1
|
Ni Q, Ge Z, Li Y, Shatkin G, Fu J, Sen A, Bera K, Yang Y, Wang Y, Wu Y, Nogueira Vasconcelos AC, Yan Y, Lin D, Feinberg AP, Konstantopoulos K, Sun SX. Cytoskeletal activation of NHE1 regulates mechanosensitive cell volume adaptation and proliferation. Cell Rep 2024; 43:114992. [PMID: 39579355 DOI: 10.1016/j.celrep.2024.114992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Mammalian cells rapidly respond to environmental changes by altering transmembrane water and ion fluxes, changing cell volume. Contractile forces generated by actomyosin have been proposed to mechanically regulate cell volume. However, our findings reveal a different mechanism in adherent cells, where elevated actomyosin activity increases cell volume in normal-like cells (NIH 3T3 and others) through interaction with the sodium-hydrogen exchanger isoform 1 (NHE1). This leads to a slow secondary volume increase (SVI) following the initial regulatory volume decrease during hypotonic shock. The active cell response is further confirmed by intracellular alkalinization during mechanical stretch. Moreover, cytoskeletal activation of NHE1 during SVI deforms the nucleus, causing immediate transcriptomic changes and ERK-dependent growth inhibition. Notably, SVI and its associated changes are absent in many cancer cell lines or cells on compliant substrates with reduced actomyosin activity. Thus, actomyosin acts as a sensory element rather than a force generator during adaptation to environmental challenges.
Collapse
Affiliation(s)
- Qin Ni
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhuoxu Ge
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yizeng Li
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Gabriel Shatkin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jinyu Fu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Physics, Johns Hopkins University, Baltimore, MD, USA
| | - Anindya Sen
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kaustav Bera
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuhan Yang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yichen Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yufei Wu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ana Carina Nogueira Vasconcelos
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuqing Yan
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dingchang Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Konstantinos Konstantopoulos
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean X Sun
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Fu J, Ni Q, Wu Y, Gupta A, Ge Z, Yang H, Afrida Y, Barman I, Sun S. Cells Prioritize the Regulation of Cell Mass Density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627803. [PMID: 39713365 PMCID: PMC11661194 DOI: 10.1101/2024.12.10.627803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A cell's global physical state is characterized by its volume and dry mass. The ratio of cell mass to volume is the cell mass density (CMD), which is also a measure of macromolecular crowding and concentrations of all proteins. Using the Fluorescence eXclusion method (FXm) and Quantitative Phase Microscopy (QPM), we investigate CMD dynamics after exposure to sudden media osmolarity change. We find that while the cell volume and mass exhibit complex behavior after osmotic shock, CMD follows a straightforward monotonic recovery in 48 hours. The recovery is cell-cycle independent and relies on a coordinated adjustment of protein synthesis and volume growth rates. Surprisingly, we find that the protein synthesis rate decreases when CMD increases. This result is explained by CMD-dependent nucleoplasm-cytoplasm transport, which serves as negative regulatory feedback on CMD. The Na+/H+ exchanger NHE plays a role in regulating CMD by affecting both protein synthesis and volume change. Taken together, we reveal that cells possess a robust control system that actively regulates CMD during environmental change.
Collapse
|
3
|
Lanz MC, Zhang S, Swaffer MP, Ziv I, Götz LH, Kim J, McCarthy F, Jarosz DF, Elias JE, Skotheim JM. Genome dilution by cell growth drives starvation-like proteome remodeling in mammalian and yeast cells. Nat Struct Mol Biol 2024; 31:1859-1871. [PMID: 39048803 DOI: 10.1038/s41594-024-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Cell size is tightly controlled in healthy tissues and single-celled organisms, but it remains unclear how cell size influences physiology. Increasing cell size was recently shown to remodel the proteomes of cultured human cells, demonstrating that large and small cells of the same type can be compositionally different. In the present study, we utilize the natural heterogeneity of hepatocyte ploidy and yeast genetics to establish that the ploidy-to-cell size ratio is a highly conserved determinant of proteome composition. In both mammalian and yeast cells, genome dilution by cell growth elicits a starvation-like phenotype, suggesting that growth in large cells is restricted by genome concentration in a manner that mimics a limiting nutrient. Moreover, genome dilution explains some proteomic changes ascribed to yeast aging. Overall, our data indicate that genome concentration drives changes in cell composition independently of external environmental cues.
Collapse
Affiliation(s)
- Michael C Lanz
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA.
| | - Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Jacob Kim
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Frank McCarthy
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Joshua E Elias
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
5
|
Cadart C. Cell biology: Wanderers that balloon towards light. Curr Biol 2024; 34:R1139-R1141. [PMID: 39561707 DOI: 10.1016/j.cub.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Non-swimming plankton must maintain their vertical position in the ocean to ensure appropriate energy input from the sun. A new study reveals that they achieve this by regulating their buoyancy through a process of cellular inflation promptly after cell division.
Collapse
Affiliation(s)
- Clotilde Cadart
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France.
| |
Collapse
|
6
|
Norris V. Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. Theory Biosci 2024; 143:253-277. [PMID: 39505803 DOI: 10.1007/s12064-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
A fundamental problem in biology is how cells obtain the reproducible, coherent phenotypes needed for natural selection to act or, put differently, how cells manage to limit their exploration of the vastness of phenotype space. A subset of this problem is how they regulate their cell cycle. Bacteria, like eukaryotic cells, are highly structured and contain scores of hyperstructures or assemblies of molecules and macromolecules. The existence and functioning of certain of these hyperstructures depend on phase transitions. Here, I propose a conceptual framework to facilitate the development of water-clock hypotheses in which cells use water to generate phenotypes by living 'on the edge of phase transitions'. I give an example of such a hypothesis in the case of the bacterial cell cycle and show how it offers a relatively novel 'view from here' that brings together a range of different findings about hyperstructures, phase transitions and water and that can be integrated with other hypotheses about differentiation, metabolism and the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- CBSA UR 4312, University of Rouen Normandy, 76821, Rouen, Mont Saint Aignan, France.
| |
Collapse
|
7
|
Cohen BE. The Role of the Swollen State in Cell Proliferation. J Membr Biol 2024:10.1007/s00232-024-00328-x. [PMID: 39482485 DOI: 10.1007/s00232-024-00328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024]
Abstract
Cell swelling is known to be involved in various stages of the growth of plant cells and microorganisms but in mammalian cells how crucial a swollen state is for determining the fate of the cellular proliferation remains unclear. Recent evidence has increased our understanding of how the loss of the cell surface interactions with the extracellular matrix at early mitosis decreases the membrane tension triggering curvature changes in the plasma membrane and the activation of the sodium/hydrogen (Na +/H +) exchanger (NHE1) that drives osmotic swelling. Such a swollen state is temporary, but it is critical to alter essential membrane biophysical parameters that are required to activate Ca2 + channels and modulate the opening of K + channels involved in setting the membrane potential. A decreased membrane potential across the mitotic cell membrane enhances the clustering of Ras proteins involved in the Ca2 + and cytoskeleton-driven events that lead to cell rounding. Changes in the external mechanical and osmotic forces also have an impact on the lipid composition of the plasma membrane during mitosis.
Collapse
|
8
|
Iida S, Ide S, Tamura S, Sasai M, Tani T, Goto T, Shribak M, Maeshima K. Orientation-independent-DIC imaging reveals that a transient rise in depletion attraction contributes to mitotic chromosome condensation. Proc Natl Acad Sci U S A 2024; 121:e2403153121. [PMID: 39190347 PMCID: PMC11388287 DOI: 10.1073/pnas.2403153121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Genomic information must be faithfully transmitted into two daughter cells during mitosis. To ensure the transmission process, interphase chromatin is further condensed into mitotic chromosomes. Although protein factors like condensins and topoisomerase IIα are involved in the assembly of mitotic chromosomes, the physical bases of the condensation process remain unclear. Depletion attraction/macromolecular crowding, an effective attractive force that arises between large structures in crowded environments around chromosomes, may contribute to the condensation process. To approach this issue, we investigated the "chromosome milieu" during mitosis of living human cells using an orientation-independent-differential interference contrast module combined with a confocal laser scanning microscope, which is capable of precisely mapping optical path differences and estimating molecular densities. We found that the molecular density surrounding chromosomes increased with the progression from prophase to anaphase, concurring with chromosome condensation. However, the molecular density went down in telophase, when chromosome decondensation began. Changes in the molecular density around chromosomes by hypotonic or hypertonic treatment consistently altered the condensation levels of chromosomes. In vitro, native chromatin was converted into liquid droplets of chromatin in the presence of cations and a macromolecular crowder. Additional crowder made the chromatin droplets stiffer and more solid-like. These results suggest that a transient rise in depletion attraction, likely triggered by the relocation of macromolecules (proteins, RNAs, and others) via nuclear envelope breakdown and by a subsequent decrease in cell volumes, contributes to mitotic chromosome condensation, shedding light on a different aspect of the condensation mechanism in living human cells.
