1
|
Chen M, Zhao D. Invisible Bridges: Unveiling the Role and Prospects of Tunneling Nanotubes in Cancer Therapy. Mol Pharm 2024; 21:5413-5429. [PMID: 39373242 PMCID: PMC11539062 DOI: 10.1021/acs.molpharmaceut.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Tunneling nanotubes (TNTs) are essential intercellular communication channels that significantly impact cancer pathophysiology, affecting tumor progression and resistance. This review methodically examines the mechanisms of TNTs formation, their structural characteristics, and their functional roles in material and signal transmission between cells. Highlighting their regulatory functions within the tumor microenvironment, TNTs are crucial for modulating cell survival, proliferation, drug resistance, and immune evasion. The review critically evaluates the therapeutic potential of TNTs, focusing on their applications in targeted drug delivery and gene therapy. It also proposes future research directions to thoroughly understand TNTs biogenesis, identify cell-specific molecular targets, and develop advanced technologies for the real-time monitoring of TNTs. By integrating insights from molecular biology, nanotechnology, and immunology, this review highlights the transformative potential of TNTs in advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Meiru Chen
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
- Department
of Gastroenterology, Hengshui People’s
Hospital, Hengshui, Hebei 053000, China
| | - Dongqiang Zhao
- Department
of Gastroenterology, The Second Hospital of Hebei Medical University,
Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
2
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
3
|
Raghavan A, Kashyap R, Sreedevi P, Jos S, Chatterjee S, Alex A, D’Souza MN, Giridharan M, Muddashetty R, Manjithaya R, Padavattan S, Nath S. Astroglia proliferate upon the biogenesis of tunneling nanotubes via α-synuclein dependent transient nuclear translocation of focal adhesion kinase. iScience 2024; 27:110565. [PMID: 39184442 PMCID: PMC11342280 DOI: 10.1016/j.isci.2024.110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/13/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Astroglia play crucial neuroprotective roles by internalizing pathogenic aggregates and facilitating their degradation. Here, we show that α-SYN protofibril-induced organelle toxicities and reactive oxygen species (ROS) cause premature cellular senescence in astrocytes and astrocyte-derived cancer cells, resulting in a transient increase in the biogenesis of tunneling nanotubes (TNTs). TNT-biogenesis and TNT-mediated cell-to-cell transfer lead to clearance of α-SYN-induced organelle toxicities, reduction in cellular ROS levels, and reversal of cellular senescence. Enhanced cell proliferation is seen in the post-recovered cells after recovering from α-SYN-induced organelle toxicities. Further, we show that α-SYN-induced senescence promotes the transient localization of focal adhesion kinase (FAK) in the nucleus. FAK-mediated regulation of Rho-associated kinases plays a significant role in the biogenesis of TNTs and their subsequent proliferation. Our study emphasizes that TNT biogenesis has a potential role in the clearance of α-SYN-induced cellular toxicities, the consequences of which cause enhanced proliferation in the post-recovered astroglia cells.
Collapse
Affiliation(s)
- Abinaya Raghavan
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Rachana Kashyap
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - P. Sreedevi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Sneha Jos
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Suchana Chatterjee
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - Ann Alex
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | | | - Mridhula Giridharan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Sivaraman Padavattan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sangeeta Nath
- Manipal Institute of Regenerative Medicine, Bengaluru, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Bénard M, Chamot C, Schapman D, Debonne A, Lebon A, Dubois F, Levallet G, Komuro H, Galas L. Combining sophisticated fast FLIM, confocal microscopy, and STED nanoscopy for live-cell imaging of tunneling nanotubes. Life Sci Alliance 2024; 7:e202302398. [PMID: 38649185 PMCID: PMC11035862 DOI: 10.26508/lsa.202302398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Cell-to-cell communication via tunneling nanotubes (TNTs) is a challenging topic with a growing interest. In this work, we proposed several innovative tools that use red/near-infrared dye labeling and employ lifetime-based imaging strategies to investigate the dynamics of TNTs in a living mesothelial H28 cell line that exhibits spontaneously TNT1 and TNT2 subtypes. Thanks to a fluorescence lifetime imaging microscopy module being integrated into confocal microscopy and stimulated emission depletion nanoscopy, we applied lifetime imaging, lifetime dye unmixing, and lifetime denoising techniques to perform multiplexing experiments and time-lapses of tens of minutes, revealing therefore structural and functional characteristics of living TNTs that were preserved from light exposure. In these conditions, vesicle-like structures, and tubular- and round-shaped mitochondria were identified within living TNT1. In addition, mitochondrial dynamic studies revealed linear and stepwise mitochondrial migrations, bidirectional movements, transient backtracking, and fission events in TNT1. Transfer of Nile Red-positive puncta via both TNT1 and TNT2 was also detected between living H28 cells.
Collapse
Affiliation(s)
- Magalie Bénard
- University Rouen Normandie, INSERM, CNRS, Normandie Université, HeRacLeS US51, UAR2026, PRIMACEN, Rouen, France
| | - Christophe Chamot
- University Rouen Normandie, INSERM, CNRS, Normandie Université, HeRacLeS US51, UAR2026, PRIMACEN, Rouen, France
| | - Damien Schapman
- University Rouen Normandie, INSERM, CNRS, Normandie Université, HeRacLeS US51, UAR2026, PRIMACEN, Rouen, France
| | - Aurélien Debonne
- University Rouen Normandie, INSERM, CNRS, Normandie Université, HeRacLeS US51, UAR2026, PRIMACEN, Rouen, France
- University Rouen Normandie, INSERM, Normandie Université, UMR1245, Rouen, France
| | - Alexis Lebon
- University Rouen Normandie, INSERM, CNRS, Normandie Université, HeRacLeS US51, UAR2026, PRIMACEN, Rouen, France
| | - Fatéméh Dubois
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, Caen, France
- Service d'Anatomie et Cytologie Pathologiques, CHU de Caen, Caen, France
| | - Guénaëlle Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, Caen, France
- Service d'Anatomie et Cytologie Pathologiques, CHU de Caen, Caen, France
| | - Hitoshi Komuro
- University Rouen Normandie, INSERM, CNRS, Normandie Université, HeRacLeS US51, UAR2026, PRIMACEN, Rouen, France
| | - Ludovic Galas
- University Rouen Normandie, INSERM, CNRS, Normandie Université, HeRacLeS US51, UAR2026, PRIMACEN, Rouen, France
| |
Collapse
|
5
|
Rivera O, Sharma M, Dagar S, Shahani N, Ramĺrez-Jarquĺn UN, Crynen G, Karunadharma P, McManus F, Bonneil E, Pierre T, Subramaniam S. Rhes, a striatal enriched protein, regulates post-translational small-ubiquitin-like-modifier (SUMO) modification of nuclear proteins and alters gene expression. Cell Mol Life Sci 2024; 81:169. [PMID: 38589732 PMCID: PMC11001699 DOI: 10.1007/s00018-024-05181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.
Collapse
Affiliation(s)
- Oscar Rivera
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Uri Nimrod Ramĺrez-Jarquĺn
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
- National Institute of Cardiology Ignacio Chávez, Department of Pharmacology, Mexico, USA
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Pabalu Karunadharma
- Genomic Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Francis McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Thibault Pierre
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Norman Fixel Institute for Neurological Diseases, 3009 SW Williston Rd, Gainesville, FL, 32608, USA.
| |
Collapse
|
6
|
Park SLL, Ramírez-Jarquín UN, Shahani N, Rivera O, Sharma M, Joshi PS, Hansalia A, Dagar S, McManus FP, Thibault P, Subramaniam S. SUMO modifies GβL and mediates mTOR signaling. J Biol Chem 2024; 300:105778. [PMID: 38395307 PMCID: PMC10982569 DOI: 10.1016/j.jbc.2024.105778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling is influenced by multiple regulatory proteins and post-translational modifications; however, underlying mechanisms remain unclear. Here, we report a novel role of small ubiquitin-like modifier (SUMO) in mTOR complex assembly and activity. By investigating the SUMOylation status of core mTOR components, we observed that the regulatory subunit, GβL (G protein β-subunit-like protein, also known as mLST8), is modified by SUMO1, 2, and 3 isoforms. Using mutagenesis and mass spectrometry, we identified that GβL is SUMOylated at lysine sites K86, K215, K245, K261, and K305. We found that SUMO depletion reduces mTOR-Raptor (regulatory protein associated with mTOR) and mTOR-Rictor (rapamycin-insensitive companion of mTOR) complex formation and diminishes nutrient-induced mTOR signaling. Reconstitution with WT GβL but not SUMOylation-defective KR mutant GβL promotes mTOR signaling in GβL-depleted cells. Taken together, we report for the very first time that SUMO modifies GβL, influences the assembly of mTOR protein complexes, and regulates mTOR activity.
