1
|
Falace A, Corbieres L, Palminha C, Guarnieri FC, Schaller F, Buhler E, Tuccari di San Carlo C, Montheil A, Watrin F, Manent JB, Represa A, de Chevigny A, Pallesi-Pocachard E, Cardoso C. FLNA regulates neuronal maturation by modulating RAC1-Cofilin activity in the developing cortex. Neurobiol Dis 2024; 198:106558. [PMID: 38852754 DOI: 10.1016/j.nbd.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genova, Italy.
| | - Lea Corbieres
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Catia Palminha
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Fabrizia Claudia Guarnieri
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro (MB), Italy; IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Fabienne Schaller
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Emmanuelle Buhler
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Clara Tuccari di San Carlo
- Pediatric Neurology Unit and Laboratories, IRCCS Meyer Children's Hospital University of Florence, Firenze, Italy
| | - Aurelie Montheil
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France; INMED, INSERM UMR1249, Aix Marseille University, Molecular and Cellular Biology Platform, Parc Scientifique de Luminy, Marseille, France
| | - Françoise Watrin
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Jean Bernard Manent
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Alfonso Represa
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Antoine de Chevigny
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Emilie Pallesi-Pocachard
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France; INMED, INSERM UMR1249, Aix Marseille University, Molecular and Cellular Biology Platform, Parc Scientifique de Luminy, Marseille, France
| | - Carlos Cardoso
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France.
| |
Collapse
|
2
|
Ando H, Shimizu-Okabe C, Okura N, Yafuso T, Kosaka Y, Kobayashi S, Okabe A, Takayama C. Reduced Gene Expression of KCC2 Accelerates Axonal Regeneration and Reduces Motor Dysfunctions after Tibial Nerve Severance and Suturing. Neuroscience 2024; 551:55-68. [PMID: 38788828 DOI: 10.1016/j.neuroscience.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Gamma-aminobutyric acid and glycine (GABA/Gly) are predominantly inhibitory neurotransmitters in the mature central nervous system; however, they mediate membrane potential depolarization during development. These differences in actions depend on intracellular Cl- concentrations ([Cl-]i), which are primarily regulated by potassium chloride cotransporter 2 (KCC2). After nerve injury, KCC2 expression markedly decreases and GABA/Gly mediate depolarization. Following nerve regeneration, KCC2 expression recovers and GABA/Gly become inhibitory, suggesting that KCC2 reduction and GABA/Gly excitation may be crucial for axonal regeneration. To directly clarify their involvement in regeneration, we analyzed recovery processes after tibial nerve severance and suturing between heterozygous KCC2 knockout mice (HT), whose KCC2 levels are halved, and their wild-type littermates (WT). Compared with WT mice, the sciatic functional index-indicating lower limb motor function-was significantly higher until 28 days after operation (D28) in HT mice. Furthermore, at D7, many neurofilament-positive fibers were elongated into the distal part of the sutured nerve in HT mice only, and myelinated axonal density was significantly higher at D21 and D28 in HT animals. Electron microscopy and galanin immunohistochemistry indicated a shorter nerve degeneration period in HT mice. Moreover, a less severe decrease in choline acetyltransferase was observed in HT mice. These results suggest that nerve degeneration and regeneration proceed more rapidly in HT mice, resulting in milder motor dysfunction. Via similar microglial activation, nerve surgery may reduce KCC2 levels more rapidly in HT mice, followed by earlier increased [Cl-]i and longer-lasting GABA/Gly excitation. Taken together, reduced KCC2 may accelerate nerve regeneration via GABA/Gly excitation.
Collapse
Affiliation(s)
- Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
3
|
Pethe A, Hamze M, Giannaki M, Heimrich B, Medina I, Hartmann AM, Roussa E. K +/Cl - cotransporter 2 (KCC2) and Na +/ HCO3- cotransporter 1 (NBCe1) interaction modulates profile of KCC2 phosphorylation. Front Cell Neurosci 2023; 17:1253424. [PMID: 37881493 PMCID: PMC10595033 DOI: 10.3389/fncel.2023.1253424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023] Open
Abstract
K+/Cl- cotransporter 2 (KCC2) is a major Cl- extruder in mature neurons and is responsible for the establishment of low intracellular [Cl-], necessary for fast hyperpolarizing GABAA-receptor mediated synaptic inhibition. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a pH regulatory protein expressed in neurons and glial cells. An interactome study identified NBCe1 as a possible interaction partner of KCC2. In this study, we investigated the putative effect of KCC2/NBCe1 interaction in baseline and the stimulus-induced phosphorylation pattern and function of KCC2. Primary mouse hippocampal neuronal cultures from wildtype (WT) and Nbce1-deficient mice, as well as HEK-293 cells stably transfected with KCC2WT, were used. The results show that KCC2 and NBCe1 are interaction partners in the mouse brain. In HEKKCC2 cells, pharmacological inhibition of NBCs with S0859 prevented staurosporine- and 4-aminopyridine (4AP)-induced KCC2 activation. In mature cultures of hippocampal neurons, however, S0859 completely inhibited postsynaptic GABAAR and, thus, could not be used as a tool to investigate the role of NBCs in GABA-dependent neuronal networks. In Nbce1-deficient immature hippocampal neurons, baseline phosphorylation of KCC2 at S940 was downregulated, compared to WT, and exposure to staurosporine failed to reduce pKCC2 S940 and T1007. In Nbce1-deficient mature neurons, baseline levels of pKCC2 S940 and T1007 were upregulated compared to WT, whereas after 4AP treatment, pKCC2 S940 was downregulated, and pKCC2 T1007 was further upregulated. Functional experiments showed that the levels of GABAAR reversal potential, baseline intracellular [Cl-], Cl- extrusion, and baseline intracellular pH were similar between WT and Nbce1-deficient neurons. Altogether, our data provide a primary description of the properties of KCC2/NBCe1 protein-protein interaction and implicate modulation of stimulus-mediated phosphorylation of KCC2 by NBCe1/KCC2 interaction-a mechanism with putative pathophysiological relevance.
Collapse
Affiliation(s)
- Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Mira Hamze
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Marina Giannaki
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bernd Heimrich
- Department of Neuroanatomy, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Igor Medina
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Anna-Maria Hartmann
- Division of Neurogenetics, Faculty VI, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Byvaltcev E, Behbood M, Schleimer JH, Gensch T, Semyanov A, Schreiber S, Strauss U. KCC2 reverse mode helps to clear postsynaptically released potassium at glutamatergic synapses. Cell Rep 2023; 42:112934. [PMID: 37537840 PMCID: PMC10480490 DOI: 10.1016/j.celrep.2023.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Extracellular potassium [K+]o elevation during synaptic activity retrogradely modifies presynaptic release and astrocytic uptake of glutamate. Hence, local K+ clearance and replenishment mechanisms are crucial regulators of glutamatergic transmission and plasticity. Based on recordings of astrocytic inward rectifier potassium current IKir and K+-sensitive electrodes as sensors of [K+]o as well as on in silico modeling, we demonstrate that the neuronal K+-Cl- co-transporter KCC2 clears local perisynaptic [K+]o during synaptic excitation by operating in an activity-dependent reversed mode. In reverse mode, KCC2 replenishes K+ in dendritic spines and complements clearance of [K+]o, therewith attenuating presynaptic glutamate release and shortening LTP. We thus demonstrate a physiological role of KCC2 in neuron-glial interactions and regulation of synaptic signaling and plasticity through the uptake of postsynaptically released K+.
Collapse
Affiliation(s)
- Egor Byvaltcev
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Mahraz Behbood
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing 1 (IBI-1, Molecular and Cellular Physiology), Forschungszentrum Jülich, Wilhem-Jonen Straße, 52428 Jülich, Germany
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Zhejiang Pro, Jiaxing 314033, China
| | - Susanne Schreiber
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
5
|
van van Hugte EJH, Schubert D, Nadif Kasri N. Excitatory/inhibitory balance in epilepsies and neurodevelopmental disorders: Depolarizing γ-aminobutyric acid as a common mechanism. Epilepsia 2023; 64:1975-1990. [PMID: 37195166 DOI: 10.1111/epi.17651] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although many factors contribute to epileptogenesis, seizure generation is mostly linked to hyperexcitability due to alterations in excitatory/inhibitory (E/I) balance. The common hypothesis is that reduced inhibition, increased excitation, or both contribute to the etiology of epilepsy. Increasing evidence shows that this view is oversimplistic, and that increased inhibition through depolarizing γ-aminobutyric acid (GABA) similarly contributes to epileptogenisis. In early development, GABA signaling is depolarizing, inducing outward Cl- currents due to high intracellular Cl- concentrations. During maturation, the mechanisms of GABA action shift from depolarizing to hyperpolarizing, a critical event during brain development. Altered timing of this shift is associated with both neurodevelopmental disorders and epilepsy. Here, we consider the different ways that depolarizing GABA contributes to altered E/I balance and epileptogenesis, and discuss that alterations in depolarizing GABA could be a common denominator underlying seizure generation in neurodevelopmental disorders and epilepsies.
Collapse
Affiliation(s)
- Eline J H van van Hugte
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Epileptology, Academic Centre for Epileptology (ACE) Kempenhaeghe, Heeze, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
- Department of Epileptology, Academic Centre for Epileptology (ACE) Kempenhaeghe, Heeze, the Netherlands
| |
Collapse
|
6
|
Simonnet C, Sinha M, Goutierre M, Moutkine I, Daumas S, Poncer JC. Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory. Neuropsychopharmacology 2023; 48:1067-1077. [PMID: 36302847 PMCID: PMC10209115 DOI: 10.1038/s41386-022-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Delayed upregulation of the neuronal chloride extruder KCC2 underlies the progressive shift in GABA signaling polarity during development. Conversely, KCC2 downregulation is observed in a variety of neurological and psychiatric disorders often associated with cognitive impairment. Reduced KCC2 expression and function in mature networks may disrupt GABA signaling and promote anomalous network activities underlying these disorders. However, the causal link between KCC2 downregulation, altered brain rhythmogenesis, and cognitive function remains elusive. Here, by combining behavioral exploration with in vivo electrophysiology we assessed the impact of chronic KCC2 downregulation in mouse dorsal hippocampus and showed it compromises both spatial and contextual memory. This was associated with altered hippocampal rhythmogenesis and neuronal hyperexcitability, with increased burst firing in CA1 neurons during non-REM sleep. Reducing neuronal excitability with terbinafine, a specific Task-3 leak potassium channel opener, occluded the impairment of contextual memory upon KCC2 knockdown. Our results establish a causal relationship between KCC2 expression and cognitive performance and suggest that non-epileptiform rhythmopathies and neuronal hyperexcitability are central to the deficits caused by KCC2 downregulation in the adult mouse brain.
