1
|
Jin E, Briggs JK, Benninger RKP, Merrins MJ. Glucokinase activity controls peripherally located subpopulations of β-cells that lead islet Ca 2+ oscillations. eLife 2025; 13:RP103068. [PMID: 39936635 DOI: 10.7554/elife.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled β-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used three-dimensional (3D) light-sheet imaging to analyze the location and Ca2+ activity of single β-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized β-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes 'hub cells', is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. β-Cells that initiate the Ca2+ wave (leaders) are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the β-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning 'leader' β-cells.
Collapse
Affiliation(s)
- Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, United States
| | - Jennifer K Briggs
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, United States
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
2
|
Raju G, Gratiet AL, Sancataldo G, Zhuo GY, Kistenev Y, Das S, Patil A, Mazumder N. Light sheet fluorescence microscopy for monitoring drug delivery: Unlocking the developmental phases of embryos. Adv Drug Deliv Rev 2025; 218:115520. [PMID: 39842696 DOI: 10.1016/j.addr.2025.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/05/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Light sheet fluorescence microscopy (LSFM) has emerged as a transformative imaging technique in the study of drug delivery and embryonic development, offering high-resolution, real-time visualization with minimal phototoxicity. This review examines the application of LSFM in tracking drug pharmacokinetics, tissue-specific targeting, and drug efficacy during critical phases of embryonic development. Recent advancements in fluorescent labeling and machine learning integration have enabled more precise monitoring of drug release, distribution, and interaction with developing tissues. The ability of LSFM to capture long-term dynamics at single-cell resolution has revolutionized drug discovery, especially in nanomedicine and targeted therapies. By integrating LSFM with multimodal imaging and AI-driven data analysis, researchers are now better equipped to explore complex biological processes and optimize drug delivery in a highly controlled, minimally invasive manner. Finally, the review highlights the pivotal role of LSFM in advancing drug delivery research, addressing existing challenges, and unlocking new frontiers in clinical applications.
Collapse
Affiliation(s)
- Gagan Raju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Aymeric Le Gratiet
- Universite de Rennes, CNRS, Institut FOTON - UMR 6082, F‑22305 Lannion France
| | | | - Guan-Yu Zhuo
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yury Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Subir Das
- Department of Chemistry, University of Zurich 8057 Zurich, Switzerland
| | - Ajeetkumar Patil
- Department of Atomic & Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
3
|
Jin E, Briggs JK, Benninger RK, Merrins MJ. Glucokinase activity controls peripherally-located subpopulations of β-cells that lead islet Ca 2+ oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608680. [PMID: 39229244 PMCID: PMC11370332 DOI: 10.1101/2024.08.21.608680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled β-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used 3D light-sheet imaging to analyze the location and Ca2+ activity of single β-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized β-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes 'hub cells', is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. β-cells that initiate the Ca2+ wave ('leaders') are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the β-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning 'leader' β-cells.
Collapse
Affiliation(s)
- Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, United States
| | - Jennifer K. Briggs
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, United States; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, United States
| | - Richard K.P. Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, United States; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, United States
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Saliba N, Gagliano G, Gustavsson AK. Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet. Nat Commun 2024; 15:10187. [PMID: 39582043 PMCID: PMC11586421 DOI: 10.1038/s41467-024-54609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Multi-target single-molecule super-resolution fluorescence microscopy offers a powerful means of understanding the distributions and interplay between multiple subcellular structures at the nanoscale. However, single-molecule super-resolution imaging of whole mammalian cells is often hampered by high fluorescence background and slow acquisition speeds, especially when imaging multiple targets in 3D. In this work, we have mitigated these issues by developing a steerable, dithered, single-objective tilted light sheet for optical sectioning to reduce fluorescence background and a pipeline for 3D nanoprinting microfluidic systems for reflection of the light sheet into the sample. This easily adaptable microfluidic fabrication pipeline allows for the incorporation of reflective optics into microfluidic channels without disrupting efficient and automated solution exchange. We combine these innovations with point spread function engineering for nanoscale localization of individual molecules in 3D, deep learning for analysis of overlapping emitters, active 3D stabilization for drift correction and long-term imaging, and Exchange-PAINT for sequential multi-target imaging without chromatic offsets. We then demonstrate that this platform, termed soTILT3D, enables whole-cell multi-target 3D single-molecule super-resolution imaging with improved precision and imaging speed.
Collapse
Affiliation(s)
- Nahima Saliba
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Gabriella Gagliano
- Department of Chemistry, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
- Applied Physics Program, Rice University, Houston, TX, USA
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, USA.
- Smalley-Curl Institute, Rice University, Houston, TX, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Center for Nanoscale Imaging Sciences, Rice University, Houston, TX, USA.
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Saliba N, Gagliano G, Gustavsson AK. Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559876. [PMID: 37808751 PMCID: PMC10557638 DOI: 10.1101/2023.09.27.559876] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Multi-target single-molecule super-resolution fluorescence microscopy offers a powerful means of understanding the distributions and interplay between multiple subcellular structures at the nanoscale. However, single-molecule super-resolution imaging of whole mammalian cells is often hampered by high fluorescence background and slow acquisition speeds, especially when imaging multiple targets in 3D. In this work, we have mitigated these issues by developing a steerable, dithered, single-objective tilted light sheet for optical sectioning to reduce fluorescence background and a pipeline for 3D nanoprinting microfluidic systems for reflection of the light sheet into the sample. This easily adaptable novel microfluidic fabrication pipeline allows for the incorporation of reflective optics into microfluidic channels without disrupting efficient and automated solution exchange. By combining these innovations with point spread function engineering for nanoscale localization of individual molecules in 3D, deep learning for analysis of overlapping emitters, active 3D stabilization for drift correction and long-term imaging, and Exchange-PAINT for sequential multi-target imaging without chromatic offsets, we demonstrate whole-cell multi-target 3D single-molecule super-resolution imaging with improved precision and imaging speed.
Collapse
Affiliation(s)
- Nahima Saliba
- Department of Chemistry, Rice University, Houston, TX, 77005
| | - Gabriella Gagliano
- Department of Chemistry, Rice University, Houston, TX, 77005
- Smalley-Curl Institute, Rice University, Houston, TX, 77005
- Applied Physics Program, Rice University, Houston, TX, 77005
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, 77005
- Smalley-Curl Institute, Rice University, Houston, TX, 77005
- Department of BioSciences, Rice University, Houston, TX, 77005
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005
- Center for Nanoscale Imaging Sciences, Rice University, Houston, TX, 77005
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
6
|
Ferreira A, Li J, Pomykala KL, Kleesiek J, Alves V, Egger J. GAN-based generation of realistic 3D volumetric data: A systematic review and taxonomy. Med Image Anal 2024; 93:103100. [PMID: 38340545 DOI: 10.1016/j.media.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
With the massive proliferation of data-driven algorithms, such as deep learning-based approaches, the availability of high-quality data is of great interest. Volumetric data is very important in medicine, as it ranges from disease diagnoses to therapy monitoring. When the dataset is sufficient, models can be trained to help doctors with these tasks. Unfortunately, there are scenarios where large amounts of data is unavailable. For example, rare diseases and privacy issues can lead to restricted data availability. In non-medical fields, the high cost of obtaining enough high-quality data can also be a concern. A solution to these problems can be the generation of realistic synthetic data using Generative Adversarial Networks (GANs). The existence of these mechanisms is a good asset, especially in healthcare, as the data must be of good quality, realistic, and without privacy issues. Therefore, most of the publications on volumetric GANs are within the medical domain. In this review, we provide a summary of works that generate realistic volumetric synthetic data using GANs. We therefore outline GAN-based methods in these areas with common architectures, loss functions and evaluation metrics, including their advantages and disadvantages. We present a novel taxonomy, evaluations, challenges, and research opportunities to provide a holistic overview of the current state of volumetric GANs.
Collapse
Affiliation(s)
- André Ferreira
- Center Algoritmi/LASI, University of Minho, Braga, 4710-057, Portugal; Computer Algorithms for Medicine Laboratory, Graz, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany; Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany; Institute of Medical Informatics, University Hospital RWTH Aachen, 52074 Aachen, Germany.
| | - Jianning Li
- Computer Algorithms for Medicine Laboratory, Graz, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, Essen, 45147, Germany.
| | - Kelsey L Pomykala
- Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany.
