1
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Wu Z, Omura I, Saito A, Imaizumi K, Kamikawa Y. VPS4B orchestrates response to nuclear envelope stress by regulating ESCRT-III dynamics in glioblastoma. Nucleus 2024; 15:2423660. [PMID: 39540606 PMCID: PMC11572143 DOI: 10.1080/19491034.2024.2423660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The Nuclear envelope (NE) is frequently challenged by mechanical stimuli involving cells passing through a tight space and such stress is known as "NE stress." Various factors that cooperate to repair the NE have been identified, including endosomal sorting complex required for transport-III (ESCRT-III). Recently, vacuolar protein sorting 4 homolog B (VPS4B) has been reported to modulate the recycling of ESCRT-III during NE repair, but the regulatory mechanism remains unclear. Our previous study revealed that U251MG cells, derived from the glioblastoma (GBM), exhibited nuclear deformation followed by DNA damage upon mechanical NE stress while these phenotypes were not observed in U87MG, another GBM-derived cell line. Here, we found that VPS4B expression was lower in U251MG than in U87MG. Our functional analysis demonstrated that insufficient VPS4B triggers an inadequate response to NE stress and that VPS4B regulates the dynamics of ESCRT-III, uncovering the mechanism underlying the NE stress response in GBM.
Collapse
Affiliation(s)
- Zuqian Wu
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
4
|
Kono Y, Pack CG, Ichikawa T, Komatsubara A, Adam SA, Miyazawa K, Rolas L, Nourshargh S, Medalia O, Goldman RD, Fukuma T, Kimura H, Shimi T. Roles of the lamin A-specific tail region in the localization to sites of nuclear envelope rupture. PNAS NEXUS 2024; 3:pgae527. [PMID: 39677369 PMCID: PMC11645434 DOI: 10.1093/pnasnexus/pgae527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
The nuclear lamina (NL) lines the nuclear envelope (NE) to maintain nuclear structure in metazoan cells. The major NL components, the nuclear lamins contribute to the protection against NE rupture induced by mechanical stress. Lamin A (LA) and a short form of the splicing variant lamin C (LC) are diffused from the nucleoplasm to sites of NE rupture in immortalized mouse embryonic fibroblasts (MEFs). LA localization to the rupture sites is significantly slow and weak compared with LC, but the underlying mechanism remains unknown. In this study, wild-type (WT), Hutchinson-Gilford Progeria syndrome (HGPS) knock-in MEFs expressing progerin (PG, an LA mutant lacking the second proteolytic cleavage site), and LA/C-knockout MEFs transiently and heterogeneously expressing LA/C WTs and mutants fused to mEmerald are examined before and after NE rupture induced by single-cell compression and laser microirradiation. The farnesylation at the CaaX motif of unprocessed LA and the inhibition of the second proteolytic cleavage decrease the nucleoplasmic pool and slow the localization to the rupture sites in a long-time window (60-70 min) after the induction of NE rupture. Our data could explain the defective repair of NE rupture in HGPS through the farnesylation at the CaaX motif of unprocessed progerin. In addition, unique segments in LA-specific tail region cooperate with each other to inhibit the rapid accumulation within a short-time window (3 min) that is also observed with LC.
Collapse
Affiliation(s)
- Yohei Kono
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Chan-Gi Pack
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Korea
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Arata Komatsubara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Stephen A Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takeshi Shimi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Harding SM. A road to rupture: New insights into the loss of micronuclear membrane integrity. Mol Cell 2024; 84:4056-4058. [PMID: 39515293 DOI: 10.1016/j.molcel.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
In two recent studies in Science, Martin et al. and Di Bona et al.1,2 showed that mitochondrial-derived reactive oxygen species (ROS) drive mechanisms responsible for micronuclei membrane rupture, with important implications for cancer.
Collapse
Affiliation(s)
- Shane M Harding
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Departments of Medical Biophysics, Immunology and Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Korsten G, Osinga M, Pelle RA, Serweta AK, Hoogenberg B, Kampinga HH, Kapitein LC. Nuclear poly-glutamine aggregates rupture the nuclear envelope and hinder its repair. J Cell Biol 2024; 223:e202307142. [PMID: 39150509 PMCID: PMC11329780 DOI: 10.1083/jcb.202307142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/08/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Huntington's disease (HD) is caused by a polyglutamine expansion of the huntingtin protein, resulting in the formation of polyglutamine aggregates. The mechanisms of toxicity that result in the complex HD pathology remain only partially understood. Here, we show that nuclear polyglutamine aggregates induce nuclear envelope (NE) blebbing and ruptures that are often repaired incompletely. These ruptures coincide with disruptions of the nuclear lamina and lead to lamina scar formation. Expansion microscopy enabled resolving the ultrastructure of nuclear aggregates and revealed polyglutamine fibrils sticking into the cytosol at rupture sites, suggesting a mechanism for incomplete repair. Furthermore, we found that NE repair factors often accumulated near nuclear aggregates, consistent with stalled repair. These findings implicate nuclear polyQ aggregate-induced loss of NE integrity as a potential contributing factor to Huntington's disease and other polyglutamine diseases.
Collapse
Affiliation(s)
- Giel Korsten
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Miriam Osinga
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Robin A Pelle
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Albert K Serweta
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Baukje Hoogenberg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Yang D, Lai A, Davies A, Janssen AF, Ellis MO, Larrieu D. A novel role for CSA in the regulation of nuclear envelope integrity: uncovering a non-canonical function. Life Sci Alliance 2024; 7:e202402745. [PMID: 39209536 PMCID: PMC11361374 DOI: 10.26508/lsa.202402745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cockayne syndrome (CS) is a premature ageing condition characterized by microcephaly, growth failure, and neurodegeneration. It is caused by mutations in ERCC6 or ERCC8 encoding for Cockayne syndrome B (CSB) and A (CSA) proteins, respectively. CSA and CSB have well-characterized roles in transcription-coupled nucleotide excision repair, responsible for removing bulky DNA lesions, including those caused by UV irradiation. Here, we report that CSA dysfunction causes defects in the nuclear envelope (NE) integrity. NE dysfunction is characteristic of progeroid disorders caused by a mutation in NE proteins, such as Hutchinson-Gilford progeria syndrome. However, it has never been reported in Cockayne syndrome. We observed CSA dysfunction affected LEMD2 incorporation at the NE and increased actin stress fibers that contributed to enhanced mechanical stress to the NE. Altogether, these led to NE abnormalities associated with the activation of the cGAS/STING pathway. Targeting the linker of the nucleoskeleton and cytoskeleton complex was sufficient to rescue these phenotypes. This work reveals NE dysfunction in a progeroid syndrome caused by mutations in a DNA damage repair protein, reinforcing the connection between NE deregulation and ageing.
Collapse
Affiliation(s)
- Denny Yang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Island Research Building, Cambridge, UK
| | - Austin Lai
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| | - Amelie Davies
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anne Fj Janssen
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| | - Matthew O Ellis
- UK Dementia Research Institute, Island Research Building, Cambridge, UK
| | - Delphine Larrieu
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| |
Collapse
|
8
|
Romero-Bueno R, Fragoso-Luna A, Ayuso C, Mellmann N, Kavsek A, Riedel CG, Ward JD, Askjaer P. A human progeria-associated BAF-1 mutation modulates gene expression and accelerates aging in C. elegans. EMBO J 2024; 43:5718-5746. [PMID: 39367234 PMCID: PMC11574047 DOI: 10.1038/s44318-024-00261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Alterations in the nuclear envelope are linked to a variety of rare diseases termed laminopathies. A single amino acid substitution at position 12 (A12T) of the human nuclear envelope protein BAF (Barrier to Autointegration Factor) causes Néstor-Guillermo Progeria Syndrome (NGPS). This premature ageing condition leads to growth retardation and severe skeletal defects, but the underlying mechanisms are unknown. Here, we have generated a novel in vivo model for NGPS by modifying the baf-1 locus in C. elegans to mimic the human NGPS mutation. These baf-1(G12T) mutant worms displayed multiple phenotypes related to fertility, lifespan, and stress resistance. Importantly, nuclear morphology deteriorated faster during aging in baf-1(G12T) compared to wild-type animals, recapitulating an important hallmark of cells from progeria patients. Although localization of BAF-1(G12T) was similar to wild-type BAF-1, lamin accumulation at the nuclear envelope was reduced in mutant worms. Tissue-specific chromatin binding and transcriptome analyses showed reduced BAF-1 association in most genes deregulated by the baf-1(G12T) mutation, suggesting that altered BAF chromatin association induces NGPS phenotypes via altered gene expression.