Collapse
Affiliation(s)
- Clémence Simonnet
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
- Basic Neuroscience Department, Centre Medical Universitaire, 1211, Geneva, Switzerland
| | - Manisha Sinha
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marie Goutierre
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Imane Moutkine
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Stéphanie Daumas
- Sorbonne Université, 75005, Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005, Paris, France
| | - Jean Christophe Poncer
- Inserm UMR-S 1270, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
- Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
7
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Ravindran P, Püschel AW. An isoform-specific function of Cdc42 in regulating mammalian Exo70 during axon formation. Life Sci Alliance 2023; 6:6/3/e202201722. [PMID: 36543541 PMCID: PMC9772827 DOI: 10.26508/lsa.202201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The highly conserved GTPase Cdc42 is an essential regulator of cell polarity and promotes exocytosis through the exocyst complex in budding yeast and Drosophila In mammals, this function is performed by the closely related GTPase TC10, whereas mammalian Cdc42 does not interact with the exocyst. Axon formation is facilitated by the exocyst complex that tethers vesicles before their fusion to expand the plasma membrane. This function depends on the recruitment of the Exo70 subunit to the plasma membrane. Alternative splicing generates two Cdc42 isoforms that differ in their C-terminal 10 amino acids. Our results identify an isoform-specific function of Cdc42 in neurons. We show that the brain-specific Cdc42b isoform, in contrast to the ubiquitous isoform Cdc42u, can interact with Exo70. Inactivation of Arhgef7 or Cdc42b interferes with the exocytosis of post-Golgi vesicles in the growth cone. Cdc42b regulates exocytosis and axon formation downstream of its activator Arhgef7. Thus, the function of Cdc42 in regulating exocytosis is conserved in mammals but specific to one isoform.
Collapse
Affiliation(s)
- Priyadarshini Ravindran
- Institut für Integrative Zellbiologie und Physiologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Andreas W Püschel
- Institut für Integrative Zellbiologie und Physiologie, Westfälische Wilhelms-Universität, Münster, Germany .,Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Tan SY, Jiang JX, Huang HX, Mo XP, Feng JR, Chen Y, Yang L, Long C. Neural mechanism underlies CYLD modulation of morphology and synaptic function of medium spiny neurons in dorsolateral striatum. Front Mol Neurosci 2023; 16:1107355. [PMID: 36846565 PMCID: PMC9945542 DOI: 10.3389/fnmol.2023.1107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Although the deubiquitinase cylindromatosis (CYLD), an abundant protein in the postsynaptic density fraction, plays a crucial role in mediating the synaptic activity of the striatum, the precise molecular mechanism remains largely unclear. Here, using a Cyld-knockout mouse model, we demonstrate that CYLD regulates dorsolateral striatum (DLS) neuronal morphology, firing activity, excitatory synaptic transmission, and plasticity of striatal medium spiny neurons via, likely, interaction with glutamate receptor 1 (GluA1) and glutamate receptor 2 (GluA2), two key subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). CYLD deficiency reduces levels of GluA1 and GluA2 surface protein and increases K63-linked ubiquitination, resulting in functional impairments both in AMPAR-mediated excitatory postsynaptic currents and in AMPAR-dependent long-term depression. The results demonstrate a functional association of CYLD with AMPAR activity, which strengthens our understanding of the role of CYLD in striatal neuronal activity.
Collapse
Affiliation(s)
- Shu-Yi Tan
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jin-Xiang Jiang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui-Xian Huang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiu-Ping Mo
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jing-Ru Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Chen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
10
|
Rigkou A, Magyar A, Speer JM, Roussa E. TGF-β2 Regulates Transcription of the K +/Cl - Cotransporter 2 (KCC2) in Immature Neurons and Its Phosphorylation at T1007 in Differentiated Neurons. Cells 2022; 11:cells11233861. [PMID: 36497119 PMCID: PMC9739967 DOI: 10.3390/cells11233861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
KCC2 mediates extrusion of K+ and Cl- and assuresthe developmental "switch" in GABA function during neuronal maturation. However, the molecular mechanisms underlying KCC2 regulation are not fully elucidated. We investigated the impact of transforming growth factor beta 2 (TGF-β2) on KCC2 during neuronal maturation using quantitative RT-PCR, immunoblotting, immunofluorescence and chromatin immunoprecipitation in primary mouse hippocampal neurons and brain tissue from Tgf-β2-deficient mice. Inhibition of TGF-β/activin signaling downregulates Kcc2 transcript in immature neurons. In the forebrain of Tgf-β2-/- mice, expression of Kcc2, transcription factor Ap2β and KCC2 protein is downregulated. AP2β binds to Kcc2 promoter, a binding absent in Tgf-β2-/-. In hindbrain/brainstem tissue of Tgf-β2-/- mice, KCC2 phosphorylation at T1007 is increased and approximately half of pre-Bötzinger-complex neurons lack membrane KCC2 phenotypes rescued through exogenous TGF-β2. These results demonstrate that TGF-β2 regulates KCC2 transcription in immature neurons, possibly acting upstream of AP2β, and contributes to the developmental dephosphorylation of KCC2 at T1007. The present work suggests multiple and divergent roles for TGF-β2 on KCC2 during neuronal maturation and provides novel mechanistic insights for TGF-β2-mediated regulation of KCC2 gene expression, posttranslational modification and surface expression. We propose TGF-β2 as a major regulator of KCC2 with putative implications for pathophysiological conditions.
Collapse
|
11
|
Miles KD, Doll CA. Chloride imbalance in Fragile X syndrome. Front Neurosci 2022; 16:1008393. [PMID: 36312023 PMCID: PMC9596984 DOI: 10.3389/fnins.2022.1008393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Developmental changes in ionic balance are associated with crucial hallmarks in neural circuit formation, including changes in excitation and inhibition, neurogenesis, and synaptogenesis. Neuronal excitability is largely mediated by ionic concentrations inside and outside of the cell, and chloride (Cl-) ions are highly influential in early neurodevelopmental events. For example, γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the mature central nervous system (CNS). However, during early development GABA can depolarize target neurons, and GABAergic depolarization is implicated in crucial neurodevelopmental processes. This developmental shift of GABAergic neurotransmission from depolarizing to hyperpolarizing output is induced by changes in Cl- gradients, which are generated by the relative expression of Cl- transporters Nkcc1 and Kcc2. Interestingly, the GABA polarity shift is delayed in Fragile X syndrome (FXS) models; FXS is one of the most common heritable neurodevelopmental disorders. The RNA binding protein FMRP, encoded by the gene Fragile X Messenger Ribonucleoprotein-1 (Fmr1) and absent in FXS, appears to regulate chloride transporter expression. This could dramatically influence FXS phenotypes, as the syndrome is hypothesized to be rooted in defects in neural circuit development and imbalanced excitatory/inhibitory (E/I) neurotransmission. In this perspective, we summarize canonical Cl- transporter expression and investigate altered gene and protein expression of Nkcc1 and Kcc2 in FXS models. We then discuss interactions between Cl- transporters and neurotransmission complexes, and how these links could cause imbalances in inhibitory neurotransmission that may alter mature circuits. Finally, we highlight current therapeutic strategies and promising new directions in targeting Cl- transporter expression in FXS patients.
Collapse
Affiliation(s)
| | - Caleb Andrew Doll
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
12
|
Ba X, Ran C, Guo W, Guo J, Zeng Q, Liu T, Sun W, Xiao L, Xiong D, Huang Y, Jiang C, Hao Y. Three-Day Continuous Oxytocin Infusion Attenuates Thermal and Mechanical Nociception by Rescuing Neuronal Chloride Homeostasis via Upregulation KCC2 Expression and Function. Front Pharmacol 2022; 13:845018. [PMID: 35401174 PMCID: PMC8988046 DOI: 10.3389/fphar.2022.845018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (OT) and its receptor are promising targets for the treatment and prevention of the neuropathic pain. In the present study, we compared the effects of a single and continuous intrathecal infusion of OT on nerve injury-induced neuropathic pain behaviours in mice and further explore the mechanisms underlying their analgesic properties. We found that three days of continuous intrathecal OT infusion alleviated subsequent pain behaviours for 14 days, whereas a single OT injection induced a transient analgesia for 30 min, suggesting that only continuous intrathecal OT attenuated the establishment and development of neuropathic pain behaviours. Supporting this behavioural finding, continuous intrathecal infusion, but not short-term incubation of OT, reversed the nerve injury-induced depolarizing shift in Cl- reversal potential via restoring the function and expression of spinal K+-Cl- cotransporter 2 (KCC2), which may be caused by OT-induced enhancement of GABA inhibitory transmission. This result suggests that only continuous use of OT may reverse the pathological changes caused by nerve injury, thereby mechanistically blocking the establishment and development of pain. These findings provide novel evidence relevant for advancing understanding of the effects of continuous OT administration on the pathophysiology of pain.
Collapse
Affiliation(s)
- Xiyuan Ba
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Chenqiu Ran
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wenjun Guo
- Department of Pain Medicine, Shenzhen, China
| | - Jing Guo
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, China
| | - Qian Zeng
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Yelan Huang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital, Shenzhen, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022; 15:826427. [PMID: 35370549 PMCID: PMC8966887 DOI: 10.3389/fnmol.2022.826427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
K-Cl transporter KCC2 is an important regulator of neuronal development and neuronal function at maturity. Through its canonical transporter role, KCC2 maintains inhibitory responses mediated by γ-aminobutyric acid (GABA) type A receptors. During development, late onset of KCC2 transporter activity defines the period when depolarizing GABAergic signals promote a wealth of developmental processes. In addition to its transporter function, KCC2 directly interacts with a number of proteins to regulate dendritic spine formation, cell survival, synaptic plasticity, neuronal excitability, and other processes. Either overexpression or loss of KCC2 can lead to abnormal circuit formation, seizures, or even perinatal death. GABA has been reported to be especially important for driving migration and development of cortical interneurons (IN), and we hypothesized that properly timed onset of KCC2 expression is vital to this process. To test this hypothesis, we created a mouse with conditional knockout of KCC2 in Dlx5-lineage neurons (Dlx5 KCC2 cKO), which targets INs and other post-mitotic GABAergic neurons in the forebrain starting during embryonic development. While KCC2 was first expressed in the INs of layer 5 cortex, perinatal IN migrations and laminar localization appeared to be unaffected by the loss of KCC2. Nonetheless, the mice had early seizures, failure to thrive, and premature death in the second and third weeks of life. At this age, we found an underlying change in IN distribution, including an excess number of somatostatin neurons in layer 5 and a decrease in parvalbumin-expressing neurons in layer 2/3 and layer 6. Our research suggests that while KCC2 expression may not be entirely necessary for early IN migration, loss of KCC2 causes an imbalance in cortical interneuron subtypes, seizures, and early death. More work will be needed to define the specific cellular basis for these findings, including whether they are due to abnormal circuit formation versus the sequela of defective IN inhibition.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States,Department of Neurology, Tennessee Valley Healthcare – Veterans Affairs (TVH VA), Medical Center, Nashville, TN, United States,*Correspondence: Andre H. Lagrange,
| |
Collapse
|
14
|
Al Awabdh S, Donneger F, Goutierre M, Séveno M, Vigy O, Weinzettl P, Russeau M, Moutkine I, Lévi S, Marin P, Poncer JC. Gephyrin Interacts with the K-Cl Cotransporter KCC2 to Regulate Its Surface Expression and Function in Cortical Neurons. J Neurosci 2022; 42:166-182. [PMID: 34810232 PMCID: PMC8802937 DOI: 10.1523/jneurosci.2926-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/31/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.
