receptors in vitro and in striatal neurons. We found that recombinant ERK1 proteins directly bound to the C-terminal tail (CT) of mGlu5 receptors in vitro. Endogenous ERK1 also interacted with mGlu5 receptor proteins in adult rat striatal neurons in vivo. The kinase showed the ability to phosphorylate mGlu5 receptors. A serine residue in the distal region of mGlu5 CT was found to be a primary phosphorylation site sensitive to ERK1. In functional studies, we found that pharmacological inhibition of ERK with an inhibitor U0126 reduced the efficacy of mGlu5 receptors in stimulating production of cytoplasmic inositol-1,4,5-triphosphate, a major downstream conventional signaling event, in striatal neurons under normal conditions. These results identify mGlu5 as a new biochemical substrate of ERK1. The kinase can interact with and phosphorylate an intracellular domain of mGlu5 receptors in striatal neurons and thereby control its signaling efficacy.
Collapse
Affiliation(s)
- Dao-Zhong Jin
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| | - Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
30
|
O'Neill N, McLaughlin C, Komiyama N, Sylantyev S. Biphasic Modulation of NMDA Receptor Function by Metabotropic Glutamate Receptors. J Neurosci 2018; 38:9840-9855. [PMID: 30282730 PMCID: PMC6234301 DOI: 10.1523/jneurosci.1000-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/02/2018] [Accepted: 09/09/2018] [Indexed: 01/14/2023] Open
Abstract
A recently reported rapid potentiation of NMDA receptors by Group I metabotropic glutamate receptors (mGluRIs) via a Homer protein link is distinct from the classical, relatively slow inhibitory G-protein-associated signaling triggered by mGluRI activation. The relationship between these two mechanisms remains unknown. Here, we focused on the mGluRI-dependent modulation of NMDAR response in hippocampal dentate gyrus granule cells and cerebellar granule cells of C57BL6-J mice and found that these two contrasting mechanisms overlap competitively on the time scale from hundreds of milliseconds to seconds, with the net effect depending on the cell type. At a shorter time interval (units of millisecond), the Homer-mediated signal from mGluRIs prevails, causing upregulation of NMDAR function, in both dentate gyrus granule cells and cerebellar granule cells. Our results shed light on the possible mechanisms of anti-schizophrenia drugs that disrupt Homer-containing protein link.SIGNIFICANCE STATEMENT Here we study modulation of NMDA receptors triggered by activation of metabotropic glutamate receptors Group I via two distinct pathways: classical G-protein signaling system and newly discovered high-speed modulatory mechanism associated with Homer-protein-containing direct molecular link. We found that these two contrasting mechanisms overlap competitively on the time scale from hundreds of milliseconds to seconds, with the net effect depending on the cell type. We have also found that both crosstalk mechanisms cause significant changes in synaptic strength and plasticity. Our results resolve an apparent discrepancy between earlier studies that demonstrated contradictive effects of Homer-containing protein link disruption on NMDA receptor signaling. On top of that, our data provide a plausible explanation for unclear action mechanisms of anti-schizophrenia drugs.
Collapse
Affiliation(s)
- Nathanael O'Neill
- Centre for Clinical Brain Sciences, University of Edinburgh, EH16 4SB, Edinburgh, United Kingdom
| | - Catherine McLaughlin
- Centre for Clinical Brain Sciences, University of Edinburgh, EH16 4SB, Edinburgh, United Kingdom
| | - Noboru Komiyama
- Centre for Clinical Brain Sciences, University of Edinburgh, EH16 4SB, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, EH16 4SB, Edinburgh, United Kingdom, and
| | - Sergiy Sylantyev
- Centre for Clinical Brain Sciences, University of Edinburgh, EH16 4SB, Edinburgh, United Kingdom,
- Department for Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
31
|