Collapse
Affiliation(s)
| | | | - Neelam Shahani
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Oscar Rivera
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Manish Sharma
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | | | - Aayushi Hansalia
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Sunayana Dagar
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Francis P McManus
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada; Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Wertheim UF Scripps Institute, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, USA; Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA.
| |
Collapse
|
7
|
Zhou C, Huang M, Wang S, Chu S, Zhang Z, Chen N. Tunneling nanotubes: The transport highway for astrocyte-neuron communication in the central nervous system. Brain Res Bull 2024; 209:110921. [PMID: 38447659 DOI: 10.1016/j.brainresbull.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Tunneling nanotubes (TNTs) have emerged as pivotal structures for intercellular communication, enabling the transfer of cellular components across distant cells. Their involvement in neurological disorders has attracted considerable scientific interest. This review delineates the functions of TNTs within the central nervous system, examining their role in the transmission of bioenergetic substrates, and signaling molecules, and their multifaceted impact on both physiological and pathological processes, with an emphasis on neurodegenerative diseases. The review highlights the selectivity and specificity of TNTs as dedicated pathways for intercellular cargo delivery, particularly under stress conditions that provoke increased TNT formation. The potential of TNTs as therapeutic targets is explored in depth. We pay particular attention to the interactions between astrocytes and neurons mediated by TNTs, which are fundamental to brain architecture and function. Dysfunctions in these interactions are implicated in the spread of protein aggregates and mitochondrial anomalies, contributing to the pathogenesis of neurodegenerative diseases. The review culminates with a synthesis of the current understanding of TNT biology and identifies research gaps, advocating for intensified exploration into TNTs as a promising therapeutic frontier.
Collapse
Affiliation(s)
- Cuixiang Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Min Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shasha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
8
|
Subramaniam S, Boregowda S. Curbing Rhes Actions: Mechanism-based Molecular Target for Huntington's Disease and Tauopathies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:21-29. [PMID: 36959146 DOI: 10.2174/1871527322666230320103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/25/2023]
Abstract
A highly interconnected network of diverse brain regions is necessary for the precise execution of human behaviors, including cognitive, psychiatric, and motor functions. Unfortunately, degeneration of specific brain regions causes several neurodegenerative disorders, but the mechanisms that elicit selective neuronal vulnerability remain unclear. This knowledge gap greatly hinders the development of effective mechanism-based therapies, despite the desperate need for new treatments. Here, we emphasize the importance of the Rhes (Ras homolog-enriched in the striatum) protein as an emerging therapeutic target. Rhes, an atypical small GTPase with a SUMO (small ubiquitin-like modifier) E3-ligase activity, modulates biological processes such as dopaminergic transmission, alters gene expression, and acts as an inhibitor of motor stimuli in the brain striatum. Mutations in the Rhes gene have also been identified in selected patients with autism and schizophrenia. Moreover, Rhes SUMOylates pathogenic form of mutant huntingtin (mHTT) and tau, enhancing their solubility and cell toxicity in Huntington's disease and tauopathy models. Notably, Rhes uses membrane projections resembling tunneling nanotubes to transport mHTT between cells and Rhes deletion diminishes mHTT spread in the brain. Thus, we predict that effective strategies aimed at diminishing brain Rhes levels will prevent or minimize the abnormalities that occur in HD and tauopathies and potentially in other brain disorders. We review the emerging technologies that enable specific targeting of Rhes in the brain to develop effective disease-modifying therapeutics.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, C323, Florida, Jupiter, 33458, USA
| | - Siddaraju Boregowda
- Department of Molecular Therapeutics, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, C323, Florida, Jupiter, 33458, USA
| |
Collapse
|
9
|
Szabó-Meleg E. Intercellular Highways in Transport Processes. Results Probl Cell Differ 2024; 73:173-201. [PMID: 39242380 DOI: 10.1007/978-3-031-62036-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Communication among cells is vital in multicellular organisms. Various structures and mechanisms have evolved over time to achieve the intricate flow of material and information during this process. One such way of communication is through tunnelling membrane nanotubes (TNTs), which were initially described in 2004. These TNTs are membrane-bounded actin-rich cellular extensions, facilitating direct communication between distant cells. They exhibit remarkable diversity in terms of structure, morphology, and function, in which cytoskeletal proteins play an essential role. Biologically, TNTs play a crucial role in transporting membrane components, cell organelles, and nucleic acids, and they also present opportunities for the efficient transmission of bacteria and viruses, furthermore, may contribute to the dissemination of misfolded proteins in certain neurodegenerative diseases. Convincing results of studies conducted both in vitro and in vivo indicate that TNTs play roles in various biomedical processes, including cell differentiation, tissue regeneration, neurodegenerative diseases, immune response and function, as well as tumorigenesis.
Collapse
Affiliation(s)
- Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
10
|
Budinger D, Baker V, Heneka MT. Tunneling Nanotubes in the Brain. Results Probl Cell Differ 2024; 73:203-227. [PMID: 39242381 DOI: 10.1007/978-3-031-62036-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) have emerged as intriguing structures facilitating intercellular communications across diverse cell types, which are integral to several biological processes, as well as participating in various disease progression. This review provides an in-depth analysis of TNTs, elucidating their structural characteristics and functional roles, with a particular focus on their significance within the brain environment and their implications in neurological and neurodegenerative disorders. We explore the interplay between TNTs and neurological diseases, offering potential mechanistic insights into disease progression, while also highlighting their potential as viable therapeutic targets. Additionally, we address the significant challenges associated with studying TNTs, from technical limitations to their investigation in complex biological systems. By addressing some of these challenges, this review aims to pave the way for further exploration into TNTs, establishing them as a central focus in advancing our understanding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Vivian Baker
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
11
|
Henderson JM, Ljubojevic N, Belian S, Chaze T, Castaneda D, Battistella A, Giai Gianetto Q, Matondo M, Descroix S, Bassereau P, Zurzolo C. Tunnelling nanotube formation is driven by Eps8/IRSp53-dependent linear actin polymerization. EMBO J 2023; 42:e113761. [PMID: 38009333 PMCID: PMC10711657 DOI: 10.15252/embj.2023113761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023] Open
Abstract
Tunnelling nanotubes (TNTs) connect distant cells and mediate cargo transfer for intercellular communication in physiological and pathological contexts. How cells generate these actin-mediated protrusions to span lengths beyond those attainable by canonical filopodia remains unknown. Through a combination of micropatterning, microscopy, and optical tweezer-based approaches, we demonstrate that TNTs formed through the outward extension of actin achieve distances greater than the mean length of filopodia and that branched Arp2/3-dependent pathways attenuate the extent to which actin polymerizes in nanotubes, thus limiting their occurrence. Proteomic analysis using epidermal growth factor receptor kinase substrate 8 (Eps8) as a positive effector of TNTs showed that, upon Arp2/3 inhibition, proteins enhancing filament turnover and depolymerization were reduced and Eps8 instead exhibited heightened interactions with the inverted Bin/Amphiphysin/Rvs (I-BAR) domain protein IRSp53 that provides a direct connection with linear actin polymerases. Our data reveals how common protrusion players (Eps8 and IRSp53) form tunnelling nanotubes, and that when competing pathways overutilizing such proteins and monomeric actin in Arp2/3 networks are inhibited, processes promoting linear actin growth dominate to favour tunnelling nanotube formation.
