1
|
Liu D, Wang X, Xu L, Al-Delfi ZNS, Mekonnen ZA, Gao S, Grubor-Bauk B, Zhao CX. Screening lipid nanoparticles using DNA barcoding and qPCR. Colloids Surf B Biointerfaces 2025; 251:114598. [PMID: 40023120 DOI: 10.1016/j.colsurfb.2025.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Quantifying the biodistribution of lipid nanoparticles (LNPs) is critical for optimizing mRNA delivery systems, yet current approaches have inherent limitations. This study introduces a cost-effective method utilizing double-stranded DNA (dsDNA) barcodes and quantitative polymerase chain reaction (qPCR) for rapid analysis of a small library of mRNA-LNPs biodistribution and functional delivery in vivo. Three unique 100-bp dsDNA barcodes were designed to represent for three FDA-approved LNP formulations. Concurrently, these three formulations carrying luciferase mRNA were mixed with DNA-barcoding LNPs as a pool. Following intravenous administration of the pooled LNPs in mice, qPCR analysis revealed the highest abundance of DNA barcodes and accumulation of luciferase mRNA in spleen, with positive correlation between barcodes presence and mRNA localization across organs, validating DNA barcodes as reliable indicators of mRNA-LNPs biodistribution in vivo. Bioluminescence imaging further confirmed successful delivery and protein translation of luciferase mRNA facilitated by the LNPs in vivo. Integrating DNA barcodes for biodistribution analysis and luciferase mRNA for assessing functional delivery enabled comprehensive evaluation of LNP performance. This robust methodology provides valuable insights into the localization patterns and mRNA delivery capabilities of different LNP formulations, paving the way for the development of more effective and targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Dawei Liu
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xing Wang
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Letao Xu
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zahraa Nima Saeed Al-Delfi
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Zelalem Addis Mekonnen
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Song Gao
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia.
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Alshehry Y, Liu X, Zhang Y, Zhu G. Investigation of the impact of lipid nanoparticle compositions on the delivery and T cell response of circRNA vaccine. J Control Release 2025; 381:113617. [PMID: 40107513 PMCID: PMC11994274 DOI: 10.1016/j.jconrel.2025.113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Circular RNA (circRNA) is an emerging class of vaccines for various diseases, such as cancer immunotherapy. For cancer therapeutic vaccines, it is critical to deliver circRNA to lymphoid tissues such as lymph nodes (LNs) and dendritic cells (DCs) and then elicit antigen-specific T cell responses. Lipid nanoparticles (LNPs) have shown great success for mRNA vaccines and may also have great potential as nanocarriers for circRNA vaccines. Here, we studied the impact of LNP composition on the efficiency of immune delivery, protein expression, and the T cell responses for circRNA vaccine. First, we used model mRNA and circRNA encoding firefly luciferase (mRNA-fLuc) to study protein expression and used two small circRNA vaccines to study T cell responses. We investigated a combination of six ionizable lipids, three helper lipids, and six different molar ratios of cholesterol and β-sitosterol for their impact on the physicochemical properties of RNA LNPs, in vitro DC transfection, in vivo protein expression in draining LNs, and antigen-specific T cell responses. Among these ionizable lipids, SM-102 was the most effective for DC transfection and enabling circRNA vaccines to elicit T cell responses. DOPE and β-sitosterol incorporation in LNPs resulted in efficient protein expression, albeit β-sitosterol incorporation appeared to be associated with reduced T cell response. Overall, circRNA was efficiently delivered to DCs and macrophages in mouse draining lymph nodes by LNPs of SM-102 (50 %), cholesterol (38.5 %), DOPE (10 %), and DMG-PEG2000 (1.5 %), resulting in the induction of potent antigen-specific CD8+ T cell response in mice. These findings may provide insights into designing the compositions of LNPs as the carrier for circRNA therapeutics and vaccines.
Collapse
Affiliation(s)
- Yasir Alshehry
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Xiang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Bioinnovations in Brain Cancer, Biointerfaces Institute, Ann Arbor, MI 48109, USA; The Developmental Therapeutics Program, Rogel Cancer Center, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Wang L, Li Y, Jiang P, Bai H, Wu C, Shuai Q, Yan Y. Enhanced mRNA delivery via incorporating hydrophobic amines into lipid nanoparticles. Colloids Surf B Biointerfaces 2025; 249:114528. [PMID: 39847891 DOI: 10.1016/j.colsurfb.2025.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Lipid nanoparticles (LNPs) have shown promising performance in mRNA delivery. Nevertheless, a thorough understanding of the relationship between mRNA delivery efficacy and the structure of LNPs remains imperative. In this study, we systematically investigated the effects of additional hydrophobic amines on the physicochemical properties of mRNA LNPs and their delivery efficacy. The results indicated that this influence depended on the chemical structure of the additional amines and the structure of the lipid carriers. The appropriate addition of the hydrophobic amine 2C8 to lipid carriers with structural 2C8 or 2C6 tails significantly increased their mRNA delivery efficiency. In contrast, the addition of hydrophobic amine C18 to LNPs resulted in a decrease in mRNA delivery efficiency, while the addition of hydrophobic amines 2C6 and C8, as well as alkanes C12' and C16', had relatively little effect on mRNA delivery. Further investigations demonstrated that the appropriate addition of 2C8 could reduce LNP size, moderate internal hydrophobicity and LNP stability, facilitate mRNA release, enhance cellular uptake, and improve intracellular transportation of LNPs, thereby achieving superior mRNA delivery efficiency. These findings highlight the important role of additional hydrophobic amines in mRNA delivery with LNPs and provide valuable insights for the advancement of mRNA delivery carriers.
Collapse
Affiliation(s)
- Longyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yichen Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Bai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Cavegn A, Waldner S, Wang D, Sedzicki J, Kuzucu EÜ, Zogg M, Lotter C, Huwyler J. Intracellular processing of DNA-lipid nanoparticles: A quantitative assessment by image segmentation. J Control Release 2025:113709. [PMID: 40228670 DOI: 10.1016/j.jconrel.2025.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/18/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
Carriers for efficient delivery of nucleic acids, such as lipid nanoparticles (LNPs), have gained much attention for gene therapy applications. Intracellular processing of such nanocarriers is a complex mechanism comprising cellular internalization by endocytosis pathways, endosomal release into the cytosol, lysosomal degradation, and recycling. The endosomal escape rates of current formulations are considered low, and methods to reliably quantify endocytic events are not readily available. To address this shortcoming and to support the optimization of LNP formulations, the current study presents an automated live-cell imaging-based analysis method. Engineered HuH7 hepatic cell lines overexpressing fluorescent Galectin and Rab reporters together with lysosomal co-staining enabled qualitative and quantitative tracking of DNA-loaded LNPs. The use of two fluorescently labeled DNA-LNP formulations containing either SM-102 or ALC-0315 ionizable lipids revealed significant differences in endosomal escape rates and intracellular processing. Upon treatment, only subpopulations of the HuH7 target cells could be activated with respect to escape or recycling. Recycling inhibitors were therefore used to promote endosomal escape. These findings provide valuable insights into the timing and regulation of endocytic events, which will be instrumental to optimize therapeutic LNP formulations.
Collapse
Affiliation(s)
- Alessandra Cavegn
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Samuel Waldner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - David Wang
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| | | | - Evrim Ümit Kuzucu
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Michael Zogg
- Division of Molecular Systems and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Claudia Lotter
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
5
|
Cheung TH, Shoichet MS. The Interplay of Endosomal Escape and RNA Release from Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7174-7190. [PMID: 40080875 DOI: 10.1021/acs.langmuir.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Ribonucleic acid (RNA) nanocarriers, specifically lipid nanoparticles and polymeric nanoparticles, enable RNA transfection both in vitro and in vivo; however, only a small percentage of RNA endocytosed by a cell is delivered to the cytosolic machinery, minimizing its effect. RNA nanocarriers face two major obstacles after endocytosis: endosomal escape and RNA release. Overcoming both obstacles simultaneously is challenging because endosomal escape is usually achieved by using high positive charge to disrupt the endosomal membrane. However, this high positive charge typically also inhibits RNA release because anionic RNA is strongly bound to the nanocarrier by electrostatic interactions. Many nanocarriers address one over the other despite a growing body of evidence demonstrating that both are crucial for RNA transfection. In this review, we survey the various strategies that have been employed to accomplish both endosomal escape and RNA release with a focus on polymeric nanomaterials. We first consider the various requirements a nanocarrier must achieve for RNA delivery including protection from degradation, cellular internalization, endosomal escape, and RNA release. We then discuss current polymers used for RNA delivery and examine the strategies for achieving both endosomal escape and RNA release. Finally, we review various stimuli-responsive strategies for RNA release. While RNA release continues to be a challenge in achieving efficient RNA transfection, many new innovations in polymeric materials have elucidated promising strategies.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
6
|
Carucci C, Philipp J, Müller JA, Sudarsan A, Kostyurina E, Blanchet CE, Schwierz N, Parsons DF, Salis A, Rädler JO. Buffer Specificity of Ionizable Lipid Nanoparticle Transfection Efficiency and Bulk Phase Transition. ACS NANO 2025; 19:10829-10840. [PMID: 40074542 PMCID: PMC11949115 DOI: 10.1021/acsnano.4c14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Lipid nanoparticles (LNPs) are efficient and safe carriers for mRNA vaccines based on advanced ionizable lipids. It is understood that the pH-dependent structural transition of the mesoscopic LNP core phase plays a key role in mRNA transfer. However, buffer-specific variations in transfection efficiency remain obscure. Here we analyze the effect of the buffer type on the transfection efficiency of LNPs. We find that LNPs formulated with the cationic ionizable lipids DLin-MC3-DMA (MC3), SM-102, and ALC-315 in citrate compared to phosphate and acetate buffers exhibit earlier onset and stronger mRNA-GFP expression in vitro. Using synchrotron small-angle X-ray scattering (SAXS) we determine the buffer specificity of the pH-dependent structure of ionizable lipid/cholesterol/water mesophases that serve as model systems for the LNP core phase. The results show that the phase transition from inverse micellar to inverse hexagonal with decreasing pH is shifted to a lower transition pH for acetate and phosphate compared with citrate buffer. Based on continuum theory and ion-specific adsorption obtained from all-atom MD simulations, we propose a mechanism for buffer specificity. Citrate stabilizes the inverse hexagonal phase thus shifting the formation of HII to a higher pH. By contrast, phosphate and acetate stabilize LII. It stands to reason that the inverse micellar to inverse hexagonal transition, which is facilitated in citrate buffer, enables a sensitized pH response of the LNP core phase. This, in turn, enhances endosomal release efficiency and accounts for the earlier onset of gene expression observed in LNPs prepared with citrate buffer.