Collapse
Affiliation(s)
- Raquel Romero-Bueno
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Adrián Fragoso-Luna
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Cristina Ayuso
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Nina Mellmann
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Alan Kavsek
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain.
| |
Collapse
|
9
|
Dickinson RB, Abolghasemzade S, Lele TP. Rethinking nuclear shaping: insights from the nuclear drop model. SOFT MATTER 2024; 20:7558-7565. [PMID: 39105242 PMCID: PMC11446230 DOI: 10.1039/d4sm00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Changes in the nuclear shape caused by cellular shape changes are generally assumed to reflect an elastic deformation from a spherical nuclear shape. Recent evidence, however, suggests that the nuclear lamina, which forms the outer nuclear surface together with the nuclear envelope, possesses more area than that of a sphere of the same volume. This excess area manifests as folds/wrinkles in the nuclear surface in rounded cells and allows facile nuclear flattening during cell spreading without any changes in nuclear volume or surface area. When the lamina becomes smooth and taut, it is inextensible, and supports a surface tension. At this point, it is possible to mathematically calculate the limiting nuclear shape purely based on geometric considerations. In this paper, we provide a commentary on the "nuclear drop model" which seeks to integrate the above features. We outline its testable physical properties and explore its biological implications.
Collapse
Affiliation(s)
- Richard B Dickinson
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL, 32611, USA.
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
| |
Collapse
|
10
|
Caruso AP, Logue JS. The biophysics of cell motility through mechanochemically challenging environments. Curr Opin Cell Biol 2024; 90:102404. [PMID: 39053178 PMCID: PMC11392632 DOI: 10.1016/j.ceb.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Challenging mechanochemical environments (i.e., with varied mechanical and adhesive properties) are now known to induce a wide range of adaptive phenomena in motile cells. For instance, confinement and low adhesion may trigger a phenotypic transition to fast amoeboid (leader bleb-based) migration. The molecular mechanisms that underly these phenomena are beginning to be understood. Due to its size, the mechanical properties of the nucleus have been shown to limit and facilitate cell migration. Additionally, the activity of various transient receptor potential (TRP) channels is now known to be integral to cell migration in response to a multitude of biophysical stimuli. How cells integrate signals from the nucleus and plasma membrane, however, is unclear. The development of therapeutics that suppress cancer or enhance immune cell migration for immuno-oncology applications, etc., will require additional work to completely understand the molecular mechanisms that enable cells to navigate mechanochemically challenging environments.
Collapse
Affiliation(s)
- Alexa P Caruso
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Jeremy S Logue
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA.
| |
Collapse
|
11
|
Kader T, Lin JR, Hug C, Coy S, Chen YA, de Bruijn I, Shih N, Jung E, Pelletier RJ, Leon ML, Mingo G, Omran DK, Lee JS, Yapp C, Satravada BA, Kundra R, Xu Y, Chan S, Tefft JB, Muhlich J, Kim S, Gysler SM, Agudo J, Heath JR, Schultz N, Drescher C, Sorger PK, Drapkin R, Santagata S. Multimodal Spatial Profiling Reveals Immune Suppression and Microenvironment Remodeling in Fallopian Tube Precursors to High-Grade Serous Ovarian Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615007. [PMID: 39386723 PMCID: PMC11463462 DOI: 10.1101/2024.09.25.615007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
High-Grade Serous Ovarian Cancer (HGSOC) originates from fallopian tube (FT) precursors. However, the molecular changes that occur as precancerous lesions progress to HGSOC are not well understood. To address this, we integrated high-plex imaging and spatial transcriptomics to analyze human tissue samples at different stages of HGSOC development, including p53 signatures, serous tubal intraepithelial carcinomas (STIC), and invasive HGSOC. Our findings reveal immune modulating mechanisms within precursor epithelium, characterized by chromosomal instability, persistent interferon (IFN) signaling, and dysregulated innate and adaptive immunity. FT precursors display elevated expression of MHC-class I, including HLA-E, and IFN-stimulated genes, typically linked to later-stage tumorigenesis. These molecular alterations coincide with progressive shifts in the tumor microenvironment, transitioning from immune surveillance in early STICs to immune suppression in advanced STICs and cancer. These insights identify potential biomarkers and therapeutic targets for HGSOC interception and clarify the molecular transitions from precancer to cancer.
Collapse
Affiliation(s)
- Tanjina Kader
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu-An Chen
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Natalie Shih
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Mariana Lopez Leon
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dalia Khaled Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jong Suk Lee
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | | | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Yilin Xu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Juliann B Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sarah Kim
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nikolaus Schultz
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Charles Drescher
- Swedish Cancer Institute Gynecologic Oncology and Pelvic Surgery, Seattle, WA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Di Bona M, Bakhoum SF. A new microscopy pipeline for studying the initial stages of nuclear and micronuclear rupture and repair. Front Cell Dev Biol 2024; 12:1475095. [PMID: 39359718 PMCID: PMC11445188 DOI: 10.3389/fcell.2024.1475095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Nuclear envelope repair is a fundamental cellular response to stress, especially for cells experiencing frequent nuclear ruptures, such as cancer cells. Moreover, for chromosomally unstable cancer cells, characterized by the presence of micronuclei, the irreversible rupture of these structures constitutes a fundamental step toward cancer progression and therapy resistance. For these reasons, the study of nuclear envelope rupture and repair is of paramount importance. Nonetheless, due to the constraint imposed by the stochastic nature of rupture events, a precise characterization of the initial stage of nuclear repair remains elusive. In this study, we overcame this limitation by developing a new imaging pipeline that deterministically induces rupture while simultaneously imaging fluorescently tagged repair proteins. We provide a detailed step-by-step protocol to implement this method on any confocal microscope and applied it to study the major nuclear repair protein, barrier-to-autointegration factor (BAF). As a proof of principle, we demonstrated two different downstream analysis methods and showed how BAF is differentially recruited at sites of primary and micronuclear rupture. Additionally, we applied this method to study the recruitment at primary nuclei of the inner nuclear membrane protein LEM-domain 2 (LEMD2) and Charged Multivesicular Protein 7 (CHMP7), the scaffolding protein of the endosomal sorting complex required for transport III (ESCRT-III) membrane remodeling complex. The CHMP7-LEMD2 binding is the fundamental step allowing the recruitment of ESCRT-III, which represents the other major nuclear repair mechanism. This demonstrates the method's applicability for investigating protein dynamics at sites of nuclear and micronuclear envelope rupture and paves the way to more time-resolved studies of nuclear envelope repair.
Collapse
Affiliation(s)
- Melody Di Bona
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Samuel F Bakhoum
- Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
13
|
Maddaluno M, Settembre C. Micronuclear collapse mechanisms in cancer. Science 2024; 385:930-931. [PMID: 39208121 DOI: 10.1126/science.adr7417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Oxidative damage triggers micronuclear membrane rupture and defective repair.
Collapse
Affiliation(s)
- Marianna Maddaluno
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
14
|
Liu H, Su P, Li Y, Hoover A, Hu S, King SA, Zhao J, Guan JL, Chen SY, Zhao Y, Tan M, Wu X. VAMP2 controls murine epidermal differentiation and carcinogenesis by regulation of nucleophagy. Dev Cell 2024; 59:2005-2016.e4. [PMID: 38810653 PMCID: PMC11303110 DOI: 10.1016/j.devcel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Differentiation of murine epidermal stem/progenitor cells involves the permanent withdrawal from the cell cycle, the synthesis of various protein and lipid components for the cornified envelope, and the controlled dissolution of cellular organelles and nuclei. Deregulated epidermal differentiation contributes to the development of various skin diseases, including skin cancers. With a genome-wide shRNA screen, we identified vesicle-associated membrane protein 2 (VAMP2) as a critical factor involved in skin differentiation. Deletion of VAMP2 leads to aberrant skin stratification and enucleation in vivo. With quantitative proteomics, we further identified an autophagy protein, focal adhesion kinase family interacting protein of 200 kDa (FIP200), as a binding partner of VAMP2. Additionally, we showed that both VAMP2 and FIP200 are critical for murine keratinocyte enucleation and epidermal differentiation. Loss of VAMP2 or FIP200 enhances cutaneous carcinogenesis in vivo. Together, our findings identify important molecular mechanisms underlying epidermal differentiation and skin tumorigenesis.