Collapse
Affiliation(s)
- J Michael Henderson
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Present address:
Department of ChemistryBowdoin CollegeBrunswickMEUSA
| | - Nina Ljubojevic
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Sorbonne UniversitéParisFrance
| | - Sevan Belian
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Thibault Chaze
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Daryl Castaneda
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Keele UniversityKeeleUK
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
- Bioinformatics and Biostatistics Hub, Computational Biology DepartmentCNRS USR 3756, Institut PasteurParisFrance
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut PasteurParisFrance
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
- Institut Pierre‐Gilles de GennesParisFrance
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico‐Chimie CurieParisFrance
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis Unit, Department of Cell Biology and InfectionCNRS UMR 3691, Université de Paris, Institut PasteurParisFrance
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
12
|
Dagar S, Subramaniam S. Tunneling Nanotube: An Enticing Cell-Cell Communication in the Nervous System. BIOLOGY 2023; 12:1288. [PMID: 37886998 PMCID: PMC10604474 DOI: 10.3390/biology12101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The field of neuroscience is rapidly progressing, continuously uncovering new insights and discoveries. Among the areas that have shown immense potential in research, tunneling nanotubes (TNTs) have emerged as a promising subject of study. These minute structures act as conduits for the transfer of cellular materials between cells, representing a mechanism of communication that holds great significance. In particular, the interplay facilitated by TNTs among various cell types within the brain, including neurons, astrocytes, oligodendrocytes, glial cells, and microglia, can be essential for the normal development and optimal functioning of this complex organ. The involvement of TNTs in neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease, has attracted significant attention. These disorders are characterized by the progressive degeneration of neurons and the subsequent decline in brain function. Studies have predicted that TNTs likely play critical roles in the propagation and spread of pathological factors, contributing to the advancement of these diseases. Thus, there is a growing interest in understanding the precise functions and mechanisms of TNTs within the nervous system. This review article, based on our recent work on Rhes-mediated TNTs, aims to explore the functions of TNTs within the brain and investigate their implications for neurodegenerative diseases. Using the knowledge gained from studying TNTs could offer novel opportunities for designing targeted treatments that can stop the progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- The Scripps Research Institute, La Jolla, CA 92037, USA
- Norman Fixel Institute for Neurological Diseases, 130 Scripps Way, C323, Jupiter, FL 33458, USA
| |
Collapse
|
13
|
Pan Y, Tang B, Li XJ, Li S, Liu Q. Rhes depletion promotes striatal accumulation and aggregation of mutant huntingtin in a presymptomatic HD mouse model. Front Aging Neurosci 2023; 15:1237018. [PMID: 37637962 PMCID: PMC10449645 DOI: 10.3389/fnagi.2023.1237018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Huntington's disease (HD) is caused by CAG trinucleotide repeats in the HTT gene. Selective neurodegeneration in the striatum is prominent in HD, despite widespread expression of mutant HTT (mHTT). Ras homolog enriched in the striatum (Rhes) is a GTP-binding protein enriched in the striatum, involved in dopamine-related behaviors and autophagy regulation. Growing evidence suggests Rhes plays a critical role in the selective striatal degeneration in HD, but its specific function in this context remains complex and controversial. Methods In this study, we utilized CRISPR/Cas9 to knockdown Rhes at different disease stages through adeno-associated virus (AAV) transduction in HD knock-in (KI) mice. Immunoblotting and immunofluorescence were employed to assess the impact of Rhes depletion on mHTT levels, neuronal loss, astrogliosis and autophagy activity. Results Rhes depletion in 22-week-old HD KI mice (representing the presymptomatic stage) led to mHTT accumulation, reduced neuronal cell staining, and increased astrogliosis. However, no such effects were observed in 36-week-old HD KI mice (representing the symptomatic stage). Additionally, Rhes deletion in 22-week-old HD KI mice resulted in increased P62 levels, reduced LC3-II levels, and unchanged phosphorylation of mTOR and beclin-1, unchanged mTOR protein level, except for a decrease in beclin-1. Discussion Our findings suggest that knockdown Rhes promotes striatal aggregation of mutant huntingtin by reducing autophagy activity in a mTOR-independent manner. Rhes plays a protective role during the presymptomatic stage of HD KI mice.
Collapse
Affiliation(s)
- Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Padmanabhan S, Manjithaya R. Leaderless secretory proteins of the neurodegenerative diseases via TNTs: a structure-function perspective. Front Mol Neurosci 2023; 16:983108. [PMID: 37396786 PMCID: PMC10308029 DOI: 10.3389/fnmol.2023.983108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Neurodegenerative disease-causing proteins such as alpha-synuclein, tau, and huntingtin are known to traverse across cells via exosomes, extracellular vesicles and tunneling nanotubes (TNTs). There seems to be good synergy between exosomes and TNTs in intercellular communication. Interestingly, many of the known major neurodegenerative proteins/proteolytic products are leaderless and are also reported to be secreted out of the cell via unconventional protein secretion. Such classes contain intrinsically disordered proteins and regions (IDRs) within them. The dynamic behavior of these proteins is due to their heterogenic conformations that is exhibited owing to various factors that occur inside the cells. The amino acid sequence along with the chemical modifications has implications on the functional roles of IDRs inside the cells. Proteins that form aggregates resulting in neurodegeneration become resistant to degradation by the processes of autophagy and proteasome system thus leading to Tunneling nanotubes, TNT formation. The proteins that traverse across TNTs may or may not be dependent on the autophagy machinery. It is not yet clear whether the conformation of the protein plays a crucial role in its transport from one cell to another without getting degraded. Although there is some experimental data, there are many grey areas which need to be revisited. This review provides a different perspective on the structural and functional aspects of these leaderless proteins that get secreted outside the cell. In this review, attention has been focused on the characteristic features that lead to aggregation of leaderless secretory proteins (from structural-functional aspect) with special emphasis on TNTs.
Collapse
|
15
|
Donnelly KM, Coleman CM, Fuller ML, Reed VL, Smerina D, Tomlinson DS, Pearce MMP. Hunting for the cause: Evidence for prion-like mechanisms in Huntington’s disease. Front Neurosci 2022; 16:946822. [PMID: 36090278 PMCID: PMC9448931 DOI: 10.3389/fnins.2022.946822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell-to-cell in the brain in a manner akin to infectious prions has gained substantial momentum due to an explosion of research in the past 10–15 years. Here, we review current evidence supporting the existence of prion-like mechanisms in Huntington’s disease (HD), an autosomal dominant neurodegenerative disease caused by expansion of a CAG repeat tract in exon 1 of the huntingtin (HTT) gene. We summarize information gained from human studies and in vivo and in vitro models of HD that strongly support prion-like features of the mutant HTT (mHTT) protein, including potential involvement of molecular features of mHTT seeds, synaptic structures and connectivity, endocytic and exocytic mechanisms, tunneling nanotubes, and nonneuronal cells in mHTT propagation in the brain. We discuss mechanisms by which mHTT aggregate spreading and neurotoxicity could be causally linked and the potential benefits of targeting prion-like mechanisms in the search for new disease-modifying therapies for HD and other fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Kirby M. Donnelly
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Cevannah M. Coleman
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Madison L. Fuller
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Victoria L. Reed
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Dayna Smerina
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - David S. Tomlinson
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Margaret M. Panning Pearce
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
- Department of Biology, Saint Joseph’s University, Philadelphia, PA, United States
- *Correspondence: Margaret M. Panning Pearce,
| |
Collapse
|
16
|
Turos-Korgul L, Kolba MD, Chroscicki P, Zieminska A, Piwocka K. Tunneling Nanotubes Facilitate Intercellular Protein Transfer and Cell Networks Function. Front Cell Dev Biol 2022; 10:915117. [PMID: 35903550 PMCID: PMC9314668 DOI: 10.3389/fcell.2022.915117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
The past decade witnessed a huge interest in the communication machinery called tunneling nanotubes (TNTs) which is a novel, contact-dependent type of intercellular protein transfer (IPT). As the IPT phenomenon plays a particular role in the cross-talk between cells, including cancer cells as well as in the immune and nervous systems, it therefore participates in remodeling of the cellular networks. The following review focuses on the placing the role of tunneling nanotube-mediated protein transfer between distant cells. Firstly, we describe different screening methods used to study IPT including tunneling nanotubes. Further, we present various examples of TNT-mediated protein transfer in the immune system, cancer microenvironment and in the nervous system, with particular attention to the methods used to verify the transfer of individual proteins.