Yu H, Zhong J, Niu B, Zhong Q, Xiao J, Xie J, Lin M, Zhou Z, Xu J, Wang H. Inhibition of Phosphodiesterase 4 by FCPR03 Alleviates Chronic Unpredictable Mild Stress-Induced Depressive-Like Behaviors and Prevents Dendritic Spine Loss in Mice Hippocampi. Int J Neuropsychopharmacol 2018; 22:143-156. [PMID: 30407503 PMCID: PMC6377503 DOI: 10.1093/ijnp/pyy092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/03/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Phosphodiesterase 4 is a promising target for developing novel antidepressants. However, prototype phosphodiesterase 4 inhibitors show severe side effects, including nausea and vomiting. N-Isopropyl-3-(cyclopropylmethoxy)-4-difluoromethoxy benzamide (FCPR03) is a novel phosphodiesterase 4 inhibitor with little emetic potential. In the present study, we investigated the inhibitory effect of FCPR03 on chronic unpredictable mild stress-induced, depressive-like behaviors in mice and explored the underlying mechanisms. METHODS The depression model of mice was established by chronic unpredictable mild stress. Forced swim test, tail suspension test, and sucrose preference test were used to assess depressive-like behaviors. Golgi-staining was utilized to analyze dendritic morphology and spine density. The level of cAMP was measured by enzyme-linked immnosorbent assay assay. Western blot was used to evaluate protein levels of phosphorylated cAMP-response element binding protein, protein kinase B, glycogen synthase kinase-3β, and brain derived neurotrophic factor in both hippocampus and prefrontal cortex. Postsynaptic density protein 95 and synapsin 1 were also detected by western blot in the hippocampi. RESULTS Treatment with FCPR03 (0.5-1.0 mg/kg, i.p.) increased consumption of sucrose in the sucrose preference test in mice exposed to chronic unpredictable mild stress. FCPR03 shortened the immobility time in forced swim test and tail suspension test without affecting locomotor activity. Furthermore, chronic unpredictable mild stress decreased the dendritic spine density and dendritic length in the hippocampus. This change was accompanied by decreased expression of postsynaptic density protein 95 and synapsin 1. Interestingly, FCPR03 prevented dendritic spine loss and increased synaptic protein levels. Moreover, the levels of cAMP, phosphorylated cAMP-response element binding protein, and brain derived neurotrophic factor were elevated in chronic unpredictable mild stress-challenged mice after treatment with FCPR03. In addition, FCPR03 also enhanced the phosphorylation of both protein kinase B and glycogen synthase kinase-3β in mice exposed to chronic unpredictable mild stress. CONCLUSION The present study suggests that FCPR03 could prevent both depressive-like behaviors and spine loss induced by chronic unpredictable mild stress in the mice hippocampi.
Collapse
Affiliation(s)
- Hui Yu
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Jiahong Zhong
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Bo Niu
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Qiuping Zhong
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Jiao Xiao
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Jinfeng Xie
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Manna Lin
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China
| | - Zhongzhen Zhou
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University, Guangzhou, China,School of Pharmaceutical Sciences, and Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University, Guangzhou, China,School of Pharmaceutical Sciences, and Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- Department of Neuropharmacology and Drug DiscoverySouthern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University, Guangzhou, China,School of Pharmaceutical Sciences, and Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China,Correspondence: Haitao Wang, PhD, Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China ()
| |
Collapse
|
32
|
Oligomerization of a G protein-coupled receptor in neurons controlled by its structural dynamics. Sci Rep 2018; 8:10414. [PMID: 29991736 PMCID: PMC6039492 DOI: 10.1038/s41598-018-28682-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
G protein coupled receptors (GPCRs) play essential roles in intercellular communication. Although reported two decades ago, the assembly of GPCRs into dimer and larger oligomers in their native environment is still a matter of intense debate. Here, using number and brightness analysis of fluorescently labeled receptors in cultured hippocampal neurons, we confirm that the metabotropic glutamate receptor type 2 (mGlu2) is a homodimer at expression levels in the physiological range, while heterodimeric GABAB receptors form larger complexes. Surprisingly, we observed the formation of larger mGlu2 oligomers upon both activation and inhibition of the receptor. Stabilizing the receptor in its inactive conformation using biochemical constraints also led to the observation of oligomers. Following our recent observation that mGlu receptors are in constant and rapid equilibrium between several states under basal conditions, we propose that this structural heterogeneity limits receptor oligomerization. Such assemblies are expected to stabilize either the active or the inactive state of the receptor.
