1
|
Pinot M, Le Borgne R. Spatio-Temporal Regulation of Notch Activation in Asymmetrically Dividing Sensory Organ Precursor Cells in Drosophila melanogaster Epithelium. Cells 2024; 13:1133. [PMID: 38994985 PMCID: PMC11240559 DOI: 10.3390/cells13131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.
Collapse
Affiliation(s)
| | - Roland Le Borgne
- Univ Rennes, Centre National de la Recherche Scientifique UMR 6290, IGDR (Institut de Génétique et Développement de Rennes), F-35000 Rennes, France
| |
Collapse
|
2
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
3
|
Kalodimou K, Stapountzi M, Vüllings N, Seib E, Klein T, Delidakis C. Separable Roles for Neur and Ubiquitin in Delta Signalling in the Drosophila CNS Lineages. Cells 2023; 12:2833. [PMID: 38132160 PMCID: PMC10741450 DOI: 10.3390/cells12242833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The execution of a Notch signal at the plasma membrane relies on the mechanical force exerted onto Notch by its ligand. It has been appreciated that the DSL ligands need to collaborate with a ubiquitin (Ub) ligase, either Neuralized or Mindbomb1, in order to exert this pulling force, but the role of ubiquitylation per se is uncertain. Regarding the Delta-Neur pair, it is documented that neither the Neur catalytic domain nor the Delta intracellular lysines (putative Ub acceptors) are needed for activity. Here, we present a dissection of the Delta activity using the Delta-Notch-dependent expression of Hey in newborn Drosophila neurons as a sensitive in vivo assay. We show that the Delta-Neur interaction per se, rather than ubiquitylation, is needed for activity, pointing to the existence of a Delta-Neur signaling complex. The Neur catalytic domain, although not strictly needed, greatly improves Delta-Neur complex functionality when the Delta lysines are mutated, suggesting that the ubiquitylation of some component of the complex, other than Delta, can enhance signaling. Since Hey expression is sensitive to the perturbation of endocytosis, we propose that the Delta-Neur complex triggers a force-generating endocytosis event that activates Notch in the adjacent cell.
Collapse
Affiliation(s)
- Konstantina Kalodimou
- Department of Biology, University of Crete, 700 13 Heraklion, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| | - Margarita Stapountzi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| | - Nicole Vüllings
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Ekaterina Seib
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf, Germany
| | - Christos Delidakis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece;
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Greece;
| |
Collapse
|
4
|
Zhao H, Shi L, Li Z, Kong R, Jia L, Lu S, Wang JH, Dong MQ, Guo X, Li Z. Diamond controls epithelial polarity through the dynactin-dynein complex. Traffic 2023; 24:552-563. [PMID: 37642208 DOI: 10.1111/tra.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lemei Jia
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Shan Lu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
5
|
Zhu J, Li Y, Zhong C, Zhu M, Zheng Y, Xiong A, Meng P, Shan L, Li Y, Huang J. Neuritin affects the activity of neuralized-like 1 by promoting degradation and weakening its affinity for substrate. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1650-1658. [PMID: 37249336 PMCID: PMC10577452 DOI: 10.3724/abbs.2023098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Neuritin plays a key role in neural development and regeneration by promoting neurite outgrowth and synapse maturation. Our previous research revealed the mechanism by which neuritin inhibits Notch signaling through interaction with neuralized-like 1 (Neurl1) to promote neurite growth. However, how neuritin regulates Notch signaling through Neurl1 has not been elucidated. Here, we first confirm that neuritin is an upstream regulator of Neurl1 and inhibits Notch signaling through Neurl1. Neurl1 is an E3 ubiquitin ligase that can promote ubiquitination and endocytosis of the Notch1 ligand Jagged1. Therefore, we observe the effect of neuritin on the ligase activity of Neurl1. The results indicate that neuritin inhibits Neurl1 activity by reducing the ubiquitination level and endocytosis of the target protein Jagged1. Moreover, we find that decreased activity of Neurl1 results in reduced expression of Notch receptor Notch intracellular domain (NICD) and downstream target gene hairy and enhancer of split-1 ( HES1). Furthermore, we investigate how neuritin affects Neurl1 enzyme activity. The results show that neuritin not only weakens the affinity between Neurl1 and Jagged1 but also promotes the degradation of Neurl1 by the 26S proteasome pathway. Taken together, our results suggest that neuritin negatively regulates Notch signaling by inhibiting the activity of Neurl1, promoting the degradation of Neurl1 and weakening the affinity of Neurl1 for Jagged1. Our study clarifies the molecular mechanisms of neuritin in regulating the Notch signaling pathway and provides new clues about how neuritin mediates neural regeneration and plasticity.