Collapse
Affiliation(s)
- Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Martial Séveno
- BCM, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Oana Vigy
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Pauline Weinzettl
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Institute of Biotechnology, University of Applied Sciences, Krems, Austria
| | - Marion Russeau
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Imane Moutkine
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
15
|
Verma V, Kumar MJV, Sharma K, Rajaram S, Muddashetty R, Manjithaya R, Behnisch T, Clement JP. Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1 +/- mice. Exp Brain Res 2021; 240:289-309. [PMID: 34739555 DOI: 10.1007/s00221-021-06254-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1+/- mice might be due to abnormalities in K+-Cl- co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1+/- recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14-15 as illustrated by decreased Cl- reversal potential in Syngap1+/- mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14-15. The GSK-3β inhibitor, 6-bromoindirubin-3'-oxime (6BIO) that crosses the blood-brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1+/- mice. In summary, altered GABAergic function in Syngap1+/- mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kavita Sharma
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Sridhar Rajaram
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Ravi Muddashetty
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.,Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Thomas Behnisch
- Institutes of Brain Sciences, Fudan University, Shanghai, 200032, China
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
16
|
Shin EY, Lee CS, Kim HB, Park JH, Oh K, Lee GW, Cho EY, Kim HK, Kim EG. Kinesin-1-dependent transport of the βPIX/GIT complex in neuronal cells. BMB Rep 2021. [PMID: 34154701 PMCID: PMC8328822 DOI: 10.5483/bmbrep.2021.54.7.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry and 3Microbiology, College of Medicine, and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Chan-Soo Lee
- Department of Food Standard Division Scientific Office, Ministry of Food and Drug Safety (KFDA), Cheongju 28159, Korea
| | - Han-Byeol Kim
- Department of Biochemistry and 3Microbiology, College of Medicine, and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Jin-Hee Park
- Department of Biochemistry and 3Microbiology, College of Medicine, and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Kwangseok Oh
- Department of Biochemistry and 3Microbiology, College of Medicine, and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Gun-Wu Lee
- Department of Biochemistry and 3Microbiology, College of Medicine, and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Eun-Yul Cho
- Department of Biochemistry and 3Microbiology, College of Medicine, and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | | | - Eung-Gook Kim
- Department of Biochemistry and 3Microbiology, College of Medicine, and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
17
|
Sahin GS, Luis Rodriguez-Llamas J, Dillon C, Medina I, Appleyard SM, Gaiarsa JL, Wayman GA. Leptin increases GABAergic synaptogenesis through the Rho guanine exchange factor β-PIX in developing hippocampal neurons. Sci Signal 2021; 14:14/683/eabe4111. [PMID: 34006608 DOI: 10.1126/scisignal.abe4111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing hippocampal neurons undergo rapid synaptogenesis in response to neurotrophic signals to form and refine circuit connections. The adipokine leptin is a satiety factor with neurotrophic actions, which potentiates both glutamatergic and GABAergic synaptogenesis in the hippocampus during neonatal development. Brief exposure to leptin enhances GABAA receptor-dependent synaptic currents in hippocampal neurons. Here, using molecular and electrophysiological techniques, we found that leptin increased the surface localization of GABAA receptors and the number of functional GABAergic synapses in hippocampal cultures from male and female rat pups. Leptin increased the interaction between GABAA receptors and the Rho guanine exchange factor β-PIX (a scaffolding protein at GABAergic postsynaptic sites) in a manner dependent on the kinase CaMKK. We also found that the leptin receptor and β-PIX formed a complex, the amount of which transiently increased upon leptin receptor activation. Furthermore, Tyr985 in the leptin receptor and the SH3 domain of β-PIX are crucial for this interaction, which was required for the developmental increase in GABAergic synaptogenesis. Our results suggest a mechanism by which leptin promotes GABAergic synaptogenesis in hippocampal neurons and reveal further complexity in leptin receptor signaling and its interactome.
Collapse
Affiliation(s)
- Gulcan Semra Sahin
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Jose Luis Rodriguez-Llamas
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Crystal Dillon
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Igor Medina
- Aix-Marseille University UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Jean-Luc Gaiarsa
- Aix-Marseille University UMR 1249, INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, INMED (Institut de Neurobiologie de la Méditerranée), Marseille, France
| | - Gary A Wayman
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA.
| |
Collapse
|
18
|
The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 2021; 22:290-307. [PMID: 33772226 PMCID: PMC9001156 DOI: 10.1038/s41583-021-00443-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
GABAergic inhibition shapes the connectivity, activity and plasticity of the brain. A series of exciting new discoveries provides compelling evidence that disruptions in a number of key facets of GABAergic inhibition have critical roles in the aetiology of neurodevelopmental disorders (NDDs). These facets include the generation, migration and survival of GABAergic neurons, the formation of GABAergic synapses and circuit connectivity, and the dynamic regulation of the efficacy of GABAergic signalling through neuronal chloride transporters. In this Review, we discuss recent work that elucidates the functions and dysfunctions of GABAergic signalling in health and disease, that uncovers the contribution of GABAergic neural circuit dysfunction to NDD aetiology and that leverages such mechanistic insights to advance precision medicine for the treatment of NDDs.
Collapse
|
19
|
Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The Multifaceted Roles of KCC2 in Cortical Development. Trends Neurosci 2021; 44:378-392. [PMID: 33640193 DOI: 10.1016/j.tins.2021.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
KCC2, best known as the neuron-specific chloride-extruder that sets the strength and polarity of GABAergic currents during neuronal maturation, is a multifunctional molecule that can regulate cytoskeletal dynamics via its C-terminal domain (CTD). We describe the molecular and cellular mechanisms involved in the multiple functions of KCC2 and its splice variants, ranging from developmental apoptosis and the control of early network events to the formation and plasticity of cortical dendritic spines. The versatility of KCC2 actions at the cellular and subcellular levels is also evident in mature neurons during plasticity, disease, and aging. Thus, KCC2 has emerged as one of the most important molecules that shape the overall neuronal phenotype.
Collapse
Affiliation(s)
- Mari A Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Martina Mavrovic
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland; Department of Molecular Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jean Christophe Poncer
- INSERM, UMRS 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
20
|
Mamula D, Korthals M, Hradsky J, Gottfried A, Fischer KD, Tedford K. Arhgef6 (alpha-PIX) cytoskeletal regulator signals to GTPases and Cofilin to couple T cell migration speed and persistence. J Leukoc Biol 2021; 110:839-852. [PMID: 33527537 DOI: 10.1002/jlb.1a1219-719r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 11/11/2022] Open
Abstract
Immunity is governed by successful T cell migration, optimized to enable a T cell to fully scan its environment without wasted movement by balancing speed and turning. Here we report that the Arhgef6 RhoGEF (aka alpha-PIX; αPIX; Cool-2), an activator of small GTPases, is required to restrain cell migration speed and cell turning during spontaneous migration on 2D surfaces. In Arhgef6-/- T cells, expression of Arhgef7 (beta-PIX; βPIX; Cool-1), a homolog of Arhgef6, was increased and correlated with defective activation and localization of Rac1 and CDC42 GTPases, respectively. Downstream of Arhgef6, PAK2 (p21-activated kinase 2) and LIMK1 phosphorylation was reduced, leading to increased activation of Cofilin, the actin-severing factor. Consistent with defects in these signaling pathways, Arhgef6-/- T cells displayed abnormal bilobed lamellipodia and migrated faster, turned more, and arrested less than wild-type (WT) T cells. Using pharmacologic inhibition of LIMK1 (LIM domain kinase 1) to induce Cofilin activation in WT T cells, we observed increased migration speed but not increased cell turning. In contrast, inhibition of Cdc42 increased cell turning but not speed. These results suggested that the increased speed of the Arhgef6-/- T cells is due to hyperactive Cofilin while the increased turning may be due to abnormal GTPase activation and recruitment. Together, these findings reveal that Arhgef6 acts as a repressor of T cell speed and turning by limiting actin polymerization and lamellipodia formation.
Collapse
Affiliation(s)
- Dejan Mamula
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Present address: Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mark Korthals
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Hradsky
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Gottfried
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Cellular Imaging and Innovative Disease Models, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Kerry Tedford
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Center for Cellular Imaging and Innovative Disease Models, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
21
|
Henneberger C, Bard L, Panatier A, Reynolds JP, Kopach O, Medvedev NI, Minge D, Herde MK, Anders S, Kraev I, Heller JP, Rama S, Zheng K, Jensen TP, Sanchez-Romero I, Jackson CJ, Janovjak H, Ottersen OP, Nagelhus EA, Oliet SHR, Stewart MG, Nägerl UV, Rusakov DA. LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. Neuron 2020; 108:919-936.e11. [PMID: 32976770 PMCID: PMC7736499 DOI: 10.1016/j.neuron.2020.08.030] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/14/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.
Collapse
Affiliation(s)
- Christian Henneberger
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.
| | - Lucie Bard
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Aude Panatier
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - James P Reynolds
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Daniel Minge
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Michel K Herde
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Stefanie Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Igor Kraev
- Life Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Janosch P Heller
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sylvain Rama
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kaiyu Zheng
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Harald Janovjak
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; EMBL Australia, Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC 3800, Australia
| | - Ole Petter Ottersen
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Stephane H R Oliet
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | | | - U Valentin Nägerl
- Université de Bordeaux, 33000 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
22
|
PKN1 promotes synapse maturation by inhibiting mGluR-dependent silencing through neuronal glutamate transporter activation. Commun Biol 2020; 3:710. [PMID: 33244074 PMCID: PMC7691520 DOI: 10.1038/s42003-020-01435-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Abnormal metabotropic glutamate receptor (mGluR) activity could cause brain disorders; however, its regulation has not yet been fully understood. Here, we report that protein kinase N1 (PKN1), a protein kinase expressed predominantly in neurons in the brain, normalizes group 1 mGluR function by upregulating a neuronal glutamate transporter, excitatory amino acid transporter 3 (EAAT3), and supports silent synapse activation. Knocking out PKN1a, the dominant PKN1 subtype in the brain, unmasked abnormal input-nonspecific mGluR-dependent long-term depression (mGluR-LTD) and AMPA receptor (AMPAR) silencing in the developing hippocampus. mGluR-LTD was mimicked by inhibiting glutamate transporters in wild-type mice. Knocking out PKN1a decreased hippocampal EAAT3 expression and PKN1 inhibition reduced glutamate uptake through EAAT3. Also, synaptic transmission was immature; there were more silent synapses and fewer spines with shorter postsynaptic densities in PKN1a knockout mice than in wild-type mice. Thus, PKN1 plays a critical role in regulation of synaptic maturation by upregulating EAAT3 expression. Generating mice lacking protein kinase N1 (PKN1), Yasuda et al. find that PKN1 loss leads to abnormal input-nonspecific mGluR-dependent long-term depression. The authors also observe reduced glutamate uptake and immature synaptic transmission, suggesting an important role for PKN1 in synapse maturation.