Collapse
|
33
|
Suh YH, Chang K, Roche KW. Metabotropic glutamate receptor trafficking. Mol Cell Neurosci 2018; 91:10-24. [PMID: 29604330 DOI: 10.1016/j.mcn.2018.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/14/2023] Open
Abstract
The metabotropic glutamate receptors (mGlu receptors) are G protein-coupled receptors that bind to the excitatory neurotransmitter glutamate and are important in the modulation of neuronal excitability, synaptic transmission, and plasticity in the central nervous system. Trafficking of mGlu receptors in and out of the synaptic plasma membrane is a fundamental mechanism modulating excitatory synaptic function through regulation of receptor abundance, desensitization, and signaling profiles. In this review, we cover the regulatory mechanisms determining surface expression and endocytosis of mGlu receptors, with particular focus on post-translational modifications and receptor-protein interactions. The literature we review broadens our insight into the precise events defining the expression of functional mGlu receptors at synapses, and will likely contribute to the successful development of novel therapeutic targets for a variety of developmental, neurological, and psychiatric disorders.
Collapse
Affiliation(s)
- Young Ho Suh
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Kai Chang
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Chastagnier Y, Moutin E, Hemonnot AL, Perroy J. Image Processing for Bioluminescence Resonance Energy Transfer Measurement- BRET-Analyzer. Front Comput Neurosci 2018; 11:118. [PMID: 29375357 PMCID: PMC5767221 DOI: 10.3389/fncom.2017.00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
A growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET) Imaging. Accurate and reproducible analysis of ratiometric measurements has thus become mandatory to interpret quantitative imaging. In order to fulfill this necessity, we have developed an open source toolset for Fiji—BRET-Analyzer—allowing a systematic analysis, from image processing to ratio quantification. We share this open source solution and a step-by-step tutorial at https://github.com/ychastagnier/BRET-Analyzer. This toolset proposes (1) image background subtraction, (2) image alignment over time, (3) a composite thresholding method of the image used as the denominator of the ratio to refine the precise limits of the sample, (4) pixel by pixel division of the images and efficient distribution of the ratio intensity on a pseudocolor scale, and (5) quantification of the ratio mean intensity and standard variation among pixels in chosen areas. In addition to systematize the analysis process, we show that the BRET-Analyzer allows proper reconstitution and quantification of the ratiometric image in time and space, even from heterogeneous subcellular volumes. Indeed, analyzing twice the same images, we demonstrate that compared to standard analysis BRET-Analyzer precisely define the luminescent specimen limits, enlightening proficient strengths from small and big ensembles over time. For example, we followed and quantified, in live, scaffold proteins interaction dynamics in neuronal sub-cellular compartments including dendritic spines, for half an hour. In conclusion, BRET-Analyzer provides a complete, versatile and efficient toolset for automated reproducible and meaningful image ratio analysis.
Collapse
Affiliation(s)
- Yan Chastagnier
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé Et de la Recherche Médicale, U1191, Montpellier, France.,Universités de Montpellier, UMR-5203, Montpellier, France
| | - Enora Moutin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé Et de la Recherche Médicale, U1191, Montpellier, France.,Universités de Montpellier, UMR-5203, Montpellier, France
| | - Anne-Laure Hemonnot
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé Et de la Recherche Médicale, U1191, Montpellier, France.,Universités de Montpellier, UMR-5203, Montpellier, France
| | - Julie Perroy
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,Institut National de la Santé Et de la Recherche Médicale, U1191, Montpellier, France.,Universités de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
35
|
Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat Commun 2017; 8:1103. [PMID: 29062097 PMCID: PMC5653653 DOI: 10.1038/s41467-017-01191-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/24/2017] [Indexed: 12/20/2022] Open
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-activated long-term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics. Dysfunction of mGluR5 has been implicated in Fragile X syndrome. Here, using a single-molecule tracking technique, the authors found an increased lateral mobility of mGluR5 at the synaptic site in Fmr1 KO hippocampal neurons, leading to abnormal NMDAR-mediated synaptic plasticity and cognitive deficits.