Collapse
Affiliation(s)
- Han Liu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Peihong Su
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yuanyuan Li
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alex Hoover
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sophie Hu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sarah A King
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jing Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
16
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. J Cell Biol 2024; 223:e202308152. [PMID: 38683248 PMCID: PMC11059771 DOI: 10.1083/jcb.202308152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
17
|
Liang L, Chen S, Su W, Zhang H, Yu R. Integrated Transcriptomic and Proteomic Study of the Mechanism of Action of the Novel Small-Molecule Positive Allosteric Modulator 1 in Targeting PAC1-R for the Treatment of D-Gal-Induced Aging Mice. Int J Mol Sci 2024; 25:3872. [PMID: 38612681 PMCID: PMC11011505 DOI: 10.3390/ijms25073872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.
Collapse
Affiliation(s)
- Lili Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shang Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanlin Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan 523808, China
| | - Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
18
|
Benarroch E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024; 102:e209202. [PMID: 38330281 DOI: 10.1212/wnl.0000000000209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
|
19
|
Di Bona M, Bakhoum SF. Micronuclei and Cancer. Cancer Discov 2024; 14:214-226. [PMID: 38197599 PMCID: PMC11265298 DOI: 10.1158/2159-8290.cd-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Chromosome-containing micronuclei are a feature of human cancer. Micronuclei arise from chromosome mis-segregation and characterize tumors with elevated rates of chromosomal instability. Although their association with cancer has been long recognized, only recently have we broadened our understanding of the mechanisms that govern micronuclei formation and their role in tumor progression. In this review, we provide a brief historical account of micronuclei, depict the mechanisms underpinning their creation, and illuminate their capacity to propel tumor evolution through genetic, epigenetic, and transcriptional transformations. We also posit the prospect of leveraging micronuclei as biomarkers and therapeutic targets in chromosomally unstable cancers. SIGNIFICANCE Micronuclei in chromosomally unstable cancer cells serve as pivotal catalysts for cancer progression, instigating transformative genomic, epigenetic, and transcriptional alterations. This comprehensive review not only synthesizes our present comprehension but also outlines a framework for translating this knowledge into pioneering biomarkers and therapeutics, thereby illuminating novel paths for personalized cancer management.
Collapse
Affiliation(s)
- Melody Di Bona
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
20
|
van Heerden D, Klima S, van den Bout I. How nuclear envelope dynamics can direct laminopathy phenotypes. Curr Opin Cell Biol 2024; 86:102290. [PMID: 38048657 DOI: 10.1016/j.ceb.2023.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
The nuclear envelope separates the genome from the cytoplasmic environment. However, the nuclear envelope is also physically associated with the genome and exerts influence on gene expression and genome modification. The nucleus is dynamic, changing shape and responding to cell movement, disassembling and assembling during cell division, and undergoing rupture and repair. These dynamics can be impacted by genetic disease, leading to a family of diseases called laminopathies. Their disparate phenotypes suggest that multiple processes are affected. We highlight three such processes here, which we believe can be used to classify most of the laminopathies. While much still needs to be learned, some commonalities between these processes, such as proteins involved in nuclear envelope formation and rupture repair, may drive a variety of laminopathies. Here we review the latest information regarding nuclear dynamics and its role in laminopathies related to mutations in the nuclear lamina and linker of nucleoskeleton and cytoskeleton complex (LINC) proteins.
Collapse
Affiliation(s)
- David van Heerden
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Stefanie Klima
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Iman van den Bout
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa.
| |
Collapse
|
21
|
Pho M, Berrada Y, Gunda A, Lavallee A, Chiu K, Padam A, Currey ML, Stephens AD. Actin contraction controls nuclear blebbing and rupture independent of actin confinement. Mol Biol Cell 2024; 35:ar19. [PMID: 38088876 PMCID: PMC10881147 DOI: 10.1091/mbc.e23-07-0292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024] Open
Abstract
The nucleus is a mechanically stable compartment of the cell that contains the genome and performs many essential functions. Nuclear mechanical components chromatin and lamins maintain nuclear shape, compartmentalization, and function by resisting antagonistic actin contraction and confinement. Studies have yet to compare chromatin and lamins perturbations side-by-side as well as modulated actin contraction while holding confinement constant. To accomplish this, we used nuclear localization signal green fluorescent protein to measure nuclear shape and rupture in live cells with chromatin and lamin perturbations. We then modulated actin contraction while maintaining actin confinement measured by nuclear height. Wild type, chromatin decompaction, and lamin B1 null present bleb-based nuclear deformations and ruptures dependent on actin contraction and independent of actin confinement. Actin contraction inhibition by Y27632 decreased nuclear blebbing and ruptures while activation by CN03 increased rupture frequency. Lamin A/C null results in overall abnormal shape also reliant on actin contraction, but similar blebs and ruptures as wild type. Increased DNA damage is caused by nuclear blebbing or abnormal shape which can be relieved by inhibition of actin contraction which rescues nuclear shape and decreases DNA damage levels in all perturbations. Thus, actin contraction drives nuclear blebbing, bleb-based ruptures, and abnormal shape independent of changes in actin confinement.
Collapse
Affiliation(s)
- Mai Pho
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Yasmin Berrada
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Aachal Gunda
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Anya Lavallee
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Katherine Chiu
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Arimita Padam
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Marilena L. Currey
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
22
|
Sobo JM, Alagna NS, Sun SX, Wilson KL, Reddy KL. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol 2024; 86:102313. [PMID: 38262116 DOI: 10.1016/j.ceb.2023.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The nuclear lamina (NL) is a crucial component of the inner nuclear membrane (INM) and consists of lamin filaments and associated proteins. Lamins are type V intermediate filament proteins essential for maintaining the integrity and mechanical properties of the nucleus. In human cells, 'B-type' lamins (lamin B1 and lamin B2) are ubiquitously expressed, while 'A-type' lamins (lamin A, lamin C, and minor isoforms) are expressed in a tissue- and development-specific manner. Lamins homopolymerize to form filaments that localize primarily near the INM, but A-type lamins also localize to and function in the nucleoplasm. Lamins play central roles in the assembly, structure, positioning, and mechanics of the nucleus, modulating cell signaling and influencing development, differentiation, and other activities. This review highlights recent findings on the structure and regulation of lamin filaments, providing insights into their multifaceted functions, including their role as "mechanosensors", delving into the emerging significance of lamin filaments as vital links between cytoskeletal and nuclear structures, chromatin organization, and the genome.
Collapse
Affiliation(s)
- Joan M Sobo
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas S Alagna
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katherine L Wilson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Scott KL, Halfmann CT, Hoefakker AD, Purkayastha P, Wang TC, Lele TP, Roux KJ. Nucleocytoplasmic transport rates are regulated by cellular processes that modulate GTP availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573651. [PMID: 38234722 PMCID: PMC10793428 DOI: 10.1101/2023.12.29.573651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.
Collapse
Affiliation(s)
- Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
| | | | - Allison D. Hoefakker
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Purboja Purkayastha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ting Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Tanmay P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
- Department of Translational Medical Sciences, Texas A&M University, Houston, Texas
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| |
Collapse
|
24
|
Halfmann CT, Scott KL, Sears RM, Roux KJ. Mechanisms by which barrier-to-autointegration factor regulates dynamics of nucleocytoplasmic leakage and membrane repair following nuclear envelope rupture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572811. [PMID: 38187776 PMCID: PMC10769424 DOI: 10.1101/2023.12.21.572811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The nuclear envelope (NE) creates a barrier between the cytosol and nucleus during interphase that is key for cellular compartmentalization and protecting genomic DNA. NE rupture can expose genomic DNA to the cytosol and allow admixture of the nuclear and cytosolic constituents, a proposed mechanism of cancer and NE-associated diseases. Barrier-to-autointegration factor (BAF) is a DNA-binding protein that localizes to NE ruptures where it recruits LEM-domain proteins, A-type lamins, and participates in rupture repair. To further reveal the mechanisms by which BAF responds to and aids in repairing NE ruptures, we investigated known properties of BAF including LEM domain binding, lamin binding, compartmentalization, phosphoregulation of DNA binding, and BAF dimerization. We demonstrate that it is the cytosolic population of BAF that functionally repairs NE ruptures, and phosphoregulation of BAF's DNA-binding that enables its ability to facilitate that repair. Interestingly, BAF's LEM or lamin binding activity appears dispensable for its role in functional repair. Furthermore, we demonstrate that BAF functions to reduce the extent of leakage though NE ruptures, suggesting that BAF effectively forms a diffusion barrier prior to NE repair. Collectively, these results enhances our knowledge of the mechanisms by which BAF responds to NE ruptures and facilitates their repair.
