1
|
Silverman JB, Krystofiak EE, Caplan LR, Lau KS, Tyska MJ. Organization of a cytoskeletal superstructure in the apical domain of intestinal tuft cells. J Cell Biol 2024; 223:e202404070. [PMID: 39352498 PMCID: PMC11457492 DOI: 10.1083/jcb.202404070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Tuft cells are a rare epithelial cell type that play important roles in sensing and responding to luminal antigens. A defining morphological feature of this lineage is the actin-rich apical "tuft," which contains large fingerlike protrusions. However, details of the cytoskeletal ultrastructure underpinning the tuft, the molecules involved in building this structure, or how it supports tuft cell biology remain unclear. In the context of the small intestine, we found that tuft cell protrusions are supported by long-core bundles that consist of F-actin crosslinked in a parallel and polarized configuration; they also contain a tuft cell-specific complement of actin-binding proteins that exhibit regionalized localization along the bundle axis. Remarkably, in the sub-apical cytoplasm, the array of core actin bundles interdigitates and co-aligns with a highly ordered network of microtubules. The resulting cytoskeletal superstructure is well positioned to support subcellular transport and, in turn, the dynamic sensing functions of the tuft cell that are critical for intestinal homeostasis.
Collapse
Affiliation(s)
- Jennifer B. Silverman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Evan E. Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN, USA
| | - Leah R. Caplan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ken S. Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
2
|
Busselman BW, Ratnayake I, Terasaki MR, Thakkar VP, Ilyas A, Otterpohl KL, Zimmerman JL, Chandrasekar I. Actin cytoskeleton and associated myosin motors within the renal epithelium. Am J Physiol Renal Physiol 2024; 327:F553-F565. [PMID: 39052845 PMCID: PMC11483076 DOI: 10.1152/ajprenal.00078.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
This review highlights the complexity of renal epithelial cell membrane architectures and organelles through careful review of ultrastructural and physiological studies published over the past several decades. We also showcase the vital roles played by the actin cytoskeleton and actin-associated myosin motor proteins in regulating cell type-specific physiological functions within the cells of the renal epithelium. The purpose of this review is to provide a fresh conceptual framework to explain the structure-function relationships that exist between the actin cytoskeleton, organelle structure, and cargo transport within the mammalian kidney. With recent advances in technologies to visualize the actin cytoskeleton and associated proteins within intact kidneys, it has become increasingly imperative to reimagine the functional roles of these proteins in situ to provide a rationale for their unique, cell type-specific functions that are necessary to establish and maintain complex physiological processes.
Collapse
Affiliation(s)
- Brook W Busselman
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, South Dakota, United States
| | | | - Mark R Terasaki
- Department of Cell Biology, University of Connecticut, Farmington, Connecticut, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| | - Vedant P Thakkar
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Arooba Ilyas
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, South Dakota, United States
| | - Karla L Otterpohl
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Jenna L Zimmerman
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
| | - Indra Chandrasekar
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, United States
- Department of Cell Biology, University of Connecticut, Farmington, Connecticut, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| |
Collapse
|
3
|
Kaji I, Thiagarajah JR, Goldenring JR. Modeling the cell biology of monogenetic intestinal epithelial disorders. J Cell Biol 2024; 223:e202310118. [PMID: 38683247 PMCID: PMC11058565 DOI: 10.1083/jcb.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Monogenetic variants are responsible for a range of congenital human diseases. Variants in genes that are important for intestinal epithelial function cause a group of disorders characterized by severe diarrhea and loss of nutrient absorption called congenital diarrheas and enteropathies (CODEs). CODE-causing genes include nutrient transporters, enzymes, structural proteins, and vesicular trafficking proteins in intestinal epithelial cells. Several severe CODE disorders result from the loss-of-function in key regulators of polarized endocytic trafficking such as the motor protein, Myosin VB (MYO5B), as well as STX3, STXBP2, and UNC45A. Investigations of the cell biology and pathophysiology following loss-of-function in these genes have led to an increased understanding of both homeostatic and pathological vesicular trafficking in intestinal epithelial cells. Modeling different CODEs through investigation of changes in patient tissues, coupled with the development of animal models and patient-derived enteroids, has provided critical insights into the enterocyte differentiation and function. Linking basic knowledge of cell biology with the phenotype of specific patient variants is a key step in developing effective treatments for rare monogenetic diseases. This knowledge can also be applied more broadly to our understanding of common epithelial disorders.