Collapse
|
23
|
Smalley JL, Kontou G, Choi C, Ren Q, Albrecht D, Abiraman K, Santos MAR, Bope CE, Deeb TZ, Davies PA, Brandon NJ, Moss SJ. Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes. Front Mol Neurosci 2020; 13:563091. [PMID: 33192291 PMCID: PMC7643010 DOI: 10.3389/fnmol.2020.563091] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Kcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanisms neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of K-Cl Co-transporter 2 (Kcc2) from the plasma membrane of murine forebrain. We resolved these using blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS and label-free quantification. Data are available via ProteomeXchange with identifier PXD021368. Purified Kcc2 migrated as distinct molecular species of 300, 600, and 800 kDa following BN-PAGE. In excess of 90% coverage of the soluble N- and C-termini of Kcc2 was obtained. In total we identified 246 proteins significantly associated with Kcc2. The 300 kDa species largely contained Kcc2, which is consistent with a dimeric quaternary structure for this transporter. The 600 and 800 kDa species represented stable multi-protein complexes of Kcc2. We identified a set of novel structural, ion transporting, immune related and signaling protein interactors, that are present at both excitatory and inhibitory synapses, consistent with the proposed localization of Kcc2. These included spectrins, C1qa/b/c and the IP3 receptor. We also identified interactors more directly associated with phosphorylation; Akap5, Akap13, and Lmtk3. Finally, we used LC-MS/MS on the same purified endogenous plasma membrane Kcc2 to detect phosphorylation sites. We detected 11 sites with high confidence, including known and novel sites. Collectively our experiments demonstrate that Kcc2 is associated with components of the neuronal cytoskeleton and signaling molecules that may act to regulate transporter membrane trafficking, stability, and activity.
Collapse
Affiliation(s)
- Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Georgina Kontou
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Catherine Choi
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Qiu Ren
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - David Albrecht
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Krithika Abiraman
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | | | - Christopher E Bope
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Nicholas J Brandon
- AstraZeneca Tufts Lab for Basic and Translational Neuroscience, Boston, MA, United States.,Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
24
|
Novel carbon film induces precocious calcium oscillation to promote neuronal cell maturation. Sci Rep 2020; 10:17661. [PMID: 33077786 PMCID: PMC7573613 DOI: 10.1038/s41598-020-74535-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Different types of carbon materials are biocompatible with neural cells and can promote maturation. The mechanism of this effect is not clear. Here we have tested the capacity of a carbon material composed of amorphous sp3 carbon backbone, embedded with a percolating network of sp2 carbon domains to sustain neuronal cultures. We found that cortical neurons survive and develop faster on this novel carbon material. After 3 days in culture, there is a precocious increase in the frequency of neuronal activity and in the expression of maturation marker KCC2 on carbon films as compared to a commonly used glass surface. Accelerated development is accompanied by a dramatic increase in neuronal dendrite arborization. The mechanism for the precocious maturation involves the activation of intracellular calcium oscillations by the carbon material already after 1 day in culture. Carbon-induced oscillations are independent of network activity and reflect intrinsic spontaneous activation of developing neurons. Thus, these results reveal a novel mechanism for carbon material-induced neuronal survival and maturation.
Collapse
|
25
|
Kesaf S, Khirug S, Dinh E, Saez Garcia M, Soni S, Orav E, Delpire E, Taira T, Lauri SE, Rivera C. The Kainate Receptor Subunit GluK2 Interacts With KCC2 to Promote Maturation of Dendritic Spines. Front Cell Neurosci 2020; 14:252. [PMID: 33005130 PMCID: PMC7479265 DOI: 10.3389/fncel.2020.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Kainate receptors (KAR) play a crucial role in the plasticity and functional maturation of glutamatergic synapses. However, how they regulate structural plasticity of dendritic spines is not known. The GluK2 subunit was recently shown to coexist in a functional complex with the neuronal K-Cl cotransporter KCC2. Apart from having a crucial role in the maturation of GABAergic transmission, KCC2 has a morphogenic role in the maturation of dendritic spines. Here, we show that in vivo local inactivation of GluK2 expression in CA3 hippocampal neurons induces altered morphology of dendritic spines and reduction in mEPSC frequency. GluK2 deficiency also resulted in a strong change in the subcellular distribution of KCC2 as well as a smaller somatodendritic gradient in the reversal potential of GABAA. Strikingly, the aberrant morphology of dendritic spines in GluK2-deficient CA3 pyramidal neurons was restored by overexpression of KCC2. GluK2 silencing in hippocampal neurons significantly reduced the expression of 4.1N and functional form of the actin filament severing protein cofilin. Consistently, assessment of actin dynamics using fluorescence recovery after photobleaching (FRAP) of β-actin showed a significant increase in the stability of F-actin filaments in dendritic spines. In conclusion, our results demonstrate that GluK2-KCC2 interaction plays an important role in the structural maturation of dendritic spines. This also provides novel insights into the connection between KAR dysfunction, structural plasticity, and developmental disorders.
Collapse
Affiliation(s)
- Sebnem Kesaf
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Stanislav Khirug
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Emilie Dinh
- Developmental Biology Institute of Marseille, Marseille, France
| | - Marta Saez Garcia
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Shetal Soni
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Ester Orav
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Tomi Taira
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Claudio Rivera
- HiLIFE Neuroscience Center, University of Helsinki, Helsinki, Finland.,Institut de Neurobiologie de la Méditerranée (INMED) UMR901, Marseille, France
| |
Collapse
|
26
|
Wirth MJ, Ackels T, Kriebel A, Kriebel K, Mey J, Kuenzel T, Wagner H. Expression patterns of chloride transporters in the auditory brainstem of developing chicken. Hear Res 2020; 393:108013. [PMID: 32554128 DOI: 10.1016/j.heares.2020.108013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 01/23/2023]
Abstract
GABAergic transmission changes from depolarization to hyperpolarization in most vertebrate brain regions during development. By contrast, in the auditory brainstem of chicken a depolarizing effect of GABA persists after hatching. Since auditory brainstem neurons that receive GABAergic input have a Cl- reversal potential above resting membrane potential, a specifically tuned activity of Cl- transporters is likely. We here present a developmental study of the expression patterns of several members of the SLC12 family (NKCC1, NKCC2, KCC1, KCC2, KCC4, CCC6, CCC9) and of AE3 at developmental ages E7, E10, E12, E15, E17, and P1 with quantitative RT-PCR. NKCC2 and CCC9 were not detected in auditory brainstem (positive control: kidney). KCC1, CCC6 and AE3 were expressed, but not regulated, while NKCC1, KCC2 and KCC4 were regulated. The expression of the latter transporters increased, with KCC2 exhibiting the strongest expression at all time points. Biochemical analysis of the protein expression of NKCC1, KCC2 and KCC4 corroborated the findings on the mRNA level. All three transporters showed a localization at the outer rim of the cells, with NKCC1 and KCC2 expressed in neurons, and KCC4 predominantly in glia. The comparison of the published chloride reversal potential and expression of transporter proteins suggest strong differences in the efficiency of the three transporters. Further, the strong KCC2 expression could reflect a role in the structural development of auditory brainstem synapses that might lead to changes in the physiological properties.
Collapse
Affiliation(s)
- Marcus J Wirth
- Department for Chemosensation, RWTH Aachen University, Aachen, Germany.
| | - Tobias Ackels
- Neurophysiology of Behaviour Lab, The Francis Crick Institute, London, United Kingdom; Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Andreas Kriebel
- Department for Zoology and Animal Physiology, RWTH Aachen University, Aachen, Germany
| | - Katharina Kriebel
- Department for Zoology and Animal Physiology, RWTH Aachen University, Aachen, Germany
| | - Jörg Mey
- Department for Chemosensation, RWTH Aachen University, Aachen, Germany; Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Thomas Kuenzel
- Department for Chemosensation, RWTH Aachen University, Aachen, Germany
| | - Hermann Wagner
- Department for Zoology and Animal Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Duy PQ, He M, He Z, Kahle KT. Preclinical insights into therapeutic targeting of KCC2 for disorders of neuronal hyperexcitability. Expert Opin Ther Targets 2020; 24:629-637. [PMID: 32336175 DOI: 10.1080/14728222.2020.1762174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Epilepsy is a common neurological disorder of neuronal hyperexcitability that begets recurrent and unprovoked seizures. The lack of a truly satisfactory pharmacotherapy for epilepsy highlights the clinical urgency for the discovery of new drug targets. To that end, targeting the electroneutral K+/Cl- cotransporter KCC2 has emerged as a novel therapeutic strategy for the treatment of epilepsy. AREAS COVERED We summarize the roles of KCC2 in the maintenance of synaptic inhibition and the evidence linking KCC2 dysfunction to epileptogenesis. We also discuss preclinical proof-of-principle studies that demonstrate that augmentation of KCC2 function can reduce seizure activity. Moreover, potential strategies to modulate KCC2 activity for therapeutic benefit are highlighted. EXPERT OPINION Although KCC2 is a promising drug target, questions remain before clinical translation. It is unclear whether increasing KCC2 activity can reverse epileptogenesis, the ultimate curative goal for epilepsy therapy that extends beyond seizure reduction. Furthermore, the potential adverse effects associated with increased KCC2 function have not been studied. Continued investigations into the neurobiology of KCC2 will help to translate promising preclinical insights into viable therapeutic avenues that leverage fundamental properties of KCC2 to treat medically intractable epilepsy and other disorders of failed synaptic inhibition with attendant neuronal hyperexcitability.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine , New Haven, CT, USA.,Medical Scientist Training Program, Yale University School of Medicine , New Haven, CT, USA
| | - Miao He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School , Boston, MA, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School , Boston, MA, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine , New Haven, CT, USA.,Department of Genetics, Yale University School of Medicine , New Haven, CT, USA.,Departments of Pediatrics and Cellular & Molecular Physiology, Yale University School of Medicine , New Haven, CT, USA.,Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale University , New Haven, CT, USA.,Yale Stem Cell Center, Yale School of Medicine , New Haven, CT, USA
| |
Collapse
|
28
|
Kwon Y, Jeon YW, Kwon M, Cho Y, Park D, Shin JE. βPix-d promotes tubulin acetylation and neurite outgrowth through a PAK/Stathmin1 signaling pathway. PLoS One 2020; 15:e0230814. [PMID: 32251425 PMCID: PMC7135283 DOI: 10.1371/journal.pone.0230814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Microtubules are a major cytoskeletal component of neurites, and the regulation of microtubule stability is essential for neurite morphogenesis. βPix (ARHGEF7) is a guanine nucleotide exchange factor for the small GTPases Rac1 and Cdc42, which modulate the organization of actin filaments and microtubules. βPix is expressed as alternatively spliced variants, including the ubiquitous isoform βPix-a and the neuronal isoforms βPix-b and βPix-d, but the function of the neuronal isoforms remains unclear. Here, we reveal the novel role of βPix neuronal isoforms in regulating tubulin acetylation and neurite outgrowth. At DIV4, hippocampal neurons cultured from βPix neuronal isoform knockout (βPix-NIKO) mice exhibit defects in neurite morphology and tubulin acetylation, a type of tubulin modification which often labels stable microtubules. Treating βPix-NIKO neurons with paclitaxel, which stabilizes the microtubules, or reintroducing either neuronal βPix isoform to the KO neurons overcomes the impairment in neurite morphology and tubulin acetylation, suggesting that neuronal βPix isoforms may promote microtubule stabilization during neurite development. βPix-NIKO neurons also exhibit lower phosphorylation levels for Stathmin1, a microtubule-destabilizing protein, at Ser16. Expressing either βPix neuronal isoform in the βPix-NIKO neurons restores Stathmin1 phosphorylation levels, with βPix-d having a greater effect than βPix-b. Furthermore, we find that the recovery of neurite length and Stathmin1 phosphorylation via βPix-d expression requires PAK kinase activity. Taken together, our study demonstrates that βPix-d regulates the phosphorylation of Stathmin1 in a PAK-dependent manner and that neuronal βPix isoforms promote tubulin acetylation and neurite morphogenesis during neuronal development.