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, Essen, 45147, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Hufelandstraße 55, Essen, 45147, Germany; TU Dortmund University, Department of Physics, Otto-Hahn-Straße 4, 44227 Dortmund, Germany.
| | - Victor Alves
- Center Algoritmi/LASI, University of Minho, Braga, 4710-057, Portugal.
| | - Jan Egger
- Computer Algorithms for Medicine Laboratory, Graz, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, Essen, 45131, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, Essen, 45147, Germany; Institute of Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, Graz, 801, Austria.
| |
Collapse
|
7
|
Cortes DB, Maddox PS, Nédéléç FJ, Maddox AS. Contractile ring composition dictates kinetics of in silico contractility. Biophys J 2023; 122:3611-3629. [PMID: 36540027 PMCID: PMC10541479 DOI: 10.1016/j.bpj.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Constriction kinetics of the cytokinetic ring are expected to depend on dynamic adjustment of contractile ring composition, but the impact of ring component abundance dynamics on ring constriction is understudied. Computational models generally assume that contractile networks maintain constant total amounts of components, which is not always true. To test how compositional dynamics affect constriction kinetics, we first measured F-actin, non-muscle myosin II, septin, and anillin during Caenorhabditis elegans zygotic mitosis. A custom microfluidic device that positioned the cell with the division plane parallel to a light sheet allowed even illumination of the cytokinetic ring. Measured component abundances were implemented in a three-dimensional agent-based model of a membrane-associated contractile ring. With constant network component amounts, constriction completed with biologically unrealistic kinetics. However, imposing the measured changes in component quantities allowed this model to elicit realistic constriction kinetics. Simulated networks were more sensitive to changes in motor and filament amounts than those of crosslinkers and tethers. Our findings highlight the importance of network composition for actomyosin contraction kinetics.
Collapse
Affiliation(s)
- Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Francois J Nédéléç
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
8
|
Rotavirus Downregulates Tyrosine Hydroxylase in the Noradrenergic Sympathetic Nervous System in Ileum, Early in Infection and Simultaneously with Increased Intestinal Transit and Altered Brain Activities. mBio 2022; 13:e0138722. [PMID: 36094089 PMCID: PMC9600178 DOI: 10.1128/mbio.01387-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While rotavirus diarrhea has been considered to occur only due to intrinsic intestinal effects within the enteric nervous system, we provide evidence for central nervous system control underlying the clinical symptomology. Our data visualize infection by large-scale three-dimensional (3D) volumetric tissue imaging of a mouse model and demonstrate that rotavirus infection disrupts the homeostasis of the autonomous system by downregulating tyrosine hydroxylase in the noradrenergic sympathetic nervous system in ileum, concomitant with increased intestinal transit. Interestingly, the nervous response was found to occur before the onset of clinical symptoms. In adult infected animals, we found increased pS6 immunoreactivity in the area postrema of the brain stem and decreased phosphorylated STAT5-immunoreactive neurons in the bed nucleus of the stria terminalis, which has been associated with autonomic control, including stress response. Our observations contribute to knowledge of how rotavirus infection induces gut-nerve-brain interaction early in the disease.
Collapse
|
9
|
Cai Y, Chen Y, Xia Y, Zheng S, Liu Z, Shi K. Single-Lens Light-Sheet Fluorescence Microscopy Based on Micro-Mirror Array. LASER & PHOTONICS REVIEWS 2022; 16:2100026. [PMID: 36389089 PMCID: PMC9648671 DOI: 10.1002/lpor.202100026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Conventional light sheet fluorescence microscopy (LSFM) utilizes two perpendicularly arranged objective lenses for optical excitation and detection, respectively. Such a configuration often limits the use of high-numerical-aperture (NA) objectives or requires specially designed long-working-distance objectives. Here, a LSFM based on a micro-mirror array (MMA) to enable light sheet imaging with a single objective lens is reported. The planar fluorescent emission excited by the light sheet illumination is collected by the same objective, relayed onto an MMA and detected by a side-view camera. The proposed scheme makes LSFM compatible to single objective imaging system and shows promising candidacy for high spatiotemporal imaging.
Collapse
Affiliation(s)
- Yanhui Cai
- State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, P. R. China
| | - Yizhu Chen
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yiqiu Xia
- Department of Biomedical Engineering, Penn State Material Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siyang Zheng
- Biomedical Engineering and Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kebin Shi
- State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, P. R. China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China; Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, P. R. China
| |
Collapse
|
10
|
Hung ST, Cnossen J, Fan D, Siemons M, Jurriens D, Grußmayer K, Soloviev O, Kapitein LC, Smith CS. SOLEIL: single-objective lens inclined light sheet localization microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3275-3294. [PMID: 35781973 PMCID: PMC9208595 DOI: 10.1364/boe.451634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
High-NA light sheet illumination can improve the resolution of single-molecule localization microscopy (SMLM) by reducing the background fluorescence. These approaches currently require custom-made sample holders or additional specialized objectives, which makes the sample mounting or the optical system complex and therefore reduces the usability of these approaches. Here, we developed a single-objective lens-inclined light sheet microscope (SOLEIL) that is capable of 2D and 3D SMLM in thick samples. SOLEIL combines oblique illumination with point spread function PSF engineering to enable dSTORM imaging in a wide variety of samples. SOLEIL is compatible with standard sample holders and off-the-shelve optics and standard high NA objectives. To accomplish optimal optical sectioning we show that there is an ideal oblique angle and sheet thickness. Furthermore, to show what optical sectioning delivers for SMLM we benchmark SOLEIL against widefield and HILO microscopy with several biological samples. SOLEIL delivers in 15 μm thick Caco2-BBE cells a 374% higher intensity to background ratio and a 54% improvement in the estimated CRLB compared to widefield illumination, and a 184% higher intensity to background ratio and a 20% improvement in the estimated CRLB compared to HILO illumination.
Collapse
Affiliation(s)
- Shih-Te Hung
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Jelmer Cnossen
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Daniel Fan
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Marijn Siemons
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Daphne Jurriens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Kristin Grußmayer
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Oleg Soloviev
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
- Flexible Optical B.V., Polakweg 10-11, 2288 GG Rijswijk, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Carlas S. Smith
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
11
|
Hobson CM, Aaron JS. Combining multiple fluorescence imaging techniques in biology: when one microscope is not enough. Mol Biol Cell 2022; 33:tp1. [PMID: 35549314 PMCID: PMC9265156 DOI: 10.1091/mbc.e21-10-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities. In this Technical Perspective, we highlight recent studies to illustrate the benefits, and often the necessity, of combining multiple fluorescence microscopy modalities. We provide guidance in choosing optimal technique combinations to effectively address a biological question. Ultimately, we aim to promote a more well-rounded approach in designing fluorescence microscopy experiments, leading to more robust quantitative insight.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
12
|
Litsios A, Goswami P, Terpstra HM, Coffin C, Vuillemenot LA, Rovetta M, Ghazal G, Guerra P, Buczak K, Schmidt A, Tollis S, Tyers M, Royer CA, Milias-Argeitis A, Heinemann M. The timing of Start is determined primarily by increased synthesis of the Cln3 activator rather than dilution of the Whi5 inhibitor. Mol Biol Cell 2022; 33:rp2. [PMID: 35482514 PMCID: PMC9282015 DOI: 10.1091/mbc.e21-07-0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Athanasios Litsios
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Pooja Goswami
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Hanna M Terpstra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Carleton Coffin
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Luc-Alban Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Mattia Rovetta
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Ghada Ghazal
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada
| | - Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Sylvain Tollis
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada.,Institute of Biomedicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada
| | - Catherine A Royer
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
13
|
Haynes EM, Ulland TK, Eliceiri KW. A Model of Discovery: The Role of Imaging Established and Emerging Non-mammalian Models in Neuroscience. Front Mol Neurosci 2022; 15:867010. [PMID: 35493325 PMCID: PMC9046975 DOI: 10.3389/fnmol.2022.867010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Rodents have been the dominant animal models in neurobiology and neurological disease research over the past 60 years. The prevalent use of rats and mice in neuroscience research has been driven by several key attributes including their organ physiology being more similar to humans, the availability of a broad variety of behavioral tests and genetic tools, and widely accessible reagents. However, despite the many advances in understanding neurobiology that have been achieved using rodent models, there remain key limitations in the questions that can be addressed in these and other mammalian models. In particular, in vivo imaging in mammals at the cell-resolution level remains technically difficult and demands large investments in time and cost. The simpler nervous systems of many non-mammalian models allow for precise mapping of circuits and even the whole brain with impressive subcellular resolution. The types of non-mammalian neuroscience models available spans vertebrates and non-vertebrates, so that an appropriate model for most cell biological questions in neurodegenerative disease likely exists. A push to diversify the models used in neuroscience research could help address current gaps in knowledge, complement existing rodent-based bodies of work, and bring new insight into our understanding of human disease. Moreover, there are inherent aspects of many non-mammalian models such as lifespan and tissue transparency that can make them specifically advantageous for neuroscience studies. Crispr/Cas9 gene editing and decreased cost of genome sequencing combined with advances in optical microscopy enhances the utility of new animal models to address specific questions. This review seeks to synthesize current knowledge of established and emerging non-mammalian model organisms with advances in cellular-resolution in vivo imaging techniques to suggest new approaches to understand neurodegeneration and neurobiological processes. We will summarize current tools and in vivo imaging approaches at the single cell scale that could help lead to increased consideration of non-mammalian models in neuroscience research.