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Nashville VA Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Morales EA, Fitz GN, Tyska MJ. Mitotic spindle positioning protein (MISP) preferentially binds to aged F-actin. J Biol Chem 2024; 300:107279. [PMID: 38588808 PMCID: PMC11101845 DOI: 10.1016/j.jbc.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin-binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. By immunostaining native intestinal tissue sections, we found that microvillar rootlets are decorated with the severing protein, cofilin, suggesting high levels of ADP-actin in these structures. Using total internal reflection fluorescence microscopy assays, we also found that purified MISP exhibits a binding preference for ADP- versus ADP-Pi-actin-containing filaments. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
5
|
Silverman JB, Krystofiak EE, Caplan LR, Lau KS, Tyska MJ. Intestinal tuft cells assemble a cytoskeletal superstructure composed of co-aligned actin bundles and microtubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585757. [PMID: 38562898 PMCID: PMC10983963 DOI: 10.1101/2024.03.19.585757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background & Aims All tissues consist of a distinct set of cell types, which collectively support organ function and homeostasis. Tuft cells are a rare epithelial cell type found in diverse epithelia, where they play important roles in sensing antigens and stimulating downstream immune responses. Exhibiting a unique polarized morphology, tuft cells are defined by an array of giant actin filament bundles that support ∼2 μm of apical membrane protrusion and extend over 7 μm towards the cell's perinuclear region. Despite their established roles in maintaining intestinal epithelial homeostasis, tuft cells remain understudied due to their rarity (e.g. ∼ 1% in the small intestinal epithelium). Details regarding the ultrastructural organization of the tuft cell cytoskeleton, the molecular components involved in building the array of giant actin bundles, and how these cytoskeletal structures support tuft cell biology remain unclear. Methods To begin to answer these questions, we used advanced light and electron microscopy to perform quantitative morphometry of the small intestinal tuft cell cytoskeleton. Results We found that tuft cell core bundles consist of actin filaments that are crosslinked in a parallel "barbed-end out" configuration. These polarized structures are also supported by a unique group of tuft cell enriched actin-binding proteins that are differentially localized along the giant core bundles. Furthermore, we found that tuft cell actin bundles are co-aligned with a highly ordered network of microtubules. Conclusions Tuft cells assemble a cytoskeletal superstructure that is well positioned to serve as a track for subcellular transport along the apical-basolateral axis and in turn, support the dynamic sensing functions that are critical for intestinal epithelial homeostasis. SYNOPSIS This research leveraged advanced light and electron microscopy to perform quantitative morphometry of the intestinal tuft cell cytoskeleton. Three-dimensional reconstructions of segmented image data revealed a co-aligned actin-microtubule superstructure that may play a fundamental role in tuft cell function.
Collapse
|
6
|
Silverman JB, Vega PN, Tyska MJ, Lau KS. Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Annu Rev Physiol 2024; 86:479-504. [PMID: 37863104 PMCID: PMC11193883 DOI: 10.1146/annurev-physiol-042022-030310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.
Collapse
Affiliation(s)
- Jennifer B Silverman
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Matthew J Tyska
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| |
Collapse
|
7
|
Salahuddin M, Hiramatsu K, Al-Amin M, Imai Y, Kita K. Low dietary carbohydrate induces structural alterations in enterocytes of the chicken ileum. Anim Sci J 2024; 95:e13919. [PMID: 38287469 DOI: 10.1111/asj.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
We investigated the role of dietary carbohydrates in the maintenance of the enterocyte microvillar structure in the chicken ileum. Male chickens were divided into the control and three experimental groups, and the experimental groups were fed diets containing 50%, 25%, and 0% carbohydrates of the control diet. The structural alterations in enterocytes were examined using transmission electron microscopy and immunofluorescent techniques for β-actin and villin. Glucagon-like peptide (GLP)-2 and proglucagon mRNA were detected by immunohistochemistry and in situ hybridization, respectively. Fragmentation and wide gap spaces were frequently observed in the microvilli of the 25% and 0% groups. The length, width, and density of microvilli were also decreased in the experimental groups. The experimental groups had shorter terminal web extensions, and there were substantial changes in the mitochondrial density between the control and experimental groups. Intensities of β-actin and villin immunofluorescence observed on the apical surface of enterocytes were lower in the 0% group. The frequency of GLP-2-immunoreactive and proglucagon mRNA-expressing cells decreased with declining dietary carbohydrate levels. This study revealed that dietary carbohydrates contribute to the structural maintenance of enterocyte microvilli in the chicken ileum. The data from immunohistochemistry and in situ hybridization assays suggest the participation of GLP-2 in this maintenance system.