Collapse
|
36
|
Maksymetz J, Moran SP, Conn PJ. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 2017; 10:15. [PMID: 28446243 PMCID: PMC5405554 DOI: 10.1186/s13041-017-0293-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Support for the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has led to increasing focus on restoring proper glutamatergic signaling as an approach for treatment of this devastating disease. The ability of metabotropic glutamate (mGlu) receptors to modulate glutamatergic neurotransmission has thus attracted considerable attention for the development of novel antipsychotics. Consisting of eight subtypes classified into three groups based on sequence homology, signal transduction, and pharmacology, the mGlu receptors provide a wide range of targets to modulate NMDAR function as well as glutamate release. Recently, allosteric modulators of mGlu receptors have been developed that allow unprecedented selectivity among subtypes, not just groups, facilitating the investigation of the effects of subtype-specific modulation. In preclinical animal models, positive allosteric modulators (PAMs) of the group I mGlu receptor mGlu5 have efficacy across all three symptom domains of schizophrenia (positive, negative, and cognitive). The discovery and development of mGlu5 PAMs that display unique signal bias suggests that efficacy can be retained while avoiding the neurotoxic effects of earlier compounds. Interestingly, mGlu1 negative allosteric modulators (NAMs) appear efficacious in positive symptom models of the disease but are still in early preclinical development. While selective group II mGlu receptor (mGlu2/3) agonists have reached clinical trials but were unsuccessful, specific mGlu2 or mGlu3 receptor targeting still hold great promise. Genetic studies implicated mGlu2 in the antipsychotic effects of group II agonists and mGlu2 PAMs have since entered into clinical trials. Additionally, mGlu3 appears to play an important role in cognition, may confer neuroprotective effects, and thus is a promising target to alleviate cognitive deficits in schizophrenia. Although group III mGlu receptors (mGlu4/6/7/8) have attracted less attention, mGlu4 agonists and PAMs appear to have efficacy across all three symptoms domains in preclinical models. The recent discovery of heterodimers comprising mGlu2 and mGlu4 may explain the efficacy of mGlu4 selective compounds but this remains to be determined. Taken together, compounds targeting mGlu receptors, specifically subtype-selective allosteric modulators, provide a compelling alternative approach to fill the unmet clinical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
| | - Sean P. Moran
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
37
|
Buscemi L, Ginet V, Lopatar J, Montana V, Pucci L, Spagnuolo P, Zehnder T, Grubišić V, Truttman A, Sala C, Hirt L, Parpura V, Puyal J, Bezzi P. Homer1 Scaffold Proteins Govern Ca2+ Dynamics in Normal and Reactive Astrocytes. Cereb Cortex 2017; 27:2365-2384. [PMID: 27075036 PMCID: PMC5963825 DOI: 10.1093/cercor/bhw078] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity. We show that the structural and functional significance of the Homer1b/c-mGlu5 interaction is to relocate endoplasmic reticulum (ER) to the proximity of the plasma membrane and to optimize Ca2+ signaling and glutamate release. We also show that in reactive astrocytes the short dominant-negative splice variant Homer1a is upregulated. Homer1a, by precluding the mGlu5-ER interaction decreases the intensity of Ca2+ signaling thus limiting the intensity and the duration of glutamate release by astrocytes. Hindering upregulation of Homer1a with a local injection of short interfering RNA in vivo restores mGlu5-mediated Ca2+ signaling and glutamate release and sensitizes astrocytes to apoptosis. We propose that Homer1a may represent one of the cellular mechanisms by which inflammatory astrocytic reactions are beneficial for limiting brain injury.
Collapse
Affiliation(s)
- Lara Buscemi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jan Lopatar
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vedrana Montana
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luca Pucci
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Paola Spagnuolo
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Tamara Zehnder
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| | - Vladimir Grubišić
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita Truttman
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Carlo Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Lorenz Hirt
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
- Division of Neonatology, Department of Paediatrics and Paediatric Surgery, University Hospital Centre and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH1005Lausanne, Switzerland
| |
Collapse
|
38
|
Olmo IG, Ferreira-Vieira TH, Ribeiro FM. Dissecting the Signaling Pathways Involved in the Crosstalk between Metabotropic Glutamate 5 and Cannabinoid Type 1 Receptors. Mol Pharmacol 2016; 90:609-619. [PMID: 27338080 DOI: 10.1124/mol.116.104372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The metabotropic glutamate 5 receptor and the cannabinoid type 1 receptor are G protein-coupled receptors that are widely expressed in the central nervous system. Metabotropic glutamate 5 receptors, present at the postsynaptic site, are coupled to Gαq/11 proteins and display an excitatory response upon activation, whereas the cannabinoid type 1 receptor, mainly present at presynaptic terminals, is coupled to the Gi/o protein and triggers an inhibitory response. Recent studies suggest that the glutamatergic and endocannabinoid systems exhibit a functional interaction to modulate several neural processes. In this review, we discuss possible mechanisms involved in this crosstalk and its relationship with physiologic and pathologic conditions, including nociception, addiction, and fragile X syndrome.