Collapse
Affiliation(s)
- Jingling Zhu
- Department of Biochemistry and Molecular BiologyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Yu Li
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Chen Zhong
- the First Affiliated Hospital of Shihezi University School of MedicineShihezi832000China
| | - Meiyi Zhu
- the First Affiliated Hospital of Shihezi University School of MedicineShihezi832000China
| | - Yan Zheng
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Anying Xiong
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Pingping Meng
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Liya Shan
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Yang Li
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| | - Jin Huang
- Department of Biochemistry and Molecular BiologyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- the Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of BiochemistryShihezi University School of MedicineShihezi832002China
| |
Collapse
|
6
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
7
|
Simões S, Lerchbaumer G, Pellikka M, Giannatou P, Lam T, Kim D, Yu J, ter Stal D, Al Kakouni K, Fernandez-Gonzalez R, Tepass U. Crumbs complex-directed apical membrane dynamics in epithelial cell ingression. J Cell Biol 2022; 221:213229. [PMID: 35588693 PMCID: PMC9123285 DOI: 10.1083/jcb.202108076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023] Open
Abstract
Epithelial cells often leave their tissue context and ingress to form new cell types or acquire migratory ability to move to distant sites during development and tumor progression. Cells lose their apical membrane and epithelial adherens junctions during ingression. However, how factors that organize apical-basal polarity contribute to ingression is unknown. Here, we show that the dynamic regulation of the apical Crumbs polarity complex is crucial for normal neural stem cell ingression. Crumbs endocytosis and recycling allow ingression to occur in a normal timeframe. During early ingression, Crumbs and its complex partner the RhoGEF Cysts support myosin and apical constriction to ensure robust ingression dynamics. During late ingression, the E3-ubiquitin ligase Neuralized facilitates the disassembly of the Crumbs complex and the rapid endocytic removal of the apical cell domain. Our findings reveal a mechanism integrating cell fate, apical polarity, endocytosis, vesicle trafficking, and actomyosin contractility to promote cell ingression, a fundamental morphogenetic process observed in animal development and cancer.
Collapse
Affiliation(s)
- Sérgio Simões
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gerald Lerchbaumer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Milena Pellikka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Paraskevi Giannatou
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Lam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Dohyun Kim
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David ter Stal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Kenana Al Kakouni
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Correspondence to Ulrich Tepass:
| |
Collapse
|
8
|
Castiglioni VG, Ramalho JJ, Kroll JR, Stucchi R, van Beuzekom H, Schmidt R, Altelaar M, Boxem M. Identification and characterization of Crumbs polarity complex proteins in Caenorhabditis elegans. J Biol Chem 2022; 298:101786. [PMID: 35247383 PMCID: PMC9006659 DOI: 10.1016/j.jbc.2022.101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - João J Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Stucchi
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands; Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hanna van Beuzekom
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Maarten Altelaar
- Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Houssin E, Pinot M, Bellec K, Le Borgne R. Par3 cooperates with Sanpodo for the assembly of Notch clusters following asymmetric division of Drosophila sensory organ precursor cells. eLife 2021; 10:e66659. [PMID: 34596529 PMCID: PMC8516416 DOI: 10.7554/elife.66659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apico-basal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.
Collapse
Affiliation(s)
- Elise Houssin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Mathieu Pinot
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Karen Bellec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| |
Collapse
|
10
|
Seib E, Klein T. The role of ligand endocytosis in notch signalling. Biol Cell 2021; 113:401-418. [PMID: 34038572 DOI: 10.1111/boc.202100009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
The Notch signalling receptor is a mechanoreceptor that is activated by force. This force elicits a conformational change in Notch that results in the release of its intracellular domain into the cytosol by two consecutive proteolytic cleavages. In most cases, the force is generated by pulling of the ligands on the receptor upon their endocytosis. In this review, we summarise recent work that shed a more detailed light on the role of endocytosis during ligand-dependent Notch activation and discuss the role of ubiquitylation of the ligands during this process.