Collapse
Affiliation(s)
- Md Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano, Japan
| | - Kohzy Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Md Al-Amin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano, Japan
| | - Yuriko Imai
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Kazumi Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
8
|
Pollard TD, Korn ED. Discovery of the first unconventional myosin: Acanthamoeba myosin-I. Front Physiol 2023; 14:1324623. [PMID: 38046947 PMCID: PMC10693453 DOI: 10.3389/fphys.2023.1324623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Having characterized actin from Acanthamoeba castellanii (Weihing and Korn, Biochemistry, 1971, 10, 590-600) and knowing that myosin had been isolated from the slime mold Physarum (Hatano and Tazawa, Biochim. Biophys. Acta, 1968, 154, 507-519; Adelman and Taylor, Biochemistry, 1969, 8, 4976-4988), we set out in 1969 to find myosin in Acanthamoeba. We used K-EDTA-ATPase activity to assay myosin, because it is a unique feature of muscle myosins. After slightly less than 3 years, we purified a K-EDTA ATPase that interacted with actin. Actin filaments stimulated the Mg-ATPase activity of the crude enzyme, but this was lost with further purification. Recombining fractions from the column where this activity was lost revealed a "cofactor" that allowed actin filaments to stimulate the Mg-ATPase of the purified enzyme. The small size of the heavy chain and physical properties of the purified myosin were unprecedented, so many were skeptical, assuming that our myosin was a proteolytic fragment of a larger myosin similar to muscle or Physarum myosin. Subsequently our laboratories confirmed that Acanthamoeba myosin-I is a novel unconventional myosin that interacts with membrane lipids (Adams and Pollard, Nature, 1989, 340 (6234), 565-568) and that the cofactor is a myosin heavy chain kinase (Maruta and Korn, J. Biol. Chem., 1977, 252, 8329-8332). Phylogenetic analysis (Odronitz and Kollmar, Genome Biology, 2007, 8, R196) later established that class I myosin was the first myosin to appear during the evolution of eukaryotes.
Collapse
Affiliation(s)
- Thomas D. Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Edward D. Korn
- Scientist Emeritus, Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Šešelja K, Bazina I, Vrecl M, Farger J, Schicht M, Paulsen F, Baus Lončar M, Pirman T. Tff3 Deficiency Differentially Affects the Morphology of Male and Female Intestines in a Long-Term High-Fat-Diet-Fed Mouse Model. Int J Mol Sci 2023; 24:16342. [PMID: 38003531 PMCID: PMC10671422 DOI: 10.3390/ijms242216342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Trefoil factor family protein 3 (Tff3) protects the gastrointestinal mucosa and has a complex mode of action in different tissues. Here, we aimed to determine the effect of Tff3 deficiency on intestinal tissues in a long-term high-fat-diet (HFD)-fed model. A novel congenic strain without additional metabolically relevant mutations (Tff3-/-/C57Bl6NCrl strain, male and female) was used. Wild type (Wt) and Tff3-deficient mice of both sexes were fed a HFD for 36 weeks. Long-term feeding of a HFD induces different effects on the intestinal structure of Tff3-deficient male and female mice. For the first time, we found sex-specific differences in duodenal morphology. HFD feeding reduced microvilli height in Tff3-deficient females compared to that in Wt females, suggesting a possible effect on microvillar actin filament dynamics. These changes could not be attributed to genes involved in ER and oxidative stress, apoptosis, or inflammation. Tff3-deficient males exhibited a reduced cecal crypt depth compared to that of Wt males, but this was not the case in females. Microbiome-related short-chain fatty acid content was not affected by Tff3 deficiency in HFD-fed male or female mice. Sex-related differences due to Tff3 deficiency imply the need to consider both sexes in future studies on the role of Tff in intestinal function.
Collapse
Affiliation(s)
- Kate Šešelja
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Iva Bazina
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Jessica Farger
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (J.F.); (M.S.); (F.P.)
| | - Mirela Baus Lončar
- Department of Molecular Medicine, Ruđer Bošković Institute, Bjenička 54, 10 000 Zagreb, Croatia; (K.Š.); (I.B.)
| | - Tatjana Pirman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. Dev Cell 2023; 58:2048-2062.e7. [PMID: 37832537 PMCID: PMC10615885 DOI: 10.1016/j.devcel.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
To maximize solute transport, epithelial cells build an apical "brush border," where thousands of microvilli are linked to their neighbors by protocadherin-containing intermicrovillar adhesion complexes (IMACs). Previous studies established that the IMAC is needed to build a mature brush border, but how this complex contributes to the accumulation of new microvilli during differentiation remains unclear. We found that early in differentiation, mouse, human, and porcine epithelial cells exhibit a marginal accumulation of microvilli, which span junctions and interact with protrusions on neighboring cells using IMAC protocadherins. These transjunctional IMACs are highly stable and reinforced by tension across junctions. Finally, long-term live imaging showed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions. Thus, nascent microvilli are stabilized by a marginal capture mechanism that depends on the formation of transjunctional IMACs. These results may offer insights into how apical specializations are assembled in diverse epithelial systems.