Collapse
Affiliation(s)
- Isabella G Olmo
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Talita H Ferreira-Vieira
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M Ribeiro
- Department of Biochemistry and Immunology, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
39
|
Jones OD. Do group I metabotropic glutamate receptors mediate LTD? Neurobiol Learn Mem 2016; 138:85-97. [PMID: 27545442 DOI: 10.1016/j.nlm.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/31/2023]
Abstract
Synapses undergo significant structural and functional reorganization in response to varying patterns of stimulation. These forms of plasticity are considered fundamental to cognition and neuronal homeostasis. An increasing number of reports highlight the importance of activity-dependent synaptic strengthening (long term potentiation: LTP) for learning. However, the functional significance of activity-dependent weakening of synapses (long term depression: LTD) remains relatively poorly understood. One form of synaptic weakening, induced by group I metabotropic glutamate receptors (mGluRs), has received significant attention from a mechanistic point of view and because of its augmentation in a murine model of Fragile X Syndrome. Yet, studies of this form of plasticity often yield confusing, contradictory results. These conflicting findings are likely attributable to the bulk stimulation and recording techniques often used to study synaptic plasticity (typically involving evoked extracellular recordings, which represent the summed activity of many synapses). Such studies inherently blur the identity of the synapses undergoing change, thus giving the illusion that synapses per se are being modified when in fact this may only be true of a specific subset of synapses. Indeed, studies employing minimal synaptic activation paint a fundamentally different picture of what is commonly called "mGluR-LTD". Here, I review the evidence in favour of group I mGluRs as mediators of various forms of synaptic downregulation and attempt to explain discrepancies in the literature. I argue that, while multiple forms of synaptic weakening may be triggered by these receptors, the canonical form of group I mGluR-mediated depression, mGluR-LTD, is in fact not a depression of basal synaptic responses. Rather, it is a reversal of established LTP and thus a form of depotentiation. Far from being arbitrary, this distinction has significant implications for the role of group I mGluRs in cognition, both in the healthy brain and in pathological conditions. Further, the differential actions of group I mGluRs at naïve and potentiated synapses suggest these receptors signal in a state-dependent manner to regulate various stages of the learning process.
Collapse
Affiliation(s)
- Owen D Jones
- Department of Psychology, Brain Health Research Centre & Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
40
|
Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice. J Neurosci 2016; 36:2131-47. [PMID: 26888925 DOI: 10.1523/jneurosci.2921-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and behavioral symptoms observed in the fragile X mouse. This work provides strong evidence that Homer-mGlu5 binding contributes to symptoms associated with neurodevelopmental disorders.
Collapse
|
41
|
Bruno V, Caraci F, Copani A, Matrisciano F, Nicoletti F, Battaglia G. The impact of metabotropic glutamate receptors into active neurodegenerative processes: A "dark side" in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology 2016; 115:180-192. [PMID: 27140693 DOI: 10.1016/j.neuropharm.2016.04.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Metabotropic glutamate (mGlu) receptor ligands are under clinical development for the treatment of CNS disorders with high social and economic burden, such as schizophrenia, major depressive disorder (MDD), and Parkinson's disease (PD), and are promising drug candidates for the treatment of Alzheimer's disease (AD). So far, clinical studies have shown symptomatic effects of mGlu receptor ligands, but it is unknown whether these drugs act as disease modifiers or, at the opposite end, they accelerate disease progression by enhancing neurodegeneration. This is a fundamental issue in the treatment of PD and AD, and is also an emerging theme in the treatment of schizophrenia and MDD, in which neurodegeneration is also present and contribute to disease progression. Moving from in vitro data and preclinical studies, we discuss the potential impact of drugs targeting mGlu2, mGlu3, mGlu4 and mGlu5 receptor ligands on active neurodegeneration associated with AD, PD, schizophrenia, and MDD. We wish to highlight that our final comments on the best drug candidates are not influenced by commercial interests or by previous or ongoing collaborations with drug companies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Valeria Bruno
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; I.R.C.C.S. Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; National Research Council, Institute of Biostructure and Bioimaging (IBB-CNR), 95126 Catania, Italy
| | - Francesco Matrisciano
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy
| | | |
Collapse
|
42
|
Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIα and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell Rep 2015; 13:2297-311. [PMID: 26670047 DOI: 10.1016/j.celrep.2015.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/09/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022] Open
Abstract
Abnormal metabotropic glutamate receptor 5 (mGluR5) function, as a result of disrupted scaffolding with its binding partner Homer, contributes to the pathophysiology of fragile X syndrome, a common inherited form of intellectual disability and autism caused by mutations in Fmr1. How loss of Fmr1 disrupts mGluR5-Homer scaffolds is unknown, and little is known about the dynamic regulation of mGluR5-Homer scaffolds in wild-type neurons. Here, we demonstrate that brief (minutes-long) elevations in neural activity cause CaMKIIα-mediated phosphorylation of long Homer proteins and dissociation from mGluR5 at synapses. In Fmr1 knockout (KO) cortex, Homers are hyperphosphorylated as a result of elevated CaMKIIα protein. Genetic or pharmacological inhibition of CaMKIIα or replacement of Homers with dephosphomimetics restores mGluR5-Homer scaffolds and multiple Fmr1 KO phenotypes, including circuit hyperexcitability and/or seizures. This work links translational control of an FMRP target mRNA, CaMKIIα, to the molecular-, cellular-, and circuit-level brain dysfunction in a complex neurodevelopmental disorder.