Collapse
Affiliation(s)
- Ekaterina Seib
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| |
Collapse
|
11
|
Blackie L, Tozluoglu M, Trylinski M, Walther RF, Schweisguth F, Mao Y, Pichaud F. A combination of Notch signaling, preferential adhesion and endocytosis induces a slow mode of cell intercalation in the Drosophila retina. Development 2021; 148:264928. [PMID: 33999996 PMCID: PMC8180261 DOI: 10.1242/dev.197301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Movement of epithelial cells in a tissue occurs through neighbor exchange and drives tissue shape changes. It requires intercellular junction remodeling, a process typically powered by the contractile actomyosin cytoskeleton. This has been investigated mainly in homogeneous epithelia, where intercalation takes minutes. However, in some tissues, intercalation involves different cell types and can take hours. Whether slow and fast intercalation share the same mechanisms remains to be examined. To address this issue, we used the fly eye, where the cone cells exchange neighbors over ∼10 h to shape the lens. We uncovered three pathways regulating this slow mode of cell intercalation. First, we found a limited requirement for MyosinII. In this case, mathematical modeling predicts an adhesion-dominant intercalation mechanism. Genetic experiments support this prediction, revealing a role for adhesion through the Nephrin proteins Roughest and Hibris. Second, we found that cone cell intercalation is regulated by the Notch pathway. Third, we show that endocytosis is required for membrane removal and Notch activation. Taken together, our work indicates that adhesion, endocytosis and Notch can direct slow cell intercalation during tissue morphogenesis.
Collapse
Affiliation(s)
- Laura Blackie
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
| | - Melda Tozluoglu
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK
| | - Mateusz Trylinski
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Department of Developmental and Stem Cell Biology, Pasteur Institute, F-75015 Paris, France
| | - Rhian F Walther
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Pasteur Institute, F-75015 Paris, France.,CNRS, UMR3738, F-75015 Paris, France
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, London WC1E 6BT, UK.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Shard C, Luna-Escalante J, Schweisguth F. Tissue-wide coordination of epithelium-to-neural stem cell transition in the Drosophila optic lobe requires Neuralized. J Cell Biol 2021; 219:152101. [PMID: 32946560 PMCID: PMC7594497 DOI: 10.1083/jcb.202005035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.
Collapse
Affiliation(s)
- Chloé Shard
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| | - Juan Luna-Escalante
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Physique, Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, Paris, France
| | - François Schweisguth
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
13
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
14
|
Bellec K, Pinot M, Gicquel I, Le Borgne R. The Clathrin adaptor AP-1 and Stratum act in parallel pathways to control Notch activation in Drosophila sensory organ precursors cells. Development 2021; 148:dev191437. [PMID: 33298463 PMCID: PMC7823167 DOI: 10.1242/dev.191437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022]
Abstract
Drosophila sensory organ precursors divide asymmetrically to generate pIIa/pIIb cells, the identity of which relies on activation of Notch at cytokinesis. Although Notch is present apically and basally relative to the midbody at the pIIa-pIIb interface, the basal pool of Notch is reported to be the main contributor for Notch activation in the pIIa cell. Intra-lineage signalling requires appropriate apico-basal targeting of Notch, its ligand Delta and its trafficking partner Sanpodo. We have previously reported that AP-1 and Stratum regulate the trafficking of Notch and Sanpodo from the trans-Golgi network to the basolateral membrane. Loss of AP-1 or Stratum caused mild Notch gain-of-function phenotypes. Here, we report that their concomitant loss results in a penetrant Notch gain-of-function phenotype, indicating that they control parallel pathways. Although unequal partitioning of cell fate determinants and cell polarity were unaffected, we observed increased amounts of signalling-competent Notch as well as Delta and Sanpodo at the apical pIIa-pIIb interface, at the expense of the basal pool of Notch. We propose that AP-1 and Stratum operate in parallel pathways to localize Notch and control where receptor activation takes place.