Collapse
Affiliation(s)
- Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jennifer B Silverman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; United States Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37235, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Moran ET, Bedford MR. Endogenous mucin conveyed to the mucosa with microbes can assure lumen fermentation and large intestinal security-swine versus fowl. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:403-410. [PMID: 37635931 PMCID: PMC10457508 DOI: 10.1016/j.aninu.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 08/29/2023]
Abstract
Endogenous protein leaving the ileum largely consists of accrued mucins from the upper gastrointestinal tract (GIT) that had resisted digestion. The amounts released rely on their mucosal generation during enteral feeding which vary with age as well as diet. These digestion resistant proteins of endogenous origin continue to be unavailable in the large intestine, whereas those of dietary origin provide amino acids that largely support the existing microbial population while denying limited amounts for absorption. Other mucins pre-exist within the large intestine as two layers at the lumen surface. A loose layer harboring a diverse microbial population is superimposed on the unstirred water layer (USWL) which simultaneously acts as an obstacle to microbes at the loose layer while performing as a molecular sieve for nutrients. The USWL is formed through interplay between enterocyte and goblet cells; however, the basis for presence of the loose layer is elusive. Large intestinal fermentation predominates within the colon of swine, whereas fowl employ their ceca. Motility within the colon of swine segregates fine materials into haustrae out-pocketings that parallel their placement within the ceca of fowl. Viscous mucins from small intestinal endogenous losses may envelop microbes within the large intestinal lumen to present successive adherents on the USWL that assemble its loose layer. The loose layer continually functions as a microbial reservoir in support of lumen fermentation. Microbial catabolism of mucin within the loose layer is known to be slow, but its proximity to the enterocyte is of advantage to enterocyte absorption with by-product amino acids fostering the USWL.
Collapse
Affiliation(s)
- Edwin T. Moran
- Poultry Science Department, Auburn University, AL 36849-5416, USA
| | - Michael R. Bedford
- AB Vista, Woodstock Court, Blenheim Road, Marlborough Road, Wiltshire, SN8 4NA, UK
| |
Collapse
|
12
|
Morales EA, Tyska MJ. Mitotic spindle positioning protein (MISP) is an actin bundler that senses ADP-actin and binds near the pointed ends of filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539649. [PMID: 37205433 PMCID: PMC10187293 DOI: 10.1101/2023.05.05.539649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. Using in vitro TIRF microscopy assays, we found that MISP exhibits a clear binding preference for filaments enriched in ADP-actin monomers. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.
Collapse
|
13
|
Gaeta IM, Tyska MJ. BioID2 screening identifies KIAA1671 as an EPS8 proximal factor that marks sites of microvillus growth. Mol Biol Cell 2023; 34:ar31. [PMID: 36790915 PMCID: PMC10092648 DOI: 10.1091/mbc.e22-11-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Microvilli are defining morphological features of the apical surfaces in diverse epithelial tissues. To develop our understanding of microvillus biogenesis, we used a biotin proximity-labeling approach to uncover new molecules enriched near EPS8, a well-studied marker of the microvillus distal tip compartment. Mass spectrometry of biotinylated hits identified KIAA1671, a large (∼200 kDa), disordered, and previously uncharacterized protein. Based on immunofluorescent staining and expression of fluorescent protein-tagged constructs, we found that KIAA1671 localizes to the base of the brush border in native intestinal tissue and polarized epithelial-cell culture models, as well as dynamic actin-rich structures in unpolarized, nonepithelial cell types. Live imaging also revealed that during the early stages of microvillar growth, KIAA1671 colocalizes with EPS8 in diffraction-limited puncta. However, once elongation of the core bundle begins, these two factors separate, with EPS8 tracking the distal end and KIAA1671 remaining behind at the base of the structure. These results suggest that KIAA1671 cooperates with EPS8 and potentially other assembly factors to initiate growth of microvilli on the apical surface. These findings offer new details on how transporting epithelial cells builds the brush border and may inform our understanding of how apical specializations are assembled in other epithelial contexts.
Collapse
Affiliation(s)
- Isabella M Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
14
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531705. [PMID: 36945471 PMCID: PMC10028856 DOI: 10.1101/2023.03.08.531705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Differentiated transporting epithelial cells present an extensive apical array of microvilli - a "brush border" - where neighboring microvilli are linked together by intermicrovillar adhesion complexes (IMACs) composed of protocadherins CDHR2 and CDHR5. Although loss-of-function studies provide strong evidence that IMAC function is needed to build a mature brush border, how the IMAC contributes to the stabilization and accumulation of nascent microvilli remains unclear. We found that, early in differentiation, the apical surface exhibits a marginal accumulation of microvilli, characterized by higher packing density relative to medial regions of the surface. While medial microvilli are highly dynamic and sample multiple orientations over time, marginal protrusions exhibit constrained motion and maintain a vertical orientation. Unexpectedly, we found that marginal microvilli span the junctional space and contact protrusions on neighboring cells, mediated by complexes of CDHR2/CDHR5. FRAP analysis indicated that these transjunctional IMACs are highly stable relative to adhesion complexes between medial microvilli, which explains the restricted motion of protrusions in the marginal zone. Finally, long-term live imaging revealed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions of the cell. Collectively, our findings suggest that nascent microvilli are stabilized by a capture mechanism that is localized to cell margins and enabled by the transjunctional formation of IMACs. These results inform our understanding of how apical specializations are assembled in diverse epithelial systems.