Collapse
|
17
|
Soares ES, Prediger RD, Brocardo PS, Cimarosti HI. SUMO-modifying Huntington's disease. IBRO Neurosci Rep 2022; 12:203-209. [PMID: 35746980 PMCID: PMC9210482 DOI: 10.1016/j.ibneur.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/06/2022] [Indexed: 12/25/2022] Open
Abstract
Small ubiquitin-like modifiers, SUMOs, are proteins that are conjugated to target substrates and regulate their functions in a post-translational modification called SUMOylation. In addition to its physiological roles, SUMOylation has been implicated in several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases (HD). HD is a neurodegenerative monogenetic autosomal dominant disorder caused by a mutation in the CAG repeat of the huntingtin (htt) gene, which expresses a mutant Htt protein more susceptible to aggregation and toxicity. Besides Htt, other SUMO ligases, enzymes, mitochondrial and autophagic components are also important for the progression of the disease. Here we review the main aspects of Htt SUMOylation and its role in cellular processes involved in the pathogenesis of HD.
Collapse
Affiliation(s)
- Ericks S. Soares
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Rui D. Prediger
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Patricia S. Brocardo
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Helena I. Cimarosti
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
18
|
Ramírez-Jarquín UN, Sharma M, Shahani N, Li Y, Boregowda S, Subramaniam S. Rhes protein transits from neuron to neuron and facilitates mutant huntingtin spreading in the brain. SCIENCE ADVANCES 2022; 8:eabm3877. [PMID: 35319973 PMCID: PMC8942366 DOI: 10.1126/sciadv.abm3877] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/02/2022] [Indexed: 05/12/2023]
Abstract
Rhes (RASD2) is a thyroid hormone-induced gene that regulates striatal motor activity and promotes neurodegeneration in Huntington disease (HD) and tauopathy. Rhes moves and transports the HD protein, polyglutamine-expanded huntingtin (mHTT), via tunneling nanotube (TNT)-like membranous protrusions between cultured neurons. However, similar intercellular Rhes transportation in the intact brain was unknown. Here, we report that Rhes induces TNT-like protrusions in the striatal medium spiny neurons (MSNs) and transported between dopamine-1 receptor (D1R)-MSNs and D2R-MSNs of intact striatum and organotypic brain slices. Notably, mHTT is robustly transported within the striatum and from the striatum to the cortical areas in the brain, and Rhes deletion diminishes such transport. Moreover, Rhes moves to the cortical regions following restricted expression in the MSNs of the striatum. Thus, Rhes is a first striatum-enriched protein demonstrated to move and transport mHTT between neurons and brain regions, providing new insights into interneuronal protein transport in the brain.
Collapse
Affiliation(s)
| | - Manish Sharma
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yuqing Li
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Siddaraju Boregowda
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
19
|
Intercellular Communication in the Brain through Tunneling Nanotubes. Cancers (Basel) 2022; 14:cancers14051207. [PMID: 35267518 PMCID: PMC8909287 DOI: 10.3390/cancers14051207] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are a means of cell communication which have been recently discovered. They allow the intercellular trafficking of many types of cellular compounds ranging from ions, such as Ca2+, to whole organelles such as mitochondria. TNTs are found in many tissues, both in physiological and pathological conditions. They are also found in the brain where they contribute to brain development and function and also to degenerative diseases and glioma. Abstract Intercellular communication is essential for tissue homeostasis and function. Understanding how cells interact with each other is paramount, as crosstalk between cells is often dysregulated in diseases and can contribute to their progression. Cells communicate with each other through several modalities, including paracrine secretion and specialized structures ensuring physical contact between them. Among these intercellular specialized structures, tunneling nanotubes (TNTs) are now recognized as a means of cell-to-cell communication through the exchange of cellular cargo, controlled by a variety of biological triggers, as described here. Intercellular communication is fundamental to brain function. It allows the dialogue between the many cells, including neurons, astrocytes, oligodendrocytes, glial cells, microglia, necessary for the proper development and function of the brain. We highlight here the role of TNTs in connecting these cells, for the physiological functioning of the brain and in pathologies such as stroke, neurodegenerative diseases, and gliomas. Understanding these processes could pave the way for future therapies.
Collapse
|
20
|
Ottonelli I, Caraffi R, Tosi G, Vandelli MA, Duskey JT, Ruozi B. Tunneling Nanotubes: A New Target for Nanomedicine? Int J Mol Sci 2022; 23:ijms23042237. [PMID: 35216348 PMCID: PMC8878036 DOI: 10.3390/ijms23042237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tunneling nanotubes (TNTs), discovered in 2004, are thin, long protrusions between cells utilized for intercellular transfer and communication. These newly discovered structures have been demonstrated to play a crucial role in homeostasis, but also in the spreading of diseases, infections, and metastases. Gaining much interest in the medical research field, TNTs have been shown to transport nanomedicines (NMeds) between cells. NMeds have been studied thanks to their advantageous features in terms of reduced toxicity of drugs, enhanced solubility, protection of the payload, prolonged release, and more interestingly, cell-targeted delivery. Nevertheless, their transfer between cells via TNTs makes their true fate unknown. If better understood, TNTs could help control NMed delivery. In fact, TNTs can represent the possibility both to improve the biodistribution of NMeds throughout a diseased tissue by increasing their formation, or to minimize their formation to block the transfer of dangerous material. To date, few studies have investigated the interaction between NMeds and TNTs. In this work, we will explain what TNTs are and how they form and then review what has been published regarding their potential use in nanomedicine research. We will highlight possible future approaches to better exploit TNT intercellular communication in the field of nanomedicine.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
- Correspondence:
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.C.); (G.T.); (M.A.V.); (B.R.)
| |
Collapse
|
21
|
Ramírez-Jarquín UN, Sharma M, Zhou W, Shahani N, Subramaniam S. Deletion of SUMO1 attenuates behavioral and anatomical deficits by regulating autophagic activities in Huntington disease. Proc Natl Acad Sci U S A 2022; 119:e2107187119. [PMID: 35086928 PMCID: PMC8812691 DOI: 10.1073/pnas.2107187119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
The CAG expansion of huntingtin (mHTT) associated with Huntington disease (HD) is a ubiquitously expressed gene, yet it prominently damages the striatum and cortex, followed by widespread peripheral defects as the disease progresses. However, the underlying mechanisms of neuronal vulnerability are unclear. Previous studies have shown that SUMO1 (small ubiquitin-like modifier-1) modification of mHtt promotes cellular toxicity, but the in vivo role and functions of SUMO1 in HD pathogenesis are unclear. Here, we report that SUMO1 deletion in Q175DN HD-het knockin mice (HD mice) prevented age-dependent HD-like motor and neurological impairments and suppressed the striatal atrophy and inflammatory response. SUMO1 deletion caused a drastic reduction in soluble mHtt levels and nuclear and extracellular mHtt inclusions while increasing cytoplasmic mHtt inclusions in the striatum of HD mice. SUMO1 deletion promoted autophagic activity, characterized by augmented interactions between mHtt inclusions and a lysosomal marker (LAMP1), increased LC3B- and LAMP1 interaction, and decreased interaction of sequestosome-1 (p62) and LAMP1 in DARPP-32-positive medium spiny neurons in HD mice. Depletion of SUMO1 in an HD cell model also diminished the mHtt levels and enhanced autophagy flux. In addition, the SUMOylation inhibitor ginkgolic acid strongly enhanced autophagy and diminished mHTT levels in human HD fibroblasts. These results indicate that SUMO is a critical therapeutic target in HD and that blocking SUMO may ameliorate HD pathogenesis by regulating autophagy activities.