Collapse
Affiliation(s)
- Karen Bellec
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Mathieu Pinot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Isabelle Gicquel
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
15
|
Arefin B, Parvin F, Bahrampour S, Stadler CB, Thor S. Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay. Cell Rep 2020; 29:3636-3651.e3. [PMID: 31825841 DOI: 10.1016/j.celrep.2019.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.
Collapse
Affiliation(s)
- Badrul Arefin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Farjana Parvin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Shahrzad Bahrampour
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Caroline Bivik Stadler
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden; School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
17
|
Dho SE, Silva-Gagliardi N, Morgese F, Coyaud E, Lamoureux E, Berry DM, Raught B, McGlade CJ. Proximity interactions of the ubiquitin ligase Mind bomb 1 reveal a role in regulation of epithelial polarity complex proteins. Sci Rep 2019; 9:12471. [PMID: 31462741 PMCID: PMC6713736 DOI: 10.1038/s41598-019-48902-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
MIB1 belongs to the RING domain containing family of E3 ubiquitin ligases. In vertebrates, MIB1 plays an essential role in activation of Notch signaling during development, through the ubiquitination and endocytosis of Notch ligands. More recently, Notch independent functions for MIB1 have been described in centriole homeostasis, dendritic spine outgrowth and directional cell migration. Here we use proximity-dependent biotin identification (BioID) to define the MIB1 interactome that included 163 high confidence interactions with polypeptides linked to centrosomes and cilia, endosomal trafficking, RNA and DNA processing, the ubiquitin system, and cell adhesion. Biochemical analysis identified several proteins within these groups including CCDC14 and EPS15 that were ubiquitinated but not degraded when co-expressed with MIB1. The MIB1 interactome included the epithelial cell polarity protein, EPB41L5. MIB1 binds to and ubiquitinates EPB41L5 resulting in its degradation. Furthermore, MIB1 ubiquitinates the EPB41L5-associated polarity protein CRB1, an important determinant of the apical membrane. In polarized cells, MIB1 localized to the lateral membrane with EPB41L5 and to the tight junction with CRB1, CRB3 and ZO1. Furthermore, over expression of MIB1 resulted in altered epithelial cell morphology and apical membrane expansion. These results support a role for MIB1 in regulation of polarized epithelial cell morphology.
Collapse
Affiliation(s)
- Sascha E Dho
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Nancy Silva-Gagliardi
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Fabio Morgese
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Emily Lamoureux
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Donna M Berry
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - C Jane McGlade
- Program in Cell Biology and The Arthur and Sonia Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Ave., Toronto, ON, M5G 1X8, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Nunes de Almeida F, Walther RF, Pressé MT, Vlassaks E, Pichaud F. Cdc42 defines apical identity and regulates epithelial morphogenesis by promoting apical recruitment of Par6-aPKC and Crumbs. Development 2019; 146:dev175497. [PMID: 31405903 PMCID: PMC6703713 DOI: 10.1242/dev.175497] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023]
Abstract
Cdc42 regulates epithelial morphogenesis together with the Par complex (Baz/Par3-Par6-aPKC), Crumbs (Crb/CRB3) and Stardust (Sdt/PALS1). However, how these proteins work together and interact during epithelial morphogenesis is not well understood. To address this issue, we used the genetically amenable Drosophila pupal photoreceptor and follicular epithelium. We show that during epithelial morphogenesis active Cdc42 accumulates at the developing apical membrane and cell-cell contacts, independently of the Par complex and Crb. However, membrane localization of Baz, Par6-aPKC and Crb all depend on Cdc42. We find that although binding of Cdc42 to Par6 is not essential for the recruitment of Par6 and aPKC to the membrane, it is required for their apical localization and accumulation, which we find also depends on Par6 retention by Crb. In the pupal photoreceptor, membrane recruitment of Par6-aPKC also depends on Baz. Our work shows that Cdc42 is required for this recruitment and suggests that this factor promotes the handover of Par6-aPKC from Baz onto Crb. Altogether, we propose that Cdc42 drives morphogenesis by conferring apical identity, Par-complex assembly and apical accumulation of Crb.