Collapse
Affiliation(s)
- Elizabeth M. Haynes
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler K. Ulland
- Department of Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Lee C, Kim HH. Velocity measurement of magnetic particles simultaneously affected by two-phase flow and an external magnetic field using dual-sided SPIM-µPIV. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Luo Y, Tseng ML, Vyas S, Hsieh TY, Wu JC, Chen SY, Peng HF, Su VC, Huang TT, Kuo HY, Chu CH, Chen MK, Chen JW, Chen YC, Huang KY, Kuan CH, Shi X, Misawa H, Tsai DP. Meta-lens light-sheet fluorescence microscopy for in vivo imaging. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1949-1959. [PMID: 39633948 PMCID: PMC11501894 DOI: 10.1515/nanoph-2021-0748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/06/2022] [Indexed: 12/07/2024]
Abstract
Light-sheet fluorescent microscopy has become the leading technique for in vivo imaging in the fields of disease, medicine, and cell biology research. However, designing proper illumination for high image resolution and optical sectioning is challenging. Another issue is geometric constraints arising from the multiple bulky components for illumination and detection. Here, we demonstrate that those issues can be well addressed by integrating nanophotonic meta-lens as the illumination component for LSFM. The meta-lens is composed of 800-nm-thick GaN nanostructures and is designed for a light-sheet well-adapted to biological specimens such as the nematode Caenorhabditis elegans (C. elegans). With the meta-lens, the complexity of the LSFM system is significantly reduced, and it is capable of performing multicolor fluorescent imaging of live C. elegans with cellular resolution. Considering the miniature size and plane geometry of the meta-lens, our system enables a new design for LSFM to acquire in vivo images of biological specimens with high resolution.
Collapse
Affiliation(s)
- Yuan Luo
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Ming Lun Tseng
- Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Sunil Vyas
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Ting-Yu Hsieh
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, No. 1., Chang-Te St., Taipei, 100, Taiwan, ROC
| | - Shang-Yang Chen
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Hsiao-Fang Peng
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Vin-Cent Su
- Electrical Engineering, National United University, No. 2, Lienda, Miaoli, 36003, Taiwan, ROC
| | - Tzu-Ting Huang
- Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Hsin Yu Kuo
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Cheng Hung Chu
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Mu Ku Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Jia-Wern Chen
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Yu-Chun Chen
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Kuang-Yuh Huang
- Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Chieh-Hsiung Kuan
- National Taiwan University, Institute of Medical Device and Imaging, No. 1 Ren Ai Rd. Sect. 1, Taipei, 10051, Taiwan, ROC
| | - Xu Shi
- Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Din Ping Tsai
- Department of Electrical Engineering, The Hong Kong Polytechnic University, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
16
|
Is Real-Time Microscopy on the Horizon? A Brief Review of the Potential Future Directions in Clinical Breast Tumor Microscopy Implementation. Virchows Arch 2022; 480:211-227. [PMID: 35218378 DOI: 10.1007/s00428-022-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
We will briefly review the current paradigm and some recent developments in the area of clinical breast microscopy, highlighting several promising commercially available, and research-based platforms. Confocal microscopy (reflectance, fluorescence, and spectrally encoded), optical coherence tomography (wide field and full field), stereomicroscopy, open-top light sheet microscopy, microscopy with ultraviolet surface excitation, nonlinear microscopy, Raman scattering microscopy, photoacoustic microscopy, and needle microendoscopy will be discussed. Non-microscopic methods for breast pathology assessment are beyond the scope of this review. These microscopic technologies have to varying degrees the potential for transforming breast cancer care, but in order for any of these to be integrated into clinical practice there are several hurdles to overcome. In our review we will focus on what needs to be done in order for the commercially available technologies to become more established, what the technologies in the research domain need to do in order to reach the commercial realm; and finally, what the field of breast pathology might look like if these technologies were to be widely adopted.
Collapse
|
17
|
Fan YJ, Hsieh HY, Huang YR, Tsao C, Lee CM, Tahara H, Wu YC, Sheen HJ, Chen BC. Development of a water refractive index-matched microneedle integrated into a light sheet microscopy system for continuous embryonic cell imaging. LAB ON A CHIP 2022; 22:584-591. [PMID: 34951426 DOI: 10.1039/d1lc00827g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, microneedle-integrated light sheet microscopy (LSM) was developed for trapping and continuously imaging embryos of Caenorhabditis elegans with subcellular resolution. To reduce aberrations when the light sheet was propagated into the device, a microneedle was fabricated using a transparent, water refractive index-matched polymer. It was proven that when the light sheet emerged from the water-immersed objective and penetrated through the microneedle with a circular surface, even with a non-perpendicular incident angle, fewer aberrations were found. An embryo was injected into and trapped at the tip of the microneedle, which was positioned at the interrogation window of the LSM apparatus with the image plane perpendicular to the light sheet, and this setup was used to sequentially acquire embryo images. By applying the light sheet, higher-resolution, higher-contrast images were obtained. The system also showed low photobleaching and low phototoxicity to embryos of C. elegans. Furthermore, three-dimensional embryo images with a whole field of view of the microneedle could be achieved by stitching together images and reconstructing sequential two-dimensional embryo images.
Collapse
Affiliation(s)
- Yu-Jui Fan
- School of Biomedical Engineering, International PhD Program for Biomedical Engineering, International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Han-Yun Hsieh
- School of Biomedical Engineering, International PhD Program for Biomedical Engineering, International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Yen-Ru Huang
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Chieh Tsao
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
18
|
Live Fluorescence Imaging of Chromosome Segregation in Cultured Cells. Methods Mol Biol 2022; 2415:61-86. [PMID: 34972946 PMCID: PMC10092068 DOI: 10.1007/978-1-0716-1904-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Live-cell fluorescence microscopy is an effective tool for characterizing aberrant mitotic phenotypes resulting from exposure to chemical inhibitors and after RNA interference-mediated or CRISPR knockout-mediated depletion of protein targets. Live imaging of cultured cells during mitotic progression presents challenges in maintaining optimal health of cells while achieving the temporal and spatial resolution to accomplish the goals of the study. Herein are strategies to monitor and analyze mammalian cell mitosis utilizing either a wide field or a light sheet, inverted, fluorescence microscope.
Collapse
|
19
|
Gibbs HC, Mota SM, Hart NA, Min SW, Vernino AO, Pritchard AL, Sen A, Vitha S, Sarasamma S, McIntosh AL, Yeh AT, Lekven AC, McCreedy DA, Maitland KC, Perez LM. Navigating the Light-Sheet Image Analysis Software Landscape: Concepts for Driving Cohesion From Data Acquisition to Analysis. Front Cell Dev Biol 2021; 9:739079. [PMID: 34858975 PMCID: PMC8631767 DOI: 10.3389/fcell.2021.739079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022] Open
Abstract
From the combined perspective of biologists, microscope instrumentation developers, imaging core facility scientists, and high performance computing experts, we discuss the challenges faced when selecting imaging and analysis tools in the field of light-sheet microscopy. Our goal is to provide a contextual framework of basic computing concepts that cell and developmental biologists can refer to when mapping the peculiarities of different light-sheet data to specific existing computing environments and image analysis pipelines. We provide our perspective on efficient processes for tool selection and review current hardware and software commonly used in light-sheet image analysis, as well as discuss what ideal tools for the future may look like.