Collapse
Affiliation(s)
- Cristina Carucci
- Department
of Chemical and Geological Sciences, University
of Cagliari & Center for Colloid and Surface Science (CSGI), Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - Julian Philipp
- Faculty
of Physics, Ludwig-Maximilians University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Judith A. Müller
- Faculty
of Physics, Ludwig-Maximilians University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Akhil Sudarsan
- Institute
of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Ekaterina Kostyurina
- Faculty
of Physics, Ludwig-Maximilians University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Clement E. Blanchet
- European
Molecular Biology Laboratory Hamburg Outstation c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Nadine Schwierz
- Institute
of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Drew F. Parsons
- Department
of Chemical and Geological Sciences, University
of Cagliari & Center for Colloid and Surface Science (CSGI), Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department
of Chemical and Geological Sciences, University
of Cagliari & Center for Colloid and Surface Science (CSGI), Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - Joachim O. Rädler
- Faculty
of Physics, Ludwig-Maximilians University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| |
Collapse
|
7
|
Holick CT, Klein T, Mehnert C, Adermann F, Anufriev I, Streiber M, Harder L, Traeger A, Hoeppener S, Franke C, Nischang I, Schubert S, Schubert US. Poly(2-ethyl-2-oxazoline) (POx) as Poly(ethylene glycol) (PEG)-Lipid Substitute for Lipid Nanoparticle Formulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411354. [PMID: 40103543 DOI: 10.1002/smll.202411354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Indexed: 03/20/2025]
Abstract
Polyoxazolines have long been considered as promising alternatives to poly(ethylene glycol) (PEG) due to their comparable properties, in particular regarding their stealth effect toward the immune system. Lipid nanoparticles (LNPs), as utilized, e.g., in the COVID-19 vaccines, contain PEG-lipids. However, alternatives are required because of the "PEG dilemma" recognized by an increase in anti-PEG antibodies in the human population. In this study, poly(2-ethyl-2-oxazoline) (PEtOx)-based lipids with different degrees of polymerization are synthesized and subsequently used to formulate mRNA-loaded LNPs. The effect of polymer chain length on the size, immunoreaction, and transfection efficiency is investigated in detail. In addition, in-depth transfection studies are performed using super-resolution microscopy (SRM) to investigate the uptake mechanism of PEtOx-based LNPs in comparison to PEG-LNPs. These combined approaches are utilized to identify the best performing LNP, being superior to the commercial PEG-lipid used in the Comirnaty formulation.
Collapse
Affiliation(s)
- Caroline T Holick
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
| | - Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
| | - Charlotte Mehnert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
| | - Franziska Adermann
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
| | - Ilya Anufriev
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Michael Streiber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
| | - Lukas Harder
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
- Institute of Applied Optics and Biophysics (IAOB), Friedrich Schiller University, Jena, Germany, Helmholtzweg 4, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
| | - Christian Franke
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
- Institute of Applied Optics and Biophysics (IAOB), Friedrich Schiller University, Jena, Germany, Helmholtzweg 4, 07743, Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Jena, Germany, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Jena, Germany, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| |
Collapse
|
8
|
Fernandes RS, de Assis Burle-Caldas G, Sergio SAR, Bráz AF, da Silva Leite NP, Pereira M, de Oliveira Silva J, Hojo-Souza NS, de Oliveira B, Fernandes APSM, da Fonseca FG, Gazzinelli RT, Dos Santos Ferreira D, Teixeira SMR. The immunogenic potential of an optimized mRNA lipid nanoparticle formulation carrying sequences from virus and protozoan antigens. J Nanobiotechnology 2025; 23:221. [PMID: 40102899 PMCID: PMC11921523 DOI: 10.1186/s12951-025-03201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Lipid nanoparticles (LNP) are a safe and effective messenger RNA (mRNA) delivery system for vaccine applications, as shown by the COVID-19 mRNA vaccines. One of the main challenges faced during the development of these vaccines is the production of new and versatile LNP formulations capable of efficient encapsulation and delivery to cells in vivo. This study aimed to develop a new mRNA vaccine formulation that could potentially be used against existing diseases as well as those caused by pathogens that emerge every year. RESULTS Using firefly luciferase (Luc) as a reporter mRNA, we evaluated the physical-chemical properties, stability, and biodistribution of an LNP-mRNA formulation produced using a novel lipid composition and a microfluidic organic-aqueous precipitation method. Using mRNAs encoding a dengue virus or a Leishmania infantum antigen, we evaluated the immunogenicity of LNP-mRNA formulations and compared them with the immunization with the corresponding recombinant protein or plasmid-encoded antigens. For all tested LNP-mRNAs, mRNA encapsulation efficiency was higher than 85%, their diameter was around 100 nm, and their polydispersity index was less than 0.3. Following an intramuscular injection of 10 µg of the LNP-Luc formulation in mice, we detected luciferase activity in the injection site, as well as in the liver and spleen, as early as 6 h post-administration. LNPs containing mRNA encoding virus and parasite antigens were highly immunogenic, as shown by levels of antigen-specific IgG antibody as well as IFN-γ production by splenocytes of immunized animals that were similar to the levels that resulted from immunization with the corresponding recombinant protein or plasmid DNA. CONCLUSIONS Altogether, these results indicate that these novel LNP-mRNA formulations are highly immunogenic and may be used as novel vaccine candidates for different infectious diseases.
Collapse
Affiliation(s)
- Renata S Fernandes
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Gabriela de Assis Burle-Caldas
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | | | - Ana Flávia Bráz
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Nathália Pereira da Silva Leite
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Milton Pereira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Juliana de Oliveira Silva
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Pharmaceuticals, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Satchiko Hojo-Souza
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
| | - Bianca de Oliveira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Ana Paula S Moura Fernandes
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Flávio Guimarães da Fonseca
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Diego Dos Santos Ferreira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Pharmaceuticals, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Santuza M Ribeiro Teixeira
- Centro de Tecnologia de Vacinas da, Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil.
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
9
|
Ojansivu M, Barriga HMG, Holme MN, Morf S, Doutch JJ, Andaloussi SE, Kjellman T, Johnsson M, Barauskas J, Stevens MM. Formulation and Characterization of Novel Ionizable and Cationic Lipid Nanoparticles for the Delivery of Splice-Switching Oligonucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419538. [PMID: 40091434 DOI: 10.1002/adma.202419538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Despite increasing knowledge about the mechanistic aspects of lipid nanoparticles (LNPs) as oligonucleotide carriers, the structure-function relationship in LNPs has been generally overlooked. Understanding this correlation is critical in the rational design of LNPs. Here, a materials characterization approach is utilized, applying structural information from small-angle X-ray scattering experiments to design novel LNPs focusing on distinct lipid organizations with a minimal compositional variation. The lipid phase structures are characterized in these LNPs and their corresponding bulk lipid mixtures with small-angle scattering techniques, and the LNP-cell interactions in vitro with respect to cytotoxicity, hemolysis, cargo delivery, cell uptake, and lysosomal swelling. An LNP is identified that outperforms Onpattro lipid composition using lipid components and molar ratios which differ from the gold standard clinical LNPs. The base structure of these LNPs has an inverse micellar phase organization, whereas the LNPs with inverted hexagonal phases are not functional, suggesting that this phase formation may not be needed for LNP-mediated oligonucleotide delivery. The importance of stabilizer choice for the LNP function is demonstrated and super-resolution microscopy highlights the complexity of the delivery mechanisms, where lysosomal swelling for the majority of LNPs is observed. This study highlights the importance of advanced characterization for the rational design of LNPs to enable the study of structure-function relationships.
Collapse
Affiliation(s)
- Miina Ojansivu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
| | - Hanna M G Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
| | - Stefanie Morf
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
| | - James J Doutch
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, OX11 0QX, UK
| | - Samir El Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institute, Huddinge, 14152, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, 141 86, Sweden
- Karolinska ATMP Center, Karolinska Institute, Huddinge, 14152, Stockholm, Sweden
| | | | | | | | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Huddinge, Stockholm, 171 77, Sweden
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
10
|
Chung MC, Mendez‐Gomez HR, Soni D, McGinley R, Zacharia A, Ashbrook J, Stover B, Grippin AJ, Sayour EJ, Guan J. Multi-Step Assembly of an RNA-Liposome Nanoparticle Formulation Revealed by Real-Time, Single-Particle Quantitative Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414305. [PMID: 39887619 PMCID: PMC11948016 DOI: 10.1002/advs.202414305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Indexed: 02/01/2025]
Abstract
Self-assembly plays a critical role in nanoparticle-based applications. However, it remains challenging to monitor the self-assembly of multi-component nanomaterials at a single-particle level, in real-time, with high throughput, and in a model-independent manner. Here, multi-color fluorescence microscopy is applied to track the assembly of both liposomes and mRNA simultaneously in clinical mRNA-based cancer immunotherapy. Imaging reveals that the assembly occurs in discrete steps: initially, RNA adsorbs onto the liposomes; then, the RNA-coated liposomes cluster into heterogeneous structures ranging from sub-micrometer to tens of micrometers. The clustering process is consistent with a Smoluchowski model with a Brownian diffusion kernel. The transition between the two steps of assembly is determined by the orientation of RNA-mediated interactions. Given the facile application of this approach and the ubiquity of the components studied, the imaging and analysis in this work are readily applied to monitor multi-component assembly of diverse nanomaterials.
Collapse
Affiliation(s)
- Michael C. Chung
- Division of Chemical Biology and Medicinal ChemistryCollege of PharmacyUniversity of Texas at AustinAustinTX78712USA
- Department of PhysicsUniversity of FloridaGainesvilleFL32611USA
| | - Hector R. Mendez‐Gomez
- Department of NeurosurgeryPreston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. WellsGainesvilleFL32610USA
| | - Dhruvkumar Soni
- Department of NeurosurgeryPreston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. WellsGainesvilleFL32610USA
| | - Reagan McGinley
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFL32603USA
| | - Alen Zacharia
- Department of PhysicsUniversity of FloridaGainesvilleFL32611USA
| | - Jewel Ashbrook
- Middlebury College Department of PhysicsMcCardell Bicentennial HallMiddleburyVT05753USA
| | - Brian Stover
- Department of PediatricsDivision of Pediatric Hematology OncologyUniversity of FloridaGainesvilleFL32610USA
| | - Adam J. Grippin
- MD Anderson Cancer CenterDivision of Radiation OncologyUniversity of TexasHoustonTX77030USA
| | - Elias J. Sayour
- Department of NeurosurgeryPreston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. WellsGainesvilleFL32610USA
- Department of PediatricsDivision of Pediatric Hematology OncologyUniversity of FloridaGainesvilleFL32610USA
| | - Juan Guan
- Division of Chemical Biology and Medicinal ChemistryCollege of PharmacyUniversity of Texas at AustinAustinTX78712USA
| |
Collapse
|
11
|
Ge K, Bai Z, Wang J, Li Z, Gao F, Liu S, Zhang L, Gao F, Xie C. Engineering EVs-Mediated mRNA Delivery Regulates Microglia Function and Alleviates Depressive-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418872. [PMID: 39838773 DOI: 10.1002/adma.202418872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The development of new non-neurotransmitter drugs is an important supplement to the clinical treatment of major depressive disorder. The latest development of mRNA therapy provides the possibility for the treatment of some major diseases. The endoplasmic reticulum (ER) and mitochondria constitute a highly interconnected set of fundamental organelles within cells. The interconnection between them forms specific microdomains that play pivotal roles in calcium signaling, mitochondrial dynamics, inflammation, and autophagy. Perturbations in ER-mitochondrial connections may contribute to the progression of neurological disorders and other diseases. Herein, an extracellular vesicles-based delivery system, grounded in mRNA gene therapy and integrated with nanomedicine technology is devised. This system is engineered to traverse the blood-brain barrier and specifically target the central nervous system (CNS), facilitating the simultaneous delivery of mRNA drugs and metallic nanozymes into the brain. This dual-pronged approach, targeting ER and mitochondrial crosstalk, inhibits microglial overactivation, promotes M2 polarization of microglia, and suppresses the NF-κB signaling pathway. Consequently, it significantly alleviates Lipopolysaccharides-induced neuroinflammatory responses and ameliorates anxiety- and depression-like behaviors. This study demonstrates a novel antidepressant therapeutic strategy and establishes a new paradigm for mRNA gene therapy in CNS diseases.