Collapse
Affiliation(s)
| | - Manish Sharma
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Wuyue Zhou
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | | |
Collapse
|
22
|
Subramaniam S. Striatal Induction and Spread of the Huntington's Disease Protein: A Novel Rhes Route. J Huntingtons Dis 2022; 11:281-290. [PMID: 35871361 PMCID: PMC9484121 DOI: 10.3233/jhd-220548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The CAG/CAA expansion encoding polyQ huntingtin (mutant huntingtin [mHTT]) causes Huntington's disease (HD), which is characterized by atrophy and loss of striatal medium spiny neurons (MSNs), which are preceded by neuropathological alterations in the cortex. Previous studies have shown that mHTT can spread in the brain, but the mechanisms involved in the stereotyped degeneration and dysfunction of the neurons from the striatum to the cortex remain unclear. In this study, we found that the mHTT expression initially restricted in the striatum later spread to the cortical regions in mouse brains. Such transmission was diminished in mice that lacked the striatal-enriched protein Ras-homolog enriched in the striatum (Rhes). Rhes restricted to MSNs was also found in the cortical layers of the brain, indicating a new transmission route for the Rhes protein to the brain. Mechanistically, Rhes promotes such transmission via a direct cell-to-cell contact mediated by tunneling nanotubes (TNTs), the membranous protrusions that enable the transfer of mHTT, Rhes, and other vesicular cargoes. These transmission patterns suggest that Rhes and mHTT are likely co-transported in the brain using TNT-like cell-to-cell contacts. On the basis of these new results, a perspective is presented in this review: Rhes may ignite the mHTT transmission from the striatum that may coincide with HD onset and disease progression through an anatomically connected striato-cortical retrograde route.
Collapse
|
23
|
Alpaugh M, Denis HL, Cicchetti F. Prion-like properties of the mutant huntingtin protein in living organisms: the evidence and the relevance. Mol Psychiatry 2022; 27:269-280. [PMID: 34711942 DOI: 10.1038/s41380-021-01350-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
If theories postulating that pathological proteins associated with neurodegenerative disorders behave similarly to prions were initially viewed with reluctance, it is now well-accepted that this occurs in several disease contexts. Notably, it has been reported that protein misfolding and subsequent prion-like properties can actively participate in neurodegenerative disorders. While this has been demonstrated in multiple cellular and animal model systems related to Alzheimer's and Parkinson's diseases, the prion-like properties of the mutant huntingtin protein (mHTT), associated with Huntington's disease (HD), have only recently been considered to play a role in this pathology, a concept our research group has contributed to extensively. In this review, we summarize the last few years of in vivo research in the field and speculate on the relationship between prion-like events and human HD. By interpreting observations primarily collected in in vivo models, our discussion will aim to discriminate which experimental factors contribute to the most efficient types of prion-like activities of mHTT and which routes of propagation may be more relevant to the human condition. A look back at nearly a decade of experimentation will inform future research and whether therapeutic strategies may emerge from this new knowledge.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hélèna L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada. .,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
24
|
Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 2021; 478:3977-3998. [PMID: 34813650 DOI: 10.1042/bcj20210077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.
Collapse
|
25
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
26
|
Chongtham A, Isas JM, Pandey NK, Rawat A, Yoo JH, Mastro T, Kennedy MB, Langen R, Khoshnan A. Amplification of neurotoxic HTTex1 assemblies in human neurons. Neurobiol Dis 2021; 159:105517. [PMID: 34563643 DOI: 10.1016/j.nbd.2021.105517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease (HD) is a genetically inherited neurodegenerative disorder caused by expansion of a polyglutamine (polyQ) repeat in the exon-1 of huntingtin protein (HTT). The expanded polyQ enhances the amyloidogenic propensity of HTT exon 1 (HTTex1), which forms a heterogeneous mixture of assemblies with a broad neurotoxicity spectrum. While predominantly intracellular, monomeric and aggregated mutant HTT species are also present in the cerebrospinal fluids of HD patients, however, their biological properties are not well understood. To explore the role of extracellular mutant HTT in aggregation and toxicity, we investigated the uptake and amplification of recombinant HTTex1 assemblies in cell culture models. We find that small HTTex1 fibrils preferentially enter human neurons and trigger the amplification of neurotoxic assemblies; astrocytes or epithelial cells are not permissive. The amplification of HTTex1 in neurons depletes endogenous HTT protein with non-pathogenic polyQ repeat, activates apoptotic caspase-3 pathway and induces nuclear fragmentation. Using a panel of novel monoclonal antibodies and genetic mutation, we identified epitopes within the N-terminal 17 amino acids and proline-rich domain of HTTex1 to be critical in neural uptake and amplification. Synaptosome preparations from the brain homogenates of HD mice also contain mutant HTT species, which enter neurons and behave similar to small recombinant HTTex1 fibrils. These studies suggest that amyloidogenic extracellular mutant HTTex1 assemblies may preferentially enter neurons, propagate and promote neurodegeneration.
Collapse
Affiliation(s)
| | - J Mario Isas
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Nitin K Pandey
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Anoop Rawat
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Jung Hyun Yoo
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Tara Mastro
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Mary B Kennedy
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA
| | - Ralf Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Ali Khoshnan
- Biology and Bioengineering, Caltech, Pasadena, CA 91125, USA.
| |
Collapse
|
27
|
Chen J, Cao J. Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes. Sci Rep 2021; 11:16798. [PMID: 34408233 PMCID: PMC8373867 DOI: 10.1038/s41598-021-96332-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Tunneling nanotube (TNT), a dynamic cell–cell contact, is dependent on actin polymerization. TNTs are efficient in transporting ions, proteins and organelles intercellularly, which are important mechanisms in physiological and pathological processes. Reported studies on the existence and function of TNTs among neural cells focus on cultured cell for the convenience in detecting TNTs’ ultrastructure. In this study, the adeno-associated virus (AAV-GFAP-EGFP-p2A-cre) was injected into the cerebral cortex of knock-in mice ROSA26 GNZ. GFAP promoter initiated the expression of enhanced green fluorescent protein (EGFP) in infected astrocytes. At 10 days post injection (10 DPI), EGFP transferred from astrocytes in layer I–III to neurons in layer V. The dissemination of EGFP was not through endocytosis or exosome. Applying microscopes, we found that the intercellular transportation of EGFP through contact connection was F-actin dependent. Therefore, we concluded that EGFP transported from astrocytes to neurons in cortex via F-actin dependent TNTs. This study first proved that proteins transported intercellularly via TNTs in brain.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Key Lab of Organ Development and Regeneration of Zhejiang Province, Hangzhou, Zhejiang, China. .,Key Lab of GEM Resource and Model Research of Hangzhou, Hangzhou, Zhejiang, China.
| | - Junyan Cao
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Key Lab of Organ Development and Regeneration of Zhejiang Province, Hangzhou, Zhejiang, China.,Key Lab of GEM Resource and Model Research of Hangzhou, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Chuang CL, Demontis F. Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Res Rev 2021; 69:101358. [PMID: 33979693 DOI: 10.1016/j.arr.2021.101358] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.