Collapse
Affiliation(s)
- Younghee Kwon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ye Won Jeon
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Minjae Kwon
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yongcheol Cho
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Dongeun Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung Eun Shin
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Mavrovic M, Uvarov P, Delpire E, Vutskits L, Kaila K, Puskarjov M. Loss of non-canonical KCC2 functions promotes developmental apoptosis of cortical projection neurons. EMBO Rep 2020; 21:e48880. [PMID: 32064760 DOI: 10.15252/embr.201948880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
KCC2, encoded in humans by the SLC12A5 gene, is a multifunctional neuron-specific protein initially identified as the chloride (Cl- ) extruder critical for hyperpolarizing GABAA receptor currents. Independently of its canonical function as a K-Cl cotransporter, KCC2 regulates the actin cytoskeleton via molecular interactions mediated through its large intracellular C-terminal domain (CTD). Contrary to the common assumption that embryonic neocortical projection neurons express KCC2 at non-significant levels, here we show that loss of KCC2 enhances apoptosis of late-born upper-layer cortical projection neurons in the embryonic brain. In utero electroporation of plasmids encoding truncated, transport-dead KCC2 constructs retaining the CTD was as efficient as of that encoding full-length KCC2 in preventing elimination of migrating projection neurons upon conditional deletion of KCC2. This was in contrast to the effect of a full-length KCC2 construct bearing a CTD missense mutation (KCC2R952H ), which disrupts cytoskeletal interactions and has been found in patients with neurological and psychiatric disorders, notably seizures and epilepsy. Together, our findings indicate ion transport-independent, CTD-mediated regulation of developmental apoptosis by KCC2 in migrating cortical projection neurons.
Collapse
Affiliation(s)
- Martina Mavrovic
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, USA
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva 4, Switzerland.,Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva 4, Switzerland
| | - Kai Kaila
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Martin Puskarjov
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Otsu Y, Donneger F, Schwartz EJ, Poncer JC. Cation-chloride cotransporters and the polarity of GABA signalling in mouse hippocampal parvalbumin interneurons. J Physiol 2020; 598:1865-1880. [PMID: 32012273 DOI: 10.1113/jp279221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cation-chloride cotransporters (CCCs) play a critical role in controlling the efficacy and polarity of GABAA receptor (GABAA R)-mediated transmission in the brain, yet their expression and function in GABAergic interneurons has been overlooked. We compared the polarity of GABA signalling and the function of CCCs in mouse hippocampal pyramidal neurons and parvalbumin-expressing interneurons. Under resting conditions, GABAA R activation was mostly depolarizing and yet inhibitory in both cell types. KCC2 blockade further depolarized the reversal potential of GABAA R-mediated currents often above action potential threshold. However, during repetitive GABAA R activation, the postsynaptic response declined independently of the ion flux direction or KCC2 function, suggesting intracellular chloride build-up is not responsible for this form of plasticity. Our data demonstrate similar mechanisms of chloride regulation in mouse hippocampal pyramidal neurons and parvalbumin interneurons. ABSTRACT Transmembrane chloride gradients govern the efficacy and polarity of GABA signalling in neurons and are usually maintained by the activity of cation-chloride cotransporters, such as KCC2 and NKCC1. Whereas their role is well established in cortical principal neurons, it remains poorly documented in GABAergic interneurons. We used complementary electrophysiological approaches to compare the effects of GABAA receptor (GABAA R) activation in adult mouse hippocampal parvalbumin interneurons (PV-INs) and pyramidal cells (PCs). Loose cell-attached, tight-seal and gramicidin-perforated patch recordings all show GABAA R-mediated transmission is slightly depolarizing and yet inhibitory in both PV-INs and PCs. Focal GABA uncaging in whole-cell recordings reveal that KCC2 and NKCC1 are functional in both PV-INs and PCs but differentially contribute to transmembrane chloride gradients in their soma and dendrites. Blocking KCC2 function depolarizes the reversal potential of GABAA R-mediated currents in PV-INs and PCs, often beyond firing threshold, showing KCC2 is essential to maintain the inhibitory effect of GABAA Rs. Finally, we show that repetitive 10 Hz activation of GABAA Rs in both PV-INs and PCs leads to a progressive decline of the postsynaptic response independently of the ion flux direction or KCC2 function. This suggests intraneuronal chloride build-up may not predominantly contribute to activity-dependent plasticity of GABAergic synapses in this frequency range. Altogether our data demonstrate similar mechanisms of chloride regulation in mouse hippocampal PV-INs and PCs and suggest KCC2 downregulation in the pathology may affect the valence of GABA signalling in both cell types.
Collapse
Affiliation(s)
- Yo Otsu
- Inserm UMR-S 1270, 75005, Paris, France.,Sorbonne Université, F75005, Paris, France.,Institut du Fer à Moulin, F75005, Paris, France
| | - Florian Donneger
- Inserm UMR-S 1270, 75005, Paris, France.,Sorbonne Université, F75005, Paris, France.,Institut du Fer à Moulin, F75005, Paris, France
| | - Eric J Schwartz
- Inserm UMR-S 1270, 75005, Paris, France.,Sorbonne Université, F75005, Paris, France.,Institut du Fer à Moulin, F75005, Paris, France
| | - Jean Christophe Poncer
- Inserm UMR-S 1270, 75005, Paris, France.,Sorbonne Université, F75005, Paris, France.,Institut du Fer à Moulin, F75005, Paris, France
| |
Collapse
|
31
|
MacDonald ML, Garver M, Newman J, Sun Z, Kannarkat J, Salisbury R, Glausier J, Ding Y, Lewis DA, Yates N, Sweet RA. Synaptic Proteome Alterations in the Primary Auditory Cortex of Individuals With Schizophrenia. JAMA Psychiatry 2020; 77:86-95. [PMID: 31642882 PMCID: PMC6813579 DOI: 10.1001/jamapsychiatry.2019.2974] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022]
Abstract
Importance Findings from unbiased genetic studies have consistently implicated synaptic protein networks in schizophrenia, but the molecular pathologic features within these networks and their contribution to the synaptic and circuit deficits thought to underlie disease symptoms remain unknown. Objective To determine whether protein levels are altered within synapses from the primary auditory cortex (A1) of individuals with schizophrenia and, if so, whether these differences are restricted to the synapse or occur throughout the gray matter. Design, Setting, and Participants This paired case-control study included tissue samples from individuals with schizophrenia obtained from the Allegheny County Office of the Medical Examiner. An independent panel of health care professionals made consensus DSM-IV diagnoses. Each tissue sample from an individual with schizophrenia was matched by sex, age, and postmortem interval with 1 sample from an unaffected control individual. Targeted mass spectrometry was used to measure protein levels in A1 gray matter homogenate and synaptosome preparations. All experimenters were blinded to diagnosis. Mass spectrometry data were collected from September 26 through November 4, 2016, and analyzed from November 3, 2016, to July 15, 2019. Main Outcomes and Measures Primary measures were homogenate and synaptosome protein levels and their coregulation network features. Hypotheses generated before data collection were (1) that levels of canonical postsynaptic proteins in A1 synaptosome preparations would differ between individuals with schizophrenia and controls and (2) that these differences would not be explained by changes in total A1 homogenate protein levels. Results Synaptosome and homogenate protein levels were investigated in 48 individuals with a schizophrenia diagnosis and 48 controls (mean age in both groups, 48 years [range, 17-83 years]); each group included 35 males (73%) and 13 females (27%). Robust alterations (statistical cutoff set at an adjusted Limma P < .05) were observed in synaptosome levels of canonical mitochondrial and postsynaptic proteins that were highly coregulated and not readily explained by postmortem interval, antipsychotic drug treatment, synaptosome yield, or underlying alterations in homogenate protein levels. Conclusions and Relevance These findings suggest a robust and highly coordinated rearrangement of the synaptic proteome. In line with unbiased genetic findings, alterations in synaptic levels of postsynaptic proteins were identified, providing a road map to identify the specific cells and circuits that are impaired in individuals with schizophrenia A1.