Collapse
Affiliation(s)
| | - Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
| | - Rhiannon M. Sears
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls SD
| |
Collapse
|
25
|
Dickinson RB, Lele TP. A new function for nuclear lamins: providing surface tension to the nuclear drop. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100483. [PMID: 38283102 PMCID: PMC10812902 DOI: 10.1016/j.cobme.2023.100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The nuclear lamina, a conserved structure in metazoans, provides mechanical rigidity to the nuclear envelope. A decrease in lamin levels and/or lamin mutations are associated with a host of human diseases. Despite being only about 15 nm thick, perturbation of components of the nuclear lamina dramatically impacts the deformation response of the entire nucleus through mechanisms that are not well understood. Here we discuss evidence for the recently proposed 'nuclear drop' model that explains the role of A-type lamins in nuclear deformation in migrating cells. In this model, the nuclear lamina acts as an inextensible surface, supporting a surface tension when fully unfolded, that balances nuclear interior pressure. Much like a liquid drop surface where the molecularly thin interface governs surface tension and drop shape under external forces, the thin nuclear lamina imparts a surface tension on the nuclear drop to resist nuclear deformation as well as to establish nuclear shape. We discuss implications of the nuclear drop model for the function of this crucially important eukaryotic organelle.
Collapse
Affiliation(s)
- Richard B. Dickinson
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL, 32611, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
| |
Collapse
|
26
|
Coy S, Cheng B, Lee JS, Rashid R, Browning L, Xu Y, Chakrabarty SS, Yapp C, Chan S, Tefft JB, Scott E, Spektor A, Ligon KL, Baker GJ, Pellman D, Sorger PK, Santagata S. 2D and 3D multiplexed subcellular profiling of nuclear instability in human cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566063. [PMID: 37986801 PMCID: PMC10659270 DOI: 10.1101/2023.11.07.566063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nuclear atypia, including altered nuclear size, contour, and chromatin organization, is ubiquitous in cancer cells. Atypical primary nuclei and micronuclei can rupture during interphase; however, the frequency, causes, and consequences of nuclear rupture are unknown in most cancers. We demonstrate that nuclear envelope rupture is surprisingly common in many human cancers, particularly glioblastoma. Using highly-multiplexed 2D and super-resolution 3D-imaging of glioblastoma tissues and patient-derived xenografts and cells, we link primary nuclear rupture with reduced lamin A/C and micronuclear rupture with reduced lamin B1. Moreover, ruptured glioblastoma cells activate cGAS-STING-signaling involved in innate immunity. We observe that local patterning of cell states influences tumor spatial organization and is linked to both lamin expression and rupture frequency, with neural-progenitor-cell-like states exhibiting the lowest lamin A/C levels and greatest susceptibility to primary nuclear rupture. Our study reveals that nuclear instability is a core feature of cancer, and links nuclear integrity, cell state, and immune signaling.
Collapse
Affiliation(s)
- Shannon Coy
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Cheng
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Suk Lee
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rumana Rashid
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lindsay Browning
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yilin Xu
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sankha S. Chakrabarty
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Clarence Yapp
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sabrina Chan
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliann B. Tefft
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Emily Scott
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Alexander Spektor
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Boston, MA, USA
| | - Keith L. Ligon
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gregory J. Baker
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter K. Sorger
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sandro Santagata
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Yao X, Xu X, Hu K, Yang Z, Deng S. BANF1 promotes glutamate-induced apoptosis of HT-22 hippocampal neurons. Mol Biol Rep 2023; 50:9441-9452. [PMID: 37838622 DOI: 10.1007/s11033-023-08889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Glutamate exposure was fatal to HT-22 neuronal cells that derived from mouse hippocampus. This is often used as a model for hippocampus neurodegeneration in vitro. The targets relevant to glutamate-induced neuronal toxicity is not fully understood. In this study, we aimed to identify crucial factors associated with glutamate-induced cytotoxicity in HT-22 cells. METHODS HT-22 cells were treated with 7.5 mM glutamate for 24 h and isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis conducted to identify the differentially expressed proteins. Differential proteins were subjected to Gene Ontology analyses. Upregulation of barrier to autointegration factor (BANF1/BANF1) protein was confirmed by RT-qPCR and western blotting. Cell viability was measured by CKK-8 and MTT assays. Cell apoptosis rates and intracellular reactive oxygen species (ROS) levels were detected using flow cytometry. RESULTS A total of 5811 proteins were quantified by iTRAQ, 50 of which were recognized as significantly differential proteins (fold change ≥ 1.5 and P ≤ 0.05); 26 proteins were up-regulated and 24 were down-regulated after exposure to glutamate. GO enrichment analysis showed that the apoptotic signaling pathway was involved in cell death induced by glutamate. BANF1 expression level was markedly increased in HT-22 cells after glutamate treatment. Further, knockdown of BANF1 alleviated glutamate-mediated cell death with lower ROS levels. CONCLUSIONS In conclusion, we successfully filtered out differential proteins relevant to glutamate-mediated cytotoxicity. BANF1 upregulation promoted glutamate-induced apoptosis of HT-22 cells by enhancing ROS generation.
Collapse
Affiliation(s)
- Xinyu Yao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaoyi Xu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kunhua Hu
- Proteomics Research Center, Sun Yat-Sen Medical College of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhaoshou Yang
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Shaodong Deng
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, Guangdong, China.
- Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
28
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. J Cell Sci 2023; 136:jcs261385. [PMID: 37795681 PMCID: PMC10668030 DOI: 10.1242/jcs.261385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Barrier-to-autointegration factor (BAF) protein is a DNA-binding protein that crosslinks chromatin to allow mitotic nuclear envelope (NE) assembly. The LAP2-emerin-MAN1 (LEM)-domain protein LEMD2 and ESCRT-II/III hybrid protein CHMP7 close NE holes surrounding spindle microtubules (MTs). BAF binds LEM-domain family proteins to repair NE ruptures in interphase, but whether BAF-LEM binding participates in NE hole closure around spindle MTs is not known. Here, we took advantage of the stereotypical event of NE formation in fertilized Caenorhabditis elegans oocytes to show that BAF-LEM binding and LEM-2-CHMP-7 have distinct roles in NE closure around spindle MTs. LEM-2 and EMR-1 (homologs of LEMD2 and emerin) function redundantly with BAF-1 (the C. elegans BAF protein) in NE closure. Compromising BAF-LEM binding revealed an additional role for EMR-1 in the maintenance of the NE permeability barrier. In the absence of BAF-LEM binding, LEM-2-CHMP-7 was required for NE assembly and embryo survival. The winged helix domain of LEM-2 recruits CHMP-7 to the NE in C. elegans and a LEM-2-independent nucleoplasmic pool of CHMP-7 also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Lauren Penfield
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511, USA
| |
Collapse
|
29
|
Ader NR, Chen L, Surovtsev IV, Chadwick WL, Rodriguez EC, King MC, Lusk CP. An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity. Nat Cell Biol 2023; 25:1465-1477. [PMID: 37783794 PMCID: PMC11365527 DOI: 10.1038/s41556-023-01235-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The molecular mechanisms by which the endosomal sorting complexes required for transport (ESCRT) proteins contribute to the integrity of the nuclear envelope (NE) barrier are not fully defined. We leveraged the single NE hole generated by mitotic extrusion of the Schizosaccharomyces pombe spindle pole body to reveal two modes of ESCRT function executed by distinct complements of ESCRT-III proteins, both dependent on CHMP7/Cmp7. A grommet-like function is required to restrict the NE hole in anaphase B, whereas replacement of Cmp7 by a sealing module ultimately closes the NE in interphase. Without Cmp7, nucleocytoplasmic compartmentalization remains intact despite NE discontinuities of up to 540 nm, suggesting mechanisms to limit diffusion through these holes. We implicate spindle pole body proteins as key components of a diffusion barrier acting with Cmp7 in anaphase B. Thus, NE remodelling mechanisms cooperate with proteinaceous diffusion barriers beyond nuclear pore complexes to maintain the nuclear compartment.