Collapse
Affiliation(s)
| | - Rhian F Walther
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mary T Pressé
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Evi Vlassaks
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Franck Pichaud
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Taal K, Tuvikene J, Rullinkov G, Piirsoo M, Sepp M, Neuman T, Tamme R, Timmusk T. Neuralized family member NEURL1 is a ubiquitin ligase for the cGMP-specific phosphodiesterase 9A. Sci Rep 2019; 9:7104. [PMID: 31068605 PMCID: PMC6506465 DOI: 10.1038/s41598-019-43069-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/01/2019] [Indexed: 11/15/2022] Open
Abstract
Neuralized functions as a positive regulator of the Notch pathway by promoting ubiquitination of Notch ligands via its E3 ligase activity, resulting in their efficient endocytosis and signaling. Using a yeast two-hybrid screen, we have identified a cGMP-hydrolysing phosphodiesterase, PDE9A, as a novel interactor and substrate of Neuralized E3 ubiquitin protein ligase 1 (NEURL1). We confirmed this interaction with co-immunoprecipitation experiments and show that both Neuralized Homology Repeat domains of NEURL1 can interact with PDE9A. We also demonstrate that NEURL1 can promote polyubiquitination of PDE9A that leads to its proteasome-mediated degradation mainly via lysine residue K27 of ubiquitin. Our results suggest that NEURL1 acts as a novel regulator of protein levels of PDE9A.
Collapse
Affiliation(s)
- Kati Taal
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Grete Rullinkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Marko Piirsoo
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | | | - Richard Tamme
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
20
|
Farkaš R, Beňová-Liszeková D, Mentelová L, Beňo M, Babišová K, Trusinová-Pečeňová L, Raška O, Chase BA, Raška I. Endosomal vacuoles of the prepupal salivary glands of Drosophila play an essential role in the metabolic reallocation of iron. Dev Growth Differ 2018; 60:411-430. [PMID: 30123964 DOI: 10.1111/dgd.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
Abstract
In the recent past, we demonstrated that a great deal is going on in the salivary glands of Drosophila in the interval after they release their glycoprotein-rich secretory glue during pupariation. The early-to-mid prepupal salivary glands undergo extensive endocytosis with widespread vacuolation of the cytoplasm followed by massive apocrine secretion. Here, we describe additional novel properties of these endosomes. The use of vital pH-sensitive probes provided confirmatory evidence that these endosomes have acidic contents and that there are two types of endocytosis seen in the prepupal glands. The salivary glands simultaneously generate mildly acidic, small, basally-derived endosomes and strongly acidic, large and apical endosomes. Staining of the large vacuoles with vital acidic probes is possible only after there is ambipolar fusion of both basal and apical endosomes, since only basally-derived endosomes can bring fluorescent probes into the vesicular system. We obtained multiple lines of evidence that the small basally-derived endosomes are chiefly involved in the uptake of dietary Fe3+ iron. The fusion of basal endosomes with the larger and strongly acidic apical endosomes appears to facilitate optimal conditions for ferrireductase activity inside the vacuoles to release metabolic Fe2+ iron. While iron was not detectable directly due to limited staining sensitivity, we found increasing fluorescence of the glutathione-sensitive probe CellTracker Blue CMAC in large vacuoles, which appeared to depend on the amount of iron released by ferrireductase. Moreover, heterologous fluorescently-labeled mammalian iron-bound transferrin is actively taken up, providing direct evidence for active iron uptake by basal endocytosis. In addition, we serendipitously found that small (basal) endosomes were uniquely recognized by PNA lectin, whereas large (apical) vacuoles bound DBA lectin.
Collapse
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Klaudia Babišová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Ludmila Trusinová-Pečeňová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Otakar Raška
- Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Bruce A Chase
- Department of Biology, University of Nebraska, Omaha, Nebraska
| | - Ivan Raška
- Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
21
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
22
|
Perez-Mockus G, Mazouni K, Roca V, Corradi G, Conte V, Schweisguth F. Spatial regulation of contractility by Neuralized and Bearded during furrow invagination in Drosophila. Nat Commun 2017; 8:1594. [PMID: 29150614 PMCID: PMC5693868 DOI: 10.1038/s41467-017-01482-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
Embryo-scale morphogenesis arises from patterned mechanical forces. During Drosophila gastrulation, actomyosin contractility drives apical constriction in ventral cells, leading to furrow formation and mesoderm invagination. It remains unclear whether and how mechanical properties of the ectoderm influence this process. Here, we show that Neuralized (Neur), an E3 ubiquitin ligase active in the mesoderm, regulates collective apical constriction and furrow formation. Conversely, the Bearded (Brd) proteins antagonize maternal Neur and lower medial-apical contractility in the ectoderm: in Brd-mutant embryos, the ventral furrow invaginates properly but rapidly unfolds as medial MyoII levels increase in the ectoderm. Increasing contractility in the ectoderm via activated Rho similarly triggers furrow unfolding whereas decreasing contractility restores furrow invagination in Brd-mutant embryos. Thus, the inhibition of Neur by Brd in the ectoderm differentiates the mechanics of the ectoderm from that of the mesoderm and patterns the activity of MyoII along the dorsal-ventral axis.