Collapse
Affiliation(s)
- Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan Garver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason Newman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhe Sun
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Kannarkat
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jill Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nathan Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Duy PQ, David WB, Kahle KT. Identification of KCC2 Mutations in Human Epilepsy Suggests Strategies for Therapeutic Transporter Modulation. Front Cell Neurosci 2019; 13:515. [PMID: 31803025 PMCID: PMC6873151 DOI: 10.3389/fncel.2019.00515] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent and unprovoked seizures thought to arise from impaired balance between neuronal excitation and inhibition. Our understanding of the neurophysiological mechanisms that render the brain epileptogenic remains incomplete, reflected by the lack of satisfactory treatments that can effectively prevent epileptic seizures without significant drug-related adverse effects. Type 2 K+-Cl− cotransporter (KCC2), encoded by SLC12A5, is important for chloride homeostasis and neuronal excitability. KCC2 dysfunction attenuates Cl− extrusion and impairs GABAergic inhibition, and can lead to neuronal hyperexcitability. Converging lines of evidence from human genetics have secured the link between KCC2 dysfunction and the development of epilepsy. Here, we review KCC2 mutations in human epilepsy and discuss potential therapeutic strategies based on the functional impact of these mutations. We suggest that a strategy of augmenting KCC2 activity by antagonizing its critical inhibitory phosphorylation sites may be a particularly efficacious method of facilitating Cl− extrusion and restoring GABA inhibition to treat medication-refractory epilepsy and other seizure disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, United States
| | - Wyatt B David
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States.,Department of Genetics, Yale University School of Medicine, New Haven, CT, United States.,Departments of Pediatrics and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States.,Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale University, New Haven, CT, United States.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
33
|
Akhter ET, Griffith RW, English AW, Alvarez FJ. Removal of the Potassium Chloride Co-Transporter from the Somatodendritic Membrane of Axotomized Motoneurons Is Independent of BDNF/TrkB Signaling But Is Controlled by Neuromuscular Innervation. eNeuro 2019; 6:ENEURO.0172-19.2019. [PMID: 31541001 PMCID: PMC6795555 DOI: 10.1523/eneuro.0172-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023] Open
Abstract
The potassium-chloride cotransporter (KCC2) maintains the low intracellular chloride found in mature central neurons and controls the strength and direction of GABA/glycine synapses. We found that following axotomy as a consequence of peripheral nerve injuries (PNIs), KCC2 protein is lost throughout the somatodendritic membrane of axotomized spinal cord motoneurons after downregulation of kcc2 mRNA expression. This large loss likely depolarizes the reversal potential of GABA/glycine synapses, resulting in GABAergic-driven spontaneous activity in spinal motoneurons similar to previous reports in brainstem motoneurons. We hypothesized that the mechanism inducing KCC2 downregulation in spinal motoneurons following peripheral axotomy might be mediated by microglia or motoneuron release of BDNF and TrkB activation as has been reported on spinal cord dorsal horn neurons after nerve injury, motoneurons after spinal cord injury (SCI), and in many other central neurons throughout development or a variety of pathologies. To test this hypothesis, we used genetic approaches to interfere with microglia activation or delete bdnf from specifically microglia or motoneurons, as well as pharmacology (ANA-12) and pharmacogenetics (F616A mice) to block TrkB activation. We show that KCC2 dysregulation in axotomized motoneurons is independent of microglia, BDNF, and TrkB. KCC2 is instead dependent on neuromuscular innervation; KCC2 levels are restored only when motoneurons reinnervate muscle. Thus, downregulation of KCC2 occurs specifically while injured motoneurons are regenerating and might be controlled by target-derived signals. GABAergic and glycinergic synapses might therefore depolarize motoneurons disconnected from their targets and contribute to augment motoneuron activity known to promote motor axon regeneration.
Collapse
Affiliation(s)
- Erica Tracey Akhter
- Departments of Physiology, Emory University, Atlanta, GA 30322
- Cell Biology, Emory University, Atlanta, GA 30322
| | | | | | | |
Collapse
|
34
|
Moore YE, Conway LC, Wobst HJ, Brandon NJ, Deeb TZ, Moss SJ. Developmental Regulation of KCC2 Phosphorylation Has Long-Term Impacts on Cognitive Function. Front Mol Neurosci 2019; 12:173. [PMID: 31396048 PMCID: PMC6664008 DOI: 10.3389/fnmol.2019.00173] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
GABAA receptor-mediated currents shift from excitatory to inhibitory during postnatal brain development in rodents. A postnatal increase in KCC2 protein expression is considered to be the sole mechanism controlling the developmental onset of hyperpolarizing synaptic transmission, but here we identify a key role for KCC2 phosphorylation in the developmental EGABA shift. Preventing phosphorylation of KCC2 in vivo at either residue serine 940 (S940), or at residues threonine 906 and threonine 1007 (T906/T1007), delayed or accelerated the postnatal onset of KCC2 function, respectively. Several models of neurodevelopmental disorders including Rett syndrome, Fragile × and Down's syndrome exhibit delayed postnatal onset of hyperpolarizing GABAergic inhibition, but whether the timing of the onset of hyperpolarizing synaptic inhibition during development plays a role in establishing adulthood cognitive function is unknown; we have used the distinct KCC2-S940A and KCC2-T906A/T1007A knock-in mouse models to address this issue. Altering KCC2 function resulted in long-term abnormalities in social behavior and memory retention. Tight regulation of KCC2 phosphorylation is therefore required for the typical timing of the developmental onset of hyperpolarizing synaptic inhibition, and it plays a fundamental role in the regulation of adulthood cognitive function.
Collapse
Affiliation(s)
- Yvonne E. Moore
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Leslie C. Conway
- AstraZeneca-Tufts University Laboratory for Basic and Translational Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
| | - Heike J. Wobst
- Neuroscience, R&D Biopharmaceuticals, AstraZeneca, Boston, MA, United States
| | - Nicholas J. Brandon
- Neuroscience, R&D Biopharmaceuticals, AstraZeneca, Boston, MA, United States
| | - Tarek Z. Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- AstraZeneca-Tufts University Laboratory for Basic and Translational Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
35
|
Kwon Y, Lee SJ, Lee E, Kim D, Park D. βPix heterozygous mice have defects in neuronal morphology and social interaction. Biochem Biophys Res Commun 2019; 516:1204-1210. [PMID: 31296385 DOI: 10.1016/j.bbrc.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
βPix activates Rho family small GTPases, Rac1 and Cdc42 as a guanine nucleotide exchange factor. Although overexpression of βPix in cultured neurons indicates that βPix is involved in spine morphogenesis and synapse formation in vitro, the in vivo role of βPix in the neuron is not well understood. Recently, we generated βPix knockout mice that showed lethality at embryonic day 9.5. Here, we investigate the neuronal role of βPix using βPix heterozygous mice that are viable and fertile. βPix heterozygous mice show decreased expression levels of βPix proteins in various tissues including the brain. Cultured hippocampal neurons from βPix heterozygous mice show a decrease in neurite length and complexity as well as synaptic density. Both excitatory and inhibitory synapse densities are decreased in these neurons. Golgi-staining of hippocampal tissues from the brain of these mice show reduced dendritic complexity and spine density in the hippocampal neurons. Expression levels of NMDA- and AMPA-receptor subunits and Git1 protein in hippocampal tissues are also decreased in these mice. Behaviorally, βPix heterozygous mice exhibit impaired social interaction. Altogether, these results indicate that βPix is required for neurite morphogenesis and synapse formation, and the reduced expression of βPix proteins results in a defect in social behavior.
Collapse
Affiliation(s)
- Younghee Kwon
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Seung Joon Lee
- Computational Biology & Genomics, Biogen, Cambridge, MA, 02142, USA.
| | - Eunee Lee
- Department of Anatomy, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| | - Dongeun Park
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
36
|
Goutierre M, Al Awabdh S, Donneger F, François E, Gomez-Dominguez D, Irinopoulou T, Menendez de la Prida L, Poncer JC. KCC2 Regulates Neuronal Excitability and Hippocampal Activity via Interaction with Task-3 Channels. Cell Rep 2019; 28:91-103.e7. [PMID: 31269453 DOI: 10.1016/j.celrep.2019.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/18/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022] Open
Abstract
KCC2 regulates neuronal transmembrane chloride gradients and thereby controls GABA signaling in the brain. KCC2 downregulation is observed in numerous neurological and psychiatric disorders. Paradoxical, excitatory GABA signaling is usually assumed to contribute to abnormal network activity underlying the pathology. We tested this hypothesis and explored the functional impact of chronic KCC2 downregulation in the rat dentate gyrus. Although the reversal potential of GABAA receptor currents is depolarized in KCC2 knockdown neurons, this shift is compensated by depolarization of the resting membrane potential. This reflects downregulation of leak potassium currents. We show KCC2 interacts with Task-3 (KCNK9) channels and is required for their membrane expression. Increased neuronal excitability upon KCC2 suppression altered dentate gyrus rhythmogenesis, which could be normalized by chemogenetic hyperpolarization. Our data reveal KCC2 downregulation engages complex synaptic and cellular alterations beyond GABA signaling that perturb network activity thus offering additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Emeline François
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | - Daniel Gomez-Dominguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain
| | - Theano Irinopoulou
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France
| | | | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France; Sorbonne Université, 75005 Paris, France; Institut du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
37
|
Nakamura K, Moorhouse AJ, Cheung DL, Eto K, Takeda I, Rozenbroek PW, Nabekura J. Overexpression of neuronal K +-Cl - co-transporter enhances dendritic spine plasticity and motor learning. J Physiol Sci 2019; 69:453-463. [PMID: 30758780 PMCID: PMC10717839 DOI: 10.1007/s12576-018-00654-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
The neuronal K+-Cl- cotransporter KCC2 maintains a low intracellular Cl- concentration and facilitates hyperpolarizing GABAA receptor responses. KCC2 also plays a separate role in stabilizing and enhancing dendritic spines in the developing nervous system. Using a conditional transgenic mouse strategy, we examined whether overexpression of KCC2 enhances dendritic spines in the adult nervous system and characterized the effects on spine dynamics in the motor cortex in vivo during rotarod training. Mice overexpressing KCC2 showed significantly increased spine density in the apical dendrites of layer V pyramidal neurons, measured in vivo using two-photon imaging. During modest accelerated rotarod training, mice overexpressing KCC2 displayed enhanced spine formation rates, greater balancing skill at higher rotarod speeds and a faster rate of learning in this ability. Our results demonstrate that KCC2 enhances spine density and dynamics in the adult nervous system and suggest that KCC2 may play a role in experience-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Kayo Nakamura
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Physiological Sciences, Sokendai, Hayama, 240-0193, Japan
| | - Andrew John Moorhouse
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Dennis Lawrence Cheung
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Kei Eto
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Ikuko Takeda
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Paul Wiers Rozenbroek
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Junichi Nabekura
- Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan.