Collapse
Affiliation(s)
- Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
| | - Masaki Sasai
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto606-8103, Japan
- Department of Complex Systems Science, Nagoya University, Nagoya464-8603, Japan
| | - Tomomi Tani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka563-8577, Japan
| | - Tatsuhiko Goto
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido080-8555, Japan
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido080-8555, Japan
| | | | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| |
Collapse
|
9
|
Model M, Guo R, Fasina K, Jin R, Clements R, Leff L. Measurement of protein concentration in bacteria and small organelles under a light transmission microscope. J Mol Recognit 2024; 37:e3099. [PMID: 38923720 PMCID: PMC11323175 DOI: 10.1002/jmr.3099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Protein concentration (PC) is an essential characteristic of cells and organelles; it determines the extent of macromolecular crowding effects and serves as a sensitive indicator of cellular health. A simple and direct way to quantify PC is provided by brightfield-based transport-of-intensity equation (TIE) imaging combined with volume measurements. However, since TIE is based on geometric optics, its applicability to micrometer-sized particles is not clear. Here, we show that TIE can be used on particles with sizes comparable to the wavelength. At the same time, we introduce a new ImageJ plugin that allows TIE image processing without resorting to advanced mathematical programs. To convert TIE data to PC, knowledge of particle volumes is essential. The volumes of bacteria or other isolated particles can be measured by displacement of an external absorbing dye ("transmission-through-dye" or TTD microscopy), and for spherical intracellular particles, volumes can be estimated from their diameters. We illustrate the use of TIE on Escherichia coli, mammalian nucleoli, and nucleolar fibrillar centers. The method is easy to use and achieves high spatial resolution.
Collapse
Affiliation(s)
- M.A Model
- Department of Biological Science, Kent State University, Kent, OH
| | - R Guo
- Department of Computer Science, Kent State University, Kent, OH
| | - K Fasina
- Department of Biological Science, Kent State University, Kent, OH
| | - R Jin
- Department of Computer Science, Kent State University, Kent, OH
| | - R.G. Clements
- Department of Biological Science, Kent State University, Kent, OH
| | - L.G. Leff
- Department of Biological Science, Kent State University, Kent, OH
| |
Collapse
|
10
|
Unger BA, Wu CY, Choi AA, He C, Xu K. Hypersensitivity of the vimentin cytoskeleton to net-charge states and Coulomb repulsion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602555. [PMID: 39026705 PMCID: PMC11257561 DOI: 10.1101/2024.07.08.602555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions.
Collapse
Affiliation(s)
- Bret A. Unger
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Chun Ying Wu
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Alexander A. Choi
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Changdong He
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Corresponding author: (K.X.)
| |
Collapse
|
11
|
Huang JH, Chen Y, Huang WYC, Tabatabaee S, Ferrell JE. Robust trigger wave speed in Xenopus cytoplasmic extracts. Nat Commun 2024; 15:5782. [PMID: 38987269 PMCID: PMC11237086 DOI: 10.1038/s41467-024-50119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Self-regenerating trigger waves can spread rapidly through the crowded cytoplasm without diminishing in amplitude or speed, providing consistent, reliable, long-range communication. The macromolecular concentration of the cytoplasm varies in response to physiological and environmental fluctuations, raising the question of how or if trigger waves can robustly operate in the face of such fluctuations. Using Xenopus extracts, we find that mitotic and apoptotic trigger wave speeds are remarkably invariant. We derive a model that accounts for this robustness and for the eventual slowing at extremely high and low cytoplasmic concentrations. The model implies that the positive and negative effects of cytoplasmic concentration (increased reactant concentration vs. increased viscosity) are nearly precisely balanced. Accordingly, artificially maintaining a constant cytoplasmic viscosity during dilution abrogates this robustness. The robustness in trigger wave speeds may contribute to the reliability of the extremely rapid embryonic cell cycle.
Collapse
Affiliation(s)
- Jo-Hsi Huang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yuping Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - William Y C Huang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Saman Tabatabaee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
13
|
Wu W, Ishamuddin SH, Quinn TW, Yerrum S, Zhang Y, Debaize LL, Kao PL, Duquette SM, Murakami MA, Mohseni M, Chow KH, Miettinen TP, Ligon KL, Manalis SR. Measuring single-cell density with high throughput enables dynamic profiling of immune cell and drug response from patient samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591092. [PMID: 38712225 PMCID: PMC11071500 DOI: 10.1101/2024.04.25.591092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cell density, the ratio of cell mass to volume, is an indicator of molecular crowding and therefore a fundamental determinant of cell state and function. However, existing density measurements lack the precision or throughput to quantify subtle differences in cell states, particularly in primary samples. Here we present an approach for measuring the density of 30,000 single cells per hour with a precision of 0.03% (0.0003 g/mL) by integrating fluorescence exclusion microscopy with a suspended microchannel resonator. Applying this approach to human lymphocytes, we discovered that cell density and its variation decrease as cells transition from quiescence to a proliferative state, suggesting that the level of molecular crowding decreases and becomes more regulated upon entry into the cell cycle. Using a pancreatic cancer patient-derived xenograft model, we found that the ex vivo density response of primary tumor cells to drug treatment can predict in vivo tumor growth response. Our method reveals unexpected behavior in molecular crowding during cell state transitions and suggests density as a new biomarker for functional precision medicine.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St #56-651, Cambridge, MA 02139, USA
| | - Sarah H. Ishamuddin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
| | - Thomas W. Quinn
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Smitha Yerrum
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Ye Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
| | - Lydie L. Debaize
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Pei-Lun Kao
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sarah Marie Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St #56-651, Cambridge, MA 02139, USA
| | - Mark A. Murakami
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Morvarid Mohseni
- Oncology Discovery, Bristol-Myers Squibb, 250 Water St, Cambridge, MA 02141, USA
| | - Kin-Hoe Chow
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
| | - Keith L. Ligon
- Center for Patient-Derived Models, Dana-Farber Cancer Institute, 21 Burlington Ave, Boston, MA 02215, USA
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02215, USA
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St building 76, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St #56-651, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 33 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Ni Q, Ge Z, Li Y, Shatkin G, Fu J, Bera K, Yang Y, Wang Y, Sen A, Wu Y, Vasconcelos ACN, Feinberg AP, Konstantopoulos K, Sun SX. Cytoskeletal activation of NHE1 regulates mechanosensitive cell volume adaptation and proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555808. [PMID: 37693593 PMCID: PMC10491192 DOI: 10.1101/2023.08.31.555808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Mammalian cells can rapidly respond to osmotic and hydrostatic pressure imbalances during an environmental change, generating large fluxes of water and ions that alter cell volume within minutes. While the role of ion pump and leak in cell volume regulation has been well-established, the potential contribution of the actomyosin cytoskeleton and its interplay with ion transporters is unclear. We discovered a cell volume regulation system that is controlled by cytoskeletal activation of ion transporters. After a hypotonic shock, normal-like cells (NIH-3T3, MCF-10A, and others) display a slow secondary volume increase (SVI) following the immediate regulatory volume decrease. We show that SVI is initiated by hypotonic stress induced Ca 2+ influx through stretch activated channel Piezo1, which subsequently triggers actomyosin remodeling. The actomyosin network further activates NHE1 through their synergistic linker ezrin, inducing SVI after the initial volume recovery. We find that SVI is absent in cancer cell lines such as HT1080 and MDA-MB-231, where volume regulation is dominated by intrinsic response of ion transporters. A similar cytoskeletal activation of NHE1 can also be achieved by mechanical stretching. On compliant substrates where cytoskeletal contractility is attenuated, SVI generation is abolished. Moreover, cytoskeletal activation of NHE1 during SVI triggers nuclear deformation, leading to a significant, immediate transcriptomic change in 3T3 cells, a phenomenon that is again absent in HT1080 cells. While hypotonic shock hinders ERK-dependent cell growth, cells deficient in SVI are unresponsive to such inhibitory effects. Overall, our findings reveal the critical role of Ca 2+ and actomyosin-mediated mechanosensation in the regulation of ion transport, cell volume, transcriptomics, and cell proliferation.