Collapse
|
29
|
Valdebenito S, Malik S, Luu R, Loudig O, Mitchell M, Okafo G, Bhat K, Prideaux B, Eugenin EA. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions. Sci Rep 2021; 11:14556. [PMID: 34267246 PMCID: PMC8282675 DOI: 10.1038/s41598-021-93775-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell communication is essential for the development and proper function of multicellular systems. We and others demonstrated that tunneling nanotubes (TNT) proliferate in several pathological conditions such as HIV, cancer, and neurodegenerative diseases. However, the nature, function, and contribution of TNT to cancer pathogenesis are poorly understood. Our analyses demonstrate that TNT structures are induced between glioblastoma (GBM) cells and surrounding non-tumor astrocytes to transfer tumor-derived mitochondria. The mitochondrial transfer mediated by TNT resulted in the adaptation of non-tumor astrocytes to tumor-like metabolism and hypoxia conditions. In conclusion, TNT are an efficient cell-to-cell communication system used by cancer cells to adapt the microenvironment to the invasive nature of the tumor.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Shaily Malik
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Ross Luu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Megan Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | | - Krishna Bhat
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, M.D. Anderson, Houston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
30
|
Wang F, Chen X, Cheng H, Song L, Liu J, Caplan S, Zhu L, Wu JY. MICAL2PV suppresses the formation of tunneling nanotubes and modulates mitochondrial trafficking. EMBO Rep 2021; 22:e52006. [PMID: 34096155 PMCID: PMC8366454 DOI: 10.15252/embr.202052006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Tunneling nanotubes (TNTs) are actin-rich structures that connect two or more cells and mediate cargo exchange between spatially separated cells. TNTs transport signaling molecules, vesicles, organelles, and even pathogens. However, the molecular mechanisms regulating TNT formation remain unclear and little is known about the endogenous mechanisms suppressing TNT formation in lung cancer cells. Here, we report that MICAL2PV, a splicing isoform of the neuronal guidance gene MICAL2, is a novel TNT regulator that suppresses TNT formation and modulates mitochondrial distribution. MICAL2PV interacts with mitochondrial Rho GTPase Miro2 and regulates subcellular mitochondrial trafficking. Moreover, down-regulation of MICAL2PV enhances survival of cells treated with chemotherapeutical drugs. The monooxygenase (MO) domain of MICAL2PV is required for its activity to inhibit TNT formation by depolymerizing F-actin. Our data demonstrate a previously unrecognized function of MICAL2 in TNT formation and mitochondrial trafficking. Furthermore, our study uncovers a role of the MICAL2PV-Miro2 axis in mitochondrial trafficking, providing a mechanistic explanation for MICAL2PV activity in suppressing TNT formation and in modulating mitochondrial subcellular distribution.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Brain and Cognitive ScienceInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoping Chen
- Department of NeurologyCenter for Genetic MedicineLurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Haipeng Cheng
- Department of NeurologyCenter for Genetic MedicineLurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Lu Song
- State Key Laboratory of Brain and Cognitive ScienceInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive ScienceInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Steve Caplan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive ScienceInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jane Y Wu
- Department of NeurologyCenter for Genetic MedicineLurie Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
31
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
32
|
Serra M, Pinna A, Costa G, Usiello A, Pasqualetti M, Avallone L, Morelli M, Napolitano F. Involvement of the Protein Ras Homolog Enriched in the Striatum, Rhes, in Dopaminergic Neurons' Degeneration: Link to Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22105326. [PMID: 34070217 PMCID: PMC8158741 DOI: 10.3390/ijms22105326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Rhes is one of the most interesting genes regulated by thyroid hormones that, through the inhibition of the striatal cAMP/PKA pathway, acts as a modulator of dopamine neurotransmission. Rhes mRNA is expressed at high levels in the dorsal striatum, with a medial-to-lateral expression gradient reflecting that of both dopamine D2 and adenosine A2A receptors. Rhes transcript is also present in the hippocampus, cerebral cortex, olfactory tubercle and bulb, substantia nigra pars compacta (SNc) and ventral tegmental area of the rodent brain. In line with Rhes-dependent regulation of dopaminergic transmission, data showed that lack of Rhes enhanced cocaine- and amphetamine-induced motor stimulation in mice. Previous studies showed that pharmacological depletion of dopamine significantly reduces Rhes mRNA levels in rodents, non-human primates and Parkinson's disease (PD) patients, suggesting a link between dopaminergic innervation and physiological Rhes mRNA expression. Rhes protein binds to and activates striatal mTORC1, and modulates L-DOPA-induced dyskinesia in PD rodent models. Finally, Rhes is involved in the survival of mouse midbrain dopaminergic neurons of SNc, thus pointing towards a Rhes-dependent modulation of autophagy and mitophagy processes, and encouraging further investigations about mechanisms underlying dysfunctions of the nigrostriatal system.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, 09042 Cagliari, Italy; (M.S.); (G.C.); (M.M.)
| | - Annalisa Pinna
- National Research Council of Italy (CNR), Neuroscience Institute—Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy;
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, 09042 Cagliari, Italy; (M.S.); (G.C.); (M.M.)
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, 09042 Cagliari, Italy; (M.S.); (G.C.); (M.M.)
- National Research Council of Italy (CNR), Neuroscience Institute—Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy;
| | - Francesco Napolitano
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy;
- Correspondence:
| |
Collapse
|
33
|
Zurzolo C. Tunneling nanotubes: Reshaping connectivity. Curr Opin Cell Biol 2021; 71:139-147. [PMID: 33866130 DOI: 10.1016/j.ceb.2021.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs), open membranous channels between connected cells, represent a novel direct way of communication between distant cells for the diffusion of various cellular material, including survival or death signals, genetic material, organelles, and pathogens. Their discovery prompted us to review our understanding of many physiological and pathological processes involving cellular communication but also allowed us to discover new mechanisms of communication at a distance. While this has enriched the field, it has also generated some confusion, as different TNT-like protrusions have been described, and it is not clear whether they have the same structure-function. Most studies have been based on low-resolution imaging methods, and one of the major problems is the inconsistency in demonstrating the capacity of these various connections to transfer material between cells belonging to different populations. This brief review examines the fundamental properties of TNTs. In adult tissues, TNTs are stimulated by different diseases, stresses, and inflammatory signals. 'Moreover', based on the similarity of the processes of development of synaptic spines and TNT formation, we argue that TNTs in the brain predate synaptic transmission, being instrumental in the orchestration of the immature neuronal circuit.
Collapse
Affiliation(s)
- Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015, Paris, France.
| |
Collapse
|
34
|
Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021; 40:e105789. [PMID: 33646572 PMCID: PMC8047439 DOI: 10.15252/embj.2020105789] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Institut PasteurMembrane Traffic and PathogenesisParisFrance
| |
Collapse
|
35
|
Wang XT, Sun H, Chen NH, Yuan YH. Tunneling nanotubes: A novel pharmacological target for neurodegenerative diseases? Pharmacol Res 2021; 170:105541. [PMID: 33711434 DOI: 10.1016/j.phrs.2021.105541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022]
Abstract
Diversiform ways of intercellular communication are vital links in maintaining homeostasis and disseminating physiological states. Among intercellular bridges, tunneling nanotubes (TNTs) discovered in 2004 were recognized as potential pharmacology targets related to the pathogenesis of common or infrequent neurodegenerative disorders. The neurotoxic aggregates in neurodegenerative diseases including scrapie prion protein (PrPSc), mutant tau protein, amyloid-beta (Aβ) protein, alpha-synuclein (α-syn) as well as mutant Huntington (mHTT) protein could promote TNT formation via certain physiological mechanisms, in turn, mediating the intercellular transmission of neurotoxicity. In this review, we described in detail the skeleton, the formation, the physicochemical properties, and the functions of TNTs, while paying particular attention to the key role of TNTs in the transport of pathological proteins during neurodegeneration.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hua Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
36
|
Eshraghi M, Karunadharma PP, Blin J, Shahani N, Ricci EP, Michel A, Urban NT, Galli N, Sharma M, Ramírez-Jarquín UN, Florescu K, Hernandez J, Subramaniam S. Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 2021; 12:1461. [PMID: 33674575 PMCID: PMC7935949 DOI: 10.1038/s41467-021-21637-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Pabalu P. Karunadharma
- grid.214007.00000000122199231The Scripps Research Institute, Genomic Core, Jupiter, FL USA
| | - Juliana Blin
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | - Neelam Shahani
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Emiliano P. Ricci
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | | | | | - Nicole Galli
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Manish Sharma
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Katie Florescu
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Jennifer Hernandez
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Srinivasa Subramaniam
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| |
Collapse
|
37
|
Opportunities and Challenges in Tunneling Nanotubes Research: How Far from Clinical Application? Int J Mol Sci 2021; 22:ijms22052306. [PMID: 33669068 PMCID: PMC7956326 DOI: 10.3390/ijms22052306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.