Collapse
|
15
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
16
|
Morales EA, Gaeta I, Tyska MJ. Building the brush border, one microvillus at a time. Curr Opin Cell Biol 2023; 80:102153. [PMID: 36827850 PMCID: PMC10033394 DOI: 10.1016/j.ceb.2023.102153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Microvilli are actin bundle-supported surface protrusions assembled by diverse cell types to mediate biochemical and physical interactions with the external environment. Found on the surface of some of the earliest animal cells, primordial microvilli likely contributed to bacterial entrapment and feeding. Although millions of years of evolution have repurposed these protrusions to fulfill diverse roles such as detection of mechanical or visual stimuli in inner ear hair cells or retinal pigmented epithelial cells, respectively, solute uptake remains a key essential function linked to these structures. In this mini review, we offer a brief overview of the composition and structure of epithelial microvilli, highlight recent discoveries on the growth of these protrusions early in differentiation, and point to fundamental questions surrounding microvilli biogenesis that remain open for future studies.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Isabella Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
17
|
Fitz GN, Weck ML, Bodnya C, Perkins OL, Tyska MJ. Protrusion growth driven by myosin-generated force. Dev Cell 2023; 58:18-33.e6. [PMID: 36626869 PMCID: PMC9940483 DOI: 10.1016/j.devcel.2022.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Actin-based protrusions extend from the surface of all eukaryotic cells, where they support diverse activities essential for life. Models of protrusion growth hypothesize that actin filament assembly exerts force for pushing the plasma membrane outward. However, membrane-associated myosin motors are also abundant in protrusions, although their potential for contributing, growth-promoting force remains unexplored. Using an inducible system that docks myosin motor domains to membrane-binding modules with temporal control, we found that application of myosin-generated force to the membrane is sufficient for driving robust protrusion elongation in human, mouse, and pig cell culture models. Protrusion growth scaled with motor accumulation, required barbed-end-directed force, and was independent of cargo delivery or recruitment of canonical elongation factors. Application of growth-promoting force was also supported by structurally distinct myosin motors and membrane-binding modules. Thus, myosin-generated force can drive protrusion growth, and this mechanism is likely active in diverse biological contexts.
Collapse
Affiliation(s)
- Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Caroline Bodnya
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Olivia L Perkins
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Padhan SK, Bag J, Panda M, Biswal BK, Sahoo H, Mishra M, Sahu SN. Synthesis of First Coumarin Fluorescent Dye for Actin Visualization. Bioconjug Chem 2022; 33:2113-2120. [PMID: 36264777 DOI: 10.1021/acs.bioconjchem.2c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective fluorescence imaging of actin protein hugely depends on the fluorescently labeled actin-binding domain (ABD). Thus, it is always a challenging task to image the actin protein (in vivo or in vitro) directly with an ABD-free system. To overcome the limitations of actin imaging without an ABD, we have designed a facile and cost-effective red fluorescent coumarin dye 7-hydroxy-4-methyl-8-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-ylimino)methyl-2H-chromen-2-one (CTC) for actin binding. The selective binding of the dye was investigated using the gut and eye of the model organism Drosophila melanogaster and C2C12 and SCC-9 cell lines. Our result suggests two major advantages of CTC over the dyes presently used for imaging actin proteins. First, the dye can bind to actin efficiently without any secondary intermediate. Second, it is much more stable at room temperature and exhibits excellent photostability. To the best of our knowledge, this is the first fluorescent dye that can bind to the actin protein without employing any secondary intermediate/actin-binding domain. These findings could pave the way for many biologists and physicists to successfully employ the CTC dye for imaging and tracking actin proteins by fluorescence microscopy in various in vivo and in vitro systems.