Collapse
|
15
|
Iida S, Ide S, Tamura S, Tani T, Goto T, Shribak M, Maeshima K. Orientation-Independent-DIC imaging reveals that a transient rise in depletion force contributes to mitotic chromosome condensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.11.566679. [PMID: 37986866 PMCID: PMC10659371 DOI: 10.1101/2023.11.11.566679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Genomic information must be faithfully transmitted into two daughter cells during mitosis. To ensure the transmission process, interphase chromatin is further condensed into mitotic chromosomes. Although protein factors like condensins and topoisomerase IIα are involved in the assembly of mitotic chromosomes, the physical bases of the condensation process remain unclear. Depletion force/macromolecular crowding, an effective attractive force that arises between large structures in crowded environments around chromosomes, may contribute to the condensation process. To approach this issue, we investigated the "chromosome milieu" during mitosis of living human cells using orientation-independent-differential interference contrast (OI-DIC) module combined with a confocal laser scanning microscope, which is capable of precisely mapping optical path differences and estimating molecular densities. We found that the molecular density surrounding chromosomes increased with the progression from prometaphase to anaphase, concurring with chromosome condensation. However, the molecular density went down in telophase, when chromosome decondensation began. Changes in the molecular density around chromosomes by hypotonic or hypertonic treatment consistently altered the condensation levels of chromosomes. In vitro, native chromatin was converted into liquid droplets of chromatin in the presence of cations and a macromolecular crowder. Additional crowder made the chromatin droplets stiffer and more solid-like, with further condensation. These results suggest that a transient rise in depletion force, likely triggered by the relocation of macromolecules (proteins, RNAs and others) via nuclear envelope breakdown and also by a subsequent decrease in cell-volumes, contributes to mitotic chromosome condensation, shedding light on a new aspect of the condensation mechanism in living human cells.
Collapse
Affiliation(s)
- Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tomomi Tani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Tatsuhiko Goto
- Research Center for Global Agromedicine and Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Michael Shribak
- Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543, USA
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
16
|
Claude-Taupin A, Dupont N. To squeeze or not: Regulation of cell size by mechanical forces in development and human diseases. Biol Cell 2024; 116:e2200101. [PMID: 38059665 DOI: 10.1111/boc.202200101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Physical constraints, such as compression, shear stress, stretching and tension play major roles during development and tissue homeostasis. Mechanics directly impact physiology, and their alteration is also recognized as having an active role in driving human diseases. Recently, growing evidence has accumulated on how mechanical forces are translated into a wide panel of biological responses, including metabolism and changes in cell morphology. The aim of this review is to summarize and discuss our knowledge on the impact of mechanical forces on cell size regulation. Other biological consequences of mechanical forces will not be covered by this review. Moreover, wherever possible, we also discuss mechanosensors and molecular and cellular signaling pathways upstream of cell size regulation. We finally highlight the relevance of mechanical forces acting on cell size in physiology and human diseases.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Institut Necker Enfants Malades (INEM), INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Paris, France
| | - Nicolas Dupont
- Institut Necker Enfants Malades (INEM), INSERM UMR-S1151, CNRS UMR-S8253, Université Paris Cité, Paris, France
| |
Collapse
|
17
|
Liu X, Yan J, Kirschner MW. Cell size homeostasis is tightly controlled throughout the cell cycle. PLoS Biol 2024; 22:e3002453. [PMID: 38180950 PMCID: PMC10769027 DOI: 10.1371/journal.pbio.3002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
To achieve a stable size distribution over multiple generations, proliferating cells require a means of counteracting stochastic noise in the rate of growth, the time spent in various phases of the cell cycle, and the imprecision in the placement of the plane of cell division. In the most widely accepted model, cell size is thought to be regulated at the G1/S transition, such that cells smaller than a critical size pause at the end of G1 phase until they have accumulated mass to a predetermined size threshold, at which point the cells proceed through the rest of the cell cycle. However, a model, based solely on a specific size checkpoint at G1/S, cannot readily explain why cells with deficient G1/S control mechanisms are still able to maintain a very stable cell size distribution. Furthermore, such a model would not easily account for stochastic variation in cell size during the subsequent phases of the cell cycle, which cannot be anticipated at G1/S. To address such questions, we applied computationally enhanced quantitative phase microscopy (ceQPM) to populations of cultured human cell lines, which enables highly accurate measurement of cell dry mass of individual cells throughout the cell cycle. From these measurements, we have evaluated the factors that contribute to maintaining cell mass homeostasis at any point in the cell cycle. Our findings reveal that cell mass homeostasis is accurately maintained, despite disruptions to the normal G1/S machinery or perturbations in the rate of cell growth. Control of cell mass is generally not confined to regulation of the G1 length. Instead mass homeostasis is imposed throughout the cell cycle. In the cell lines examined, we find that the coefficient of variation (CV) in dry mass of cells in the population begins to decline well before the G1/S transition and continues to decline throughout S and G2 phases. Among the different cell types tested, the detailed response of cell growth rate to cell mass differs. However, in general, when it falls below that for exponential growth, the natural increase in the CV of cell mass is effectively constrained. We find that both mass-dependent cell cycle regulation and mass-dependent growth rate modulation contribute to reducing cell mass variation within the population. Through the interplay and coordination of these 2 processes, accurate cell mass homeostasis emerges. Such findings reveal previously unappreciated and very general principles of cell size control in proliferating cells. These same regulatory processes might also be operative in terminally differentiated cells. Further quantitative dynamical studies should lead to a better understanding of the underlying molecular mechanisms of cell size control.
Collapse
Affiliation(s)
- Xili Liu
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jiawei Yan
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Huang JH, Chen Y, Huang WYC, Tabatabaee S, Ferrell JE. Robust trigger wave speed in Xenopus cytoplasmic extracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573127. [PMID: 38187567 PMCID: PMC10769400 DOI: 10.1101/2023.12.22.573127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Self-regenerating trigger waves can spread rapidly through the crowded cytoplasm without diminishing in amplitude or speed, providing consistent, reliable, long-range communication. The macromolecular concentration of the cytoplasm varies in response to physiological and environmental fluctuations, raising the question of how or if trigger waves can robustly operate in the face of such fluctuations. Using Xenopus extracts, we found that mitotic and apoptotic trigger wave speeds are remarkably invariant. We derived a model that accounts for this robustness and for the eventual slowing at extremely high and low cytoplasmic concentrations. The model implies that the positive and negative effects of cytoplasmic concentration (increased reactant concentration vs. increased viscosity) are nearly precisely balanced. Accordingly, artificially maintaining a constant cytoplasmic viscosity during dilution abrogates this robustness. The robustness in trigger wave speeds may contribute to the reliability of the extremely rapid embryonic cell cycle.
Collapse
Affiliation(s)
- Jo-Hsi Huang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
- These authors contributed equally
| | - Yuping Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
- These authors contributed equally
| | - William Y C Huang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Saman Tabatabaee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 943055307, USA
| |
Collapse
|
19
|
Johnstone BH, Gu D, Lin CH, Du J, Woods EJ. Identification of a fundamental cryoinjury mechanism in MSCs and its mitigation through cell-cycle synchronization prior to freezing. Cryobiology 2023; 113:104592. [PMID: 37827209 DOI: 10.1016/j.cryobiol.2023.104592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Clinical development of cellular therapies, including mesenchymal stem/stromal cell (MSC) treatments, has been hindered by ineffective cryopreservation methods that result in substantial loss of post-thaw cell viability and function. Proposed solutions to generate high potency MSC for clinical testing include priming cells with potent cytokines such as interferon gamma (IFNγ) prior to cryopreservation, which has been shown to enhance post-thaw function, or briefly culturing to allow recovery from cryopreservation injury prior to administering to patients. However, both solutions have disadvantages: cryorecovery increases the complexity of manufacturing and distribution logistics, while the pleiotropic effects of IFNγ may have uncharacterized and unintended consequences on MSC function. To determine specific cellular functions impacted by cryoinjury, we first evaluated cell cycle status. It was discovered that S phase MSC are exquisitely sensitive to cryoinjury, demonstrating heightened levels of delayed apoptosis post-thaw and reduced immunomodulatory function. Blocking cell cycle progression at G0/G1 by growth factor deprivation (commonly known as serum starvation) greatly reduced post-thaw dysfunction of MSC by preventing apoptosis induced by double-stranded breaks in labile replicating DNA that form during the cryopreservation and thawing processes. Viability, clonal growth and T cell suppression function were preserved at pre-cryopreservation levels and were no different than cells prior to freezing or frozen after priming with IFNγ. Thus, we have developed a robust and effective strategy to enhance post-thaw recovery of therapeutic MSC.