Collapse
Affiliation(s)
- Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Linda Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Ivan V Surovtsev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | | | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA.
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Shah H, Dey G. A diffusion barrier limits nuclear leaks. Nat Cell Biol 2023; 25:1411-1412. [PMID: 37783793 DOI: 10.1038/s41556-023-01243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Affiliation(s)
- Hiral Shah
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
31
|
De Silva NS, Siewiera J, Alkhoury C, Nader GPF, Nadalin F, de Azevedo K, Couty M, Izquierdo HM, Bhargava A, Conrad C, Maurin M, Antoniadou K, Fouillade C, Londono-Vallejo A, Behrendt R, Bertotti K, Serdjebi C, Lanthiez F, Gallwitz L, Saftig P, Herrero-Fernández B, Saez A, González-Granado JM, van Niel G, Boissonnas A, Piel M, Manel N. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. NATURE AGING 2023; 3:1251-1268. [PMID: 37723209 DOI: 10.1038/s43587-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.
Collapse
Affiliation(s)
| | - Johan Siewiera
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Chantal Alkhoury
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | | | - Kevin de Azevedo
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mickaël Couty
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | | | - Anvita Bhargava
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Cécile Conrad
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Charles Fouillade
- Institut Curie, PSL Research University, Université Paris-Saclay, CNRS, INSERM, UMR3347, U1021, Orsay, France
| | | | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | | | - François Lanthiez
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Lisa Gallwitz
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Beatriz Herrero-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Angela Saez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - José María González-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12). Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid. CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
32
|
Beedle AE, Roca-Cusachs P. The reversibility of cellular mechano-activation. Curr Opin Cell Biol 2023; 84:102229. [PMID: 37633090 DOI: 10.1016/j.ceb.2023.102229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
The cellular microenvironment is highly heterogeneous and dynamic. Therefore, cells must be equipped with molecular tools to adapt and respond to constantly fluctuating inputs. One such input is mechanical force, which activates signalling and regulates cell behaviour in the process of mechanotransduction. Whereas the mechanisms activating mechanotransduction are well studied, the reversibility of this process, whereby cells disassemble and reverse force-activated signalling pathways upon cessation of mechanical stimulation is far less understood. In this review we will outline some of the key experimental techniques to investigate the reversibility of mechanical signalling, and key discoveries arising from them.
Collapse
Affiliation(s)
- Amy Em Beedle
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Physics, King's College London, London WC2R 2LS, UK.
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
33
|
Tang M, Suraweera A, Nie X, Li Z, Lai P, Wells JW, O'Byrne KJ, Woods RJ, Bolderson E, Richard DJ. Mono-phosphorylation at Ser4 of barrier-to-autointegration factor (Banf1) significantly reduces its DNA binding capability by inducing critical changes in its local conformation and DNA binding surface. Phys Chem Chem Phys 2023; 25:24657-24677. [PMID: 37665626 DOI: 10.1039/d3cp02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Barrier-to-autointegration factor (Banf1) is a small DNA-bridging protein. The binding status of Banf1 to DNA is regulated by its N-terminal phosphorylation and dephosphorylation, which plays a critical role in cell proliferation. Banf1 can be phosphorylated at Ser4 into mono-phosphorylated Banf1, which is further phosphorylated at Thr3 to form di-phosphorylated Banf1. It was observed decades ago that mono-phosphorylated Banf1 cannot bind to DNA. However, the underlying molecular- and atomic-level mechanisms remain unclear. A clear understanding of these mechanisms will aid in interfering with the cell proliferation process for better global health. Herein, we explored the detailed atomic bases of unphosphorylated Banf1-DNA binding and how mono- and di-phosphorylation of Banf1 impair these atomic bases to eliminate its DNA-binding capability, followed by exploring the DNA-binding capability of mono- and di-phosphorylation Banf1, using comprehensive and systematic molecular modelling and molecular dynamics simulations. This work presented in detail the residue-level binding energies, hydrogen bonds and water bridges between Banf1 and DNA, some of which have not been reported. Moreover, we revealed that mono-phosphorylation of Banf1 causes its N-terminal secondary structure changes, which in turn induce significant changes in Banf1's DNA binding surface, thus eliminating its DNA-binding capability. At the atomic level, we also uncovered the alterations in interactions due to the induction of mono-phosphorylation that result in the N-terminal secondary structure changes of Banf1. Additionally, our modelling showed that phosphorylated Banf1 with their dominant N-terminal secondary structures bind to DNA with a significantly lower affinity and the docked binding pose are not stable in MD simulations. These findings help future studies in predicting effect of mutations in Banf1 on its DNA-binding capability and open a novel avenue for the development of therapeutics such as cancer drugs, targeting cell proliferation by inducing conformational changes in Banf1's N-terminal domain.
Collapse
Affiliation(s)
- Ming Tang
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- Faculty of Medicine, Frazer Institute, The University of Queensland at the Translational Research Institute Australia, Brisbane, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| | - Xuqiang Nie
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- College of Pharmacy, Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zilin Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Pinglin Lai
- Academy of Orthopedics Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - James W Wells
- Faculty of Medicine, Frazer Institute, The University of Queensland at the Translational Research Institute Australia, Brisbane, Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- Princess Alexandra Hospital, Brisbane, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Centre, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Emma Bolderson
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| | - Derek J Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| |
Collapse
|
34
|
Gunn AL, Yashchenko AI, Dubrulle J, Johnson J, Hatch EM. A high-content screen reveals new regulators of nuclear membrane stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542944. [PMID: 37398267 PMCID: PMC10312541 DOI: 10.1101/2023.05.30.542944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Further analysis of known rupture contributors, including a newly developed automated quantitative analysis of nuclear lamina gaps, strongly suggests that CTDNEP1 acts in a new pathway. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.
Collapse
Affiliation(s)
- Amanda L. Gunn
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Artem I. Yashchenko
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Jodiene Johnson
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Emily M. Hatch
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| |
Collapse
|
35
|
Ross JA, Arcos-Villacis N, Battey E, Boogerd C, Orellana CA, Marhuenda E, Swiatlowska P, Hodzic D, Prin F, Mohun T, Catibog N, Tapia O, Gerace L, Iskratsch T, Shah AM, Stroud MJ. Lem2 is essential for cardiac development by maintaining nuclear integrity. Cardiovasc Res 2023; 119:2074-2088. [PMID: 37067297 PMCID: PMC10478753 DOI: 10.1093/cvr/cvad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 04/18/2023] Open
Abstract
AIMS Nuclear envelope integrity is essential for the compartmentalization of the nucleus and cytoplasm. Importantly, mutations in genes encoding nuclear envelope (NE) and associated proteins are the second highest cause of familial dilated cardiomyopathy. One such NE protein that causes cardiomyopathy in humans and affects mouse heart development is Lem2. However, its role in the heart remains poorly understood. METHODS AND RESULTS We generated mice in which Lem2 was specifically ablated either in embryonic cardiomyocytes (Lem2 cKO) or in adult cardiomyocytes (Lem2 iCKO) and carried out detailed physiological, tissue, and cellular analyses. High-resolution episcopic microscopy was used for three-dimensional reconstructions and detailed morphological analyses. RNA-sequencing and immunofluorescence identified altered pathways and cellular phenotypes, and cardiomyocytes were isolated to interrogate nuclear integrity in more detail. In addition, echocardiography provided a physiological assessment of Lem2 iCKO adult mice. We found that Lem2 was essential for cardiac development, and hearts from Lem2 cKO mice were morphologically and transcriptionally underdeveloped. Lem2 cKO hearts displayed high levels of DNA damage, nuclear rupture, and apoptosis. Crucially, we found that these defects were driven by muscle contraction as they were ameliorated by inhibiting myosin contraction and L-type calcium channels. Conversely, reducing Lem2 levels to ∼45% in adult cardiomyocytes did not lead to overt cardiac dysfunction up to 18 months of age. CONCLUSIONS Our data suggest that Lem2 is critical for integrity at the nascent NE in foetal hearts, and protects the nucleus from the mechanical forces of muscle contraction. In contrast, the adult heart is not detectably affected by partial Lem2 depletion, perhaps owing to a more established NE and increased adaptation to mechanical stress. Taken together, these data provide insights into mechanisms underlying cardiomyopathy in patients with mutations in Lem2 and cardio-laminopathies in general.