Collapse
Affiliation(s)
- Subrata Kumar Padhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Sambalpur 768019, Odisha, India
| | - Janmejaya Bag
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Munmun Panda
- Cancer Drug Resistance Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Satya Narayan Sahu
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Sambalpur 768019, Odisha, India
| |
Collapse
|
19
|
Engevik MA, Engevik AC. Myosins and membrane trafficking in intestinal brush border assembly. Curr Opin Cell Biol 2022; 77:102117. [PMID: 35870341 DOI: 10.1016/j.ceb.2022.102117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Myosins are a class of motors that participate in a wide variety of cellular functions including organelle transport, cell adhesion, endocytosis and exocytosis, movement of RNA, and cell motility. Among the emerging roles for myosins is regulation of the assembly, morphology, and function of actin protrusions such as microvilli. The intestine harbors an elaborate apical membrane composed of highly organized microvilli. Microvilli assembly and function are intricately tied to several myosins including Myosin 1a, non-muscle Myosin 2c, Myosin 5b, Myosin 6, and Myosin 7b. Here, we review the research progress made in our understanding of myosin mediated apical assembly.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina
| | - Amy C Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina.
| |
Collapse
|
20
|
Morales EA, Arnaiz C, Krystofiak ES, Zanic M, Tyska MJ. Mitotic Spindle Positioning (MISP) is an actin bundler that selectively stabilizes the rootlets of epithelial microvilli. Cell Rep 2022; 39:110692. [PMID: 35443169 PMCID: PMC9097542 DOI: 10.1016/j.celrep.2022.110692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022] Open
Abstract
Microvilli are conserved actin-based surface protrusions that have been repurposed throughout evolution to fulfill diverse cell functions. In the case of transporting epithelia, microvilli are supported by a core of actin filaments bundled in parallel by villin, fimbrin, and espin. Remarkably, microvilli biogenesis persists in mice lacking all three of these factors, suggesting the existence of unknown bundlers. We identified Mitotic Spindle Positioning (MISP) as an actin-binding factor that localizes specifically to the rootlet end of the microvillus. MISP promotes rootlet elongation in cells, and purified MISP exhibits potent filament bundling activity in vitro. MISP-bundled filaments also recruit fimbrin, which further elongates and stabilizes bundles. MISP confinement to the rootlet is enforced by ezrin, which prevents decoration of the membrane-wrapped distal end of the core bundle. These discoveries reveal how epithelial cells optimize apical membrane surface area and offer insight on the remarkable robustness of microvilli biogenesis. Morales et al. identify Mitotic Spindle Positioning (MISP) as an actin bundler in the rootlets of epithelial microvilli. MISP cooperates with other bundlers, and its rootlet-specific localization is enforced by membrane-actin linker ezrin. These findings illuminate mechanisms that drive the assembly and compartmentalization of actin bundle-supported protrusions.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Cayetana Arnaiz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Evan S Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN 37232, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
FCHSD2 cooperates with CDC42 and N-WASP to regulate cell protrusion formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119134. [PMID: 34520816 DOI: 10.1016/j.bbamcr.2021.119134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022]
Abstract
Actin-based, finger-like cell protrusions such as microvilli and filopodia play important roles in epithelial cells. Several proteins have been identified to regulate cell protrusion formation, which helps us to learn about the underlying mechanism of this process. FCH domain and double SH3 domains containing protein 2 (FCHSD2) belongs to the FCH and Bin-Amphiphysin-Rvs (F-BAR) protein family, containing an N-terminal F-BAR domain, two SH3 domains, and a C-terminal PDZ domain-binding interface (PBI). Previously, we found that FCHSD2 interacts with WASP/N-WASP and stimulates ARP2/3-mediated actin polymerization in vitro. In the present work, we show that FCHSD2 promotes the formation of apical and lateral cell protrusions in cultured cells. Our data suggest that FCHSD2 cooperates with CDC42 and N-WASP in regulating apical cell protrusion formation. In line with this, biochemical studies reveal that FCHSD2 and CDC42 simultaneously bind to N-WASP, forming a protein complex. Interestingly, the F-BAR domain of FCHSD2 induces lateral cell protrusion formation independently of N-WASP. Furthermore, we show that the ability of FCHSD2 to induce cell protrusion formation requires its plasma membrane-binding ability. In summary, our present work suggests that FCHSD2 cooperates with CDC42 and N-WASP to regulate cell protrusion formation in a membrane-dependent manner.