Collapse
Affiliation(s)
| | - Dongsheng Gu
- Ossium Health, Inc., Indianapolis, IN, United States
| | - Chieh-Han Lin
- Ossium Health, Inc., Indianapolis, IN, United States
| | - Jianguang Du
- Ossium Health, Inc., Indianapolis, IN, United States
| | - Erik J Woods
- Ossium Health, Inc., Indianapolis, IN, United States.
| |
Collapse
|
20
|
Golding I, Amir A. Gene expression in growing cells: A biophysical primer. ARXIV 2023:arXiv:2311.12143v1. [PMID: 38045483 PMCID: PMC10690283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cell growth and gene expression, two essential elements of all living systems, have long been the focus of biophysical interrogation. Advances in experimental single-cell methods have invigorated theoretical studies into these processes. However, until recently, there was little dialog between the two areas of study. In particular, most theoretical models for gene regulation assumed gene activity to be oblivious to the progression of the cell cycle between birth and division. But, in fact, there are numerous ways in which the periodic character of all cellular observables can modulate gene expression. The molecular factors required for transcription and translation-RNA polymerase, transcription factors, ribosomes-increase in number during the cell cycle, but are also diluted due to the continuous increase in cell volume. The replication of the genome changes the dosage of those same cellular players but also provides competing targets for regulatory binding. Finally, cell division reduces their number again, and so forth. Stochasticity is inherent to all these biological processes, manifested in fluctuations in the synthesis and degradation of new cellular components as well as the random partitioning of molecules at each cell division event. The notion of gene expression as stationary is thus hard to justify. In this review, we survey the emerging paradigm of cell-cycle regulated gene expression, with an emphasis on the global expression patterns rather than gene-specific regulation. We discuss recent experimental reports where cell growth and gene expression were simultaneously measured in individual cells, providing first glimpses into the coupling between the two, and motivating several questions. How do the levels of gene expression products - mRNA and protein - scale with the cell volume and cell-cycle progression? What are the molecular origins of the observed scaling laws, and when do they break down to yield non-canonical behavior? What are the consequences of cell-cycle dependence for the heterogeneity ("noise") in gene expression within a cell population? While the experimental findings, not surprisingly, differ among genes, organisms, and environmental conditions, several theoretical models have emerged that attempt to reconcile these differences and form a unifying framework for understanding gene expression in growing cells.
Collapse
Affiliation(s)
- Ido Golding
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Yang X, Liang Z, Luo Y, Yuan X, Cai Y, Yu D, Xing X. Single-cell impedance cytometry of anticancer drug-treated tumor cells exhibiting mitotic arrest state to apoptosis using low-cost silver-PDMS microelectrodes. LAB ON A CHIP 2023; 23:4848-4859. [PMID: 37860975 DOI: 10.1039/d3lc00459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Chemotherapeutic drugs such as paclitaxel and vinblastine interact with microtubules and thus induce complex cell states of mitosis arrest at the G2/M phase followed by apoptosis dependent on drug exposure time and concentration. Microfluidic impedance cytometry (MIC), as a label-free and high-throughput technology for single-cell analysis, has been applied for viability assay of cancer cells post drug exposure at fixed time and dosage, yet verification of this technique for varied tumor cell states after anticancer drug treatment remains a challenge. Here we present a novel MIC device and for the first time perform impedance cytometry on carcinoma cells exhibiting progressive states of G2/M arrest followed by apoptosis related to drug concentration and exposure time, after treatments with paclitaxel and vinblastine, respectively. Our results from impedance cytometry reveal increased amplitude and negative phase shift at low frequency as well as higher opacity for HeLa cells under G2/M mitotic arrest compared to untreated cells. The cells under apoptosis, on the other hand, exhibit opposite changes in these electrical parameters. Therefore, the impedance features differentiate the HeLa cells under progressive states post anticancer drug treatment. We also demonstrate that vinblastine poses a more potent drug effect than paclitaxel especially at low concentrations. Our device is fabricated using a unique sacrificial layer-free soft lithography process as compared to the existing MIC device, which gives rise to readily aligned parallel microelectrodes made of silver-PDMS embedded in PDMS channel sidewalls with one molding step. Our results uncover the potential of the MIC device, with a fairly simple and low-cost fabrication process, for cellular state screening in anticancer drug therapy.
Collapse
Affiliation(s)
- Xinlong Yang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Ziheng Liang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueyuan Yuan
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Yao Cai
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| |
Collapse
|
22
|
Bonucci M, Shu T, Holt LJ. How it feels in a cell. Trends Cell Biol 2023; 33:924-938. [PMID: 37286396 PMCID: PMC10592589 DOI: 10.1016/j.tcb.2023.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Life emerges from thousands of biochemical processes occurring within a shared intracellular environment. We have gained deep insights from in vitro reconstitution of isolated biochemical reactions. However, the reaction medium in test tubes is typically simple and diluted. The cell interior is far more complex: macromolecules occupy more than a third of the space, and energy-consuming processes agitate the cell interior. Here, we review how this crowded, active environment impacts the motion and assembly of macromolecules, with an emphasis on mesoscale particles (10-1000 nm diameter). We describe methods to probe and analyze the biophysical properties of cells and highlight how changes in these properties can impact physiology and signaling, and potentially contribute to aging, and diseases, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Martina Bonucci
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Tong Shu
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, 435 E 30th Street, New York, NY 10016, USA.
| |
Collapse
|
23
|
Lanz MC, Zhang S, Swaffer MP, Hernández Götz L, McCarty F, Ziv I, Jarosz DF, Elias JE, Skotheim JM. Genome dilution by cell growth drives starvation-like proteome remodeling in mammalian and yeast cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562558. [PMID: 37905015 PMCID: PMC10614910 DOI: 10.1101/2023.10.16.562558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cell size is tightly controlled in healthy tissues and single-celled organisms, but it remains unclear how size influences cell physiology. Increasing cell size was recently shown to remodel the proteomes of cultured human cells, demonstrating that large and small cells of the same type can be biochemically different. Here, we corroborate these results in mouse hepatocytes and extend our analysis using yeast. We find that size-dependent proteome changes are highly conserved and mostly independent of metabolic state. As eukaryotic cells grow larger, the dilution of the genome elicits a starvation-like proteome phenotype, suggesting that growth in large cells is limited by the genome in a manner analogous to a limiting nutrient. We also demonstrate that the proteomes of replicatively-aged yeast are primarily determined by their large size. Overall, our data suggest that genome concentration is a universal determinant of proteome content in growing cells.
Collapse
|
24
|
Boezio GLM, Zhao S, Gollin J, Priya R, Mansingh S, Guenther S, Fukuda N, Gunawan F, Stainier DYR. The developing epicardium regulates cardiac chamber morphogenesis by promoting cardiomyocyte growth. Dis Model Mech 2023; 16:dmm049571. [PMID: 36172839 PMCID: PMC9612869 DOI: 10.1242/dmm.049571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
The epicardium, the outermost layer of the heart, is an important regulator of cardiac regeneration. However, a detailed understanding of the crosstalk between the epicardium and myocardium during development requires further investigation. Here, we generated three models of epicardial impairment in zebrafish by mutating the transcription factor genes tcf21 and wt1a, and ablating tcf21+ epicardial cells. Notably, all three epicardial impairment models exhibited smaller ventricles. We identified the initial cause of this phenotype as defective cardiomyocyte growth, resulting in reduced cell surface and volume. This failure of cardiomyocyte growth was followed by decreased proliferation and increased abluminal extrusion. By temporally manipulating its ablation, we show that the epicardium is required to support cardiomyocyte growth mainly during early cardiac morphogenesis. By transcriptomic profiling of sorted epicardial cells, we identified reduced expression of FGF and VEGF ligand genes in tcf21-/- hearts, and pharmacological inhibition of these signaling pathways in wild type partially recapitulated the ventricular growth defects. Taken together, these data reveal distinct roles of the epicardium during cardiac morphogenesis and signaling pathways underlying epicardial-myocardial crosstalk.
Collapse
Affiliation(s)
- Giulia L. M. Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Shengnan Zhao
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Josephine Gollin
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Shivani Mansingh
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Guenther
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Nana Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| |
Collapse
|
25
|
Chen Y, Huang JH, Phong C, Ferrell JE. Protein homeostasis from diffusion-dependent control of protein synthesis and degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538146. [PMID: 37162886 PMCID: PMC10168264 DOI: 10.1101/2023.04.24.538146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
It has been proposed that the concentration of proteins in the cytoplasm maximizes the speed of important biochemical reactions. Here we have used the Xenopus extract system, which can be diluted or concentrated to yield a range of cytoplasmic protein concentrations, to test the effect of cytoplasmic concentration on mRNA translation and protein degradation. We found that protein synthesis rates are maximal in ~1x cytoplasm, whereas protein degradation continues to rise to an optimal concentration of ~1.8x. This can be attributed to the greater sensitivity of translation to cytoplasmic viscosity, perhaps because it involves unusually large macromolecular complexes like polyribosomes. The different concentration optima sets up a negative feedback homeostatic system, where increasing the cytoplasmic protein concentration above the 1x physiological level increases the viscosity of the cytoplasm, which selectively inhibits translation and drives the system back toward the 1x set point.