Collapse
Affiliation(s)
- Holly C. Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Sakina M. Mota
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Nathan A. Hart
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Sun Won Min
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Alex O. Vernino
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Anna L. Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Anindito Sen
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Stan Vitha
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Sreeja Sarasamma
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Avery L. McIntosh
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Alvin T. Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Arne C. Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Dylan A. McCreedy
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Kristen C. Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Microscopy and Imaging Center, Texas A&M University, College Station, TX, United States
| | - Lisa M. Perez
- High Performance Research Computing, Texas A&M University, College Station, TX, United States
| |
Collapse
|
20
|
Nakata H, Iseki S, Mizokami A. Three-dimensional reconstruction of testis cords/seminiferous tubules. Reprod Med Biol 2021; 20:402-409. [PMID: 34646067 PMCID: PMC8499590 DOI: 10.1002/rmb2.12413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to the development of novel equipment for the acquisition of two-dimensional serial images and software capable of displaying three-dimensional (3D) images from serial images, the accurate 3D reconstruction of organs and tissues has become possible. METHODS Based on published studies, this review summarizes techniques for the 3D reconstruction of the testis cords/seminiferous tubules, with special reference to our method using serial paraffin sections and 3D visualization software. MAIN FINDINGS The testes of mice, rats, and hamsters of various ages were 3D reconstructed and species and age differences in the structures of the testis cords/seminiferous tubules were analyzed. Our method is advantageous because conventional paraffin-embedded normal and pathological specimens may be utilized for the 3D analysis without the need for complicated and expensive equipment. CONCLUSION By further decreasing the time and labor required for the procedure and adding information on molecular localization, the technique for 3D reconstruction will contribute to the elucidation of not only the structures, but also the functions of various organs, including the testis.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Histology and Cell Biology Graduate School of Medical Sciences Kanazawa University Kanazawa Japan
| | - Shoichi Iseki
- Department of Clinical Engineering Faculty of Health Sciences Komatsu University Komatsu Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology Kanazawa University Graduate School of Medical Science Kanazawa Japan
| |
Collapse
|
21
|
Ebrahimi V, Tang J, Han KY. Incoherent superposition of polychromatic light enables single-shot nondiffracting light-sheet microscopy. OPTICS EXPRESS 2021; 29:32691-32699. [PMID: 34615334 PMCID: PMC8687099 DOI: 10.1364/oe.439338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate single-shot nondiffracting light-sheet microscopy by the incoherent superposition of dispersed polychromatic light sources. We characterized our technique by generating a Bessel light-sheet with a supercontinuum light-source and a C-light-sheet using a diode laser, and demonstrated its applicability to fluorescence microscopy. We emphasize that our method is easily implementable and compatible with the requirements of high-resolution microscopy.
Collapse
Affiliation(s)
- Vahid Ebrahimi
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
- These authors contributed equally to this work
| | - Jialei Tang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
- These authors contributed equally to this work
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
22
|
Hobson CM, Aaron JS, Heddleston JM, Chew TL. Visualizing the Invisible: Advanced Optical Microscopy as a Tool to Measure Biomechanical Forces. Front Cell Dev Biol 2021; 9:706126. [PMID: 34552926 PMCID: PMC8450411 DOI: 10.3389/fcell.2021.706126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/28/2023] Open
Abstract
The importance of mechanical force in biology is evident across diverse length scales, ranging from tissue morphogenesis during embryo development to mechanotransduction across single adhesion proteins at the cell surface. Consequently, many force measurement techniques rely on optical microscopy to measure forces being applied by cells on their environment, to visualize specimen deformations due to external forces, or even to directly apply a physical perturbation to the sample via photoablation or optogenetic tools. Recent developments in advanced microscopy offer improved approaches to enhance spatiotemporal resolution, imaging depth, and sample viability. These advances can be coupled with already existing force measurement methods to improve sensitivity, duration and speed, amongst other parameters. However, gaining access to advanced microscopy instrumentation and the expertise necessary to extract meaningful insights from these techniques is an unavoidable hurdle. In this Live Cell Imaging special issue Review, we survey common microscopy-based force measurement techniques and examine how they can be bolstered by emerging microscopy methods. We further explore challenges related to the accompanying data analysis in biomechanical studies and discuss the various resources available to tackle the global issue of technology dissemination, an important avenue for biologists to gain access to pre-commercial instruments that can be leveraged for biomechanical studies.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - John M. Heddleston
- Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, FL, United States
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| |
Collapse
|
23
|
Spectroscopic Approach to Correction and Visualisation of Bright-Field Light Transmission Microscopy Biological Data. PHOTONICS 2021. [DOI: 10.3390/photonics8080333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The most realistic information about a transparent sample such as a live cell can be obtained using bright-field light microscopy. Under high-intensity pulsing LED illumination, we captured a primary 12-bit-per-channel (bpc) response from an observed sample using a bright-field microscope equipped with a high-resolution (4872 × 3248) image sensor. In order to suppress data distortions originating from the light interactions with elements in the optical path, poor sensor reproduction (geometrical defects of the camera sensor and some peculiarities of sensor sensitivity), we propose a spectroscopic approach for the correction of these uncompressed 12 bpc data by simultaneous calibration of all parts of the experimental arrangement. Moreover, the final intensities of the corrected images are proportional to the photon fluxes detected by a camera sensor. It can be visualized in 8 bpc intensity depth after the Least Information Loss compression.
Collapse
|
24
|
Vargas-Ordaz EJ, Gorelick S, York HM, Liu B, Halls ML, Arumugam S, Neild A, de Marco A, Cadarso VJ. Three-dimensional imaging on a chip using optofluidics light-sheet fluorescence microscopy. LAB ON A CHIP 2021; 21:2945-2954. [PMID: 34124739 DOI: 10.1039/d1lc00098e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volumetric, sub-micron to micron level resolution imaging is necessary to assay phenotypes or characteristics at the sub-cellular/organelle scale. However, three-dimensional fluorescence imaging of cells is typically low throughput or compromises on the achievable resolution in space and time. Here, we capitalise on the flow control capabilities of microfluidics and combine it with microoptics to integrate light-sheet based imaging directly into a microfluidic chip. Our optofluidic system flows suspended cells through a sub-micrometer thick light-sheet formed using micro-optical components that are cast directly in polydimethylsiloxane (PDMS). This design ensures accurate alignment, drift-free operation, and easy integration with conventional microfluidics, while providing sufficient spatial resolution, optical sectioning and volumetric data acquisition. We demonstrate imaging rates of 120 ms per cell at sub-μm resolution, that allow extraction of complex cellular phenotypes, exemplified by imaging of cell clusters, receptor distribution, and the analysis of endosomal size changes.