Collapse
|
22
|
Intestinal brush border assembly during the peri-hatch period and its contribution to surface area expansion. Poult Sci 2021; 100:101401. [PMID: 34464930 PMCID: PMC8408528 DOI: 10.1016/j.psj.2021.101401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
Microvilli generate the small intestinal brush border, the main site of nutrient digestion and absorption. Mucosal structuring of the small intestine of chicken during the perihatch period has been widely researched, yet the developmental dynamics of microvilli during this period have not been fully characterized. In this study, we examined the structural and molecular characteristics of microvilli assembly and maturation during the perihatch period. Small intestines of broiler embryos and chicks were sampled at prehatch ages 17 E and 19 E, at day of hatch (DOH) and at 1, 3, 7, and 10 d posthatch. Morphological evaluations and measurements were conducted by scanning electron microscopy (SEM) and light microscopy (LM) (n = 3/timepoint), and expression of microvilli structural genes Plastin 1, Ezrin, and Myo1a was examined by Real-Time qPCR (n = 6/timepoint). Results revealed dissimilar patterns of microvilli and villi development during the perihatch period. From 19 E to 1 d, microvilli lengths increased 4.3-fold while villi lengths increased 2.8-fold (P < 0.0001). From 3 to 7 d, villi lengths increased by 20% (P < 0.005), while microvilli lengths decreased by 41% (P = 0.001). At 10 d, microvilli lengths stabilized, while villi continued to elongate by 26% (P < 0.0001). Estimations of the microvilli amplification factor (MAF) and total enterocyte surface area (TESA) revealed similar trends, with peak values of 78.53 and 1961.67 µm2, respectively, at 3 d. Microvilli structural gene expression portrayed diverse patterns. Expression of Plastin 1, which bundles and binds actin cores to the terminal web, increased 8.7-fold between 17 E and DOH (P = 0.005), and gradually increased up to 7 d (P = 0.045). Ezrin and Myo1a, both actin core-cell membrane cross-linkers, portrayed different expression patterns throughout the perihatch period, as Ezrin expression was relatively stable, while Myo1a expression increased 15.8-fold between 17 E and 10 d (P < 0.0001). We conclude that microvilli assembly during the perihatch period is a rapid, coordinated process, which dramatically expands the digestive and absorptive surface area of the small intestine before the completion of villi maturation.
Collapse
|
23
|
Gaeta IM, Meenderink LM, Postema MM, Cencer CS, Tyska MJ. Direct visualization of epithelial microvilli biogenesis. Curr Biol 2021; 31:2561-2575.e6. [PMID: 33951456 PMCID: PMC8222192 DOI: 10.1016/j.cub.2021.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022]
Abstract
Microvilli are actin-bundle-supported surface protrusions that play essential roles in diverse epithelial functions. To develop our understanding of microvilli biogenesis, we used live imaging to directly visualize protrusion growth at early stages of epithelial differentiation. Time-lapse data revealed that specific factors, including epidermal growth factor pathway substrate 8 (EPS8) and insulin-receptor tyrosine kinase substrate (IRTKS) (also known as BAIAP2L1), appear in diffraction-limited puncta at the cell surface and mark future sites of microvillus growth. New core actin bundles elongate from these puncta in parallel with the arrival of ezrin and subsequent plasma membrane encapsulation. In addition to de novo growth, we also observed that new microvilli emerge from pre-existing protrusions. Moreover, we found that nascent microvilli can also collapse, characterized first by loss of membrane wrapping and ezrin enrichment, followed by a sharp decrease in distal tip EPS8 and IRTKS levels, and ultimately disassembly of the core actin bundle itself. These studies are the first to offer a temporally resolved microvillus growth mechanism and highlight factors that participate in this process; they also provide important insights on the growth of apical specializations that will likely apply to diverse epithelial contexts.
Collapse
Affiliation(s)
- Isabella M Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
25
|
Chinowsky CR, Pinette JA, Meenderink LM, Lau KS, Tyska MJ. Nonmuscle myosin-2 contractility-dependent actin turnover limits the length of epithelial microvilli. Mol Biol Cell 2020; 31:2803-2815. [PMID: 33026933 PMCID: PMC7851865 DOI: 10.1091/mbc.e20-09-0582] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brush border microvilli enable functions that are critical for epithelial homeostasis, including solute uptake and host defense. However, the mechanisms that regulate the assembly and morphology of these protrusions are poorly understood. The parallel actin bundles that support microvilli have their pointed-end rootlets anchored in a filamentous meshwork referred to as the "terminal web." Although classic electron microscopy studies revealed complex ultrastructure, the composition and function of the terminal web remain unclear. Here we identify nonmuscle myosin-2C (NM2C) as a component of the terminal web. NM2C is found in a dense, isotropic layer of puncta across the subapical domain, which transects the rootlets of microvillar actin bundles. Puncta are separated by ∼210 nm, the expected size of filaments formed by NM2C. In intestinal organoid cultures, the terminal web NM2C network is highly dynamic and exhibits continuous remodeling. Using pharmacological and genetic perturbations in cultured intestinal epithelial cells, we found that NM2C controls the length of growing microvilli by regulating actin turnover in a manner that requires a fully active motor domain. Our findings answer a decades-old question on the function of terminal web myosin and hold broad implications for understanding apical morphogenesis in diverse epithelial systems.