Collapse
|
38
|
Shahar M, Szalat A, Rosen H. Pathogenic Stress Induces Human Monocyte to Express an Extracellular Web of Tunneling Nanotubes. Front Immunol 2021; 12:620734. [PMID: 33679763 PMCID: PMC7933571 DOI: 10.3389/fimmu.2021.620734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Actin-based tunneling nanotubes are a means of intercellular communication between remote cells. In the last decade, this type of nanotube was described in a wide variety of cell types and it became widely accepted that communication through these nanotubes is related to response to environmental changes. Few reports, however, are available regarding the expression of similar nanotubes in vivo or in primary cells. Moreover, the functional significance of this intercellular communication for health and disease is largely unknown. In this context, and as a first step in unraveling these questions, we examined the formation of similar nanotubes in primary peripheral human monocytes. To that end, we combined the use of a live cell imaging system along with advanced methods of fluorescent and scanning electron microscopy. This experimental approach reveals for the first time that the bacterial lipopolysaccharide endotoxin induces a transient expression of an unexpected abundance of actin-based tunneling nanotubes associated with vesicles. In addition, it was found that a similar response can be achieved by treating human monocytes with various bacterial and yeast membrane components, as well as with a viral component analog. In all these cases, this response is mediated by distinct complexes of toll-like receptors. Therefore, we suggest that the observed phenomena are related to a broad type of monocyte pathogen response, and raise the possibility that the phenomena described above may be involved in many clinical situations related to inflammation as a new topic of study.
Collapse
Affiliation(s)
- Michal Shahar
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research-Israel-Canada, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Auryan Szalat
- Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Rosen
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research-Israel-Canada, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
39
|
RNA transfer through tunneling nanotubes. Biochem Soc Trans 2020; 49:145-160. [PMID: 33367488 DOI: 10.1042/bst20200113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
It was already suggested in the early '70's that RNA molecules might transfer between mammalian cells in culture. Yet, more direct evidence for RNA transfer in animal and plant cells was only provided decades later, as this field became established. In this mini-review, we will describe evidence for the transfer of different types of RNA between cells through tunneling nanotubes (TNTs). TNTs are long, yet thin, open-ended cellular protrusions that are structurally distinct from filopodia. TNTs connect cells and can transfer many types of cargo, including small molecules, proteins, vesicles, pathogens, and organelles. Recent work has shown that TNTs can also transfer mRNAs, viral RNAs and non-coding RNAs. Here, we will review the evidence for TNT-mediated RNA transfer, discuss the technical challenges in this field, and conjecture about the possible significance of this pathway in health and disease.
Collapse
|
40
|
Ljubojevic N, Henderson JM, Zurzolo C. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions. Trends Cell Biol 2020; 31:130-142. [PMID: 33309107 DOI: 10.1016/j.tcb.2020.11.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
Actin remodeling is at the heart of the response of cells to external or internal stimuli, allowing a variety of membrane protrusions to form. Fifteen years ago, tunneling nanotubes (TNTs) were identified, bringing a novel addition to the family of actin-supported cellular protrusions. Their unique property as conduits for cargo transfer between distant cells emphasizes the unique nature of TNTs among other protrusions. While TNTs in different pathological and physiological scenarios have been described, the molecular basis of how TNTs form is not well understood. In this review, we discuss the role of several actin regulators in the formation of TNTs and suggest potential players based on their comparison with other actin-based protrusions. New perspectives for discovering a distinct TNT formation pathway would enable us to target them in treating the increasing number of TNT-involved pathologies.
Collapse
Affiliation(s)
- Nina Ljubojevic
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France; Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, 75005 Paris, France
| | - J Michael Henderson
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France; Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
41
|
Bhat S, Ljubojevic N, Zhu S, Fukuda M, Echard A, Zurzolo C. Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci Rep 2020; 10:16803. [PMID: 33033331 PMCID: PMC7544914 DOI: 10.1038/s41598-020-74013-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Tunneling nanotubes (TNTs) are F-actin rich structures that connect distant cells, allowing the transport of many cellular components, including vesicles, organelles and molecules. Rab GTPases are the major regulators of vesicle trafficking and also participate in actin cytoskeleton remodelling, therefore, we examined their role in TNTs. Rab35 functions with several proteins that are involved in vesicle trafficking such as ACAP2, MICAL-L1, ARF6 and EHD1, which are known to be involved in neurite outgrowth. Here we show that Rab35 promotes TNT formation and TNT-mediated vesicle transfer in a neuronal cell line. Furthermore, our data indicates that Rab35-GTP, ACAP2, ARF6-GDP and EHD1 act in a cascade mechanism to promote TNT formation. Interestingly, MICAL-L1 overexpression, shown to be necessary for the action of Rab35 on neurite outgrowth, showed no effect on TNTs, indicating that TNT formation and neurite outgrowth may be processed through similar but not identical pathways, further supporting the unique identity of these cellular protrusions.
Collapse
Affiliation(s)
- Shaarvari Bhat
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
- Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Nina Ljubojevic
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, ED394-Physiologie, Physiopathologie et Thérapeutique, 75005, Paris, France
| | - Seng Zhu
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, UMR3691 CNRS, Institut Pasteur, 75015, Paris, France
| | - Chiara Zurzolo
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
42
|
Zhang S, Kazanietz MG, Cooke M. Rho GTPases and the emerging role of tunneling nanotubes in physiology and disease. Am J Physiol Cell Physiol 2020; 319:C877-C884. [PMID: 32845720 DOI: 10.1152/ajpcell.00351.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tunneling nanotubes (TNTs) emerged as important specialized actin-rich membrane protrusions for cell-to-cell communication. These structures allow the intercellular exchange of material, such as ions, soluble proteins, receptors, vesicles and organelles, therefore exerting critical roles in normal cell function. Indeed, TNTs participate in a number of physiological processes, including embryogenesis, immune response, and osteoclastogenesis. TNTs have been also shown to contribute to the transmission of retroviruses (e.g., human immunodeficiency virus-1, HIV-1) and coronaviruses. As with other membrane protrusions, the involvement of Rho GTPases in the formation of these elongated structures is undisputable, although the mechanisms involved are not yet fully elucidated. The tight control of Rho GTPase function by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) strongly suggests that localized control of these Rho regulators may contribute to TNT assembly and disassembly. Deciphering the intricacies of the complex signaling mechanisms leading to actin reorganization and TNT development would reveal important information about their involvement in normal cellular physiology as well as unveil potential targets for disease management.
Collapse
Affiliation(s)
- Suli Zhang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proc Natl Acad Sci U S A 2020; 117:15989-15999. [PMID: 32581130 PMCID: PMC7354937 DOI: 10.1073/pnas.2002144117] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Huntington disease (HD) is a genetic disorder caused by glutamine-expansion in the huntingtin (mHTT) protein, which affects motor, psychiatric, and cognitive function, but the mechanisms remain unclear. mHTT is known to induce DNA damage and affect autophagy, both associated with inflammatory responses, but what mediates all these were unknown. Here we report that cGAS, a DNA damage sensor, is highly upregulated in the striatum of a mouse model and HD human patient’s tissue. We found ribosomes, which make proteins, are robustly accumulated on the cGAS mRNA in HD cells. cGAS depletion decreases—and cGAS expression increases—both inflammatory and autophagy responses in HD striatal cells. Thus, cGAS is a therapeutic target for HD. Blocking cGAS will prevent/slow down HD symptoms. Huntington disease (HD) is caused by an expansion mutation of the N-terminal polyglutamine of huntingtin (mHTT). mHTT is ubiquitously present, but it induces noticeable damage to the brain’s striatum, thereby affecting motor, psychiatric, and cognitive functions. The striatal damage and progression of HD are associated with the inflammatory response; however, the underlying molecular mechanisms remain unclear. Here, we report that cGMP-AMP synthase (cGAS), a DNA sensor, is a critical regulator of inflammatory and autophagy responses in HD. Ribosome profiling revealed that the cGAS mRNA has high ribosome occupancy at exon 1 and codon-specific pauses at positions 171 (CCG) and 172 (CGT) in HD striatal cells. Moreover, the protein levels and activity of cGAS (based on the phosphorylated STING and phosphorylated TBK1 levels), and the expression and ribosome occupancy of cGAS-dependent inflammatory genes (Ccl5 and Cxcl10) are increased in HD striatum. Depletion of cGAS diminishes cGAS activity and decreases the expression of inflammatory genes while suppressing the up-regulation of autophagy in HD cells. In contrast, reinstating cGAS in cGAS-depleted HD cells activates cGAS activity and promotes inflammatory and autophagy responses. Ribosome profiling also revealed that LC3A and LC3B, the two major autophagy initiators, show altered ribosome occupancy in HD cells. We also detected the presence of numerous micronuclei, which are known to induce cGAS, in the cytoplasm of neurons derived from human HD embryonic stem cells. Collectively, our results indicate that cGAS is up-regulated in HD and mediates inflammatory and autophagy responses. Thus, targeting the cGAS pathway may offer therapeutic benefits in HD.