Collapse
Affiliation(s)
- Jacob A Ross
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Nathaly Arcos-Villacis
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Edmund Battey
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK
| | - Cornelis Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Constanza Avalos Orellana
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Emilie Marhuenda
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Pamela Swiatlowska
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, 660S. Euclid Avenue, St Louis, MO 63110, USA
| | - Fabrice Prin
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Tim Mohun
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Norman Catibog
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Olga Tapia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| | - Larry Gerace
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Ajay M Shah
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Matthew J Stroud
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular & Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
36
|
Wallace M, Zahr H, Perati S, Morsink CD, Johnson LE, Gacita AM, Lai S, Wallrath LL, Benjamin IJ, McNally EM, Kirby TJ, Lammerding J. Nuclear damage in LMNA mutant iPSC-derived cardiomyocytes is associated with impaired lamin localization to the nuclear envelope. Mol Biol Cell 2023; 34:mbcE21100527. [PMID: 37585285 PMCID: PMC10846625 DOI: 10.1091/mbc.e21-10-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
The LMNA gene encodes the nuclear envelope proteins Lamins A and C, which comprise a major part of the nuclear lamina, provide mechanical support to the nucleus, and participate in diverse intracellular signaling. LMNA mutations give rise to a collection of diseases called laminopathies, including dilated cardiomyopathy (LMNA-DCM) and muscular dystrophies. Although nuclear deformities are a hallmark of LMNA-DCM, the role of nuclear abnormalities in the pathogenesis of LMNA-DCM remains incompletely understood. Using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LMNA mutant patients and healthy controls, we show that LMNA mutant iPSC-CM nuclei have altered shape or increased size compared to healthy control iPSC-CM nuclei. The LMNA mutation exhibiting the most severe nuclear deformities, R249Q, additionally caused reduced nuclear stiffness and increased nuclear fragility. Importantly, for all cell lines, the degree of nuclear abnormalities corresponded to the degree of Lamin A/C and Lamin B1 mislocalization from the nuclear envelope. The mislocalization was likely due to altered assembly of Lamin A/C. Collectively, these results point to the importance of correct lamin assembly at the nuclear envelope in providing mechanical stability to the nucleus and suggest that defects in nuclear lamina organization may contribute to the nuclear and cellular dysfunction in LMNA-DCM.
Collapse
Affiliation(s)
- Melanie Wallace
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Hind Zahr
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Shriya Perati
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Chloé D. Morsink
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, VU Medical Center, 1081 HZ Amsterdam, The Netherlands
| | | | - Anthony M. Gacita
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern Medicine, Chicago, IL 60611
| | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lori L. Wallrath
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
| | - Ivor J. Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern Medicine, Chicago, IL 60611
| | - Tyler J. Kirby
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, VU Medical Center, 1081 HZ Amsterdam, The Netherlands
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| |
Collapse
|
37
|
Lele TP, Levy DL, Mishra K. Editorial: Nuclear morphology in development and disease. Front Cell Dev Biol 2023; 11:1267645. [PMID: 37614225 PMCID: PMC10443097 DOI: 10.3389/fcell.2023.1267645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Tanmay P. Lele
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, United States
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
38
|
Wang M, Huang Y, Chen M, Wang W, Wu F, Zhong T, Chen X, Wang F, Li Y, Yu J, Wu M, Chen D. Inhibition of tumor intrinsic BANF1 activates antitumor immune responses via cGAS-STING and enhances the efficacy of PD-1 blockade. J Immunother Cancer 2023; 11:e007035. [PMID: 37620043 PMCID: PMC10450060 DOI: 10.1136/jitc-2023-007035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND BANF1 is well known as a natural opponent of cyclic GMP-AMP synthase (cGAS) activity on genomic self-DNA. However, the roles of BANF1 in tumor immunity remain unclear. Here, we investigate the possible impact of BANF1 on antitumor immunity and response to immunotherapy. METHODS The Cancer Genome Atlas public data were analyzed to evaluate the relevance of the expression of BANF1, patients' survival and immune cell infiltration. We monitored tumor growth and explored the antitumor efficacy of targeting tumor-intrinsic BANF1 in combination with anti-programmed cell death protein-1 (PD-1) in MC38 or B16F10 tumor models in both immunocompetent and immunodeficient mice. Flow cytometry, immunofluorescence and T cells depletion experiments were used to validate the role of BANF1 in tumor immune microenvironment reprogramming. RNA sequencing was then used to interrogate the mechanisms how BANF1 regulated antitumor immunity. RESULTS We show that upregulated expression of BANF1 in tumor tissues is significantly associated with poor survival and is negatively correlated with immune cell infiltration. Deficiency of BANF1 in tumor cells markedly antagonizes tumor growth in immunocompetent but not immunocompromised mice, and enhances the response to immunotherapy in murine models of melanoma and colon cancer. In the immunotherapy clinical cohort, patients with high BANF1 expression had a worse prognosis. Mechanistically, BANF1 knockout activates antitumor immune responses mediated by cGAS-synthase-stimulator of interferon genes (cGAS-STING) pathway, resulting in an immune-activating tumor microenvironment including increased CD8+ T cell infiltration and decreased myeloid-derived suppressor cell enrichment. CONCLUSIONS BANF1 is a key regulator of antitumor immunity mediated by cGAS-STING pathway. Therefore, our study provides a rational that targeting BANF1 is a potent strategy for enhancing immunotherapy for cancer with BANF1 upregulation.
Collapse
Affiliation(s)
- Minglei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Yiheng Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Minxin Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weiyan Wang
- School of Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Fei Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Zhong
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaozheng Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| |
Collapse
|
39
|
Kamikawa Y, Wu Z, Nakazawa N, Ito T, Saito A, Imaizumi K. Impact of cell cycle on repair of ruptured nuclear envelope and sensitivity to nuclear envelope stress in glioblastoma. Cell Death Discov 2023; 9:233. [PMID: 37422516 DOI: 10.1038/s41420-023-01534-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
The nuclear envelope (NE) is often challenged by various stresses (known as "NE stress"), leading to its dysfunction. Accumulating evidence has proven the pathological relevance of NE stress in numerous diseases ranging from cancer to neurodegenerative diseases. Although several proteins involved in the reassembly of the NE after mitosis have been identified as the NE repair factors, the regulatory mechanisms modulating the efficiency of NE repair remain unclear. Here, we showed that response to NE stress varied among different types of cancer cell lines. U251MG derived from glioblastoma exhibited severe nuclear deformation and massive DNA damage at the deformed nuclear region upon mechanical NE stress. In contrast, another cell line derived from glioblastoma, U87MG, only presented mild nuclear deformation without DNA damage. Time-lapse imaging demonstrated that repairing of ruptured NE often failed in U251MG, but not in U87MG. These differences were unlikely to have been due to weakened NE in U251MG because the expression levels of lamin A/C, determinants of the physical property of the NE, were comparable and loss of compartmentalization across the NE was observed just after laser ablation of the NE in both cell lines. U251MG proliferated more rapidly than U87MG concomitant with reduced expression of p21, a major inhibitor of cyclin-dependent kinases, suggesting a correlation between NE stress response and cell cycle progression. Indeed, visualization of cell cycle stages using fluorescent ubiquitination-based cell cycle indicator reporters revealed greater resistance of U251MG to NE stress at G1 phase than at S and G2 phases. Furthermore, attenuation of cell cycle progression by inducing p21 in U251MG counteracted the nuclear deformation and DNA damage upon NE stress. These findings imply that dysregulation of cell cycle progression in cancer cells causes loss of the NE integrity and its consequences such as DNA damage and cell death upon mechanical NE stress.