Collapse
Affiliation(s)
- Yuping Chen
- Dept. of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305
- These authors contributed equally
- Corresponding authors
| | - Jo-Hsi Huang
- Dept. of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305
- These authors contributed equally
| | - Connie Phong
- Dept. of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305
| | - James E. Ferrell
- Dept. of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305
- Dept. of Biochemistry, Stanford University School of Medicine, Stanford CA 94305
- Corresponding authors
- Lead contact
| |
Collapse
|
26
|
Azuma Y, Okada H, Onami S. Systematic analysis of cell morphodynamics in C. elegans early embryogenesis. FRONTIERS IN BIOINFORMATICS 2023; 3:1082531. [PMID: 37026092 PMCID: PMC10070942 DOI: 10.3389/fbinf.2023.1082531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
The invariant cell lineage of Caenorhabditis elegans allows unambiguous assignment of the identity for each cell, which offers a unique opportunity to study developmental dynamics such as the timing of cell division, dynamics of gene expression, and cell fate decisions at single-cell resolution. However, little is known about cell morphodynamics, including the extent to which they are variable between individuals, mainly due to the lack of sufficient amount and quality of quantified data. In this study, we systematically quantified the cell morphodynamics in 52 C. elegans embryos from the two-cell stage to mid-gastrulation at the high spatiotemporal resolution, 0.5 μm thickness of optical sections, and 30-second intervals of recordings. Our data allowed systematic analyses of the morphological features. We analyzed sphericity dynamics and found a significant increase at the end of metaphase in every cell, indicating the universality of the mitotic cell rounding. Concomitant with the rounding, the volume also increased in most but not all cells, suggesting less universality of the mitotic swelling. Combining all features showed that cell morphodynamics was unique for each cell type. The cells before the onset of gastrulation could be distinguished from all the other cell types. Quantification of reproducibility in cell-cell contact revealed that variability in division timings and cell arrangements produced variability in contacts between the embryos. However, the area of such contacts occupied less than 5% of the total area, suggesting the high reproducibility of spatial occupancies and adjacency relationships of the cells. By comparing the morphodynamics of identical cells between the embryos, we observed diversity in the variability between cells and found it was determined by multiple factors, including cell lineage, cell generation, and cell-cell contact. We compared the variabilities of cell morphodynamics and cell-cell contacts with those in ascidian Phallusia mammillata embryos. The variabilities were larger in C. elegans, despite smaller differences in embryo size and number of cells at each developmental stage.
Collapse
|
27
|
Chugh M, Munjal A, Megason SG. Hydrostatic pressure as a driver of cell and tissue morphogenesis. Semin Cell Dev Biol 2022; 131:134-145. [PMID: 35534334 PMCID: PMC9529827 DOI: 10.1016/j.semcdb.2022.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022]
Abstract
Morphogenesis, the process by which tissues develop into functional shapes, requires coordinated mechanical forces. Most current literature ascribes contractile forces derived from actomyosin networks as the major driver of tissue morphogenesis. Recent works from diverse species have shown that pressure derived from fluids can generate deformations necessary for tissue morphogenesis. In this review, we discuss how hydrostatic pressure is generated at the cellular and tissue level and how the pressure can cause deformations. We highlight and review findings demonstrating the mechanical roles of pressures from fluid-filled lumens and viscous gel-like components of the extracellular matrix. We also emphasise the interactions and mechanochemical feedbacks between extracellular pressures and tissue behaviour in driving tissue remodelling. Lastly, we offer perspectives on the open questions in the field that will further our understanding to uncover new principles of tissue organisation during development.
Collapse
Affiliation(s)
- Mayank Chugh
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Akankshi Munjal
- Department of Cell Biology, Duke University School of Medicine, Nanaline Duke Building, 307 Research Drive, Durham, NC 27710, USA.
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Liu X, Oh S, Kirschner MW. The uniformity and stability of cellular mass density in mammalian cell culture. Front Cell Dev Biol 2022; 10:1017499. [PMID: 36313562 PMCID: PMC9597509 DOI: 10.3389/fcell.2022.1017499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cell dry mass is principally determined by the sum of biosynthesis and degradation. Measurable change in dry mass occurs on a time scale of hours. By contrast, cell volume can change in minutes by altering the osmotic conditions. How changes in dry mass and volume are coupled is a fundamental question in cell size control. If cell volume were proportional to cell dry mass during growth, the cell would always maintain the same cellular mass density, defined as cell dry mass dividing by cell volume. The accuracy and stability against perturbation of this proportionality has never been stringently tested. Normalized Raman Imaging (NoRI), can measure both protein and lipid dry mass density directly. Using this new technique, we have been able to investigate the stability of mass density in response to pharmaceutical and physiological perturbations in three cultured mammalian cell lines. We find a remarkably narrow mass density distribution within cells, that is, significantly tighter than the variability of mass or volume distribution. The measured mass density is independent of the cell cycle. We find that mass density can be modulated directly by extracellular osmolytes or by disruptions of the cytoskeleton. Yet, mass density is surprisingly resistant to pharmacological perturbations of protein synthesis or protein degradation, suggesting there must be some form of feedback control to maintain the homeostasis of mass density when mass is altered. By contrast, physiological perturbations such as starvation or senescence induce significant shifts in mass density. We have begun to shed light on how and why cell mass density remains fixed against some perturbations and yet is sensitive during transitions in physiological state.
Collapse
Affiliation(s)
| | | | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Sandlin CW, Gu S, Xu J, Deshpande C, Feldman MD, Good MC. Epithelial cell size dysregulation in human lung adenocarcinoma. PLoS One 2022; 17:e0274091. [PMID: 36201559 PMCID: PMC9536599 DOI: 10.1371/journal.pone.0274091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Human cells tightly control their dimensions, but in some cancers, normal cell size control is lost. In this study we measure cell volumes of epithelial cells from human lung adenocarcinoma progression in situ. By leveraging artificial intelligence (AI), we reconstruct tumor cell shapes in three dimensions (3D) and find airway type 2 cells display up to 10-fold increases in volume. Surprisingly, cell size increase is not caused by altered ploidy, and up to 80% of near-euploid tumor cells show abnormal sizes. Size dysregulation is not explained by cell swelling or senescence because cells maintain cytoplasmic density and proper organelle size scaling, but is correlated with changes in tissue organization and loss of a novel network of processes that appear to connect alveolar type 2 cells. To validate size dysregulation in near-euploid cells, we sorted cells from tumor single-cell suspensions on the basis of size. Our study provides data of unprecedented detail for cell volume dysregulation in a human cancer. Broadly, loss of size control may be a common feature of lung adenocarcinomas in humans and mice that is relevant to disease and identification of these cells provides a useful model for investigating cell size control and consequences of cell size dysregulation.
Collapse
Affiliation(s)
- Clifford W. Sandlin
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CWS); (MCG)
| | - Song Gu
- Nanjing University of Information Science and Technology, Nanjing, China
| | - Jun Xu
- Nanjing University of Information Science and Technology, Nanjing, China
| | - Charuhas Deshpande
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael D. Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew C. Good
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CWS); (MCG)
| |
Collapse
|
30
|
Doan-Nguyen TP, Crespy D. Advanced density-based methods for the characterization of materials, binding events, and kinetics. Chem Soc Rev 2022; 51:8612-8651. [PMID: 36172819 DOI: 10.1039/d1cs00232e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigations of the densities of chemicals and materials bring valuable insights into the fundamental understanding of matter and processes. Recently, advanced density-based methods have been developed with wide measurement ranges (i.e. 0-23 g cm-3), high resolutions (i.e. 10-6 g cm-3), compatibility with different types of samples and the requirement of extremely low volumes of sample (as low as a single cell). Certain methods, such as magnetic levitation, are inexpensive, portable and user-friendly. Advanced density-based methods are, therefore, beneficially used to obtain absolute density values, composition of mixtures, characteristics of binding events, and kinetics of chemical and biological processes. Herein, the principles and applications of magnetic levitation, acoustic levitation, electrodynamic balance, aqueous multiphase systems, and suspended microchannel resonators for materials science are discussed.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
31
|
Figueroa B, Xu FX, Hu R, Men S, Fu D. Quantitative Imaging of Intracellular Density with Ratiometric Stimulated Raman Scattering Microscopy. J Phys Chem B 2022; 126:7595-7603. [PMID: 36135097 DOI: 10.1021/acs.jpcb.2c04355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell size and density are tightly controlled in mammalian cells. They impact a wide range of physiological functions, including osmoregulation, tissue homeostasis, and growth regulation. Compared to size, density variation for a given cell type is typically much smaller, implying that cell-type-specific density plays an important role in cell function. However, little is known about how cell density affects cell function or how it is regulated. Current tools for intracellular cell density measurements are limited to either suspended cells or cells grown on 2D substrates, neither of which recapitulate the physiology of single cells in intact tissue. While optical measurements have the potential to noninvasively measure cell density in situ, light scattering in multicellular systems prevents direct quantification. Here, we introduce an intracellular density imaging technique based on ratiometric stimulated Raman scattering microscopy (rSRS). It uses intrinsic vibrational information from intracellular macromolecules to quantify dry mass density. Moreover, water is used as an internal standard to correct for aberration and light scattering effects. We demonstrate real-time measurement of intracellular density and show that density is tightly regulated across different cell types and can be used to differentiate cell types as well as cell states. We further demonstrate dynamic imaging of density change in response to osmotic challenge as well as intracellular density imaging of a 3D tumor spheroid. Our technique has the potential for imaging intracellular density in intact tissue and understanding density regulation and its role in tissue homeostasis.