Collapse
Affiliation(s)
- Kezhen Ge
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Zetai Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Jiwei Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenfang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Sangni Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Ling Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| |
Collapse
|
12
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
13
|
Loughran G, Andreev DE, Terenin IM, Namy O, Mikl M, Yordanova MM, McManus CJ, Firth AE, Atkins JF, Fraser CS, Ignatova Z, Iwasaki S, Kufel J, Larsson O, Leidel SA, Mankin AS, Mariotti M, Tanenbaum ME, Topisirovic I, Vázquez-Laslop N, Viero G, Caliskan N, Chen Y, Clark PL, Dinman JD, Farabaugh PJ, Gilbert WV, Ivanov P, Kieft JS, Mühlemann O, Sachs MS, Shatsky IN, Sonenberg N, Steckelberg AL, Willis AE, Woodside MT, Valasek LS, Dmitriev SE, Baranov PV. Guidelines for minimal reporting requirements, design and interpretation of experiments involving the use of eukaryotic dual gene expression reporters (MINDR). Nat Struct Mol Biol 2025; 32:418-430. [PMID: 40033152 DOI: 10.1038/s41594-025-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Dual reporters encoding two distinct proteins within the same mRNA have had a crucial role in identifying and characterizing unconventional mechanisms of eukaryotic translation. These mechanisms include initiation via internal ribosomal entry sites (IRESs), ribosomal frameshifting, stop codon readthrough and reinitiation. This design enables the expression of one reporter to be influenced by the specific mechanism under investigation, while the other reporter serves as an internal control. However, challenges arise when intervening test sequences are placed between these two reporters. Such sequences can inadvertently impact the expression or function of either reporter, independent of translation-related changes, potentially biasing the results. These effects may occur due to cryptic regulatory elements inducing or affecting transcription initiation, splicing, polyadenylation and antisense transcription as well as unpredictable effects of the translated test sequences on the stability and activity of the reporters. Unfortunately, these unintended effects may lead to misinterpretation of data and the publication of incorrect conclusions in the scientific literature. To address this issue and to assist the scientific community in accurately interpreting dual-reporter experiments, we have developed comprehensive guidelines. These guidelines cover experimental design, interpretation and the minimal requirements for reporting results. They are designed to aid researchers conducting these experiments as well as reviewers, editors and other investigators who seek to evaluate published data.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- EIRNA Bio, Bioinnovation Hub, Cork, Ireland.
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olivier Namy
- Institute for Integrative Biology of the Cell, CEA, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Martin Mikl
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Martina M Yordanova
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - C Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Alexander S Mankin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Ivan Topisirovic
- Lady Davis Institute, McGill University, Montréal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Gabriela Viero
- Institute of Biophysics, National Research Council (CNR) Unit, Povo, Italy
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Institute for Bioscience & Biotechnology Research, Rockville, MD, USA
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- New York Structural Biology Center, New York, NY, USA
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Michael T Woodside
- Department of Physics, Li Ka Shing Institute of Virology and Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Leos Shivaya Valasek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
14
|
Faber T, Lamprecht A. Cellular Uptake and Trafficking of Lipid Nanocarriers Using High-Resolution Electron Microscopy. AAPS PharmSciTech 2025; 26:71. [PMID: 40011312 DOI: 10.1208/s12249-025-03061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Lipid based nanocarriers are a commonly used drug delivery system with cargos ranging from small molecules to complex RNA-based therapies. There are several hypotheses how such carriers can enter the cell, in which organelles they reside, and how they cross or escape the endo-lysosomal system. To provide additional insights, the cell-nanocarrier interplay was visualized exemplarily with lipid-based nanocarriers and macrophage-like cultured cells (J774A.1 cells) using high resolution electron microscopy. Nanocarrier uptake into J774A.1 cells was detectable after the first 15 min by intracellular accumulation of electron-dense material. These accumulations were identified as lysosomes and lipid droplets, indicating complete degradation and a subsequent formation of storage organelles as early as 15 min. Inhibition of lysosomal acid lipase did not block lipid droplet formation, but rather resulted in accumulation of lipid droplets within lysosomes. This suggests that other cellular lipases already degrade acylglycerols before they reach lysosomes. Chloroquine co-treatment allowed visualization of nanocarriers inside endosomal vesicles, multivesicular bodies, and lysosomes.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str 3, 53121, Bonn, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Str 3, 53121, Bonn, Germany.
- Université Marie et Louis Pasteur, Inserm UMR1098 Right, Besançon, France.
| |
Collapse
|
15
|
Luo C, Li Y, Liu H, He J, Yang X, Zhao E, Zi G, Liu L, Hong Y, Wang H, Li T, Yang Z, Wang R, Xu Y, Peng B. Intracellular trafficking of lipid nanoparticles is hindered by cholesterol. Int J Pharm 2025; 671:125240. [PMID: 39826779 DOI: 10.1016/j.ijpharm.2025.125240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The intracellular trafficking of lipid nanoparticles (LNPs) leading to endosomal escape is critical for delivery efficiency. How components of LNP affect its intracellular trafficking and delivery efficiency remains unknown. Here, we developed a highly sensitive LNP/nucleic acid tracking platform based on streptavidin-biotin-DNA complex and high throughput imaging. Naked nucleic acids were found to be retained in the endocytotic vesicles proportional to endocytosis activity. With the help of LNP, nucleic acids were transported along the endolysosomal pathway with N/P ratio as low as 2 amongst very weak nucleic acid and LNP interaction. As the N/P ratio increases (concomitant concentration increase of all lipids), the monophasic endocytosis of LNP-DNA demonstrated biphasic characteristics, as shown by accumulation of LNP-DNA trapped in early endosomes in the peripheral of cells. Through a series of specifically designed LNPs, we found increase in N/P ratio alone, i.e. increase of ionizable lipid content, had no effect on the formation of peripheral LNP-endosomes. Importantly, increase in cholesterol content, via dose or concentration increase, positively correlated with formation and aggregation of peripheral LNP-endosomes. Meanwhile, helper lipid such as DSPC alleviated the detrimental effect of cholesterol on aggregation of peripheral LNP-endosomes. The trapping of LNP-nucleic acids in peripheral early endosomes hindered their intracellular trafficking along the endolysosomal pathway, thus reducing their reach to releasing compartments and diminishing cargo delivery efficiency. Our results demonstrate that high cholesterol content hinders LNP intracellular trafficking, which is detrimental for intracellular delivery of cargo.
Collapse
Affiliation(s)
- Chengzhi Luo
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Yunfei Li
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Haidong Liu
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Jing He
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Xiaojuan Yang
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - E Zhao
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Guanghui Zi
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Li Liu
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Yujia Hong
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Hui Wang
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Ting Li
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Zhengyu Yang
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Rui Wang
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China
| | - Yuhong Xu
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali, Yunnan Province 671003, China.
| | - Baowei Peng
- College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali, Yunnan Province 671003, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan Province 671003, China.
| |
Collapse
|
16
|
Feng R, Rafiei M, Fernando KS, Chau Y. Direct cytosol delivery of mRNA by micron-sized co-assembly with designer oligopeptides. J Mater Chem B 2025; 13:2167-2179. [PMID: 39803759 DOI: 10.1039/d4tb01098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation. Surprisingly, transfection was much more effective using micron-sized than nano-sized co-assemblies, and the efficiency surpasses that of a widely used lipid-based commercial reagent. The study was complemented by computational simulations, inhibitor studies and live-cell confocal imaging to shed light on the role of electrostatic interaction on assembly and the mechanism of uptake and intracellular trafficking. These micron-sized co-assemblies directly enter the cytosol and then release mRNA, bypassing conventional pathways and thus avoiding the lysosomal degradation. This simple approach involving short oligopeptides and salt addition to create optimal micron-sized co-assembly with mRNA should open new avenues to overcome endosomal barriers for intracellular delivery of nucleic acid therapeutics.
Collapse
Affiliation(s)
- Ruilu Feng
- Chemical and Biological Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Mehrnoosh Rafiei
- Chemical and Biological Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Kalindu S Fernando
- Chemical and Biological Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Ying Chau
- Chemical and Biological Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
17
|
Bak A, Zhou L, Rejman J, Yanez Arteta M, Nilsson G, Ashford M. Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing. Expert Opin Drug Deliv 2025; 22:239-254. [PMID: 39797693 DOI: 10.1080/17425247.2025.2452295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION mRNA therapeutics were a niche area in drug development before COVID vaccines. They are now used in vaccine development, for non-viral therapeutic genome editing, in vivo chimeric antigen receptor T (CAR T) cell therapies and protein replacement. mRNA is large, charged, and easily degraded by nucleases. It cannot get into cells, escape the endosome, and be translated to a disease-modifying protein without a delivery system such as lipid nanoparticles (LNPs). AREAS COVERED This article covers how to design, select, and develop an LNP for therapeutic genome editing in the liver. The roadmap is divided into selecting the right LNP for discovery via a design, make, test, and analyze cycle (DMTA). The design elements are focused on ionizable lipids in a 4-component LNP, and insights are provided for how to set an in vitro and in vivo testing strategy. The second section focuses on transforming the LNP into a clinical drug product and covers formulation, analytical development, and process optimization, with brief notes on supply and regulator strategies. EXPERT OPINION The perspective discusses the impact that academic-industry collaborations can have on developing new medicines for therapeutic genome editing in the liver. From the cited collaborations an enhanced understanding of intracellular trafficking, notably endosomal escape, and the internal structure of LNPs were attained and are deemed key to designing effective and safe LNPs. The knowledge gained will also enable additional assays and structural activity relationships, which would lead to the design of the next-generation delivery systems for nucleic acid therapies.