Collapse
Affiliation(s)
- Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Zuqian Wu
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Nayuta Nakazawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Taichi Ito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
40
|
Barger SR, Penfield L, Bahmanyar S. Nuclear envelope assembly relies on CHMP-7 in the absence of BAF-LEM-mediated hole closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547980. [PMID: 37461528 PMCID: PMC10350047 DOI: 10.1101/2023.07.06.547980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Barrier-to-autointegration factor (BAF) is a DNA binding protein that crosslinks chromatin to assemble the nuclear envelope (NE) after mitosis. BAF also binds the Lap2b-Emerin-Man1 (LEM) domain family of NE proteins to repair interphase ruptures. The NE adaptors to ESCRTs, LEMD2-CHMP7, seal NE holes surrounding mitotic spindle microtubules (MTs), but whether NE hole closure in mitosis involves BAF-LEM binding is not known. Here, we analyze NE sealing after meiosis II in C. elegans oocytes to show that BAF-LEM binding and LEM-2 LEMD2 -CHMP-7 have distinct roles in hole closure around spindle MTs. LEM-2/EMR-1 emerin function redundantly with BAF-1 to seal the NE. Compromising BAF-LEM binding revealed an additional role for EMR-1 in maintenance of the NE permeability barrier and an essential role for LEM-2-CHMP-7 in preventing NE assembly failure. The WH domain of LEM-2 recruits the majority of CHMP-7 to the NE in C. elegans and a LEM-2 -independent pool of CHMP-7, which is mostly enriched in the nucleoplasm, also contributes to NE stability. Thus, NE hole closure surrounding spindle MTs requires redundant mechanisms that safeguard against failure in NE assembly to support embryogenesis.
Collapse
Affiliation(s)
- Sarah R. Barger
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| | - Lauren Penfield
- Current address: Department of Molecular, Cellular, and Developmental Biology at University of California, Santa Barbara, CA
| | - Shirin Bahmanyar
- Yale University, Department of Molecular, Cellular, Developmental Biology, 266 Whitney Ave., New Haven, CT 06511
| |
Collapse
|
41
|
Shao N, Zhou Y, Yao J, Zhang P, Song Y, Zhang K, Han X, Wang B, Liu X. A Bidirectional Single-Cell Migration and Retrieval Chip for Quantitative Study of Dendritic Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204544. [PMID: 36658690 PMCID: PMC10015900 DOI: 10.1002/advs.202204544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Dendritic cell (DC) migration is a fundamental step during execution of its adaptive immunity functions. Studying DC migration characteristics is critical for development of DC-dependent allergy treatments, vaccines, and cancer immunotherapies. Here, a microfluidics-based single-cell migration platform is described that enables high-throughput and precise bidirectional cell migration assays. It also allows selective retrieval of cell subpopulations that have different migratory potentials. Using this microfluidic platform, DC migration is investigated in response to different chemoattractants and inhibitors, quantitatively describe DC migration patterns and retrieve DC subpopulations of different migratory potentials for differential gene expression analysis. This platform opens an avenue for precise characterization of cell migration and potential discovery of therapeutic modulators.
Collapse
Affiliation(s)
- Ning Shao
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Yufu Zhou
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- The Third Xiangya HospitalCentral South UniversityChangsha410008P. R. China
| | - Jun Yao
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Pengchao Zhang
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Present address:
Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingSchool of Materials Science and EngineeringWuhan University of TechnologyWuhan430070P. R. China
| | - Yanni Song
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbin150081P. R. China
| | - Kai Zhang
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| | - Xin Han
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
- Present address:
School of Medicine and Holistic Integrative MedicineNanjing University of Chinese MedicineNanjing210023P. R. China
| | - Bin Wang
- Department of GeneticsThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Xuewu Liu
- Department of NanomedicineHouston Methodist Research InstituteHoustonTX77030USA
| |
Collapse
|
42
|
The Conformation of the Intrinsically Disordered N-Terminal Region of Barrier-to-Autointegration Factor (BAF) is Regulated by pH and Phosphorylation. J Mol Biol 2023; 435:167888. [PMID: 36402223 DOI: 10.1016/j.jmb.2022.167888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Barrier-to-Autointegration Factor (BAF) is a highly conserved DNA binding protein important for genome integrity. Its localization and function are regulated through phosphorylation. Previously reported structures of BAF suggested that it is fully ordered, but our recent NMR analysis revealed that its N-terminal region is flexible in solution and that S4/T3 di-phosphorylation by VRK1 reduces this flexibility. Here, molecular dynamics (MD) simulation was used to unveil the conformational ensembles accessible to the N-terminal region of BAF either unphosphorylated, mono-phosphorylated on S4 or di-phosphorylated on S4/T3 (pBAF) and to reveal the interactions that contribute to define these ensembles. We show that the intrinsic flexibility observed in the N-terminal region of BAF is reduced by S4 phosphorylation and to a larger extent by S4/T3 di-phosphorylation. Thanks to the atomic description offered by MD supported by the NMR study of several BAF mutants, we identified the dynamic network of salt bridge interactions responsible for the conformational restriction involving pS4 and pT3 with residues located in helix α1 and α6. Using MD, we showed that the flexibility in the N-terminal region of BAF depends on the ionic strength and on the pH. We show that the presence of two negative charges of the phosphoryl groups is required for a substantial decrease in flexibility in pBAF. Using MD supported by NMR, we also showed that H7 deprotonation reduces the flexibility in the N-terminal region of BAF. Thus, the conformation of the intrinsically disordered N-terminal region of BAF is highly tunable, likely related to its diverse functions.
Collapse
|
43
|
Chen R, Buchmann S, Kroth A, Arias-Loza AP, Kohlhaas M, Wagner N, Grüner G, Nickel A, Cirnu A, Williams T, Maack C, Ergün S, Frantz S, Gerull B. Mechanistic Insights of the LEMD2 p.L13R Mutation and Its Role in Cardiomyopathy. Circ Res 2023; 132:e43-e58. [PMID: 36656972 DOI: 10.1161/circresaha.122.321929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nuclear envelope proteins play an important role in the pathogenesis of hereditary cardiomyopathies. Recently, a new form of arrhythmic cardiomyopathy caused by a homozygous mutation (p.L13R) in the inner nuclear membrane protein LEMD2 was discovered. The aim was to unravel the molecular mechanisms of mutant LEMD2 in the pathogenesis of cardiomyopathy. METHODS We generated a Lemd2 p.L13R knock-in mouse model and a corresponding cell model via CRISPR/Cas9 technology and investigated the cardiac phenotype as well as cellular and subcellular mechanisms of nuclear membrane rupture and repair. RESULTS Knock-in mice developed a cardiomyopathy with predominantly endocardial fibrosis, left ventricular dilatation, and systolic dysfunction. Electrocardiograms displayed pronounced ventricular arrhythmias and conduction disease. A key finding of knock-in cardiomyocytes on ultrastructural level was a significant increase in nuclear membrane invaginations and decreased nuclear circularity. Furthermore, increased DNA damage and premature senescence were detected as the underlying cause of fibrotic and inflammatory remodeling. As the p.L13R mutation is located in the Lap2/Emerin/Man1 (LEM)-domain, we observed a disrupted interaction between mutant LEMD2 and BAF (barrier-to-autointegration factor), which is required to initiate the nuclear envelope rupture repair process. To mimic increased mechanical stress with subsequent nuclear envelope ruptures, we investigated mutant HeLa-cells upon electrical stimulation and increased stiffness. Here, we demonstrated impaired nuclear envelope rupture repair capacity, subsequent cytoplasmic leakage of the DNA repair factor KU80 along with increased DNA damage, and recruitment of the cGAS (cyclic GMP-AMP synthase) to the nuclear membrane and micronuclei. CONCLUSIONS We show for the first time that the Lemd2 p.L13R mutation in mice recapitulates human dilated cardiomyopathy with fibrosis and severe ventricular arrhythmias. Impaired nuclear envelope rupture repair capacity resulted in increased DNA damage and activation of the cGAS/STING/IFN pathway, promoting premature senescence. Hence, LEMD2 is a new player inthe disease group of laminopathies.