Collapse
Affiliation(s)
- Benjamin Figueroa
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fiona Xi Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ruoqian Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shuaiqian Men
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Lanz MC, Zatulovskiy E, Swaffer MP, Zhang L, Ilerten I, Zhang S, You DS, Marinov G, McAlpine P, Elias JE, Skotheim JM. Increasing cell size remodels the proteome and promotes senescence. Mol Cell 2022; 82:3255-3269.e8. [PMID: 35987199 PMCID: PMC9444988 DOI: 10.1016/j.molcel.2022.07.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 01/10/2023]
Abstract
Cell size is tightly controlled in healthy tissues, but it is unclear how deviations in cell size affect cell physiology. To address this, we measured how the cell's proteome changes with increasing cell size. Size-dependent protein concentration changes are widespread and predicted by subcellular localization, size-dependent mRNA concentrations, and protein turnover. As proliferating cells grow larger, concentration changes typically associated with cellular senescence are increasingly pronounced, suggesting that large size may be a cause rather than just a consequence of cell senescence. Consistent with this hypothesis, larger cells are prone to replicative, DNA-damage-induced, and CDK4/6i-induced senescence. Size-dependent changes to the proteome, including those associated with senescence, are not observed when an increase in cell size is accompanied by an increase in ploidy. Together, our findings show how cell size could impact many aspects of cell physiology by remodeling the proteome and provide a rationale for cell size control and polyploidization.
Collapse
Affiliation(s)
- Michael C Lanz
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | | | | | | | - Ilayda Ilerten
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dong Shin You
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Georgi Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | | | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Leguay K, Decelle B, Elkholi IE, Bouvier M, Côté JF, Carréno S. Interphase microtubule disassembly is a signaling cue that drives cell rounding at mitotic entry. J Cell Biol 2022; 221:213183. [PMID: 35482006 DOI: 10.1083/jcb.202109065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/03/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
At mitotic entry, reorganization of the actomyosin cortex prompts cells to round-up. Proteins of the ezrin, radixin, and moesin family (ERM) play essential roles in this process by linking actomyosin forces to the plasma membrane. Yet, the cell-cycle signal that activates ERMs at mitotic entry is unknown. By screening a compound library using newly developed biosensors, we discovered that drugs that disassemble microtubules promote ERM activation. We further demonstrated that disassembly of interphase microtubules at mitotic entry directs ERM activation and metaphase cell rounding through GEF-H1, a Rho-GEF inhibited by microtubule binding, RhoA, and its kinase effector SLK. We finally demonstrated that GEF-H1 and Ect2, another Rho-GEF previously identified to control actomyosin forces, act together to drive activation of ERMs and cell rounding in metaphase. In summary, we report microtubule disassembly as a cell-cycle signal that controls a signaling network ensuring that actomyosin forces are efficiently integrated at the plasma membrane to promote cell rounding at mitotic entry.
Collapse
Affiliation(s)
- Kévin Leguay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Université de Montréal, Montréal, Quebec, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Université de Montréal, Montréal, Quebec, Canada
| | - Islam E Elkholi
- Montréal Clinical Research Institute, Montréal, Quebec, Canada.,Cytoskeletal Organization and Cell Migration lab, Université de Montréal, Montréal, Quebec, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,institution>Molecular Pharmacology Lab, Université de Montréal, Montréal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Jean-François Côté
- Montréal Clinical Research Institute, Montréal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.,Department of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada.,Cytoskeletal Organization and Cell Migration lab, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Cellular Mechanisms of Morphogenesis during Mitosis and Cell Motility lab, Université de Montréal, Montréal, Quebec, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
34
|
Miettinen TP, Ly KS, Lam A, Manalis SR. Single-cell monitoring of dry mass and dry mass density reveals exocytosis of cellular dry contents in mitosis. eLife 2022; 11:e76664. [PMID: 35535854 PMCID: PMC9090323 DOI: 10.7554/elife.76664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/22/2022] [Indexed: 01/02/2023] Open
Abstract
Cell mass and composition change with cell cycle progression. Our previous work characterized buoyant mass dynamics in mitosis (Miettinen et al., 2019), but how dry mass and cell composition change in mitosis has remained unclear. To better understand mitotic cell growth and compositional changes, we develop a single-cell approach for monitoring dry mass and the density of that dry mass every ~75 s with 1.3% and 0.3% measurement precision, respectively. We find that suspension grown mammalian cells lose dry mass and increase dry mass density following mitotic entry. These changes display large, non-genetic cell-to-cell variability, and the changes are reversed at metaphase-anaphase transition, after which dry mass continues accumulating. The change in dry mass density causes buoyant and dry mass to differ specifically in early mitosis, thus reconciling existing literature on mitotic cell growth. Mechanistically, cells in early mitosis increase lysosomal exocytosis, and inhibition of lysosomal exocytosis decreases the dry mass loss and dry mass density increase in mitosis. Overall, our work provides a new approach for monitoring single-cell dry mass and dry mass density, and reveals that mitosis is coupled to extensive exocytosis-mediated secretion of cellular contents.
Collapse
Affiliation(s)
- Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- MIT Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Kevin S Ly
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alice Lam
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- MIT Center for Precision Cancer Medicine, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biological Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Mechanical Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
35
|
Tomba C, Luchnikov V, Barberi L, Blanch-Mercader C, Roux A. Epithelial cells adapt to curvature induction via transient active osmotic swelling. Dev Cell 2022; 57:1257-1270.e5. [PMID: 35568030 PMCID: PMC9165930 DOI: 10.1016/j.devcel.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/11/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature. We show that the primary response is an active and transient osmotic swelling of cells. This cell volume increase is not observed on inducible wrinkled substrates, where concave and convex regions alternate each other over short distances; and this finding identifies swelling as a collective response to changes of curvature with a persistent sign over large distances. It is triggered by a drop in membrane tension and actin depolymerization, which is perceived by cells as a hypertonic shock. Osmotic swelling restores tension while actin reorganizes, probably to comply with curvature. Thus, epithelia are unique materials that transiently and actively swell while adapting to large curvature induction. Rapid inward and outward epithelial rolling triggers cell volume increase Epithelial folding induces a mechano-osmotic feedback loop that involvs ion channels Cell volume regulation in curved tissues involves actin, membrane tension, and mTORC2
Collapse
Affiliation(s)
- Caterina Tomba
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland.
| | - Valeriy Luchnikov
- Université de Haute Alsace, CNRS, IS2M UMR 7361, 15, rue Jean Starcky, Mulhouse 68100, France
| | - Luca Barberi
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Carles Blanch-Mercader
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland; National Center of Competence in Research Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland.
| |
Collapse
|
36
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
37
|
Oh S, Lee C, Yang W, Li A, Mukherjee A, Basan M, Ran C, Yin W, Tabin CJ, Fu D, Xie XS, Kirschner MW. Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A 2022; 119:e2117938119. [PMID: 35452314 PMCID: PMC9169924 DOI: 10.1073/pnas.2117938119] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
Cell mass and chemical composition are important aggregate cellular properties that are especially relevant to physiological processes, such as growth control and tissue homeostasis. Despite their importance, it has been difficult to measure these features quantitatively at the individual cell level in intact tissue. Here, we introduce normalized Raman imaging (NoRI), a stimulated Raman scattering (SRS) microscopy method that provides the local concentrations of protein, lipid, and water from live or fixed tissue samples with high spatial resolution. Using NoRI, we demonstrate that protein, lipid, and water concentrations at the single cell are maintained in a tight range in cells under the same physiological conditions and are altered in different physiological states, such as cell cycle stages, attachment to substrates of different stiffness, or by entering senescence. In animal tissues, protein and lipid concentration varies with cell types, yet an unexpected cell-to-cell heterogeneity was found in cerebellar Purkinje cells. The protein and lipid concentration profile provides means to quantitatively compare disease-related pathology, as demonstrated using models of Alzheimer’s disease. This demonstration shows that NoRI is a broadly applicable technique for probing the biological regulation of protein mass, lipid mass, and water mass for studies of cellular and tissue growth, homeostasis, and disease.