Collapse
Affiliation(s)
- Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Liping Zhou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Joanna Rejman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Gunilla Nilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| |
Collapse
|
18
|
Cheng Y, Zhao E, Yang X, Luo C, Zi G, Wang R, Xu Y, Peng B. Entrapment of lipid nanoparticles in peripheral endosomes but not lysosomes impairs intracellular trafficking and endosomal escape. Int J Pharm 2025; 669:125024. [PMID: 39631713 DOI: 10.1016/j.ijpharm.2024.125024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The uptake and intracellular trafficking of lipid nanoparticles (LNPs) along the endolysosomal pathway leading to releasing compartments is critical for delivery efficiency. How the players of the processes interact with each other to affect LNP delivery remains unclear. Here, we employed a recently developed, highly sensitive LNP labeling platform in combination with defined-state of endolysosomal activity of cells to address this outstanding question with spatiotemporal analysis. We found the endolysosomal activity (endolyosomal pH, endolysosomal protease activation), which was regulated by nutrients, determines the active endocytosis activity of cells. Elevated internalization of DNA and LNP alike by cells correlated with increased endolysosomal activity. Similar to naked DNA, elevated internalization of LNP resulted in entrapment of LNPs in peripheral endosomes, which significantly impaired the intracellular trafficking of LNP to the perinuclear lysosome region and cytosolic release of LNP cargo. On the other hand, we found the extent of perinuclear lysosomal LNP accumulation positively correlated with the level of transgene expression. Moreover, we found continuous internalization of LNP was necessary not only to saturate the degradation compartments to overcome rapid degradation of LNP but also to maintain a necessary pool of releasing compartments, shuttling between peripheral endosomes and lysosomes via anterograde transport and retrograde transport along microtubules respectively, for meaningful endosomal release. Our results suggest the balance between endocytosis and intracellular trafficking needs to be fine-tuned according to endolysosomal activity of target cell to achieve optimal cytosol release.
Collapse
Affiliation(s)
- Yiqin Cheng
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - E Zhao
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Xiaojuan Yang
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Chengzhi Luo
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Guanghui Zi
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Rui Wang
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China
| | - Yuhong Xu
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali 671003, Yunnan, PR China.
| | - Baowei Peng
- College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali 671003, Yunnan, PR China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China.
| |
Collapse
|
19
|
Han EL, Tang S, Kim D, Murray AM, Swingle KL, Hamilton AG, Mrksich K, Padilla MS, Palanki R, Li JJ, Mitchell MJ. Peptide-Functionalized Lipid Nanoparticles for Targeted Systemic mRNA Delivery to the Brain. NANO LETTERS 2025; 25:800-810. [PMID: 39688915 DOI: 10.1021/acs.nanolett.4c05186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Systemic delivery of large nucleic acids, such as mRNA, to the brain remains challenging in part due to the blood-brain barrier (BBB) and the tendency of delivery vehicles to accumulate in the liver. Here, we design a peptide-functionalized lipid nanoparticle (LNP) platform for targeted mRNA delivery to the brain. We utilize click chemistry to functionalize LNPs with peptides that target receptors overexpressed on brain endothelial cells and neurons, namely the RVG29, T7, AP2, and mApoE peptides. We evaluate the effect of LNP targeting on brain endothelial and neuronal cell transfection in vitro, investigating factors such as serum protein adsorption, intracellular trafficking, endothelial transcytosis, and exosome secretion. Finally, we show that LNP peptide functionalization enhances mRNA transfection in the mouse brain and reduces hepatic delivery after systemic administration. Specifically, RVG29 LNPs improved neuronal transfection in vivo, establishing its potential as a nonviral platform for delivering mRNA to the brain.
Collapse
Affiliation(s)
- Emily L Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sophia Tang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dongyoon Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amanda M Murray
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kaitlin Mrksich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Jacqueline J Li
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Ye T, Chen Y, Zhong Z, Huang Y, De Baere J, Gontsarik M, Deswarte K, Golba B, Risseeuw M, Van Calenbergh S, Lambrecht BN, De Geest BG. Galloyl Dialkyl Lipids Drive Encapsulation of Peptides into Lipid Nanoparticles by Hydrogen Bonding. J Am Chem Soc 2025; 147:1307-1318. [PMID: 39780390 DOI: 10.1021/jacs.4c15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations. This study introduces a generic approach using galloyl (GA)-functionalized lipids for the encapsulation of peptides in LNPs via hydrogen bonding between the ubiquitously present amides in peptides and the multivalently displayed galloyl phenol groups in GA-LNPs. In vitro studies showed that GA-LNPs significantly improved the cellular uptake of peptides and activated immune responses when combined with Toll-like receptor (TLR) agonists MPLA and IMDQ. In vivo, GA-LNPs accumulated in the spleen and enhanced peptide delivery to antigen-presenting cells. GA-LNPs coencapsulating peptide antigens and TLR agonists elicited robust antigen-specific CD8+ T-cell responses in mice.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Yi Huang
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Jamie De Baere
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Mark Gontsarik
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bianka Golba
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Martijn Risseeuw
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | | | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, 3015 GD Rotterdam, The Netherlands
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Alter CL, Lotter C, Puligilla RD, Bolten JS, Sedzicki J, Marchese J, Schittny V, Rucci F, Beverly M, Palivan CG, Detampel P, Einfalt T, Huwyler J. Nano Plasma Membrane Vesicle-Lipid Nanoparticle Hybrids for Enhanced Gene Delivery and Expression. Adv Healthc Mater 2025; 14:e2401888. [PMID: 39523736 DOI: 10.1002/adhm.202401888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/31/2024] [Indexed: 11/16/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as the leading nonviral nucleic acid (NA) delivery system, gaining widespread attention for their use in COVID-19 vaccines. They are recognized for their efficient NA encapsulation, modifiability, and scalable production. However, LNPs face efficacy and potency limitations due to suboptimal intracellular processing, with endosomal escape efficiencies (ESE) below 2.5%. Additionally, up to 70% of NPs undergo recycling and exocytosis after cellular uptake. In contrast, cell-derived vesicles offer biocompatibility and high-delivery efficacy but are challenging to load with exogenous NAs and to manufacture at large-scale. To leverage the strengths of both systems, a hybrid system is designed by combining cell-derived vesicles, such as nano plasma membrane vesicles (nPMVs), with LNPs through microfluidic mixing and subsequent dialysis. These hybrids demonstrate up to tenfold increase in ESE and an 18-fold rise in reporter gene expression in vitro and in vivo in zebrafish larvae (ZFL) and mice, compared to traditional LNPs. These improvements are linked to their unique physico-chemical properties, composition, and morphology. By incorporating cell-derived vesicles, this strategy streamlines the development process, significantly enhancing the efficacy and potency of gene delivery systems without the need for extensive screening.
Collapse
Affiliation(s)
- Claudio Luca Alter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, Basel, 4056, Switzerland
| | - Claudia Lotter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Ramya Deepthi Puligilla
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Jan Stephan Bolten
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Jaroslaw Sedzicki
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Jason Marchese
- Novartis BioMedical Research, 100 Technology Square, Cambridge, MA, 02139, USA
| | - Valentin Schittny
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Francesca Rucci
- Novartis Biologics Research Center, Fabrikstrasse 16, Basel, 4056, Switzerland
| | - Michael Beverly
- Novartis BioMedical Research, 100 Technology Square, Cambridge, MA, 02139, USA
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Pascal Detampel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Tomaž Einfalt
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| |
Collapse
|
22
|
Deng S, Shao H, Shang H, Pang L, Chen X, Cao J, Wang Y, Zhao Z. Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs. Vaccines (Basel) 2024; 13:25. [PMID: 39852804 PMCID: PMC11768556 DOI: 10.3390/vaccines13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. Methods: We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol)4-5 methacrylatea-co-hexyl methacrylateb)X-b-poly(butyl methacrylatec-co-dimethylaminoethyl methacrylated-co-propyl acrylatee)Y (p(PEG4-5MAa-co-HMAb)X-b-p(BMAc-co-DMAEMAd-co-PAAe)Y), via reversible addition-fragmentation chain transfer polymerization. The cPMs were then formulated using the synthesized polymer by the dispersion-diffusion method and characterized by dynamic light scattering (DLS) and cryo-transmission electron microscopy (CryoTEM). The membrane-destabilization activity of the cPMs was evaluated by a hemolysis assay. We performed an in vivo functional assay of firefly luciferase (Fluc) mRNA using two of the most commonly studied LNPs, SM102 LNP and Dlin-MC3-DMA LNPs. Results: With a particle size of 61.31 ± 0.68 nm and a zeta potential of 37.76 ± 2.18 mV, the cPMs exhibited a 2-3 times higher firefly luciferase signal at the injection site compared to the control groups without cPMs following intramuscular injection in mice, indicating the high potential of cPMs to enhance the endosomal escape efficiency of mRNA-LNPs. Conclusions: The developed cPM, with enhanced endosomal escape capabilities, presents a promising strategy to improve the expression efficiency of delivered mRNAs. This approach offers a novel alternative strategy with no modifications to the inherent properties of mRNA-LNPs, preventing any unforeseeable changes in formulation characteristics. Consequently, this polymer-based nanomaterial holds immense potential for clinical applications in mRNA-based vaccines.
Collapse
Affiliation(s)
- Siyuan Deng
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Han Shao
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Hongtao Shang
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Lingjin Pang
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Xiaomeng Chen
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Jingyi Cao
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
- NeoCura Bio-Medical Technology Co., Ltd., 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China
| | - Yi Wang
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
- NeoCura Bio-Medical Technology Co., Ltd., 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China
| | - Zhao Zhao
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| |
Collapse
|
23
|
Shadid A, Rich HE, DeVaughn H, Domozhirov A, Doursout MF, Weng-Mills T, Eckel-Mahan KL, Karmouty-Quintana H, Restrepo MI, Shivshankar P. Persistent microbial infections and idiopathic pulmonary fibrosis - an insight into non-typeable Haemophilus influenza pathogenesis. Front Cell Infect Microbiol 2024; 14:1479801. [PMID: 39760094 PMCID: PMC11695292 DOI: 10.3389/fcimb.2024.1479801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Interstitial lung disease (ILD) is characterized by chronic inflammation and scarring of the lungs, of which idiopathic pulmonary fibrosis (IPF) is the most devastating pathologic form. Idiopathic pulmonary fibrosis pathogenesis leads to loss of lung function and eventual death in 50% of patients, making it the leading cause of ILD-associated mortality worldwide. Persistent and subclinical microbial infections are implicated in the acute exacerbation of chronic lung diseases. However, while epidemiological studies have highlighted pollutants, gastric aspirate, and microbial infections as major causes for the progression and exacerbation of IPF, the role of persistent microbial infections in the pathogenesis of IPF remains unclear. In this review, we have focused on the role of persistent microbial infections, including viral, bacterial, and fungal infections, and their mechanisms of action in the pathogenesis of IPF. In particular, the mechanisms and pathogenesis of the Gram-negative bacteria Non-typeable Haemophilus influenzae (NTHi) in ILDs are discussed, along with growing evidence of its role in IPF, given its unique ability to establish persistent intracellular infections by leveraging its non-capsulated nature to evade host defenses. While antibiotic treatments are presumably beneficial to target the extracellular, interstitial, and systemic burden of pathogens, their effects are significantly reduced in combating pathogens that reside in the intracellular compartments. The review also includes recent clinical trials, which center on combinatorial treatments involving antimicrobials and immunosuppressants, along with antifibrotic drugs that help mitigate disease progression in IPF patients. Finally, future directions focus on mRNA-based therapeutics, given their demonstrated effectiveness across a wide range of clinical applications and feasibility in targeting intracellular pathogens.