Collapse
Affiliation(s)
- Erick J Vargas-Ordaz
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia. and Centre to Impact Antimicrobial Resistance - Sustainable Solutions, Monash University, Clayton, 3800, Victoria, Australia
| | - Sergey Gorelick
- Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Victoria, Australia. and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 3800 Clayton, Victoria, Australia
| | - Harrison M York
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 3800 Clayton, Victoria, Australia and European Molecular Biology Laboratory (EMBL) Australia, Monash University, 3800 Clayton, Victoria, Australia and Department of Anatomy and Developmental Biology, Monash University, 3800 Clayton, Victoria, Australia
| | - Bonan Liu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Senthil Arumugam
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 3800 Clayton, Victoria, Australia and European Molecular Biology Laboratory (EMBL) Australia, Monash University, 3800 Clayton, Victoria, Australia and Department of Anatomy and Developmental Biology, Monash University, 3800 Clayton, Victoria, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Victoria, Australia. and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, 3800 Clayton, Victoria, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia. and Centre to Impact Antimicrobial Resistance - Sustainable Solutions, Monash University, Clayton, 3800, Victoria, Australia and The Melbourne Centre for Nanofabrication, Victorian Node - Australian National Fabrication Facility, Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
Groh AMR, Fournier DE, Battié MC, Séguin CA. Innervation of the Human Intervertebral Disc: A Scoping Review. PAIN MEDICINE (MALDEN, MASS.) 2021; 22:1281-1304. [PMID: 33595648 PMCID: PMC8185559 DOI: 10.1093/pm/pnab070] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Back pain is an elusive symptom complicated by a variety of possible causes, precipitating and maintaining factors, and consequences. Notably, the underlying pathology remains unknown in a significant number of cases. Changes to the intervertebral disc (IVD) have been associated with back pain, leading many to postulate that the IVD may be a direct source of pain, typically referred to as discogenic back pain. Yet despite decades of research into the neuroanatomy of the IVD, there is a lack of consensus in the literature as to the distribution and function of neural elements within the tissue. The current scoping review provides a comprehensive systematic overview of studies that document the topography, morphology, and immunoreactivity of neural elements within the IVD in humans. METHOD Articles were retrieved from six separate databases in a three-step systematic search and were independently evaluated by two reviewers. RESULTS Three categories of neural elements were described within the IVD: perivascular nerves, sensory nerves independent of blood vessels, and mechanoreceptors. Nerves were consistently localized within the outer layers of the annulus fibrosus. Neural ingrowth into the inner annulus fibrosus and nucleus pulposus was found to occur only in degenerative and disease states. CONCLUSION While the pattern of innervation within the IVD is clear, the specific topographic arrangement and function of neural elements in the context of back pain remains unclear.
Collapse
Affiliation(s)
- Adam M R Groh
- Integrated Program in Neuroscience, The Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Dale E Fournier
- Health and Rehabilitation Sciences (Physical Therapy), Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Michele C Battié
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Cheryle A Séguin
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Yordanov S, Neuhaus K, Hartmann R, Díaz-Pascual F, Vidakovic L, Singh PK, Drescher K. Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries. BIOMEDICAL OPTICS EXPRESS 2021; 12:3372-3391. [PMID: 34221666 PMCID: PMC8221969 DOI: 10.1364/boe.420788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional fluorescence-based imaging of living cells and organisms requires the sample to be exposed to substantial excitation illumination energy, typically causing phototoxicity and photobleaching. Light sheet fluorescence microscopy dramatically reduces phototoxicity, yet most implementations are limited to objective lenses with low numerical aperture and particular sample geometries that are built for specific biological systems. To overcome these limitations, we developed a single-objective light sheet fluorescence system for biological imaging based on axial plane optical microscopy and digital confocal slit detection, using either Bessel or Gaussian beam shapes. Compared to spinning disk confocal microscopy, this system displays similar optical resolution, but a significantly reduced photobleaching at the same signal level. This single-objective light sheet technique is built as an add-on module for standard research microscopes and the technique is compatible with high-numerical aperture oil immersion objectives and standard samples mounted on coverslips. We demonstrate the performance of this technique by imaging three-dimensional dynamic processes, including bacterial biofilm dispersal, the response of biofilms to osmotic shocks, and macrophage phagocytosis of bacterial cells.
Collapse
Affiliation(s)
- Stoyan Yordanov
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Equal contribution
| | - Konstantin Neuhaus
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Renthof 5, 35037 Marburg, Germany
- Equal contribution
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Francisco Díaz-Pascual
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Lucia Vidakovic
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Renthof 5, 35037 Marburg, Germany
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| |
Collapse
|
27
|
Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat Methods 2021; 18:678-687. [PMID: 34059829 DOI: 10.1038/s41592-021-01155-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/15/2021] [Indexed: 02/02/2023]
Abstract
We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance.
Collapse
|
28
|
The immune response is a critical regulator of zebrafish retinal pigment epithelium regeneration. Proc Natl Acad Sci U S A 2021; 118:2017198118. [PMID: 34006636 DOI: 10.1073/pnas.2017198118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of the retinal pigment epithelium (RPE) because of dysfunction or disease can lead to blindness in humans. Harnessing the intrinsic ability of the RPE to self-repair is an attractive therapeutic strategy; however, mammalian RPE is limited in its regenerative capacity. Zebrafish possess tremendous intrinsic regenerative potential in ocular tissues, including the RPE, but little is known about the mechanisms driving RPE regeneration. Here, utilizing transgenic and mutant zebrafish lines, pharmacological manipulations, transcriptomics, and imaging analyses, we identified elements of the immune response as critical mediators of intrinsic RPE regeneration. After genetic ablation, the RPE express immune-related genes, including leukocyte recruitment factors such as interleukin 34 We demonstrate that macrophage/microglia cells are responsive to RPE damage and that their function is required for the timely progression of the regenerative response. These data identify the molecular and cellular underpinnings of RPE regeneration and hold significant potential for translational approaches aimed toward promoting a pro-regenerative environment in mammalian RPE.
Collapse
|
29
|
Fluorescence based rapid optical volume screening system (OVSS) for interrogating multicellular organisms. Sci Rep 2021; 11:7616. [PMID: 33828140 PMCID: PMC8027194 DOI: 10.1038/s41598-021-86951-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
Continuous monitoring of large specimens for long durations requires fast volume imaging. This is essential for understanding the processes occurring during the developmental stages of multicellular organisms. One of the key obstacles of fluorescence based prolonged monitoring and data collection is photobleaching. To capture the biological processes and simultaneously overcome the effect of bleaching, we developed single- and multi-color lightsheet based OVSS imaging technique that enables rapid screening of multiple tissues in an organism. Our approach based on OVSS imaging employs quantized step rotation of the specimen to record 2D angular data that reduces data acquisition time when compared to the existing light sheet imaging system (SPIM). A co-planar multicolor light sheet PSF is introduced to illuminate the tissues labelled with spectrally-separated fluorescent probes. The detection is carried out using a dual-channel sub-system that can simultaneously record spectrally separate volume stacks of the target organ. Arduino-based control systems were employed to automatize and control the volume data acquisition process. To illustrate the advantages of our approach, we have noninvasively imaged the Drosophila larvae and Zebrafish embryo. Dynamic studies of multiple organs (muscle and yolk-sac) in Zebrafish for a prolonged duration (5 days) were carried out to understand muscle structuring (Dystrophin, microfibers), primitive Macrophages (in yolk-sac) and inter-dependent lipid and protein-based metabolism. The volume-based study, intensity line-plots and inter-dependence ratio analysis allowed us to understand the transition from lipid-based metabolism to protein-based metabolism during early development (Pharyngula period with a critical transition time, [Formula: see text] h post-fertilization) in Zebrafish. The advantage of multicolor lightsheet illumination, fast volume scanning, simultaneous visualization of multiple organs and an order-less photobleaching makes OVSS imaging the system of choice for rapid monitoring and real-time assessment of macroscopic biological organisms with microscopic resolution.
Collapse
|
30
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
31
|
Fan YJ, Hsieh HY, Tsai SF, Wu CH, Lee CM, Liu YT, Lu CH, Chang SW, Chen BC. Microfluidic channel integrated with a lattice lightsheet microscopic system for continuous cell imaging. LAB ON A CHIP 2021; 21:344-354. [PMID: 33295931 DOI: 10.1039/d0lc01009j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a continuous cell-imaging system with subcellular resolution was developed by integrating a microfluidic platform with lattice lightsheet microscopy (LLSM). To reduce aberrations of the lightsheet propagating into the device, a microfluidic channel sealed with a water refractive index-matched thin film was fabricated. When the lightsheet emerged from the water-immersed objectives and penetrated through the water refractive-matched thin film into the microfluidic channel at an incident angle, less light scattering and fewer aberrations were found. Suspended cells flowed across the lattice lightsheet, and an imaging system with the image plane perpendicular to the lightsheet was used to sequentially acquire cell images. By applying a thinner lattice lightsheet, higher-resolution, higher-contrast images were obtained. Furthermore, three-dimensional cell images could be achieved by reconstructing sequential two-dimensional cell images.