Collapse
Affiliation(s)
- Seungeun Oh
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wenlong Yang
- Center for Advanced Imaging, Harvard University, Cambridge, MA 20138
| | - Ang Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Avik Mukherjee
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Markus Basan
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | - Wei Yin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | | | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - X. Sunney Xie
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871; China
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
38
|
Jin M, Tavella F, Wang S, Yang Q. In vitro cell cycle oscillations exhibit a robust and hysteretic response to changes in cytoplasmic density. Proc Natl Acad Sci U S A 2022; 119:e2109547119. [PMID: 35101974 PMCID: PMC8832984 DOI: 10.1073/pnas.2109547119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022] Open
Abstract
Cells control the properties of the cytoplasm to ensure proper functioning of biochemical processes. Recent studies showed that cytoplasmic density varies in both physiological and pathological states of cells undergoing growth, division, differentiation, apoptosis, senescence, and metabolic starvation. Little is known about how cellular processes cope with these cytoplasmic variations. Here, we study how a cell cycle oscillator comprising cyclin-dependent kinase (Cdk1) responds to changes in cytoplasmic density by systematically diluting or concentrating cycling Xenopus egg extracts in cell-like microfluidic droplets. We found that the cell cycle maintains robust oscillations over a wide range of deviations from the endogenous density: as low as 0.2× to more than 1.22× relative cytoplasmic density (RCD). A further dilution or concentration from these values arrested the system in a low or high steady state of Cdk1 activity, respectively. Interestingly, diluting an arrested cytoplasm of 1.22× RCD recovers oscillations at lower than 1× RCD. Thus, the cell cycle switches reversibly between oscillatory and stable steady states at distinct thresholds depending on the direction of tuning, forming a hysteresis loop. We propose a mathematical model which recapitulates these observations and predicts that the Cdk1/Wee1/Cdc25 positive feedback loops do not contribute to the observed robustness, supported by experiments. Our system can be applied to study how cytoplasmic density affects other cellular processes.
Collapse
Affiliation(s)
- Minjun Jin
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Franco Tavella
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Shiyuan Wang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
- Department of Physics, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Gao QH, Wen B, Kang Y, Zhang WM. Pump-free microfluidic magnetic levitation approach for density-based cell characterization. Biosens Bioelectron 2022; 204:114052. [PMID: 35149454 DOI: 10.1016/j.bios.2022.114052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
Abstract
Magnetic levitation (MagLev) provides a simple but promising method for density-based analysis and detection down to the individual cell level. However, each existing MagLev configuration for the single-cell density measurement, mainly consisting of a capillary (∼50 mm) placed between two magnets, yields a fairly low sample utilization because of no knowledge about the sample cells in the regions other than the limited microscope vision. Moreover, the quantitative analysis may be affected due to the unclearly defined measurement area, which is specifically associated with the uneven magnetization of magnets, cell size, degree of aggregation. In this work, we explore a pump-free microfluidic magnetic levitation approach for density-based cell characterization, enabling sensitive and effective cellular density measurement on small sample volumes. The microfluidic MagLev comprises a pump-free microfluidic chip placed between two ring magnets with like poles facing. With no external pumps, connectors or control facility, much smaller amounts of fluids (∼4 μL) could be driven automatically in the entire microchannel in 16 s. Based on the pump-free mechanism, unique density signatures of cells from different lineages (ARPE-19, HCT116, HeLa, HT1080, Huh7) are characterized by monitoring the levitation profiles. Furthermore, variation in density of A549 lung cancer cells subjected to a drug treatment are observed in our platform, allowing evaluation of the efficacy of the drug treatment at the individual cell level. Thereby, the proposed pump-free microfluidic MagLev platform, a low-cost, fully automatic and portable design for label-free density-based cell characterization, provides a universal detection tool that operates efficiently within small-volume environments.
Collapse
Affiliation(s)
- Qiu-Hua Gao
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baiqing Wen
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wen-Ming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
40
|
Zhao Y, Gu L, Sun H, Sha X, Li WJ. Physical Cytometry: Detecting Mass-Related Properties of Single Cells. ACS Sens 2022; 7:21-36. [PMID: 34978200 DOI: 10.1021/acssensors.1c01787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physical properties of a single cell, such as mass, volume, and density, are important indications of the cell's metabolic characteristics and homeostasis. Precise measurement of a single cell's mass has long been a challenge due to its minute size. It is only in the past 10 years that a variety of instruments for measuring living cellular mass have emerged with the development of MEMS, microfluidics, and optics technologies. In this review, we discuss the current developments of physical cytometry for quantifying mass-related physical properties of single cells, highlighting the working principle, applications, and unique merits. The review mainly covers these measurement methods: single-cell mass cytometry, levitation image cytometry, suspended microchannel resonator, phase-shifting interferometry, and opto-electrokinetics cell manipulation. Comparisons are made between these methods in terms of throughput, content, invasiveness, compatibility, and precision. Some typical applications of these methods in pathological diagnosis, drug efficacy evaluation, disease treatment, and other related fields are also discussed in this work.
Collapse
Affiliation(s)
- Yuliang Zhao
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Lijia Gu
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Hui Sun
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong, China
| | - Xiaopeng Sha
- School of Control Engineering, Northeastern University, Qinhuangdao 066004, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077 Hong Kong, China
| |
Collapse
|
41
|
Cadart C, Venkova L, Piel M, Cosentino Lagomarsino M. Volume growth in animal cells is cell cycle dependent and shows additive fluctuations. eLife 2022; 11:e70816. [PMID: 35088713 PMCID: PMC8798040 DOI: 10.7554/elife.70816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
The way proliferating animal cells coordinate the growth of their mass, volume, and other relevant size parameters is a long-standing question in biology. Studies focusing on cell mass have identified patterns of mass growth as a function of time and cell cycle phase, but little is known about volume growth. To address this question, we improved our fluorescence exclusion method of volume measurement (FXm) and obtained 1700 single-cell volume growth trajectories of HeLa cells. We find that, during most of the cell cycle, volume growth is close to exponential and proceeds at a higher rate in S-G2 than in G1. Comparing the data with a mathematical model, we establish that the cell-to-cell variability in volume growth arises from constant-amplitude fluctuations in volume steps rather than fluctuations of the underlying specific growth rate. We hypothesize that such 'additive noise' could emerge from the processes that regulate volume adaptation to biophysical cues, such as tension or osmotic pressure.
Collapse
Affiliation(s)
- Clotilde Cadart
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Larisa Venkova
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Matthieu Piel
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Marco Cosentino Lagomarsino
- FIRC Institute of Molecular Oncology (IFOM)MilanItaly
- Physics Department, University of Milan, and INFNMilanItaly
| |
Collapse
|
42
|
Lengefeld J, Cheng CW, Maretich P, Blair M, Hagen H, McReynolds MR, Sullivan E, Majors K, Roberts C, Kang JH, Steiner JD, Miettinen TP, Manalis SR, Antebi A, Morrison SJ, Lees JA, Boyer LA, Yilmaz ÖH, Amon A. Cell size is a determinant of stem cell potential during aging. SCIENCE ADVANCES 2021; 7:eabk0271. [PMID: 34767451 PMCID: PMC8589318 DOI: 10.1126/sciadv.abk0271] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 05/05/2023]
Abstract
Stem cells are remarkably small. Whether small size is important for stem cell function is unknown. We find that hematopoietic stem cells (HSCs) enlarge under conditions known to decrease stem cell function. This decreased fitness of large HSCs is due to reduced proliferation and was accompanied by altered metabolism. Preventing HSC enlargement or reducing large HSCs in size averts the loss of stem cell potential under conditions causing stem cell exhaustion. Last, we show that murine and human HSCs enlarge during aging. Preventing this age-dependent enlargement improves HSC function. We conclude that small cell size is important for stem cell function in vivo and propose that stem cell enlargement contributes to their functional decline during aging.