Collapse
Affiliation(s)
- Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Aleksey Domozhirov
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Marie- Françoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Tingting Weng-Mills
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Kristin L. Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Marcos I. Restrepo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, South Texas Veterans Health Care System and the University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| |
Collapse
|
24
|
Allen R, Yokota T. Endosomal Escape and Nuclear Localization: Critical Barriers for Therapeutic Nucleic Acids. Molecules 2024; 29:5997. [PMID: 39770086 PMCID: PMC11677605 DOI: 10.3390/molecules29245997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously "undruggable" genes. Despite this promise, several biological barriers severely limit their clinical efficacy. Upon administration, TNAs primarily enter cells through endocytosis, becoming trapped inside membrane-bound vesicles known as endosomes. Studies estimate that only 1-2% of TNAs successfully escape endosomal compartments to reach the cytosol, and in some cases the nucleus, where they bind target mRNA and exert their therapeutic effect. Endosomal entrapment and inefficient nuclear localization are therefore critical bottlenecks in the therapeutic application of TNAs. This review explores the current understanding of TNA endosomal escape and nuclear transport along with strategies aimed at overcoming these challenges, including the use of endosomal escape agents, peptide-TNA conjugates, non-viral delivery vehicles, and nuclear localization signals. By improving both endosomal escape and nuclear localization, significant advances in TNA-based therapeutics can be realized, ultimately expanding their clinical utility.
Collapse
Affiliation(s)
- Randall Allen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
25
|
Mirhadi E, Kesharwani P, Jha SK, Karav S, Sahebkar A. Utilizing ionic liquids as eco-friendly and sustainable carriers for delivering nucleic acids: A review on the revolutionary advancement in nano delivery systems. Int J Biol Macromol 2024; 283:137582. [PMID: 39542300 DOI: 10.1016/j.ijbiomac.2024.137582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Ionic liquids (ILs) are an extremely versatile class of chemicals. It has been shown that they can effectively pass through many biological barriers in the human body to deliver medications. ILs are solvents noted for their ecological friendliness; they contain equal amounts of cations and anions and remain liquid at temperatures below 100 °C. Hence, these are ideal for biomedical applications owing to their advantageous properties such as biocompatibility, solubility, and adaptability. ILs are widely reported to improve the solubility and stability of nucleic acids (DNA and RNA) in aqueous conditions, allowing for more effective delivery. Certain ILs have shown the ability to enhance the absorption of nucleic acids into cells. In addition, ILs can also be used to create vectors for gene delivery, such as liposomes and nanoparticles, thereby improving the transfection efficiency of plasmid DNA and siRNA. Subsequently, the application of ILs for nucleic acid delivery has increased significantly in recent years. In this context, we believe that using ILs to enhance the transport of nucleic acids will have a considerable effect as a novel and crucial therapeutic method in the upcoming decades. The use of ILs as solvents to preserve the natural structure of DNA and RNA shows promise for a variety of biotechnological and medical applications. Notably, ILs may be utilized for a variety of functions, including extracting, concentrating, stabilizing, and spreading nucleic acids inside cells. Our review emphasizes the key findings of research works published in this domain, wherein outstanding effectiveness of delivering RNA to the desired areas was achieved, and was made possible through the utilization of ILs.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Ma Y, Li S, Lin X, Chen Y. A perspective of lipid nanoparticles for RNA delivery. EXPLORATION (BEIJING, CHINA) 2024; 4:20230147. [PMID: 39713203 PMCID: PMC11655307 DOI: 10.1002/exp.20230147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 12/24/2024]
Abstract
Over the last two decades, lipid nanoparticles (LNPs) have evolved as an effective biocompatible and biodegradable RNA delivery platform in the fields of nanomedicine, biotechnology, and drug delivery. They are novel bionanomaterials that can be used to encapsulate a wide range of biomolecules, such as mRNA, as demonstrated by the current successes of COVID-19 mRNA vaccines. Therefore, it is important to provide a perspective on LNPs for RNA delivery, which further offers useful guidance for researchers who want to work in the RNA-based LNP field. This perspective first summarizes the approaches for the preparation of LNPs, followed by the introduction of the key characterization parameters. Then, the in vitro cell experiments to study LNP performance, including cell selection, cell viability, cellular association/uptake, endosomal escape, and their efficacy, were summarized. Finally, the in vivo animal experiments in the aspects of animal selection, administration, dosing and safety, and their therapeutic efficacy were discussed. The authors hope this perspective can offer valuable guidance to researchers who enter the field of RNA-based LNPs and help them understand the crucial parameters that RNA-based LNPs demand.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Shiyao Li
- School of ScienceRMIT UniversityBundooraVictoriaAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoriaAustralia
| | - Xin Lin
- Department of Cell BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
27
|
Clogston JD, Foss W, Harris D, Oberoi H, Pan J, Pu E, Guzmán EAT, Walter K, Brown S, Soo PL. Current state of nanomedicine drug products: An industry perspective. J Pharm Sci 2024; 113:3395-3405. [PMID: 39276979 DOI: 10.1016/j.xphs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Nanomedicine drug products have reached an unprecedented high in terms of global commercial acceptance and media exposure with the approvals of the mRNA COVID-19 vaccines in 2021. In this paper, we examine the current state of the art for nanomedicine technologies as applied for pharmaceutical products and compare those trends with results from a recent IQ Consortium industry survey on nanomedicine drug products. We find that 1) industry companies continue to push the envelope in terms of new technologies for characterizing their specific drug products, 2) new analytical technologies continue to be utilized by industry to characterize the increasingly complex nanomedicine drug products and 3) alignment and communication are key between industry and regulatory authorities to better understand the regulatory filings that are being submitted. There are many CMC challenges that a company must overcome to successfully file a nanomedicine drug product. In 2022, the FDA Guidance on Drug Products containing Nanomaterials was published, and it provides a roadmap for submission of a nanomedicine drug product. We propose that our paper serves as a complimentary guide providing knowledge on specific CMC issues such as quality attributes, physicochemical characterization methods, excipients, and stability.
Collapse
Affiliation(s)
| | - Willard Foss
- Bristol Myers Squibb, Early Biologics Development, Redwood City, CA, USA
| | | | - Hardeep Oberoi
- AbbVie Inc., Drug Product Development, North Chicago, IL, USA
| | - Jiayi Pan
- Biogen, Technical Development, Cambridge, MA, USA
| | - Elaine Pu
- Bristol Myers Squibb, Drug Product Development, Summit, NJ, USA
| | | | - Katrin Walter
- AstraZeneca, Pharmaceutical Product Development, Gothenburg, Sweden
| | - Scott Brown
- GSK plc. Medicines Development and Supply, Drug Substance and Drug Product Analytical, Collegeville, PA 19426, USA
| | - Patrick Lim Soo
- Pfizer, Pharmaceutical Research & Development, Andover, MA, USA.
| |
Collapse
|
28
|
Kim B, Subraveti SN, Liu JX, Nayagam SK, Merghoub S, Caggiano NJ, Amelemah DF, Jiang T, Bizmark N, Conway JM, Tsourkas A, Prud'homme RK. Diblock Copolymer Targeted Lipid Nanoparticles: Next-Generation Nucleic Acid Delivery System Produced by Confined Impinging Jet Mixers. ACS APPLIED BIO MATERIALS 2024; 7:7595-7607. [PMID: 39480746 DOI: 10.1021/acsabm.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Despite the recent advances and clinical demonstration of lipid nanoparticles (LNPs) for therapeutic and prophylactic applications, the extrahepatic delivery of nucleic acids remains a significant challenge in the field. This limitation arises from the rapid desorption of lipid-PEG in the bloodstream and clearance to the liver, which hinders extrahepatic delivery. In response, we explore the substitution of lipid-PEG with biodegradable block copolymers (BCPs), specifically poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). BCPs offer strong anchoring for large macromolecules, potentially enhancing cell-specific targeting. To develop and optimize BCP-stabilized LNPs (BCP-LNPs), we employed a Design of Experiment (DOE) approach. Through a systematic exploration, we identified optimal formulations for BCP-LNPs, achieving desirable physicochemical properties and encapsulation efficiency. Notably, BCP-LNPs exhibit surprising trends in transfection efficiency, with certain formulations showing up to a 40-fold increase in transfection in Hela cells, while maintaining minimal cytotoxicity. The lipid compositions that optimized PCL-b-PEG LNP transfection were different from the compositions that optimized PEG-lipid LNP transfection. Furthermore, our study confirms the versatility of BCP-LNPs in encapsulating and delivering both mRNA and pDNA, demonstrating their cargo-agnostic nature. Lastly, we showcased the targeted BCP-LNPs using a Cetuximab-conjugated formulation. These targeted LNPs show significant promise in delivering cargo specific to EGFR-overexpressing cells (A549 cells), with up to 2.4 times higher transfection compared to nontargeted LNPs. This finding underscores the potential of BCP-LNPs in targeted gene therapy, especially in challenging scenarios such as tumor targeting. Overall, our study establishes the viability of BCP-LNPs as a versatile, efficient, and targeted delivery platform for nucleic acids, opening avenues for advanced therapeutic applications.