Collapse
Affiliation(s)
- Ruping Chen
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| | - Simone Buchmann
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Amos Kroth
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Anahi-Paula Arias-Loza
- Department of Nuclear Medicine, Comprehensive Heart Failure Center (A.-P.A.-L.), University Hospital Würzburg, Germany
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany (N.W., S.E.)
| | - Gianna Grüner
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Alexandra Cirnu
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
| | - Tatjana Williams
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (M.K., A.N., C.M.), University Hospital Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Germany (N.W., S.E.)
| | - Stefan Frantz
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
- Comprehensive Heart Failure Center (S.F.), University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Cardiovascular Genetics, Comprehensive Heart Failure Center (R.C., S.B., A.K., G.G., A.C., T.W., B.G.), University Hospital Würzburg, Germany
- Department of Medicine I (R.C., T.W., C.M., S.F., B.G.), University Hospital Würzburg, Germany
| |
Collapse
|
44
|
Moreno-Andrés D, Holl K, Antonin W. The second half of mitosis and its implications in cancer biology. Semin Cancer Biol 2023; 88:1-17. [PMID: 36436712 DOI: 10.1016/j.semcancer.2022.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The nucleus undergoes dramatic structural and functional changes during cell division. With the entry into mitosis, in human cells the nuclear envelope breaks down, chromosomes rearrange into rod-like structures which are collected and segregated by the spindle apparatus. While these processes in the first half of mitosis have been intensively studied, much less is known about the second half of mitosis, when a functional nucleus reforms in each of the emerging cells. Here we review our current understanding of mitotic exit and nuclear reformation with spotlights on the links to cancer biology.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Kristin Holl
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
45
|
Kono Y, Adam SA, Sato Y, Reddy KL, Zheng Y, Medalia O, Goldman RD, Kimura H, Shimi T. Nucleoplasmic lamin C rapidly accumulates at sites of nuclear envelope rupture with BAF and cGAS. J Cell Biol 2022; 221:e202201024. [PMID: 36301259 PMCID: PMC9617480 DOI: 10.1083/jcb.202201024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
In mammalian cell nuclei, the nuclear lamina (NL) underlies the nuclear envelope (NE) to maintain nuclear structure. The nuclear lamins, the major structural components of the NL, are involved in the protection against NE rupture induced by mechanical stress. However, the specific role of the lamins in repair of NE ruptures has not been fully determined. Our analyses using immunofluorescence and live-cell imaging revealed that the nucleoplasmic pool of lamin C rapidly accumulated at sites of NE rupture induced by laser microirradiation in mouse embryonic fibroblasts. The accumulation of lamin C at the rupture sites required both the immunoglobulin-like fold domain that binds to barrier-to-autointegration factor (BAF) and a nuclear localization signal. The accumulation of nuclear BAF and cytoplasmic cyclic GMP-AMP synthase (cGAS) at the rupture sites was in part dependent on lamin A/C. These results suggest that nucleoplasmic lamin C, BAF, and cGAS concertedly accumulate at sites of NE rupture for rapid repair.
Collapse
Affiliation(s)
- Yohei Kono
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Karen L. Reddy
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
46
|
Snyers L, Löhnert R, Weipoltshammer K, Schöfer C. Emerin prevents BAF-mediated aggregation of lamin A on chromosomes in telophase to allow nuclear membrane expansion and nuclear lamina formation. Mol Biol Cell 2022; 33:ar137. [PMID: 36200863 PMCID: PMC9727812 DOI: 10.1091/mbc.e22-01-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several studies have suggested a role for the LEM-domain protein emerin and the DNA binding factor BAF in nuclear envelope reformation after mitosis, but the exact molecular mechanisms are not understood. Using HeLa cells deficient for emerin or both emerin and lamin A, we show that emerin deficiency induces abnormal aggregation of lamin A at the nuclear periphery in telophase. As a result, nuclear membrane expansion is impaired and BAF accumulates at the core region, the middle part of telophase nuclei. Aggregates do not form when lamin A carries the mutation R435C in the immunoglobulin fold known to prevent interaction of lamin A with BAF suggesting that aggregation is caused by a stabilized association of lamin A with BAF bound to chromosomal DNA. Reintroduction of emerin in the cells prevents formation of lamin A clusters and BAF accumulation at the core region. Therefore emerin is required for the expansion of the nuclear membrane at the core region to enclose the nucleus and for the rapid reformation of the nuclear lamina based on lamin A/C in telophase. Finally, we show that LEM-domain and lumenal domain are required for the targeting of emerin to exert its function at the core region.
Collapse
Affiliation(s)
- L. Snyers
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria,*Address correspondence to: L. Snyers ()
| | - R. Löhnert
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - K. Weipoltshammer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - C. Schöfer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| |
Collapse
|
47
|
Centromere defects, chromosome instability, and cGAS-STING activation in systemic sclerosis. Nat Commun 2022; 13:7074. [PMID: 36400785 PMCID: PMC9674829 DOI: 10.1038/s41467-022-34775-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
Centromere defects in Systemic Sclerosis (SSc) have remained unexplored despite the fact that many centromere proteins were discovered in patients with SSc. Here we report that lesion skin fibroblasts from SSc patients show marked alterations in centromeric DNA. SSc fibroblasts also show DNA damage, abnormal chromosome segregation, aneuploidy (only in diffuse cutaneous (dcSSc)) and micronuclei (in all types of SSc), some of which lose centromere identity while retaining centromere DNA sequences. Strikingly, we find cytoplasmic "leaking" of centromere proteins in limited cutaneous SSc (lcSSc) fibroblasts. Cytoplasmic centromere proteins co-localize with antigen presenting MHC Class II molecules, which correlate precisely with the presence of anti-centromere antibodies. CENPA expression and micronuclei formation correlate highly with activation of the cGAS-STING/IFN-β pathway as well as markers of reactive oxygen species (ROS) and fibrosis, ultimately suggesting a link between centromere alterations, chromosome instability, SSc autoimmunity, and fibrosis.
Collapse
|
48
|
Lestrell E, Chen Y, Aslanoglou S, O'Brien CM, Elnathan R, Voelcker NH. Silicon Nanoneedle-Induced Nuclear Deformation: Implications for Human Somatic and Stem Cell Nuclear Mechanics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45124-45136. [PMID: 36173149 DOI: 10.1021/acsami.2c10583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell nuclear size and shape are strictly regulated, with aberrations often leading to or being indicative of disease. Nuclear mechanics are critically responsible for intracellular responses to extracellular cues, such as the nanotopography of the external environment. Silicon nanoneedle (SiNN) arrays are tunable, engineered cell culture substrates that permit precise, nanoscale modifications to a cell's external environment to probe mechanotransduction and intracellular signaling. We use a library of four different SiNN arrays to investigate the immediate and downstream effects of controlled geometries of nanotopographical cues on the nuclear integrity/dynamics of human immortalized somatic and renewing stem cell types. We quantify the significant, albeit different, nuclear shape changes that both cell types undergo, which suggest that cellular responses to SiNN arrays are more comparable to three-dimensional (3D) environments than traditional flat cultureware. We show that nanotopography-induced effects on nuclear envelope integrity, protein localization, and focal adhesion complex formation are cell-dependent. Migration is shown to be dramatically impeded for human neural progenitor cells (hNPCs) on nanotopographies compared to flat substrates but not for somatic cells. Our results indicate an additional layer of complexity in cellular mechanotransduction, which warrants closer attention in the context of engineered substrates and scaffolds for clinical applications.
Collapse
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Yaping Chen
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Stella Aslanoglou
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3168, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| |
Collapse
|
49
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
50
|
Janssen A, Marcelot A, Breusegem S, Legrand P, Zinn-Justin S, Larrieu D. The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor-Guillermo progeria syndrome cells. Nucleic Acids Res 2022; 50:9260-9278. [PMID: 36039758 PMCID: PMC9458464 DOI: 10.1093/nar/gkac726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Nestor-Guillermo progeria syndrome (NGPS) is caused by a homozygous alanine-to-threonine mutation at position 12 (A12T) in barrier-to-autointegration factor (BAF). It is characterized by accelerated aging with severe skeletal abnormalities. BAF is an essential protein binding to DNA and nuclear envelope (NE) proteins, involved in NE rupture repair. Here, we assessed the impact of BAF A12T on NE integrity using NGPS-derived patient fibroblasts. We observed a strong defect in lamin A/C accumulation to NE ruptures in NGPS cells, restored upon homozygous reversion of the pathogenic BAF A12T mutation with CRISPR/Cas9. By combining in vitro and cellular assays, we demonstrated that while the A12T mutation does not affect BAF 3D structure and phosphorylation by VRK1, it specifically decreases the interaction between BAF and lamin A/C. Finally, we revealed that the disrupted interaction does not prevent repair of NE ruptures but instead generates weak points in the NE that lead to a higher frequency of NE re-rupturing in NGPS cells. We propose that this NE fragility could directly contribute to the premature aging phenotype in patients.
Collapse
Affiliation(s)
- Anne Janssen
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91190, France
| | - Sophia Breusegem
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette 91190, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91190, France
| | - Delphine Larrieu
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|