Collapse
Affiliation(s)
- Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hsieh TY, Vyas S, Wu JC, Luo Y. Volume holographic optical element for light sheet fluorescence microscopy. OPTICS LETTERS 2020; 45:6478-6481. [PMID: 33258841 DOI: 10.1364/ol.413204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) imaging of living organisms requires fine optical sectioning and high-speed image acquisition, which can be achieved by light sheet fluorescence microscopy (LSFM). However, orthogonal illumination and detection arms in the LSFM system make it bulky. Here, we propose and demonstrate the application of a volume holographic optical element (photopolymer-based volume holographic grating) for designing a compact LSFM system, called a volume holographic LSFM (VHLSFM). Using the VHLSFM, we performed in vivo imaging of Caenorhabditis elegans (C. elegans) and observed high-contrast optically sectioned fluorescence images of the oocytes and embryonic development in real time for 3D imaging.
Collapse
|
33
|
Zhao F, Zhu L, Fang C, Yu T, Zhu D, Fei P. Deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM) for easy isotropic volumetric imaging of large biological specimens. BIOMEDICAL OPTICS EXPRESS 2020; 11:7273-7285. [PMID: 33408995 PMCID: PMC7747920 DOI: 10.1364/boe.409732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Isotropic 3D histological imaging of large biological specimens is highly desired but remains highly challenging to current fluorescence microscopy technique. Here we present a new method, termed deep-learning super-resolution light-sheet add-on microscopy (Deep-SLAM), to enable fast, isotropic light-sheet fluorescence imaging on a conventional wide-field microscope. After integrating a minimized add-on device that transforms an inverted microscope into a 3D light-sheet microscope, we further integrate a deep neural network (DNN) procedure to quickly restore the ambiguous z-reconstructed planes that suffer from still insufficient axial resolution of light-sheet illumination, thereby achieving isotropic 3D imaging of thick biological specimens at single-cell resolution. We apply this easy and cost-effective Deep-SLAM approach to the anatomical imaging of single neurons in a meso-scale mouse brain, demonstrating its potential for readily converting commonly-used commercialized 2D microscopes to high-throughput 3D imaging, which is previously exclusive for high-end microscopy implementations.
Collapse
Affiliation(s)
- Fang Zhao
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contribute equally to this work
| | - Lanxin Zhu
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contribute equally to this work
| | - Chunyu Fang
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tingting Yu
- Britton Chance center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Zhu
- Britton Chance center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Fei
- School of Optical and Electronic Information- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
34
|
Sapoznik E, Chang BJ, Huh J, Ju RJ, Azarova EV, Pohlkamp T, Welf ES, Broadbent D, Carisey AF, Stehbens SJ, Lee KM, Marín A, Hanker AB, Schmidt JC, Arteaga CL, Yang B, Kobayashi Y, Tata PR, Kruithoff R, Doubrovinski K, Shepherd DP, Millett-Sikking A, York AG, Dean KM, Fiolka RP. A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. eLife 2020; 9:e57681. [PMID: 33179596 PMCID: PMC7707824 DOI: 10.7554/elife.57681] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.
Collapse
Affiliation(s)
- Etai Sapoznik
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bo-Jui Chang
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jaewon Huh
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Robert J Ju
- Institute for Molecular Bioscience, University of QueenslandQueenslandAustralia
| | - Evgenia V Azarova
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| | - David Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State UniversityEast LansingUnited States
| | - Alexandre F Carisey
- William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s HospitalHoustonUnited States
| | - Samantha J Stehbens
- Institute for Molecular Bioscience, University of QueenslandQueenslandAustralia
| | - Kyung-Min Lee
- Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Arnaldo Marín
- Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of ChileSantiagoChile
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State UniversityEast LansingUnited States
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State UniversityEast LansingUnited States
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bin Yang
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | | | - Rory Kruithoff
- Center for Biological Physics and Department of Physics, Arizona State UniversityTempeUnited States
| | - Konstantin Doubrovinski
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Douglas P Shepherd
- Center for Biological Physics and Department of Physics, Arizona State UniversityTempeUnited States
| | | | - Andrew G York
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Reto P Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
35
|
Mascheroni L, Scherer KM, Manton JD, Ward E, Dibben O, Kaminski CF. Combining sample expansion and light sheet microscopy for the volumetric imaging of virus-infected cells with super-resolution. BIOMEDICAL OPTICS EXPRESS 2020; 11:5032-5044. [PMID: 33014598 PMCID: PMC7510880 DOI: 10.1364/boe.399404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 05/25/2023]
Abstract
Expansion microscopy is a sample preparation technique that enables the optical imaging of biological specimens at super-resolution owing to their physical magnification, which is achieved through water-absorbing polymers. The technique uses readily available chemicals and does not require sophisticated equipment, thus offering super-resolution to laboratories that are not microscopy-specialised. Here we present a protocol combining sample expansion with light sheet microscopy to generate high-contrast, high-resolution 3D reconstructions of whole virus-infected cells. The results are superior to those achievable with comparable imaging modalities and reveal details of the infection cycle that are not discernible before expansion. An image resolution of approximately 95 nm could be achieved in samples labelled in 3 colours. We resolve that the viral nucleoprotein is accumulated at the membrane of vesicular structures within the cell cytoplasm and how these vesicles are positioned relative to cellular structures. We provide detailed guidance and a video protocol for the optimal application of the method and demonstrate its potential to study virus-host cell interactions.
Collapse
Affiliation(s)
- Luca Mascheroni
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- These authors contributed equally
| | - Katharina M Scherer
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- These authors contributed equally
| | | | - Edward Ward
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Oliver Dibben
- Flu-MSAT, Biopharmaceutical Development, R&D, AstraZeneca, Liverpool, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Reismann AW, Atanasova L, Zeilinger S, Schütz GJ. Single-Molecule Localization Microscopy to Study Protein Organization in the Filamentous Fungus Trichoderma atroviride. Molecules 2020; 25:E3199. [PMID: 32668792 PMCID: PMC7396978 DOI: 10.3390/molecules25143199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
Single-molecule localization microscopy has boosted our understanding of biological samples by offering access to subdiffraction resolution using fluorescence microscopy methods. While in standard mammalian cells this approach has found wide-spread use, its application to filamentous fungi has been scarce. This is mainly due to experimental challenges that lead to high amounts of background signal because of ample autofluorescence. Here, we report the optimization of labeling, imaging and data analysis protocols to yield the first single-molecule localization microscopy images of the filamentous fungus Trichoderma atroviride. As an example, we show the spatial distribution of the Sur7 tetraspanin-family protein Sfp2 required for hyphal growth and cell wall stability in this mycoparasitic fungus.
Collapse
Affiliation(s)
- Alexander W.A.F. Reismann
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria; (A.W.A.F.R.); (L.A.)
| | - Lea Atanasova
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria; (A.W.A.F.R.); (L.A.)
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
- Department of Food Science and Technology, University of Natural Resources and Life (BOKU), Muthgasse 18, A-1190 Vienna, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Gerhard J. Schütz
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria; (A.W.A.F.R.); (L.A.)
| |
Collapse
|
37
|
Abstract
Recent advances in super-resolution (sub-diffraction limited) microscopy have yielded remarkable insights into the nanoscale architecture and behavior of cells. In addition to the capacity to provide sub 100 nm resolution, these technologies offer unique quantitative opportunities with particular relevance to platelet and megakaryocyte biology. In this review, we provide a short introduction to modern super-resolution microscopy, its applications in the field of platelet and megakaryocyte biology, and emerging quantitative approaches which will allow for unprecedented insights into the biology of these unique cell types.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham , UK
| |
Collapse
|
38
|
Liu S, Huh H, Lee SH, Huang F. Three-Dimensional Single-Molecule Localization Microscopy in Whole-Cell and Tissue Specimens. Annu Rev Biomed Eng 2020; 22:155-184. [PMID: 32243765 PMCID: PMC7430714 DOI: 10.1146/annurev-bioeng-060418-052203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Super-resolution microscopy techniques are versatile and powerful tools for visualizing organelle structures, interactions, and protein functions in biomedical research. However, whole-cell and tissue specimens challenge the achievable resolution and depth of nanoscopy methods. We focus on three-dimensional single-molecule localization microscopy and review some of the major roadblocks and developing solutions to resolving thick volumes of cells and tissues at the nanoscale in three dimensions. These challenges include background fluorescence, system- and sample-induced aberrations, and information carried by photons, as well as drift correction, volume reconstruction, and photobleaching mitigation. We also highlight examples of innovations that have demonstrated significant breakthroughs in addressing the abovementioned challenges together with their core concepts as well as their trade-offs.