Collapse
Affiliation(s)
- Weirui Guo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Laura Ceolin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Katie A Collins
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie Perroy
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France; INSERM, U1191, 34000 Montpellier, France; Universites de Montpellier 1 & 2, UMR-5203, 34000 Montpellier, France
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
43
|
Scarselli M, Annibale P, McCormick PJ, Kolachalam S, Aringhieri S, Radenovic A, Corsini GU, Maggio R. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J 2015; 283:1197-217. [PMID: 26509747 DOI: 10.1111/febs.13577] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022]
Abstract
The introduction of super-resolution fluorescence microscopy has allowed the visualization of single proteins in their biological environment. Recently, these techniques have been applied to determine the organization of class A G-protein-coupled receptors (GPCRs), and to determine whether they exist as monomers, dimers and/or higher-order oligomers. On this subject, this review highlights recent evidence from photoactivated localization microscopy (PALM), which allows the visualization of single molecules in dense samples, and single-molecule tracking (SMT), which determines how GPCRs move and interact in living cells in the presence of different ligands. PALM has demonstrated that GPCR oligomerization depends on the receptor subtype, the cell type, the actin cytoskeleton, and other proteins. Conversely, SMT has revealed the transient dynamics of dimer formation, whereby receptors show a monomer-dimer equilibrium characterized by rapid association and dissociation. At steady state, depending on the subtype, approximately 30-50% of receptors are part of dimeric complexes. Notably, the existence of many GPCR dimers/oligomers is also supported by well-known techniques, such as resonance energy transfer methodologies, and by approaches that exploit fluorescence fluctuations, such as fluorescence correlation spectroscopy (FCS). Future research using single-molecule methods will deepen our knowledge related to the function and druggability of homo-oligomers and hetero-oligomers.
Collapse
Affiliation(s)
- Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Paolo Annibale
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | | | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| |
Collapse
|
44
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
45
|
Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron 2015; 87:549-62. [PMID: 26247862 DOI: 10.1016/j.neuron.2015.07.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
Abstract
Major depressive disorder is among the most commonly diagnosed disabling mental diseases. Several non-pharmacological treatments of depression upregulate adenosine concentration and/or adenosine A1 receptors (A1R) in the brain. To test whether enhanced A1R signaling mediates antidepressant effects, we generated a transgenic mouse with enhanced doxycycline-regulated A1R expression, specifically in forebrain neurons. Upregulating A1R led to pronounced acute and chronic resilience toward depressive-like behavior in various tests. Conversely, A1R knockout mice displayed an increased depressive-like behavior and were resistant to the antidepressant effects of sleep deprivation (SD). Various antidepressant treatments increase homer1a expression in medial prefrontal cortex (mPFC). Specific siRNA knockdown of homer1a in mPFC enhanced depressive-like behavior and prevented the antidepressant effects of A1R upregulation, SD, imipramine, and ketamine treatment. In contrast, viral overexpression of homer1a in the mPFC had antidepressant effects. Thus, increased expression of homer1a is a final common pathway mediating the antidepressant effects of different antidepressant treatments.