Collapse
Affiliation(s)
- Bumjun Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sai Nikhil Subraveti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jason X Liu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Satya K Nayagam
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Safaa Merghoub
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas J Caggiano
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - David F Amelemah
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ting Jiang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Navid Bizmark
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jonathan M Conway
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Garaizar A, Díaz-Oviedo D, Zablowsky N, Rissanen S, Köbberling J, Sun J, Steiger C, Steigemann P, Mann FA, Meier K. Toward understanding lipid reorganization in RNA lipid nanoparticles in acidic environments. Proc Natl Acad Sci U S A 2024; 121:e2404555121. [PMID: 39475644 PMCID: PMC11551392 DOI: 10.1073/pnas.2404555121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/02/2024] [Indexed: 11/13/2024] Open
Abstract
The use of lipid nanoparticles (LNPs) for therapeutic RNA delivery has gained significant interest, particularly highlighted by recent milestones such as the approval of Onpattro and two mRNA-based SARS-CoV-2 vaccines. However, despite substantial advancements in this field, our understanding of the structure and internal organization of RNA-LNPs -and their relationship to efficacy, both in vitro and in vivo- remains limited. In this study, we present a coarse-grained molecular dynamics (MD) approach that allows for the simulations of full-size LNPs. By analyzing MD-derived structural characteristics in conjunction with cellular experiments, we investigate the effect of critical parameters, such as pH and composition, on LNP structure and potency. Additionally, we examine the mobility and chemical environment within LNPs at a molecular level. Our findings highlight the significant impact that LNP composition and internal molecular mobility can have on key stages of LNP-based intracellular RNA delivery.
Collapse
Affiliation(s)
- Adiran Garaizar
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal 42113, Germany
- Computational Life Science, Bayer Crop Science, Monheim am Rhein 40789, Germany
| | - David Díaz-Oviedo
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal 42113, Germany
| | - Nina Zablowsky
- Lead Discovery, Nuvisan Innovation Campus Berlin, Berlin 13353, Germany
| | - Sami Rissanen
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Turku 20210, Finland
| | | | - Jiawei Sun
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin 13353, Germany
| | - Christoph Steiger
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin 13353, Germany
| | | | - Florian A Mann
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin 13353, Germany
| | - Katharina Meier
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal 42113, Germany
| |
Collapse
|
30
|
Omole AO, Affonso de Oliveira JF, Sutorus L, Karan S, Zhao Z, Neun BW, Cedrone E, Clogston JD, Xu J, Sierk M, Chen Q, Meerzaman D, Dobrovolskaia MA, Steinmetz NF. Cellular fate of a plant virus immunotherapy candidate. Commun Biol 2024; 7:1382. [PMID: 39443610 PMCID: PMC11499861 DOI: 10.1038/s42003-024-06982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Cowpea mosaic virus (CPMV) is a plant virus that is currently being developed for intratumoral immunotherapy. CPMV relieves the immune system from tumor-induced immunosuppression; reprograms the tumor microenvironment to an activated state whereby the treated and distant tumors are recognized and eradicated. Toward translational studies, we investigated the safety of CPMV, specifically addressing whether pathogenicity would be induced in mammalian cells. We show that murine macrophage immune cells recognize CPMV; however, there is no indication of de novo viral protein synthesis or RNA replication. Furthermore, we show that CPMV does not induce hemolysis, platelet aggregation and plasma coagulation amongst other assays in human blood and immune cells. Taken together, we anticipate that these results will reinforce the development of CPMV as an immunotherapeutic platform.
Collapse
Affiliation(s)
- Anthony O Omole
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Lucas Sutorus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sweta Karan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Barry W Neun
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jie Xu
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michael Sierk
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Fernandes S, Quattrociocchi M, Cassani M, Savazzi G, Johnson D, Forte G, Caruso F, Cavalieri F. Antibody-Free Glycogen Nanoparticles Engage Human Immune T Cells for Intracellular Delivery of Small Drugs or mRNA. ACS NANO 2024; 18:28910-28923. [PMID: 39392742 DOI: 10.1021/acsnano.4c09156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
T cells play a major role in immune defense against viral infections and diseases such as cancer. Accordingly, developing nanoparticle (NP) systems to effectively deliver therapeutics to T cells is of interest. However, NP-mediated delivery of drugs to T cells is challenging because of the nonphagocytic nature of T cells. To engage T cells and induce cellular internalization, NPs are typically decorated with specific receptor-targeting antibodies, often using laborious and costly procedures. Herein, we report that natural glycogen NPs (i.e., nanosugars) with different sizes (20-80 nm) and surface charges (neutral and positively charged) engage Jurkat T cells, undergo intracellular trafficking, and release encapsulated drug without the use of receptor-targeting antibodies. Specifically, glycogen-resveratrol constructs are employed to reactivate HIV-1 latently infected Jurkat T cells (J-Lat A2) and trigger proviral expression. Both neutral and positively charged glycogen NPs engage with J-Lat A2 cells. Large (84 ± 29 nm) and positively charged (23 ± 5 mV) NPs, denoted phytoglycogen-ethylenediamine (PGEDA) NPs, readily associate with the cell membrane and are internalized (60%) in J-Lat A2 cells but remain confined in the endocytic vesicles, with moderate reactivation of latent HIV-1 (4.7 ± 0.5%). Conversely, small (21 ± 5 nm) and positively charged (10 ± 6 mV) NPs, bovine glycogen-EDA (BGEDA) NPs, associate slowly with T cells but show nearly 100% internalization and efficient endosomal escape properties, resulting in 1.5-fold higher reactivation of latent HIV-1 in T cells. PGEDA NPs and BGEDA NPs are also internalized by primary human T cells (>90% cell association) and enable the transfection of mRNA, with BGEDA NPs showing a 2-fold higher transfection than PGEDA NPs. This work highlights the potential of BGEDA NPs for the effective intracellular delivery of small-molecule drugs and mRNA in T cells.
Collapse
Affiliation(s)
- Soraia Fernandes
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
- International Clinical Research Centre, St. Anne Hospital, 656 91 Brno, Czech Republic
| | - Miriam Quattrociocchi
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Marco Cassani
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
- International Clinical Research Centre, St. Anne Hospital, 656 91 Brno, Czech Republic
| | - Giulio Savazzi
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Darryl Johnson
- Materials Characterization and Fabrication Platform, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Giancarlo Forte
- International Clinical Research Centre, St. Anne Hospital, 656 91 Brno, Czech Republic
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE5 9NU, U.K
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne 3000, Victoria, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
32
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
33
|
Serpico L, Zhu Y, Maia RF, Sumedha S, Shahbazi MA, Santos HA. Lipid nanoparticles-based RNA therapies for breast cancer treatment. Drug Deliv Transl Res 2024; 14:2823-2844. [PMID: 38831199 PMCID: PMC11384647 DOI: 10.1007/s13346-024-01638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Breast cancer (BC) prevails as a major burden on global healthcare, being the most prevalent form of cancer among women. BC is a complex and heterogeneous disease, and current therapies, such as chemotherapy and radiotherapy, frequently fall short in providing effective solutions. These treatments fail to mitigate the risk of cancer recurrence and cause severe side effects that, in turn, compromise therapeutic responses in patients. Over the last decade, several strategies have been proposed to overcome these limitations. Among them, RNA-based technologies have demonstrated their potential across various clinical applications, notably in cancer therapy. However, RNA therapies are still limited by a series of critical issues like off-target effect and poor stability in circulation. Thus, novel approaches have been investigated to improve the targeting and bioavailability of RNA-based formulations to achieve an appropriate therapeutic outcome. Lipid nanoparticles (LNPs) have been largely proven to be an advantageous carrier for nucleic acids and RNA. This perspective explores the most recent advances on RNA-based technology with an emphasis on LNPs' utilization as effective nanocarriers in BC therapy and most recent progresses in their clinical applications.
Collapse
Affiliation(s)
- Luigia Serpico
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
| | - Yuewen Zhu
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Renata Faria Maia
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Sumedha Sumedha
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
34
|
Kim S, Kim S, Kim S, Lee NE, Lee SH, Kim H, Lee H. Improvement of Therapeutic Effect via Inducing Non-Apoptotic Cell Death Using mRNA-Protection Nanocage. Adv Healthc Mater 2024; 13:e2400240. [PMID: 39081097 DOI: 10.1002/adhm.202400240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/22/2024] [Indexed: 10/30/2024]
Abstract
Necroptosis, a cell death mechanism with the characteristics of both apoptosis and necrosis, is proposed as a promising therapeutic approach for cancer therapy. Induction of necroptosis for cancer therapy may be possible through the regulation of the expression of a key factor gene receptor-interacting protein kinase-3 (RIPK3) via in vitro transcription (IVT) mRNA delivery. However, mRNA is susceptible to degradation and has a low delivery efficiency, which highlights the requirement of a proper delivery vehicle for intracellular delivery. Therefore, a new mRNA delivery system based on the nanostructured silica nanoparticles, termed mRNA-protective nanocage (mPN) has been developed. High-efficiency expression of RIPK3 and induction of necroptosis is achieved through delivery of RIPK3 IVT mRNA with mPN in vitro and in vivo models. Importantly, the mPN carrying RIPK3 mRNA distributed locally in tumors upon intravascular injection, and successfully induced necroptosis and immune cell infiltration, a hallmark of necroptosis. the suppression of tumor growth in a murine cancer model, demonstrating the synergistic effect of RIPK3 mRNA- and immune cell-mediated therapy is also observed. These findings suggest the potential for anticancer therapy through necroptosis induction and provide a strategy for the development of mRNA-based nanomedicine.
Collapse
Affiliation(s)
- Seoyoung Kim
- Biomaterial Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seongchan Kim
- Biomaterial Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Republic of Korea
| | - Sojin Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Nan-Ee Lee
- Biomaterial Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo-Hwan Lee
- Biomaterial Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyojin Lee
- Biomaterial Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, Korea National University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- SKKU-KIST, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
35
|
Lu RM, Hsu HE, Perez SJLP, Kumari M, Chen GH, Hong MH, Lin YS, Liu CH, Ko SH, Concio CAP, Su YJ, Chang YH, Li WS, Wu HC. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J Biomed Sci 2024; 31:89. [PMID: 39256822 PMCID: PMC11389359 DOI: 10.1186/s12929-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiang-En Hsu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Yin-Shiou Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ching-Hang Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Yi-Jen Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Yi-Han Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| |
Collapse
|
36
|
van Straten D, Sork H, van de Schepop L, Frunt R, Ezzat K, Schiffelers RM. Biofluid specific protein coronas affect lipid nanoparticle behavior in vitro. J Control Release 2024; 373:481-492. [PMID: 39032575 DOI: 10.1016/j.jconrel.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Lipid nanoparticles (LNPs) have successfully entered the clinic for the delivery of mRNA- and siRNA-based therapeutics, most recently as vaccines for COVID-19. Nevertheless, there is a lack of understanding regarding their in vivo behavior, in particular cell targeting. Part of this LNP tropism is based on the adherence of endogenous protein to the particle surface. This protein forms a so-called corona that can change, amongst other things, the circulation time, biodistribution and cellular uptake of these particles. The formation of this protein corona, in turn, is dependent on the nanoparticle properties (e.g., size, charge, surface chemistry and hydrophobicity) as well as the biological environment from which it is derived. With the potential of gene therapy to target virtually any disease, administration sites other than intravenous route are considered, resulting in tissue specific protein coronas. For neurological diseases, intracranial administration of LNPs results in a cerebral spinal fluid derived protein corona, possibly changing the properties of the lipid nanoparticle compared to intravenous administration. Here, the differences between plasma and CSF derived protein coronas on a clinically relevant LNP formulation were studied in vitro. Protein analysis showed that LNPs incubated in human CSF (C-LNPs) developed a protein corona composition that differed from that of LNPs incubated in plasma (P-LNPs). Lipoproteins as a whole, but in particular apolipoprotein E, represented a higher percentage of the total protein corona on C-LNPs than on P-LNPs. This resulted in improved cellular uptake of C-LNPs compared to P-LNPs, regardless of cell origin. Importantly, the higher LNP uptake did not directly translate into more efficient cargo delivery, underlining that further assessment of such mechanisms is necessary. These findings show that biofluid specific protein coronas alter LNP functionality, suggesting that the site of administration could affect LNP efficacy in vivo and needs to be considered during the development of the formulation.