Collapse
Affiliation(s)
- Gantas Perez-Mockus
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France.,Univ. Pierre et Marie Curie, Cellule Pasteur UPMC, F-75015, Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Vanessa Roca
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Giulia Corradi
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France.,CNRS, UMR3738, F-75015, Paris, France
| | - Vito Conte
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015, Paris, France. .,CNRS, UMR3738, F-75015, Paris, France.
| |
Collapse
|
23
|
Perez-Mockus G, Schweisguth F. Cell Polarity and Notch Signaling: Linked by the E3 Ubiquitin Ligase Neuralized? Bioessays 2017; 39. [DOI: 10.1002/bies.201700128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Gantas Perez-Mockus
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
- Univ. Pierre et Marie Curie; Cellule Pasteur UPMC; rue du Dr Roux 75015 Paris France
| | - Francois Schweisguth
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
| |
Collapse
|
24
|
Horner DS, Pasini ME, Beltrame M, Mastrodonato V, Morelli E, Vaccari T. ESCRT genes and regulation of developmental signaling. Semin Cell Dev Biol 2017; 74:29-39. [PMID: 28847745 DOI: 10.1016/j.semcdb.2017.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.
Collapse
Affiliation(s)
- David S Horner
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria E Pasini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|
25
|
Intra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ Precursor Cells. Curr Biol 2017; 27:2239-2247.e3. [PMID: 28736165 DOI: 10.1016/j.cub.2017.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 01/27/2023]
Abstract
Notch receptors regulate cell fate decisions during embryogenesis and throughout adult life. In many cell lineages, binary fate decisions are mediated by directional Notch signaling between the two sister cells produced by cell division. How Notch signaling is restricted to sister cells after division to regulate intra-lineage decision is poorly understood. More generally, where ligand-dependent activation of Notch occurs at the cell surface is not known, as methods to detect receptor activation in vivo are lacking. In Drosophila pupae, Notch signals during cytokinesis to regulate the intra-lineage pIIa/pIIb decision in the sensory organ lineage. Here, we identify two pools of Notch along the pIIa-pIIb interface, apical and basal to the midbody. Analysis of the dynamics of Notch, Delta, and Neuralized distribution in living pupae suggests that ligand endocytosis and receptor activation occur basal to the midbody. Using selective photo-bleaching of GFP-tagged Notch and photo-tracking of photo-convertible Notch, we show that nuclear Notch is indeed produced by receptors located basal to the midbody. Thus, only a specific subset of receptors, located basal to the midbody, contributes to signaling in pIIa. This is the first in vivo characterization of the pool of Notch contributing to signaling. We propose a simple mechanism of cell fate decision based on intra-lineage signaling: ligands and receptors localize during cytokinesis to the new cell-cell interface, thereby ensuring signaling between sister cells, hence intra-lineage fate decision.
Collapse
|
26
|
Das S, Knust E. Stardust, the Janus-faced partner of Crumbs. J Cell Biol 2017; 216:1219-1221. [PMID: 28416478 PMCID: PMC5412578 DOI: 10.1083/jcb.201704023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Drosophila melanogaster scaffolding protein Stardust (Sdt) stabilizes the transmembrane protein Crumbs, a conserved regulator of apical-basal epithelial polarity. In this issue, Perez-Mockus et al. (2017. J. Cell Biol https://doi.org/10.1083/jcb.201611196) report that a subset of Sdt isoforms are targeted by the ubiquitin ligase Neuralized, thus fine tuning the endocytosis and activity of this apical determinant.
Collapse
Affiliation(s)
- Shradha Das
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|