Collapse
|
46
|
Wu J, Pipathsouk A, Keizer-Gunnink A, Fusetti F, Alkema W, Liu S, Altschuler S, Wu L, Kortholt A, Weiner OD. Homer3 regulates the establishment of neutrophil polarity. Mol Biol Cell 2015; 26:1629-39. [PMID: 25739453 PMCID: PMC4436775 DOI: 10.1091/mbc.e14-07-1197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/10/2023] Open
Abstract
Most chemoattractants rely on activation of the heterotrimeric G-protein Gαi to regulate directional cell migration, but few links from Gαi to chemotactic effectors are known. Through affinity chromatography using primary neutrophil lysate, we identify Homer3 as a novel Gαi2-binding protein. RNA interference-mediated knockdown of Homer3 in neutrophil-like HL-60 cells impairs chemotaxis and the establishment of polarity of phosphatidylinositol 3,4,5-triphosphate (PIP3) and the actin cytoskeleton, as well as the persistence of the WAVE2 complex. Most previously characterized proteins that are required for cell polarity are needed for actin assembly or activation of core chemotactic effectors such as the Rac GTPase. In contrast, Homer3-knockdown cells show normal magnitude and kinetics of chemoattractant-induced activation of phosphoinositide 3-kinase and Rac effectors. Chemoattractant-stimulated Homer3-knockdown cells also exhibit a normal initial magnitude of actin polymerization but fail to polarize actin assembly and intracellular PIP3 and are defective in the initiation of cell polarity and motility. Our data suggest that Homer3 acts as a scaffold that spatially organizes actin assembly to support neutrophil polarity and motility downstream of GPCR activation.
Collapse
Affiliation(s)
- Julie Wu
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Anne Pipathsouk
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - A Keizer-Gunnink
- Department of Cell Biochemistry, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - F Fusetti
- Department of Biochemistry and Netherlands Proteomics Centre, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - W Alkema
- NIZO Food Research, 6718 ZB Ede, Netherlands Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, 6525 GA Nijmegen, Netherlands
| | - Shanshan Liu
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Steven Altschuler
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lani Wu
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Arjan Kortholt
- Department of Cell Biochemistry, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
47
|
Mansouri M, Kasugai Y, Fukazawa Y, Bertaso F, Raynaud F, Perroy J, Fagni L, Kaufmann WA, Watanabe M, Shigemoto R, Ferraguti F. Distinct subsynaptic localization of type 1 metabotropic glutamate receptors at glutamatergic and
GABA
ergic synapses in the rodent cerebellar cortex. Eur J Neurosci 2014; 41:157-67. [DOI: 10.1111/ejn.12779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/26/2014] [Accepted: 10/05/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Mahnaz Mansouri
- Department of Pharmacology Innsbruck Medical University Innsbruck Austria
| | - Yu Kasugai
- Department of Pharmacology Innsbruck Medical University Innsbruck Austria
| | - Yugo Fukazawa
- Division of Cerebral Structure National Institute for Physiological Sciences Okazaki Japan
| | - Federica Bertaso
- CNRS UMR‐5203 Institut de Génomique Fonctionnelle Montpellier France
- INSERM U661 Montpellier France
- Universités de Montpellier 1 & 2 UMR‐5203 Montpellier France
| | - Fabrice Raynaud
- CNRS UMR‐5203 Institut de Génomique Fonctionnelle Montpellier France
- INSERM U661 Montpellier France
- Universités de Montpellier 1 & 2 UMR‐5203 Montpellier France
| | - Julie Perroy
- CNRS UMR‐5203 Institut de Génomique Fonctionnelle Montpellier France
- INSERM U661 Montpellier France
- Universités de Montpellier 1 & 2 UMR‐5203 Montpellier France
| | - Laurent Fagni
- CNRS UMR‐5203 Institut de Génomique Fonctionnelle Montpellier France
- INSERM U661 Montpellier France
- Universités de Montpellier 1 & 2 UMR‐5203 Montpellier France
| | - Walter A. Kaufmann
- Department of Pharmacology Innsbruck Medical University Innsbruck Austria
| | | | - Ryuichi Shigemoto
- Division of Cerebral Structure National Institute for Physiological Sciences Okazaki Japan
| | | |
Collapse
|
48
|
Perroy J, Moutin E. Scaffold remodeling in space and time controls synaptic transmission. BIOARCHITECTURE 2014; 2:29-32. [PMID: 22754626 PMCID: PMC3383718 DOI: 10.4161/bioa.20381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Scaffolding proteins that are associated with glutamate receptors in dendritic spines govern the location and function of receptors to control synaptic transmission. Unraveling the spatio-temporal dynamics of protein-protein interactions within components of the scaffolding complex will bring to light the function of these interactions. Combining bioluminescence resonance energy transfer (BRET) imaging to electrophysiological recordings, we have recently shown that GKAP, a core protein of the scaffolding complex, interacts with DLC2, a protein associated with molecular motors. Synaptic activity-induced GKAP-DLC2 interaction in spines stabilizes the scaffolding complex and enhances the NMDA currents. Interestingly, this work placed emphasis on the bioarchitectural dependence of protein-protein interaction dynamics. Depending on physiological conditions, the modulation in space and time of protein-protein interaction is acutely regulated, engendering a subtle control of synaptic transmission in the state of the individual synapse.