Collapse
Affiliation(s)
- Demian van Straten
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Helena Sork
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | | | - Rowan Frunt
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | |
Collapse
|
37
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
38
|
Oude Egberink R, van Schie DM, Joosten B, de Muynck LTA, Jacobs W, van Oostrum J, Brock R. Unraveling mRNA delivery bottlenecks of ineffective delivery vectors by co-transfection with effective carriers. Eur J Pharm Biopharm 2024; 202:114414. [PMID: 39009193 DOI: 10.1016/j.ejpb.2024.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The messenger RNA (mRNA) SARS-CoV-2 vaccines have demonstrated the therapeutic potential of this novel drug modality. Protein expression is the consequence of a multistep delivery process that relies on proper packaging into nanoparticle carriers to protect the mRNA against degradation enabling effective cellular uptake and endosomal release, and liberating the mRNA in the cytosol. Bottlenecks along this route remain challenging to pinpoint. Although methods to assess endosomal escape of carriers have been developed, versatile strategies to identify bottlenecks along the delivery trajectory are missing. Here, it is shown that co-incubating an inefficient nanoparticle formulation with an efficient one solves this problem. Cells were co-incubated with mRNA nanoparticles formed with either the efficient cell-penetrating peptide (CPP) PepFect14 or the inefficient CPP nona-arginine (R9). Co-transfection enhanced cellular uptake and endosomal escape of R9-formulated mRNA, resulting in protein expression, demonstrating that both vectors enter cells along the same route. In addition, cells were transfected with a galectin-9-mCherry fusion protein to detect endosomal rupture. Remarkably, despite endosomal release, mRNA remained confined to punctate structures, identifying mRNA liberation as a further bottleneck. In summary, co-transfection offers a rapid means to identify bottlenecks in cytosolic mRNA delivery, supporting the rational design and optimization of intracellular mRNA delivery systems.
Collapse
Affiliation(s)
- Rik Oude Egberink
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Deni M van Schie
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Ben Joosten
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Lisa T A de Muynck
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Ward Jacobs
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Jenny van Oostrum
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| | - Roland Brock
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
39
|
Aliakbarinodehi N, Niederkofler S, Emilsson G, Parkkila P, Olsén E, Jing Y, Sjöberg M, Agnarsson B, Lindfors L, Höök F. Time-Resolved Inspection of Ionizable Lipid-Facilitated Lipid Nanoparticle Disintegration and Cargo Release at an Early Endosomal Membrane Mimic. ACS NANO 2024; 18:22989-23000. [PMID: 39133894 PMCID: PMC11363135 DOI: 10.1021/acsnano.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Advances in lipid nanoparticle (LNP) design have contributed notably to the emergence of the current clinically approved mRNA-based vaccines and are of high relevance for delivering mRNA to combat diseases where therapeutic alternatives are sparse. LNP-assisted mRNA delivery utilizes ionizable lipid-mediated cargo translocation across the endosomal membrane driven by the acidification of the endosomal environment. However, this process occurs at a low efficiency, a few percent at the best. Utilizing surface-sensitive fluorescence microscopy with a single LNP and mRNA resolution, we have investigated pH-controlled interactions between individual LNPs and a planar anionic supported lipid bilayer (SLB) formed on nanoporous silica, mimicking the electrostatic conditions of the early endosomal membrane. For LNPs with an average diameter of 140 nm, fusion with the anionic SLB preferentially occurred when the pH was reduced from 6.6 to 6.0. Furthermore, there was a delay in the onset of LNP fusion after the pH drop, and upon fusion, a significant fraction (>70%) of mRNA was released into the acidic solution representing the endosomal lumen, while a fraction of mRNA remained bound to the SLB even after reversing the pH to neutral cytosolic conditions. Finally, a comparison of the fusion efficiency of two LNP formulations with different surface concentrations of gel-forming lipids correlated with differences in the protein translation efficiency previously observed in human primary cell transfection studies. Together, these findings emphasize the relevance of biophysical investigations of ionizable lipid-containing LNP-assisted mRNA delivery mechanisms while potentially also offering means to optimize the design of LNPs with enhanced endosomal escape capabilities.
Collapse
Affiliation(s)
- Nima Aliakbarinodehi
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Simon Niederkofler
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Gustav Emilsson
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Petteri Parkkila
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Erik Olsén
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Yujia Jing
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Mattias Sjöberg
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Björn Agnarsson
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Lennart Lindfors
- Advanced
Drug Delivery, Pharmaceutical Sciences, AstraZeneca R&D, Mölndal 43181, Sweden
| | - Fredrik Höök
- Department
of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Göteborg 41296, Sweden
| |
Collapse
|
40
|
Fuente IFDL, Sawant SS, Kho KW, Sarangi NK, Canete RC, Pal S, Liang LH, Keyes TE, Rouge JL. Determining the Role of Surfactant on the Cytosolic Delivery of DNA Cross-Linked Micelles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43400-43415. [PMID: 39132807 DOI: 10.1021/acsami.4c09894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nucleic Acid Nanocapsules (NANs) are nucleic acid nanostructures that radially display oligonucleotides on the surface of cross-linked surfactant micelles. Their chemical makeup affords the stimuli-responsive release of therapeutically active DNA-surfactant conjugates into the cells. While NANs have so far demonstrated the effective cytosolic delivery of their nucleic acid cargo, as seen indirectly by their gene regulation capabilities, there remain gaps in the molecular understanding of how this process happens. Herein, we examine the enzymatic degradation of NANs and confirm the identity of the DNA-surfactant conjugates formed by using mass spectrometry (MS). With surface enhanced (resonance) Raman spectroscopy (SE(R)RS), we also provide evidence that the energy-independent translocation of such DNA-surfactant conjugates is contingent upon their release from the NAN structure, which, when intact, otherwise buries the hydrophobic surfactant tail in its interior. Such information suggests a critical role of the surfactant in the lipid disruption capability of the DNA surfactant conjugates generated from degradation of the NANs. Using NANs made with different tail lengths (C12 and C10), we show that this mechanism likely holds true despite significant differences in the physical properties (i.e., critical micelle concentration (CMC), surfactants per micelle, Nagg) of the resultant particles (C12 and C10 NANs). While the total cellular uptake efficiencies of C12 and C10 NANs are similar, there were differences observed in their cellular distribution and localized trafficking, even after ensuring that the total concentration of DNA was the same for both particles. Ultimately, C10 NANs appeared less diffuse within cells and colocalized less with lysosomes over time, achieving more significant knockdown of the target gene investigated, suggesting more effective endosomal escape. These differences indicate that the surfactant assembly and disassembly properties, including the number of surfactants per particle and the CMC can have important implications for the cellular delivery efficacy of DNA micelles and surfactant conjugates.
Collapse
Affiliation(s)
- Ina F de la Fuente
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shraddha S Sawant
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kiang W Kho
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin D09 W6Y4, Ireland
| | - Nirod K Sarangi
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin D09 W6Y4, Ireland
| | - Rachelle C Canete
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Suman Pal
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lisa H Liang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin D09 W6Y4, Ireland
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
41
|
Parvin N, Joo SW, Mandal TK. Enhancing Vaccine Efficacy and Stability: A Review of the Utilization of Nanoparticles in mRNA Vaccines. Biomolecules 2024; 14:1036. [PMID: 39199422 PMCID: PMC11353004 DOI: 10.3390/biom14081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
The development of vaccines has entered a new era with the advent of nanotechnology, particularly through the utilization of nanoparticles. This review focuses on the role of nanoparticles in enhancing the efficacy and stability of mRNA vaccines. Nanoparticles, owing to their unique properties such as high surface area, tunable size, and their ability to be functionalized, have emerged as powerful tools in vaccine development. Specifically, lipid nanoparticles (LNPs) have revolutionized the delivery of mRNA vaccines by protecting the fragile mRNA molecules and facilitating their efficient uptake by cells. This review discusses the various types of nanoparticles employed in mRNA vaccine formulations, including lipid-based, polymer-based, and inorganic nanoparticles, highlighting their advantages and limitations. Moreover, it explores the mechanisms by which nanoparticles improve immune responses, such as enhanced antigen presentation and the prolonged release of mRNA. This review also addresses the challenges and future directions in nanoparticle-based vaccine development, emphasizing the need for further research to optimize formulations for broader applications. By providing an in-depth analysis of the current advancements in and potential of nanoparticles in mRNA vaccines, this review aims to shed light on their critical role in combating infectious diseases and improving public health outcomes.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
42
|
Neill B, Romero AR, Fenton OS. Advances in Nonviral mRNA Delivery Materials and Their Application as Vaccines for Melanoma Therapy. ACS APPLIED BIO MATERIALS 2024; 7:4894-4913. [PMID: 37930174 PMCID: PMC11220486 DOI: 10.1021/acsabm.3c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA) vaccines are promising platforms for cancer immunotherapy because of their potential to encode for a variety of tumor antigens, high tolerability, and capacity to induce strong antitumor immune responses. However, the clinical translation of mRNA cancer vaccines can be hindered by the inefficient delivery of mRNA in vivo. In this review, we provide an overview of mRNA cancer vaccines by discussing their utility in treating melanoma. Specifically, we begin our review by describing the barriers that can impede mRNA delivery to target cells. We then review native mRNA structure and discuss various modification methods shown to enhance mRNA stability and transfection. Next, we outline the advantages and challenges of three nonviral carrier platforms (lipid nanoparticles, polymeric nanoparticles, and lipopolyplexes) frequently used for mRNA delivery. Last, we summarize preclinical and clinical studies that have investigated nonviral mRNA vaccines for the treatment of melanoma. In writing this review, we aim to highlight innovative nonviral strategies designed to address mRNA delivery challenges while emphasizing the exciting potential of mRNA vaccines as next-generation therapies for the treatment of cancers.