Collapse
Affiliation(s)
- Jette Lengefeld
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Chia-Wei Cheng
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pema Maretich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marguerite Blair
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Hagen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie R. McReynolds
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA
| | - Emily Sullivan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyra Majors
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Roberts
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
| | - Joon Ho Kang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joachim D. Steiner
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Teemu P. Miettinen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Scott R. Manalis
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
| | - Sean J. Morrison
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline A. Lees
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A. Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ömer H. Yilmaz
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
43
|
Despin-Guitard E, Migeotte I. Mitosis, a springboard for epithelial-mesenchymal transition? Cell Cycle 2021; 20:2452-2464. [PMID: 34720062 DOI: 10.1080/15384101.2021.1992854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
44
|
Chaigne A, Smith MB, Lopez Cavestany R, Hannezo E, Chalut KJ, Paluch EK. Three-dimensional geometry controls division symmetry in stem cell colonies. J Cell Sci 2021; 134:jcs255018. [PMID: 34323278 PMCID: PMC8349555 DOI: 10.1242/jcs.255018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Proper control of division orientation and symmetry, largely determined by spindle positioning, is essential to development and homeostasis. Spindle positioning has been extensively studied in cells dividing in two-dimensional (2D) environments and in epithelial tissues, where proteins such as NuMA (also known as NUMA1) orient division along the interphase long axis of the cell. However, little is known about how cells control spindle positioning in three-dimensional (3D) environments, such as early mammalian embryos and a variety of adult tissues. Here, we use mouse embryonic stem cells (ESCs), which grow in 3D colonies, as a model to investigate division in 3D. We observe that, at the periphery of 3D colonies, ESCs display high spindle mobility and divide asymmetrically. Our data suggest that enhanced spindle movements are due to unequal distribution of the cell-cell junction protein E-cadherin between future daughter cells. Interestingly, when cells progress towards differentiation, division becomes more symmetric, with more elongated shapes in metaphase and enhanced cortical NuMA recruitment in anaphase. Altogether, this study suggests that in 3D contexts, the geometry of the cell and its contacts with neighbors control division orientation and symmetry. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Matthew B. Smith
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Rocio Lopez Cavestany
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Kevin J. Chalut
- Wellcome/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ewa K. Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Wellcome/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
45
|
Tanaka M, Kitanishi-Yumura T, Yumura S. A 'dynamic adder model' for cell size homeostasis in Dictyostelium cells. Sci Rep 2021; 11:13742. [PMID: 34215778 PMCID: PMC8253765 DOI: 10.1038/s41598-021-92700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
After a cell divides into two daughter cells, the total cell surface area of the daughter cells should increase to the original size to maintain cell size homeostasis in a single cell cycle. Previously, three models have been proposed to explain the regulation of cell size homeostasis: sizer, timer, and adder models. Here, we precisely measured the total cell surface area of Dictyostelium cells in a whole cell cycle by using the agar-overlay method, which eliminated the influence of surface membrane reservoirs, such as microvilli and membrane wrinkles. The total cell surface area exponentially increased during interphase, slightly decreased at metaphase, and then increased by approximately 20% during cytokinesis. From the analysis of the added surface area, we concluded that the cell size was regulated by the adder or near-adder model in interphase. This adder model is not caused by a simple cell membrane addition, but is more dynamic due to the rapid cell membrane turnover. We propose a 'dynamic adder model' to explain cell size homeostasis in interphase.
Collapse
Affiliation(s)
- Masahito Tanaka
- grid.268397.10000 0001 0660 7960Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512 Japan ,grid.288127.60000 0004 0466 9350Present Address: Laboratory of Physics and Cell Biology, Department of Chromosome Science, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
| | - Toshiko Kitanishi-Yumura
- grid.268397.10000 0001 0660 7960Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512 Japan
| | - Shigehiko Yumura
- grid.268397.10000 0001 0660 7960Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512 Japan
| |
Collapse
|
46
|
Odermatt PD, Miettinen TP, Lemière J, Kang JH, Bostan E, Manalis SR, Huang KC, Chang F. Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast. eLife 2021; 10:64901. [PMID: 34100714 PMCID: PMC8221806 DOI: 10.7554/elife.64901] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Intracellular density impacts the physical nature of the cytoplasm and can globally affect cellular processes, yet density regulation remains poorly understood. Here, using a new quantitative phase imaging method, we determined that dry-mass density in fission yeast is maintained in a narrow distribution and exhibits homeostatic behavior. However, density varied during the cell cycle, decreasing during G2, increasing in mitosis and cytokinesis, and dropping rapidly at cell birth. These density variations were explained by a constant rate of biomass synthesis, coupled to slowdown of volume growth during cell division and rapid expansion post-cytokinesis. Arrest at specific cell-cycle stages exacerbated density changes. Spatially heterogeneous patterns of density suggested links between density regulation, tip growth, and intracellular osmotic pressure. Our results demonstrate that systematic density variations during the cell cycle are predominantly due to modulation of volume expansion, and reveal functional consequences of density gradients and cell-cycle arrests.
Collapse
Affiliation(s)
- Pascal D Odermatt
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,MRC Laboratory for Molecular Cell Biology, University College, London, United Kingdom
| | - Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States.,Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Emrah Bostan
- Informatics Institute, University of Amsterdam, Amsterdamn, Netherlands
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
47
|
Yang Y, Jiang H. Mechanical properties of external confinement modulate the rounding dynamics of cells. Biophys J 2021; 120:2306-2316. [PMID: 33864788 DOI: 10.1016/j.bpj.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
Many studies have demonstrated that mitotic cells can round up against external impediments. However, how the stiffness of external confinement affects the dynamics of rounding force/pressure and cell volume remains largely unknown. Here, we develop a theoretical framework to study the rounding of adherent cells confined between a substrate and a cantilever. We show that the rounding force and pressure increase exclusively with the effective confinement on the cell, which is related to the cantilever stiffness and the separation between cantilever and substrate. Remarkably, an increase of cantilever stiffness from 0.001 to 1 N/m can lead to a 100-fold change in rounding force. This model also predicts an active role of confinement stiffness in regulating the dynamics of cell volume and hydrostatic pressure. We find that the dynamic changes of cellular volume and hydrostatic pressure after osmotic shocks are opposite if the cantilever is soft, whereas the dynamic changes of cellular volume and pressure are the same if the cantilever is stiff. Taken together, this work demonstrates that confinement stiffness appears as a critical regulator in regulating the dynamics of rounding force and pressure. Our findings also indicate that the difference in cantilever stiffness need to be considered when comparing the measured rounding force and pressure from various experiments.
Collapse
Affiliation(s)
- Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
48
|
Dantas M, Lima JT, Ferreira JG. Nucleus-Cytoskeleton Crosstalk During Mitotic Entry. Front Cell Dev Biol 2021; 9:649899. [PMID: 33816500 PMCID: PMC8014196 DOI: 10.3389/fcell.2021.649899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
In preparation for mitosis, cells undergo extensive reorganization of the cytoskeleton and nucleus, so that chromosomes can be efficiently segregated into two daughter cells. Coordination of these cytoskeletal and nuclear events occurs through biochemical regulatory pathways, orchestrated by Cyclin-CDK activity. However, recent studies provide evidence that physical forces are also involved in the early steps of spindle assembly. Here, we will review how the crosstalk of physical forces and biochemical signals coordinates nuclear and cytoplasmic events during the G2-M transition, to ensure efficient spindle assembly and faithful chromosome segregation.
Collapse
Affiliation(s)
- Margarida Dantas
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,BiotechHealth Ph.D. Programme, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Joana T Lima
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal
| |
Collapse
|
49
|
Martín-Pérez A, Ramos D, Yubero ML, García-López S, Kosaka PM, Tamayo J, Calleja M. Hydrodynamic assisted multiparametric particle spectrometry. Sci Rep 2021; 11:3535. [PMID: 33574415 PMCID: PMC7878870 DOI: 10.1038/s41598-021-82708-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
The real-time analysis of single analytes in flow is becoming increasingly relevant in cell biology. In this work, we theoretically predict and experimentally demonstrate hydrodynamic focusing with hollow nanomechanical resonators by using an interferometric system which allows the optical probing of flowing particles and tracking of the fundamental mechanical mode of the resonator. We have characterized the hydrodynamic forces acting on the particles, which will determine their velocity depending on their diameter. By using the parameters simultaneously acquired: frequency shift, velocity and reflectivity, we can unambiguously classify flowing particles in real-time, allowing the measurement of the mass density: 1.35 ± 0.07 g·mL-1 for PMMA and 1.7 ± 0.2 g·mL-1 for silica particles, which perfectly agrees with the nominal values. Once we have tested our technique, MCF-7 human breast adenocarcinoma cells are characterized (1.11 ± 0.08 g·mL-1) with high throughput (300 cells/minute) observing a dependency with their size, opening the door for individual cell cycle studies.
Collapse
Affiliation(s)
- Alberto Martín-Pérez
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Daniel Ramos
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain.
| | - Marina L Yubero
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Sergio García-López
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Priscila M Kosaka
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Javier Tamayo
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Montserrat Calleja
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| |
Collapse
|
50
|
Godard BG, Dumollard R, Munro E, Chenevert J, Hebras C, McDougall A, Heisenberg CP. Apical Relaxation during Mitotic Rounding Promotes Tension-Oriented Cell Division. Dev Cell 2020; 55:695-706.e4. [PMID: 33207225 DOI: 10.1016/j.devcel.2020.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/09/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.
Collapse
Affiliation(s)
- Benoit G Godard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France; Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Janet Chenevert
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | | |
Collapse
|