- Department of Physiological Sciences, Sokendai, Hayama, 240-0193, Japan.
| |
Collapse
|
38
|
Côme E, Marques X, Poncer JC, Lévi S. KCC2 membrane diffusion tunes neuronal chloride homeostasis. Neuropharmacology 2019; 169:107571. [PMID: 30871970 DOI: 10.1016/j.neuropharm.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023]
Abstract
Neuronal Cl- homeostasis is regulated by the activity of two cation chloride co-transporters (CCCs), the K+-Cl- cotransporter KCC2 and the Na+-K+-Cl- cotransporter NKCC1, which are primarily extruding and importing chloride in neurons, respectively. Several neurological and psychiatric disorders including epilepsy, neuropathic pain, schizophrenia and autism are associated with altered neuronal chloride (Cl-) homeostasis. A current view is that the accumulation of intracellular Cl- in neurons as a result of KCC2 down-regulation and/or NKCC1 up-regulation may weaken inhibitory GABA signaling and thereby promote the development of pathological activities. CCC activity is determined mainly by their level of expression in the plasma membrane. Furthermore, CCCs undergo "diffusion-trapping" in the membrane, a mechanism that is rapidly adjusted by activity-dependent post-translational modifications i.e. phosphorylation/dephosphorylation of key serine and threonine residues. This represents probably the most rapid cellular mechanism for adapting CCC function to changes in neuronal activity. Therefore, interfering with these mechanisms may help restoring Cl- homeostasis and inhibition under pathological conditions. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Xavier Marques
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005, Paris, France; Sorbonne Université, 75005, Paris, France; Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
39
|
Garand D, Mahadevan V, Woodin MA. Ionotropic and metabotropic kainate receptor signalling regulates Cl - homeostasis and GABAergic inhibition. J Physiol 2019; 597:1677-1690. [PMID: 30570751 PMCID: PMC6418771 DOI: 10.1113/jp276901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Potassium-chloride co-transporter 2 (KCC2) plays a critical role in regulating chloride homeostasis, which is essential for hyperpolarizing inhibition in the mature nervous system. KCC2 interacts with many proteins involved in excitatory neurotransmission, including the GluK2 subunit of the kainate receptor (KAR). We show that activation of KARs hyperpolarizes the reversal potential for GABA (EGABA ) via both ionotropic and metabotropic signalling mechanisms. KCC2 is required for the metabotropic KAR-mediated regulation of EGABA , although ionotropic KAR signalling can hyperpolarize EGABA independent of KCC2 transporter function. The KAR-mediated hyperpolarization of EGABA is absent in the GluK1/2-/- mouse and is independent of zinc release from mossy fibre terminals. The ability of KARs to regulate KCC2 function may have implications in diseases with disrupted excitation: inhibition balance, such as epilepsy, neuropathic pain, autism spectrum disorders and Down's syndrome. ABSTRACT Potassium-chloride co-transporter 2 (KCC2) plays a critical role in the regulation of chloride (Cl- ) homeostasis within mature neurons. KCC2 is a secondarily active transporter that extrudes Cl- from the neuron, which maintains a low intracellular Cl- concentration [Cl- ]. This results in a hyperpolarized reversal potential of GABA (EGABA ), which is required for fast synaptic inhibition in the mature central nervous system. KCC2 also plays a structural role in dendritic spines and at excitatory synapses, and interacts with 'excitatory' proteins, including the GluK2 subunit of kainate receptors (KARs). KARs are glutamate receptors that display both ionotropic and metabotropic signalling. We show that activating KARs in the hippocampus hyperpolarizes EGABA , thus strengthening inhibition. This hyperpolarization occurs via both ionotropic and metabotropic KAR signalling in the CA3 region, whereas it is absent in the GluK1/2-/- mouse, and is independent of zinc release from mossy fibre terminals. The metabotropic signalling mechanism is dependent on KCC2, although the ionotropic signalling mechanism produces a hyperpolarization of EGABA even in the absence of KCC2 transporter function. These results demonstrate a novel functional interaction between a glutamate receptor and KCC2, a transporter critical for maintaining inhibition, suggesting that the KAR:KCC2 complex may play an important role in excitatory:inhibitory balance in the hippocampus. Additionally, the ability of KARs to regulate chloride homeostasis independently of KCC2 suggests that KAR signalling can regulate inhibition via multiple mechanisms. Activation of kainate-type glutamate receptors could serve as an important mechanism for increasing the strength of inhibition during periods of strong glutamatergic activity.
Collapse
MESH Headings
- Animals
- CA1 Region, Hippocampal/cytology
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiology
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/physiology
- Cells, Cultured
- Chlorides/metabolism
- Female
- Homeostasis
- Inhibitory Postsynaptic Potentials
- Male
- Mice
- Mice, Inbred C57BL
- Mossy Fibers, Hippocampal/metabolism
- Mossy Fibers, Hippocampal/physiology
- Pyramidal Cells/metabolism
- Pyramidal Cells/physiology
- Receptors, GABA/metabolism
- Receptors, Kainic Acid/metabolism
- Symporters/metabolism
- K Cl- Cotransporters
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Danielle Garand
- Department of Cell and Systems BiologyUniversity of TorontoTorontoONCanada
| | - Vivek Mahadevan
- Department of Cell and Systems BiologyUniversity of TorontoTorontoONCanada
| | - Melanie A. Woodin
- Department of Cell and Systems BiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
40
|
Côme E, Heubl M, Schwartz EJ, Poncer JC, Lévi S. Reciprocal Regulation of KCC2 Trafficking and Synaptic Activity. Front Cell Neurosci 2019; 13:48. [PMID: 30842727 PMCID: PMC6391895 DOI: 10.3389/fncel.2019.00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
The main inhibitory neurotransmitter receptors in the adult central nervous system (CNS) are type A γ-aminobutyric acid receptors (GABAARs) and glycine receptors (GlyRs). Synaptic responses mediated by GlyR and GABAAR display a hyperpolarizing shift during development. This shift relies mainly on the developmental up-regulation of the K+-Cl- co-transporter KCC2 responsible for the extrusion of Cl-. In mature neurons, altered KCC2 function-mainly through increased endocytosis-leads to the re-emergence of depolarizing GABAergic and glycinergic signaling, which promotes hyperexcitability and pathological activities. Identifying signaling pathways and molecular partners that control KCC2 surface stability thus represents a key step in the development of novel therapeutic strategies. Here, we present our current knowledge on the cellular and molecular mechanisms governing the plasma membrane turnover rate of the transporter under resting conditions and in response to synaptic activity. We also discuss the notion that KCC2 lateral diffusion is one of the first parameters modulating the transporter membrane stability, allowing for rapid adaptation of Cl- transport to changes in neuronal activity.
Collapse
Affiliation(s)
- Etienne Côme
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Martin Heubl
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Eric J Schwartz
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, Paris, France.,Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
41
|
Shin MS, Song SH, Shin JE, Lee SH, Huh SO, Park D. Src-mediated phosphorylation of βPix-b regulates dendritic spine morphogenesis. J Cell Sci 2019; 132:jcs.224980. [DOI: 10.1242/jcs.224980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022] Open
Abstract
PAK-interacting guanine nucleotide exchange factor (βPix) has been implicated in many actin-based cellular processes including spine morphogenesis in neurons. However, the molecular mechanisms by which βPix controls spine morphology remain elusive. Previously, we have reported the expression of several alternative spliced βPix isoforms in the brain. Here, we report a novel finding that the b isoform of βPix (βPix-b) mediates regulation of spine and synapse formation. We found that βPix-b, which is mainly expressed in neurons, enhances spine and synapse formation through preferential localization at spines. In neurons, glutamate treatment efficiently stimulates Rac1 GEF activity of βPix-b. The glutamate stimulation also promotes Src kinase-mediated phosphorylation of βPix-b in both AMPA receptor- and NMDA receptor-dependent manner. Tyrosine 598 (Y598) of βPix-b is identified as the major Src-mediated phosphorylation site. Finally, Y598 phosphorylation of βPix-b enhances its Rac1 GEF activity that is critical for spine and synapse formation. In conclusion, we provide a novel mechanism by which βPix-b regulates activity-dependent spinogenesis and synaptogenesis via Src-mediated phosphorylation.
Collapse
Affiliation(s)
- Mi-seon Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-ho Song
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Current address: Lee Kong Chian School of Medicine, Nanyang Technological University and Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Jung Eun Shin
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Current address: KU Advanced Graduate Program for Life Science, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hye Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Current address: Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dongeun Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Awad PN, Amegandjin CA, Szczurkowska J, Carriço JN, Fernandes do Nascimento AS, Baho E, Chattopadhyaya B, Cancedda L, Carmant L, Di Cristo G. KCC2 Regulates Dendritic Spine Formation in a Brain-Region Specific and BDNF Dependent Manner. Cereb Cortex 2018; 28:4049-4062. [PMID: 30169756 PMCID: PMC6188549 DOI: 10.1093/cercor/bhy198] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023] Open
Abstract
KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.
Collapse
Affiliation(s)
- Patricia Nora Awad
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Clara Akofa Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Joanna Szczurkowska
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Elie Baho
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Bidisha Chattopadhyaya
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Laura Cancedda
- Neuroscience and Brain Technologies, Instituto Italiano di Tecnologia, Genova, Italy
- Telethon Dulbecco Institute, Italy
| | - Lionel Carmant
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Graziella Di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
43
|
López Tobón A, Suresh M, Jin J, Vitriolo A, Pietralla T, Tedford K, Bossenz M, Mahnken K, Kiefer F, Testa G, Fischer KD, Püschel AW. The guanine nucleotide exchange factor Arhgef7/βPix promotes axon formation upstream of TC10. Sci Rep 2018; 8:8811. [PMID: 29891904 PMCID: PMC5995858 DOI: 10.1038/s41598-018-27081-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
The characteristic six layers of the mammalian neocortex develop sequentially as neurons are generated by neural progenitors and subsequently migrate past older neurons to their final position in the cortical plate. One of the earliest steps of neuronal differentiation is the formation of an axon. Small GTPases play essential roles during this process by regulating cytoskeletal dynamics and intracellular trafficking. While the function of GTPases has been studied extensively in cultured neurons and in vivo much less is known about their upstream regulators. Here we show that Arhgef7 (also called βPix or Cool1) is essential for axon formation during cortical development. The loss of Arhgef7 results in an extensive loss of axons in cultured neurons and in the developing cortex. Arhgef7 is a guanine-nucleotide exchange factor (GEF) for Cdc42, a GTPase that has a central role in directing the formation of axons during brain development. However, active Cdc42 was not able to rescue the knockdown of Arhgef7. We show that Arhgef7 interacts with the GTPase TC10 that is closely related to Cdc42. Expression of active TC10 can restore the ability to extend axons in Arhgef7-deficient neurons. Our results identify an essential role of Arhgef7 during neuronal development that promotes axon formation upstream of TC10.