Collapse
Affiliation(s)
- Bevin Neill
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriana Retamales Romero
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen S. Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
43
|
Sandvig K, Iversen TG, Skotland T. Entry of nanoparticles into cells and tissues: status and challenges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1017-1029. [PMID: 39161463 PMCID: PMC11331539 DOI: 10.3762/bjnano.15.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
In this article we discuss how nanoparticles (NPs) of different compositions may interact with and be internalized by cells, and the consequences of that for cellular functions. A large number of NPs are made with the intention to improve cancer treatment, the goal being to increase the fraction of injected drug delivered to the tumor and thereby improve the therapeutic effect and decrease side effects. Thus, we discuss how NPs are delivered to tumors and some challenges related to investigations of biodistribution, pharmacokinetics, and excretion. Finally, we discuss requirements for bringing NPs into clinical use and aspects when it comes to usage of complex and slowly degraded or nondegradable NPs.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tore Geir Iversen
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, University of Oslo, 0379 Oslo, Norway
| |
Collapse
|
44
|
Grau M, Wagner E. Strategies and mechanisms for endosomal escape of therapeutic nucleic acids. Curr Opin Chem Biol 2024; 81:102506. [PMID: 39096817 DOI: 10.1016/j.cbpa.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Despite impressive recent establishment of therapeutic nucleic acids as drugs and vaccines, their broader medical use is impaired by modest performance in intracellular delivery. Inefficient endosomal escape presents a major limitation responsible for inadequate cytosolic cargo release. Depending on the carrier, this endosomal barrier can strongly limit or even abolish nucleic acid delivery. Different recent endosomal escape strategies and their hypothesized mechanisms are reviewed.
Collapse
Affiliation(s)
- Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany.
| |
Collapse
|
45
|
Chernyi N, Gavrilova D, Saruhanyan M, Oloruntimehin ES, Karabelsky A, Bezsonov E, Malogolovkin A. Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules 2024; 14:854. [PMID: 39062568 PMCID: PMC11274510 DOI: 10.3390/biom14070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
One of the well-known X-linked genetic disorders is hemophilia, which could be hemophilia A as a result of a mutation in the F8 (factor VIII) gene or hemophilia B as a result of a mutation in the F9 (factor IX) gene, leading to insufficient levels of the proteins essential for blood coagulation cascade. In patients with severe hemophilia, factor VIII or factor IX activities in the blood plasma are considerably low, estimated to be less than 1%. This is responsible for spontaneous or post-traumatic bleeding episodes, or both, leading to disease complications and death. Current treatment of hemophilia relies on the prevention of bleeding, which consists of expensive lifelong replacement infusion therapy of blood plasma clotting factors, their recombinant versions, or therapy with recombinant monoclonal antibodies. Recently emerged gene therapy approaches may be a potential game changer that could reshape the therapeutic outcomes of hemophilia A or B using a one-off vector in vivo delivery and aim to achieve long-term endogenous expression of factor VIII or IX. This review examines both traditional approaches to the treatment of hemophilia and modern methods, primarily focusing on gene therapy, to update knowledge in this area. Recent technological advances and gene therapeutics in the pipeline are critically reviewed and summarized. We consider gene therapy to be the most promising method as it may overcome the problems associated with more traditional treatments, such as the need for constant and expensive infusions and the presence of an immune response to the antibody drugs used to treat hemophilia.
Collapse
Affiliation(s)
- Nikita Chernyi
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Darina Gavrilova
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia;
| | - Mane Saruhanyan
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Ezekiel S. Oloruntimehin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Alexander Karabelsky
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia;
| | - Evgeny Bezsonov
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia;
| | - Alexander Malogolovkin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia;
| |
Collapse
|
46
|
Maji M, Ghosh S, Didwania N, Ali N. Differentially Charged Liposomes Stimulate Dendritic Cells with Varying Effects on Uptake and Processing When Used Alone or in Combination with an Adjuvant. ACS OMEGA 2024; 9:29175-29185. [PMID: 39005780 PMCID: PMC11238303 DOI: 10.1021/acsomega.3c07814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 07/16/2024]
Abstract
Liposomes carrying differential charges have been extensively studied for their role in stimulating dendritic cells (DCs), major antigen-presenting cells, known to serve as a pivotal bridge between innate and adaptive immunity. However, the impact of the differentially charged liposomes on activating DCs remains to be understood. In this study, we have investigated the impact of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-based neutral, anionic, and cationic liposomes on the uptake, immunostimulation, and intracellular fate in mouse bone-marrow-derived DCs. We observed that liposomes could induce phenotypic maturation of DCs by inducing the expression of costimulatory molecules (CD40 and CD86) and production of cytokines tumor necrosis factor-α, interleukin-12,and nitric oxide. Interestingly, admixing monophosphoryl lipid A with charged liposomes further enhances the expression of the costimulatory molecules and production of cytokines, with preferential activation by positively charged liposomes. Fluorometric analysis using a pH-sensitive dye and flow-cytometry-based pathway inhibition assays revealed that cationic liposomes were taken up more efficiently by DCs through endocytosis and transported to neutral compartments for further processing, whereas anionic and neutral liposomes were inclined to accumulate in acidic compartments. These findings therefore endorse the use of cationic DSPC liposomes as a preferred option for vaccine delivery vehicles over neutral and negatively charged liposomes, particularly for the preferential activation of DCs.
Collapse
Affiliation(s)
| | | | - Nicky Didwania
- Infectious Diseases and Immunology
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology
Division, CSIR-Indian Institute of Chemical
Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
47
|
Taghdiri M, Mussolino C. Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets. Int J Mol Sci 2024; 25:7333. [PMID: 39000440 PMCID: PMC11242246 DOI: 10.3390/ijms25137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized the field of gene therapy as it has enabled precise genome editing with unprecedented accuracy and efficiency, paving the way for clinical applications to treat otherwise incurable genetic disorders. Typically, precise genome editing requires the delivery of multiple components to the target cells that, depending on the editing platform used, may include messenger RNA (mRNA), protein complexes, and DNA fragments. For clinical purposes, these have to be efficiently delivered into transplantable cells, such as primary T lymphocytes or hematopoietic stem and progenitor cells that are typically sensitive to exogenous substances. This challenge has limited the broad applicability of precise gene therapy applications to those strategies for which efficient delivery methods are available. Electroporation-based methodologies have been generally applied for gene editing applications, but procedure-associated toxicity has represented a major burden. With the advent of novel and less disruptive methodologies to deliver genetic cargo to transplantable cells, it is now possible to safely and efficiently deliver multiple components for precise genome editing, thus expanding the applicability of these strategies. In this review, we describe the different delivery systems available for genome editing components, including viral and non-viral systems, highlighting their advantages, limitations, and recent clinical applications. Recent improvements to these delivery methods to achieve cell specificity represent a critical development that may enable in vivo targeting in the future and will certainly play a pivotal role in the gene therapy field.
Collapse
Affiliation(s)
- Maryam Taghdiri
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
48
|
Khawar MB, Afzal A, Si Y, Sun H. Steering the course of CAR T cell therapy with lipid nanoparticles. J Nanobiotechnology 2024; 22:380. [PMID: 38943167 PMCID: PMC11212433 DOI: 10.1186/s12951-024-02630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
Lipid nanoparticles (LNPs) have proven themselves as transformative actors in chimeric antigen receptor (CAR) T cell therapy, surpassing traditional methods and addressing challenges like immunogenicity, reduced toxicity, and improved safety. Promising preclinical results signal a shift toward safer and more effective CAR T cell treatments. Ongoing research aims to validate these findings in clinical trials, marking a new era guided by LNPs utility in CAR therapy. Herein, we explore the preference for LNPs over traditional methods, highlighting the versatility of LNPs and their effective delivery of nucleic acids. Additionally, we address key challenges in clinical considerations, heralding a new era in CAR T cell therapy.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.
| |
Collapse
|
49
|
Sun Y, Chatterjee S, Lian X, Traylor Z, Sattiraju SR, Xiao Y, Dilliard SA, Sung YC, Kim M, Lee SM, Moore S, Wang X, Zhang D, Wu S, Basak P, Wang J, Liu J, Mann RJ, LePage DF, Jiang W, Abid S, Hennig M, Martinez A, Wustman BA, Lockhart DJ, Jain R, Conlon RA, Drumm ML, Hodges CA, Siegwart DJ. In vivo editing of lung stem cells for durable gene correction in mice. Science 2024; 384:1196-1202. [PMID: 38870301 DOI: 10.1126/science.adk9428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/17/2024] [Indexed: 06/15/2024]
Abstract
In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.
Collapse
Affiliation(s)
- Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xizhen Lian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary Traylor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Yufen Xiao
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean A Dilliard
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yun-Chieh Sung
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang M Lee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephen Moore
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xu Wang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Di Zhang
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiying Wu
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pratima Basak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jialu Wang
- ReCode Therapeutics, Menlo Park, CA 94025, USA
| | - Jing Liu
- ReCode Therapeutics, Menlo Park, CA 94025, USA
| | - Rachel J Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David F LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Weihong Jiang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shadaan Abid
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | - Raksha Jain
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Craig A Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
50
|
Zhang Y, Béland LC, Roussel S, Bertrand N, Hébert SS, Vallières L. Optimization of a lipid nanoparticle-based protocol for RNA transfection into primary mononuclear phagocytes. J Leukoc Biol 2024; 115:1165-1176. [PMID: 38466819 DOI: 10.1093/jleuko/qiae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
The effective delivery of synthetic RNA into mononuclear phagocytes is a prerequisite for experimental research and therapeutic development. However, traditional methods are highly ineffective and toxic for these cells. Here, we aimed to optimize a transfection protocol for primary bone marrow-derived phagocytes, specifically dendritic cells and macrophages, using lipid nanoparticles generated by microfluidics. Our results show that a lipid mixture similar to that used in Moderna's COVID-19 messenger RNA vaccine outperforms the others tested. Improved messenger RNA transfection can be achieved by replacing uridine with methylpseudouridine but not methoxyuridine, which interferes with transfection. The addition of diphenyleneiodonium or apocynin can enhance transfection in a cell type-dependent manner without adverse effects, while apolipoprotein E provides no added value. These optimized transfection conditions can also be used for microRNA agonists and antagonists. In sum, this study offers a straightforward, highly efficient, reproducible, and nontoxic protocol to deliver RNA into different primary mononuclear phagocytes in culture.
Collapse
Affiliation(s)
- Yu Zhang
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Louis-Charles Béland
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Sabrina Roussel
- Endocrinology and Nephrology Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Nicolas Bertrand
- Endocrinology and Nephrology Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Sébastien S Hébert
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec-Laval University, 2705 Laurier Boulevard, Quebec City, Quebec G1V 4G2, Canada
| |
Collapse
|