Collapse
|
44
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
45
|
Subramaniam S. Rhes Tunnels: A Radical New Way of Communication in the Brain's Striatum? Bioessays 2020; 42:e1900231. [PMID: 32236969 PMCID: PMC7310467 DOI: 10.1002/bies.201900231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Ras homolog enriched in the striatum (Rhes) is a striatal enriched protein that promotes the formation of thin membranous tubes resembling tunneling nanotubes (TNT)-"Rhes tunnels"-that connect neighboring cell and transport cargoes: vesicles and proteins between the neuronal cells. Here the literature on TNT-like structures is reviewed, and the implications of Rhes-mediated TNT, the mechanisms of its formation, and its potential in novel cell-to-cell communication in regulating striatal biology and disease are emphasized. Thought-provoking ideas regarding how Rhes-mediated TNT, if it exists, in vivo, would radically change the way neurons communicate in the brain are discussed.
Collapse
|
46
|
Donnelly KM, DeLorenzo OR, Zaya ADA, Pisano GE, Thu WM, Luo L, Kopito RR, Panning Pearce MM. Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. eLife 2020; 9:e58499. [PMID: 32463364 PMCID: PMC7297539 DOI: 10.7554/elife.58499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence supports the hypothesis that pathogenic protein aggregates associated with neurodegenerative diseases spread from cell to cell through the brain in a manner akin to infectious prions. Here, we show that mutant huntingtin (mHtt) aggregates associated with Huntington disease transfer anterogradely from presynaptic to postsynaptic neurons in the adult Drosophila olfactory system. Trans-synaptic transmission of mHtt aggregates is inversely correlated with neuronal activity and blocked by inhibiting caspases in presynaptic neurons, implicating synaptic dysfunction and cell death in aggregate spreading. Remarkably, mHtt aggregate transmission across synapses requires the glial scavenger receptor Draper and involves a transient visit to the glial cytoplasm, indicating that phagocytic glia act as obligatory intermediates in aggregate spreading between synaptically-connected neurons. These findings expand our understanding of phagocytic glia as double-edged players in neurodegeneration-by clearing neurotoxic protein aggregates, but also providing an opportunity for prion-like seeds to evade phagolysosomal degradation and propagate further in the brain.
Collapse
Affiliation(s)
- Kirby M Donnelly
- Department of Biological Sciences, University of the SciencesPhiladelphiaUnited States
| | - Olivia R DeLorenzo
- Program in Neuroscience, University of the SciencesPhiladelphiaUnited States
| | - Aprem DA Zaya
- Department of Biological Sciences, University of the SciencesPhiladelphiaUnited States
| | - Gabrielle E Pisano
- Department of Biological Sciences, University of the SciencesPhiladelphiaUnited States
| | - Wint M Thu
- Department of Biological Sciences, University of the SciencesPhiladelphiaUnited States
| | - Liqun Luo
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Ron R Kopito
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Margaret M Panning Pearce
- Department of Biological Sciences, University of the SciencesPhiladelphiaUnited States
- Program in Neuroscience, University of the SciencesPhiladelphiaUnited States
| |
Collapse
|
47
|
Subramaniam S. Exaggerated mitophagy: a weapon of striatal destruction in the brain? Biochem Soc Trans 2020; 48:709-717. [PMID: 32129826 PMCID: PMC7200642 DOI: 10.1042/bst20191283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
Mechanisms responsible for neuronal vulnerability in the brain remain unclear. Striatal neurons are preferentially damaged by 3-nitropropionic acid (3-NP), a mitochondrial complex-II inhibitor, causing striatal damage reminiscent of Huntington's disease (HD), but the mechanisms of the selectivity are not as well understood. We have discovered that Rhes, a protein enriched in the striatum, removes mitochondria via the mitophagy process. The process becomes intensified in the presence of 3-NP, thereby eliminating most of the mitochondria from the striatum. We put forward the hypothesis that Rhes acts as a 'mitophagy ligand' in the brain and promotes mitophagy via NIX, a mitophagy receptor. Since Rhes interacts and promotes toxicity in association with mutant huntingtin (mHTT), the genetic cause of HD, it is tempting to speculate on whether the exaggerated mitophagy may be a contributing factor to the striatal lesion found in HD. Thus, Rhes-mediated exaggerated mitophagy may act as a weapon of striatal destruction in the brain.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, U.S.A
| |
Collapse
|
48
|
Subramaniam S. Selective Neuronal Death in Neurodegenerative Diseases: The Ongoing Mystery. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:695-705. [PMID: 31866784 PMCID: PMC6913821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A major unresolved problem in neurodegenerative disease is why and how a specific set of neurons in the brain are highly vulnerable to neuronal death. Multiple pathways and mechanisms have been proposed to play a role in Alzheimer disease (AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington disease (HD), yet how they contribute to neuronal vulnerability remains far from clear. In this review, various mechanisms ascribed in AD, PD, ALS, and HD will be briefly summarized. Particular focus will be placed on Rhes-mediated intercellular transport of the HD protein and its role in mitophagy, in which I will discuss some intriguing observations that I apply to model striatal vulnerability in HD. I may have unintentionally missed referring some studies in this review, and I extend my apologies to the authors in those circumstances.
Collapse
|
49
|
Abstract
Elimination of dysfunctional mitochondria via mitophagy is essential for cell survival and neuronal functions. But, how impaired mitophagy participates in tissue-specific vulnerability in the brain remains unclear. Here, we find that striatal-enriched protein, Rhes, is a critical regulator of mitophagy and striatal vulnerability in brain. In vivo interactome and density fractionation reveal that Rhes coimmunoprecipitates and cosediments with mitochondrial and lysosomal proteins. Live-cell imaging of cultured striatal neuronal cell line shows Rhes surrounds globular mitochondria, recruits lysosomes, and ultimately degrades mitochondria. In the presence of 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, Rhes disrupts mitochondrial membrane potential (ΔΨ m ) and promotes excessive mitophagy and cell death. Ultrastructural analysis reveals that systemic injection of 3-NP in mice promotes globular mitochondria, accumulation of mitophagosomes, and striatal lesion only in the wild-type (WT), but not in the Rhes knockout (KO), striatum, suggesting that Rhes is critical for mitophagy and neuronal death in vivo. Mechanistically, Rhes requires Nix (BNIP3L), a known receptor of mitophagy, to disrupt ΔΨ m and promote mitophagy and cell death. Rhes interacts with Nix via SUMO E3-ligase domain, and Nix depletion totally abrogates Rhes-mediated mitophagy and cell death in the cultured striatal neuronal cell line. Finally, we find that Rhes, which travels from cell to cell via tunneling nanotube (TNT)-like cellular protrusions, interacts with dysfunctional mitochondria in the neighboring cell in a Nix-dependent manner. Collectively, Rhes is a major regulator of mitophagy via Nix, which may determine striatal vulnerability in the brain.
Collapse
|