Collapse
|
49
|
Di Vito A, Mele M, Piscioneri A, Morelli S, Bartolo LD, Barni T, Facciolo RM, Canonaco M. Overstimulation of glutamate signals leads to hippocampal transcriptional plasticity in hamsters. Cell Mol Neurobiol 2014; 34:501-9. [PMID: 24532154 DOI: 10.1007/s10571-014-0034-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023]
Abstract
It's known that neurons in mammalian hibernators are more tolerant to hypoxia than those in non-hibernating species and as a consequence animals are capable of awakening from the arousal state without exhibiting cerebral damages. In addition, evidences have suggested that euthermic hamster neurons display protective adaptations against hypoxia, while those of rats are not capable, even though molecular mechanisms involved in similar neuroprotective strategies have not been yet fully studied. In the present work, overstimulation of glutamatergic receptors NMDA recognized as one of the major death-promoting element in hypoxia, accounted for altered network complexity consistent with a moderate reduction of hippocampal neuronal survival (p < 0.05) in hamsters. These alterations appeared to be featured concomitantly with altered glutamatergic signaling as indicated by significant down-regulation (p < 0.01) of NMDAergic (NR2A) and AMPAergic (GluR1, R2) receptor subtypes together with the metabotropic mGluR5 subtype. Diminished mRNA levels were also reported for NMDA receptor binding factors and namely PSD95 plus DREAM, which exert positive and negative regulatory properties, respectively, on receptor trafficking events. Conversely, involvement of glutamatergic signaling systems on neuronal excitotoxicity was strengthened by the co-activation of GABAAR-mediated effects as indicated by toxic morphological effects being notably reduced along with up-regulated GluR1, GluR2, mGluR5, DREAM, and Homer1c scaffold proteins when muscimol was added. Overall, these results point to a neuroprotective role of the GABAergic system against excitotoxicity episodes via DREAM-dependent inhibition of NMDA receptor and activation of AMPA receptor plus mGluR5, respectively, thus proposing them as novel therapeutic targets against cerebral ischemic damages in humans.
Collapse
Affiliation(s)
- Anna Di Vito
- Molecular Oncology Laboratory, Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
D'Antoni S, Spatuzza M, Bonaccorso CM, Musumeci SA, Ciranna L, Nicoletti F, Huber KM, Catania MV. Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neurosci Biobehav Rev 2014; 46 Pt 2:228-41. [PMID: 24548786 DOI: 10.1016/j.neubiorev.2014.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/13/2014] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
Abstract
Activation of group-I metabotropic glutamate receptors, mGlu1 and mGlu5, triggers a variety of signalling pathways in neurons and glial cells, which are differently implicated in synaptic plasticity. The earliest and much of key studies discovered abnormal mGlu5 receptor function in Fragile X syndrome (FXS) mouse models which then motivated more recent work that finds mGlu5 receptor dysfunction in related disorders such as intellectual disability (ID), obsessive-compulsive disorder (OCD) and autism. Therefore, mGlu1/5 receptor dysfunction may represent a common aetiology of these complex diseases. Furthermore, many studies have focused on dysregulation of mGlu5 signalling to synaptic protein synthesis. However, emerging evidence finds abnormal mGlu5 receptor interactions with its scaffolding proteins in FXS which results in mGlu5 receptor dysfunction and phenotypes independent of signalling to protein synthesis. Finally, both an increased and reduced mGlu5 functioning seem to be associated with ID and autism spectrum disorders, with important consequences for potential treatment of these developmental disorders.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy
| | | | | | - Lucia Ciranna
- Department of Biomedical Sciences, section of Physiology, University of Catania, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli (IS), Italy; University of Rome La Sapienza, Rome, Italy
| | - Kimberly M Huber
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy; IRCCS Oasi Maria SS, Troina (EN), Italy.
| |
Collapse
|