Collapse
Affiliation(s)
- Sheng Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Hyun Huh
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sang-Hyuk Lee
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA;
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
39
|
Zhao F, Yang Y, Li Y, Jiang H, Xie X, Yu T, Wang X, Liu Q, Zhang H, Jia H, Liu S, Zhen M, Zhu D, Gao S, Fei P. Efficient and cost-effective 3D cellular imaging by sub-voxel-resolving light-sheet add-on microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960243. [PMID: 32077244 DOI: 10.1002/jbio.201960243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Light-sheet fluorescence microscopy (LSFM) allows volumetric live imaging at high-speed and with low photo-toxicity. Various LSFM modalities are commercially available, but their size and cost limit their access by the research community. A new method, termed sub-voxel-resolving (SVR) light-sheet add-on microscopy (SLAM), is presented to enable fast, resolution-enhanced light-sheet fluorescence imaging from a conventional wide-field microscope. This method contains two components: a miniature add-on device to regular wide-field microscopes, which contains a horizontal laser light-sheet illumination path to confine fluorophore excitation at the vicinity of the focal plane for optical sectioning; an off-axis scanning strategy and a SVR algorithm that utilizes sub-voxel spatial shifts to reconstruct the image volume that results in a twofold increase in resolution. SLAM method has been applied to observe the muscle activity change of crawling C. elegans, the heartbeat of developing zebrafish embryo, and the neural anatomy of cleared mouse brains, at high spatiotemporal resolution. It provides an efficient and cost-effective solution to convert the vast number of in-service microscopes for fast 3D live imaging with voxel-super-resolved capability.
Collapse
Affiliation(s)
- Fang Zhao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yicong Yang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Jiang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xinlin Xie
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xuechun Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Jia
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Mei Zhen
- Department of Molecular Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbang Gao
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fei
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Lemon WC, McDole K. Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol 2020; 66:34-42. [PMID: 32470820 DOI: 10.1016/j.ceb.2020.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023]
Abstract
At the time of this writing, searching Google Scholar for 'light-sheet microscopy' returns almost 8500 results; over three-quarters of which were published in the last 5 years alone. Searching for other advanced imaging methods in the last 5 years yields similar results: 'super-resolution microscopy' (>16 000), 'single-molecule imaging' (almost 10 000), SPIM (Single Plane Illumination Microscopy, 5000), and 'lattice light-sheet' (1300). The explosion of new imaging methods has also produced a dizzying menagerie of acronyms, with over 100 different species of 'light-sheet' alone, from SPIM to UM (Ultra microscopy) to SiMView (Simultaneous MultiView) to iSPIM (inclined SPIM, not to be confused with iSPIM, inverted SPIM). How then is the average biologist, without an advanced degree in physics, optics, or computer science supposed to make heads or tails of which method is best suited for their needs? Let us also not forget the plight of the optical physicist, who at best might need help with obtaining healthy samples and keeping them that way, or at worst may not realize the impact their newest technique could have for biologists. This review will not attempt to solve all these problems, but instead highlight some of the most recent, successful mergers between biology and advanced imaging technologies, as well as hopefully provide some guidance for anyone interested in journeying into the world of live-cell imaging.
Collapse
Affiliation(s)
- William C Lemon
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
41
|
Abstract
Fluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization and propagation angle of light gives fluorescence imaging great capabilities ranging from super-resolution imaging to long-term real-time observation of living organisms. In this review, we discuss current fluorescence imaging techniques in terms of the use of tailored or structured light for the sample illumination and fluorescence detection, providing a clear overview of their working principles and capabilities.
Collapse
Affiliation(s)
- Jialei Tang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
- These authors contributed equally to this work
| | - Jinhan Ren
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
- These authors contributed equally to this work
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
42
|
Bondaz A, Cirillo L, Meraldi P, Gotta M. Cell polarity-dependent centrosome separation in the C. elegans embryo. J Cell Biol 2019; 218:4112-4126. [PMID: 31645459 PMCID: PMC6891102 DOI: 10.1083/jcb.201902109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/10/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
Bondaz et al. show that in C. elegans embryos, the microtubule depolymerase KLP-7/MCAK is required for efficient centrosome separation in the somatic AB cell, but not the germline P1 cell. This difference in spindle assembly depends on cell polarity via the mitotic kinase PLK1. In animal cells, faithful chromosome segregation depends on the assembly of a bipolar spindle driven by the timely separation of the two centrosomes. Here we took advantage of the highly stereotypical cell divisions in Caenorhabditis elegans embryos to identify new regulators of centrosome separation. We find that at the two-cell stage, the somatic AB cell initiates centrosome separation later than the germline P1 cell. This difference is strongly exacerbated by the depletion of the kinesin-13 KLP-7/MCAK, resulting in incomplete centrosome separation at NEBD in AB but not P1. Our genetic and cell biology data indicate that this phenotype depends on cell polarity via the enrichment in AB of the mitotic kinase PLK-1, which itself limits the cortical localization of the dynein-binding NuMA orthologue LIN-5. We postulate that the timely separation of centrosomes is regulated in a cell type–dependent manner.
Collapse
Affiliation(s)
- Alexandra Bondaz
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luca Cirillo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland .,Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland .,Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Liu Y, Yuan Q, Zhang S. Three-dimensional intravital imaging in bone research. JOURNAL OF BIOPHOTONICS 2019; 12:e201960075. [PMID: 31593614 DOI: 10.1002/jbio.201960075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 02/05/2023]
Abstract
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell-microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi-photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded.
Collapse
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Liu B, Hobson CM, Pimenta FM, Nelsen E, Hsiao J, O'Brien T, Falvo MR, Hahn KM, Superfine R. VIEW-MOD: a versatile illumination engine with a modular optical design for fluorescence microscopy. OPTICS EXPRESS 2019; 27:19950-19972. [PMID: 31503749 DOI: 10.1364/oe.27.019950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 05/18/2023]
Abstract
We developed VIEW-MOD (Versatile Illumination Engine with a Modular Optical Design): a compact, multi-modality microscope, which accommodates multiple illumination schemes including variable angle total internal reflection, point scanning and vertical/horizontal light sheet. This system allows combining and flexibly switching between different illuminations and imaging modes by employing three electrically tunable lenses and two fast-steering mirrors. This versatile optics design provides control of 6 degrees of freedom of the illumination source (3 translation, 2 tilt, and beam shape) plus the axial position of the imaging plane. We also developed standalone software with an easy-to-use GUI to calibrate and control the microscope. We demonstrate the applications of this system and software in biosensor imaging, optogenetics and fast 3D volume imaging. This system is ready to fit into complex imaging circumstances requiring precise control of illumination and detection paths, and has a broad scope of usability for a myriad of biological applications.
Collapse
|
45
|
The quantification and regulation of microtubule dynamics in the mitotic spindle. Curr Opin Cell Biol 2019; 60:36-43. [PMID: 31108428 DOI: 10.1016/j.ceb.2019.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Abstract
Microtubules play essential roles in cellular organization, cargo transport, and chromosome segregation during cell division. During mitosis microtubules form a macromolecular structure known as the mitotic spindle that is responsible for the accurate segregation of chromosomes between the two daughter cells. This is accomplished thanks to finely tuned control of microtubule dynamics. Even small changes in microtubule dynamics during spindle formation and/or operation may lead to chromosome mis-segregation, chromosome instability and aneuploidy. These three events are directly correlated with human diseases like cancer and developmental defects. Precise measurements of microtubule dynamics in the spindle will allow us to discover new molecules involved in regulating microtubule dynamics and enable a deeper understanding of the mechanisms that underlie mitosis and cancer emergence and development. Moreover, many chemotherapeutic agents for cancer treatment are targeted to microtubules, so continued investigation of their dynamics with utmost precision will facilitate the development of new drugs. Measuring microtubule dynamics in the spindle has been a difficult task until recently. With the development of new and gentler microscopic techniques, and new computer programs, we can perform better and more accurate measurements of microtubule dynamics during mitosis.