Collapse
Affiliation(s)
- Alejandro López Tobón
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Megalakshmi Suresh
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany
| | - Jing Jin
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany
| | - Alessandro Vitriolo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Thorben Pietralla
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany
| | - Kerry Tedford
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Michael Bossenz
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Kristina Mahnken
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany
| | - Friedemann Kiefer
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.,Max-Planck-Institute for Molecular Biomedicine, Mammalian cell signaling laboratory, Röntgenstr. 20, D-48149, Münster, Germany.,European Institute for Molecular Imaging, Westfälische Wilhelms-Universität, Waldeyerstr. 15, D-48149, Münster, Germany
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany. .,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.
| |
Collapse
|
44
|
Emerging Mechanisms Underlying Dynamics of GABAergic Synapses. J Neurosci 2017; 37:10792-10799. [PMID: 29118207 DOI: 10.1523/jneurosci.1824-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Inhibitory circuits are diverse, yet with a poorly understood cell biology. Functional characterization of distinct inhibitory neuron subtypes has not been sufficient to explain how GABAergic neurotransmission sculpts principal cell activity in a relevant fashion. Our Mini-Symposium brings together several emerging mechanisms that modulate GABAergic neurotransmission dynamically from either the presynaptic or the postsynaptic site. The first two talks discuss novel developmental and neuronal subtype-specific contributions to the excitatory/inhibitory balance and circuit maturation. The next three talks examine how interactions between cellular pathways, lateral diffusion of proteins between synapses, and chloride transporter function at excitatory and inhibitory synapses and facilitate inhibitory synapse adaptations. Finally, we address functional differences within GABAergic interneurons to highlight the importance of diverse, flexible, and versatile inputs that shape network function. Together, the selection of topics demonstrates how developmental and activity-dependent mechanisms coordinate inhibition in relation to the excitatory inputs and vice versa.
Collapse
|
45
|
Abstract
K+-Cl- co-transporter 2 (KCC2/SLC12A5) is a neuronal specific cation chloride co-transporter which is active under isotonic conditions, and thus a key regulator of intracellular Cl- levels. It also has an ion transporter-independent structural role in modulating the maturation and regulation of excitatory glutamatergic synapses. KCC2 levels are developmentally regulated, and a postnatal upregulation of KCC2 generates a low intracellular chloride concentration that allows the neurotransmitters γ-aminobutyric acid (GABA) and glycine to exert inhibitory neurotransmission through its Cl- permeating channel. Functional expression of KCC2 at the neuronal cell surface is necessary for its activity, and impairment in KCC2 cell surface transport and/or internalization may underlie a range of neuropathological conditions. Although recent advances have shed light on a range of cellular mechanisms regulating KCC2 activity, little is known about its membrane trafficking itinerary and regulatory proteins. In this review, known membrane trafficking signals, pathways and mechanisms pertaining to KCC2's functional surface expression are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- a Department of Biochemistry, Yong Loo Lin School of Medicine , National University Health System , Singapore.,b NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore
| |
Collapse
|
46
|
Markkanen M, Ludwig A, Khirug S, Pryazhnikov E, Soni S, Khiroug L, Delpire E, Rivera C, Airaksinen MS, Uvarov P. Implications of the N-terminal heterogeneity for the neuronal K-Cl cotransporter KCC2 function. Brain Res 2017; 1675:87-101. [PMID: 28888841 DOI: 10.1016/j.brainres.2017.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022]
Abstract
The neuron-specific K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the fast hyperpolarizing responses of the inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. The two KCC2 isoforms, KCC2a and KCC2b differ by their N-termini as a result of alternative promoter usage. Whereas the role of KCC2b in mediating the chloride transport is unequivocal, the physiological role of KCC2a in neurons has remained obscure. We show that KCC2a isoform can decrease the intracellular chloride concentration in cultured neurons and attenuate calcium responses evoked by application of the GABAA receptor agonist muscimol. While the biotinylation assay detected both KCC2 isoforms at the cell surface of cultured neurons, KCC2a was not detected at the plasma membrane in immunostainings, suggesting that the N-terminal KCC2a epitope is masked. Confirming this hypothesis, KCC2a surface expression was detected by the C-terminal KCC2 pan antibody but not by the N-terminal KCC2a antibody in KCC2b-deficient neurons. One possible cause for the epitope masking is the binding site of Ste20-related proline-alanine-rich kinase (SPAK) in the KCC2a N-terminus. SPAK, a known regulator of K-Cl cotransporters, was co-immunoprecipitated in a complex with KCC2a but not KCC2b isoform. Moreover, SPAK overexpression decreased the transport activity of KCC2a but not that of KCC2b, as revealed by rubidium flux assay in HEK293 cells. Thus, our data indicate that both KCC2 isoforms perform as chloride cotransporters in neuronal cells, while their N-terminal heterogeneity could play an important role in fine-tuning of the K-Cl transport activity.
Collapse
Affiliation(s)
- Marika Markkanen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Shetal Soni
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Leonard Khiroug
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, Helsinki, Finland; INSERM, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; Aix-Marseille Université, UMR901 Marseille, France
| | - Matti S Airaksinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Pavel Uvarov
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
47
|
Mahadevan V, Khademullah CS, Dargaei Z, Chevrier J, Uvarov P, Kwan J, Bagshaw RD, Pawson T, Emili A, De Koninck Y, Anggono V, Airaksinen M, Woodin MA. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition. eLife 2017; 6:e28270. [PMID: 29028184 PMCID: PMC5640428 DOI: 10.7554/elife.28270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
KCC2 is a neuron-specific K+-Cl- cotransporter essential for establishing the Cl- gradient required for hyperpolarizing inhibition in the central nervous system (CNS). KCC2 is highly localized to excitatory synapses where it regulates spine morphogenesis and AMPA receptor confinement. Aberrant KCC2 function contributes to human neurological disorders including epilepsy and neuropathic pain. Using functional proteomics, we identified the KCC2-interactome in the mouse brain to determine KCC2-protein interactions that regulate KCC2 function. Our analysis revealed that KCC2 interacts with diverse proteins, and its most predominant interactors play important roles in postsynaptic receptor recycling. The most abundant KCC2 interactor is a neuronal endocytic regulatory protein termed PACSIN1 (SYNDAPIN1). We verified the PACSIN1-KCC2 interaction biochemically and demonstrated that shRNA knockdown of PACSIN1 in hippocampal neurons increases KCC2 expression and hyperpolarizes the reversal potential for Cl-. Overall, our global native-KCC2 interactome and subsequent characterization revealed PACSIN1 as a novel and potent negative regulator of KCC2.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | | | - Zahra Dargaei
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Jonah Chevrier
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Pavel Uvarov
- Department of Anatomy, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Julian Kwan
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Richard D Bagshaw
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
| | - Andrew Emili
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de QuébecQuébecCanada
- Department of Psychiatry and NeuroscienceUniversité LavalQuébecCanada
| | - Victor Anggono
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia ResearchThe University of QueenslandBrisbaneAustralia
| | - Matti Airaksinen
- Department of Anatomy, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Melanie A Woodin
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| |
Collapse
|
48
|
Moore YE, Kelley MR, Brandon NJ, Deeb TZ, Moss SJ. Seizing Control of KCC2: A New Therapeutic Target for Epilepsy. Trends Neurosci 2017; 40:555-571. [PMID: 28803659 DOI: 10.1016/j.tins.2017.06.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022]
Abstract
Deficits in GABAergic inhibition result in the abnormal neuronal activation and synchronization that underlies seizures. However, the molecular mechanisms responsible for transforming a normal brain into an epileptic one remain largely unknown. Hyperpolarizing inhibition mediated by type A GABA (GABAA) receptors is dependent on chloride extrusion by the neuron-specific type 2K+-Cl- cotransporter (KCC2). Loss-of-function mutations in KCC2 are a known cause of infantile epilepsy in humans and KCC2 dysfunction is present in patients with both idiopathic and acquired epilepsy. Here we discuss the growing evidence that KCC2 dysfunction has a central role in the development and severity of the epilepsies.
Collapse
Affiliation(s)
- Yvonne E Moore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Matt R Kelley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; AstraZeneca Neuroscience, Innovative Medicines and Early Development Biotech Unit, R&D Boston, Waltham, MA 024515, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA.
| |
Collapse
|
49
|
Hong SR, Jung SE, Lee EH, Shin KJ, Yang WI, Lee HY. DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers. Forensic Sci Int Genet 2017; 29:118-125. [PMID: 28419903 DOI: 10.1016/j.fsigen.2017.04.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
DNA methylation is currently one of the most promising age-predictive biomarkers. Many studies have reported DNA methylation-based age predictive models, but most of these are based on DNA methylation patterns from blood. Only a few studies have examined age-predictive DNA patterns in saliva, which is one of the most frequently-encountered body fluids at crime scenes. In this study, we generated genome-wide DNA methylation profiles of saliva from 54 individuals and identified CpG markers that showed a high correlation between methylation and age. Because the age-associated marker candidates from saliva differed from those of blood, we investigated DNA methylation patterns of 6 age-associated CpG marker candidates (cg00481951, cg19671120, cg14361627, cg08928145, cg12757011, and cg07547549 of the SST, CNGA3, KLF14, TSSK6, TBR1, and SLC12A5 genes, respectively) in addition to a cell type-specific CpG marker (cg18384097 of the PTPN7 gene) in an independent set of saliva samples obtained from 226 individuals aged 18 to 65 years. Multiplex methylation SNaPshot reactions were used to generate the data. We then generated a linear regression model with age information and the methylation profile from the 113 training samples. The model exhibited a 94.5% correlation between predicted and chronological age with a mean absolute deviation (MAD) from chronological age of 3.13 years. In subsequent validation using 113 test samples, we also observed a high correlation between predicted and chronological age (Spearman's rho=0.952, MAD from chronological age=3.15years). The model composed of 7 selected CpG sites enabled age prediction in saliva with high accuracy, which will be useful in saliva analysis for investigative leads.
Collapse
Affiliation(s)
- Sae Rom Hong
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Sang-Eun Jung
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Eun Hee Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Woo Ick Yang
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
50
|
Martín-Aragón Baudel MAS, Poole AV, Darlison MG. Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 2016; 140:195-209. [PMID: 27861901 DOI: 10.1111/jnc.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of death and disability worldwide. The major type of stroke is an ischaemic one, which is caused by a blockage that interrupts blood flow to the brain. There are currently very few pharmacological strategies to reduce the damage and social burden triggered by this pathology. The harm caused by the interruption of blood flow to the brain unfolds in the subsequent hours and days, so it is critical to identify new therapeutic targets that could reduce neuronal death associated with the spread of the damage. Here, we review some of the key molecular mechanisms involved in the progression of neuronal death, focusing on some new and promising studies. In particular, we focus on the potential of the chloride co-transporter (CCC) family of proteins, mediators of the GABAergic response, both during the early and later stages of stroke, to promote neuroprotection and recovery. Different studies of CCCs during the chronic and recovery phases post-stroke reveal the importance of timing when considering CCCs as potential neuroprotective and/or neuromodulator targets. The molecular regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are further discussed as an indirect approach for promoting neuroprotection and neurorehabilitation following an ischaemic insult. Finally, we mention the likely importance of combining different strategies in order to achieve more effective therapies.
Collapse
Affiliation(s)
| | - Amy V Poole
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Mark G Darlison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| |
Collapse
|