Collapse
|
46
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Albert-Smet I, Marcos-Vidal A, Vaquero JJ, Desco M, Muñoz-Barrutia A, Ripoll J. Applications of Light-Sheet Microscopy in Microdevices. Front Neuroanat 2019; 13:1. [PMID: 30760983 PMCID: PMC6362405 DOI: 10.3389/fnana.2019.00001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 11/23/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) has been present in cell biology laboratories for quite some time, mainly as custom-made systems, with imaging applications ranging from single cells (in the micrometer scale) to small organisms (in the millimeter scale). Such microscopes distinguish themselves for having very low phototoxicity levels and high spatial and temporal resolution, properties that make them ideal for a large range of applications. These include the study of cellular dynamics, in particular cellular motion which is essential to processes such as tumor metastasis and tissue development. Experimental setups make extensive use of microdevices (bioMEMS) that provide better control over the substrate environment than traditional cell culture experiments. For example, to mimic in vivo conditions, experiment biochemical dynamics, and trap, move or count cells. Microdevices provide a higher degree of empirical complexity but, so far, most have been designed to be imaged through wide-field or confocal microscopes. Nonetheless, the properties of LSFM render it ideal for 3D characterization of active cells. When working with microdevices, confocal microscopy is more widespread than LSFM even though it suffers from higher phototoxicity and slower acquisition speeds. It is sometimes possible to illuminate with a light-sheet microdevices designed for confocal microscopes. However, these bioMEMS must be redesigned to exploit the full potential of LSFM and image more frequently on a wider scale phenomena such as motion, traction, differentiation, and diffusion of molecules. The use of microdevices for LSFM has extended beyond cell tracking studies into experiments regarding cytometry, spheroid cultures and lab-on-a-chip automation. Due to light-sheet microscopy being in its early stages, a setup of these characteristics demands some degree of optical expertise; and designing three-dimensional microdevices requires facilities, ingenuity, and experience in microfabrication. In this paper, we explore different approaches where light-sheet microscopy can achieve single-cell and subcellular resolution within microdevices, and provide a few pointers on how these experiments may be improved.
Collapse
Affiliation(s)
- Ignacio Albert-Smet
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Asier Marcos-Vidal
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Juan José Vaquero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Arrate Muñoz-Barrutia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - Jorge Ripoll
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
- Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| |
Collapse
|
48
|
Liu Y, Dale S, Ball R, VanLeuven AJ, Sornborger A, Lauderdale JD, Kner P. Imaging neural events in zebrafish larvae with linear structured illumination light sheet fluorescence microscopy. NEUROPHOTONICS 2019; 6:015009. [PMID: 30854407 PMCID: PMC6400141 DOI: 10.1117/1.nph.6.1.015009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/13/2019] [Indexed: 05/02/2023]
Abstract
Light sheet fluorescence microscopy (LSFM) is a powerful tool for investigating model organisms including zebrafish. However, due to scattering and refractive index variations within the sample, the resulting image often suffers from low contrast. Structured illumination (SI) has been combined with scanned LSFM to remove out-of-focus and scattered light using square-law detection. Here, we demonstrate that the combination of LSFM with linear reconstruction SI can further increase resolution and contrast in the vertical and axial directions compared to the widely adopted root-mean square reconstruction method while using the same input images. We apply this approach to imaging neural activity in 7-day postfertilization zebrafish larvae. We imaged two-dimensional sections of the zebrafish central nervous system in two colors at an effective frame rate of 7 frames per second.
Collapse
Affiliation(s)
- Yang Liu
- University of Georgia, College of Engineering, Athens, Georgia, United States
| | - Savannah Dale
- Clemson University, Department of Bioengineering, Clemson, South Carolina, United States
| | - Rebecca Ball
- University of Georgia, Department of Cellular Biology, Athens, Georgia, United States
| | - Ariel J. VanLeuven
- University of Georgia, Department of Cellular Biology, Athens, Georgia, United States
| | - Andrew Sornborger
- Los Alamos National Laboratory, Information Sciences, CCS-3, Los Alamos, New Mexico, United States
| | - James D. Lauderdale
- University of Georgia, Department of Cellular Biology, Athens, Georgia, United States
- University of Georgia, Neuroscience Division of the Biomedical Health Sciences Institute, Athens, Georgia, United States
| | - Peter Kner
- University of Georgia, College of Engineering, Athens, Georgia, United States
- Address all correspondence to Peter Kner, E-mail:
| |
Collapse
|
49
|
Haouas M, Chebbi B, Golub I. Extension of the span and optimization of the optical "magic carpet": generation of a wide quasi-nondiffracting light sheet. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:124-131. [PMID: 30645347 DOI: 10.1364/josaa.36.000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Light sheet illumination is the basis in developing light sheet microscopy (LSM), a technique with significant advantages compared with other classical techniques. Most proposed optical systems to generate light sheets for LSM use many optical elements, which require extensive adjustments and are costly; moreover, they generate a nonuniform or semiuniform light sheet or have a short depth of field (DOF). A simple scheme using a pair of double slits and a cylindrical lens for generating a quasi-nondiffracting 2D light sheet was reported in Opt. Lett.40, 5121 (2015)OPLEDP0146-959210.1364/OL.40.005121. In the present investigation, we elaborate on the optimization of the mask used. As the separation between the two slits increases, the light sheet becomes thinner and the DOF smaller and vice versa. The slits' width does not affect the light sheet thickness, but it does affect the intensity of the side lobes. For convergence angles of the inner slits from 0.75° to 8°, an optimum ratio of the slits' separation/width of 2.182 is recommended. The obtained light sheet is quasi-diffraction-free, namely, while its DOF is comparable with that of a Gaussian beam, its diffraction broadening is substantially smaller. We also add to the previously developed configuration a Powell lens in order to expand the beam in the spanwise direction while keeping nearly constant intensity in this dimension. We perform scalar diffraction theory calculations and conduct measurements showing the nearly constant intensity in the significantly broadened span of the light sheet. Potential applications for the augmented width include imaging of certain large embryos, laser micromachining, and microparticle image velocimetry.
Collapse
|
50
|
Licea-Rodriguez J, Figueroa-Melendez A, Falaggis K, Plata-Sanchez M, Riquelme M, Rocha-Mendoza I. Multicolor fluorescence microscopy using static light sheets and a single-channel detection. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 30612379 PMCID: PMC6985699 DOI: 10.1117/1.jbo.24.1.016501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/06/2018] [Indexed: 05/25/2023]
Abstract
We present a multicolor fluorescence microscope system, under a selective plane illumination microscopy (SPIM) configuration, using three continuous wave-lasers and a single-channel-detection camera. The laser intensities are modulated with three time-delayed pulse trains that operate synchronously at one third of the camera frame rate, allowing a sequential excitation and an image acquisition of up to three different biomarkers. The feasibility of this imaging acquisition mode is demonstrated by acquiring single-plane multicolor images of living hyphae of Neurospora crassa. This allows visualizing simultaneously the localization and dynamics of different cellular components involved in apical growth in living hyphae. The configuration presented represents a noncommercial, cost-effective alternative microscopy system for the rapid and simultaneous acquisition of multifluorescent images and can be potentially useful for three-dimensional imaging of large biological samples.
Collapse
Affiliation(s)
- Jacob Licea-Rodriguez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Department of Optics, Ensenada, Baja California, Mexico
- Cátedras Conacyt, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Alfredo Figueroa-Melendez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Department of Microbiology, Ensenada, Baja California, Mexico
| | - Konstantinos Falaggis
- Cátedras Conacyt, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
- University of North Carolina, Department of Mechanical Engineering and Engineering Science, Charlotte, North Carolina, United States
| | - Marcos Plata-Sanchez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Department of Optics, Ensenada, Baja California, Mexico
| | - Meritxell Riquelme
- Centro de Investigación Científica y de Educación Superior de Ensenada, Department of Microbiology, Ensenada, Baja California, Mexico
| | - Israel Rocha-Mendoza
- Centro de Investigación Científica y de Educación Superior de Ensenada, Department of Optics, Ensenada, Baja California, Mexico
| |
Collapse
|