Collapse
Affiliation(s)
- Colbie R Chinowsky
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Leslie M Meenderink
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
26
|
Weck ML, Crawley SW, Tyska MJ. A heterologous in-cell assay for investigating intermicrovillar adhesion complex interactions reveals a novel protrusion length-matching mechanism. J Biol Chem 2020; 295:16191-16206. [PMID: 33051206 DOI: 10.1074/jbc.ra120.015929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed "brush borders," which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this "intermicrovillar adhesion complex" remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10-MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Scott W Crawley
- Department of Biology, University of Toledo, Toledo, Ohio, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
27
|
Orbach R, Su X. Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling. Front Immunol 2020; 11:2187. [PMID: 33013920 PMCID: PMC7516127 DOI: 10.3389/fimmu.2020.02187] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 01/22/2023] Open
Abstract
Microvilli are finger-like membrane protrusions, supported by the actin cytoskeleton, and found on almost all cell types. A growing body of evidence suggests that the dynamic lymphocyte microvilli, with their highly curved membranes, play an important role in signal transduction leading to immune responses. Nevertheless, challenges in modulating local membrane curvature and monitoring the high dynamicity of microvilli hampered the investigation of the curvature-generation mechanism and its functional consequences in signaling. These technical barriers have been partially overcome by recent advancements in adapted super-resolution microscopy. Here, we review the up-to-date progress in understanding the mechanisms and functional consequences of microvillus formation in T cell signaling. We discuss how the deformation of local membranes could potentially affect the organization of signaling proteins and their biochemical activities. We propose that curved membranes, together with the underlying cytoskeleton, shape microvilli into a unique compartment that sense and process signals leading to lymphocyte activation.
Collapse
Affiliation(s)
- Ron Orbach
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, Yale University, New Haven, CT, United States
| |
Collapse
|
28
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
29
|
Beer AJ, González Delgado J, Steiniger F, Qualmann B, Kessels MM. The actin nucleator Cobl organises the terminal web of enterocytes. Sci Rep 2020; 10:11156. [PMID: 32636403 PMCID: PMC7341751 DOI: 10.1038/s41598-020-66111-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
Brush borders of intestinal epithelial cells are mandatory for nutrient uptake. Yet, which actin nucleators are crucial for forming the F-actin bundles supporting microvilli and the actin filaments of the terminal web, in which microvilli are rooted, is unknown. We show that mice lacking the actin nucleator Cobl surprisingly did not display reduced microvilli densities or changes in microvillar F-actin bundles or microvilli diameter but particularly in the duodenum displayed increased microvillar length. Interestingly, Cobl-deficient mice furthermore showed a significant widening of the terminal web. Quantitative analyses of high-resolution cryo-scanning electron microscopy (EM) of deep-etched duodenum samples revealed that Cobl is specifically important for the formation of fine filaments in the central terminal web that connect the apical structure of the terminal web underlying the plasma membrane, the microvilli rootlets and the basal structure of the terminal web with each other. Thus, the actin nucleator Cobl is critically involved in generating one of the cellular structures of the brush border-decorated apical cortex of enterocytes representing the absorptive intestinal surface.
Collapse
Affiliation(s)
- Anne J Beer
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Frank Steiniger
- Centre of Electron Microscopy, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
30
|
Identification of Important Proteins and Pathways Affecting Feed Efficiency in DLY Pigs by iTRAQ-Based Proteomic Analysis. Animals (Basel) 2020; 10:ani10020189. [PMID: 31978958 PMCID: PMC7070517 DOI: 10.3390/ani10020189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Feed efficiency is one of the most valuable economic traits in the pig industry. The small intestine is the site where most of the nutrients are absorbed from ingested food. Here, we studied the relationship between small intestinal proteomics and feed efficiency in Duroc × (Landrace × Yorkshire) pigs, which is the most popular commercial pig in the Chinese pork market. Exploring the molecular mechanisms of feed efficiency will create great value for the pig industry. Our research provided a reference for further understanding of the key proteins that affect small intestinal microvilli formation and the important pathways related to feed efficiency in pigs. Abstract Feed efficiency is an economically important trait controlled by multiple genes in pigs. The small intestine is the main organ of digestion and nutrient absorption. To explore the biological processes by which small intestine proteomics affects feed efficiency (FE), we investigated the small intestinal tissue proteomes of high-FE and low-FE pigs by the isobaric tag for relative and absolute quantification (iTRAQ) method. In this study, a total of 225 Duroc × (Landrace × Yorkshire) (DLY) commercial pigs were ranked according to feed efficiency, which ranged from 30 kg to 100 kg, and six pigs with extreme phenotypes were selected, three in each of the high and low groups. A total of 1219 differentially expressed proteins (DEPs) were identified between the high-FE and low-FE groups (fold change ≥1.2 or ≤0.84; p ≤ 0.05), of which 785 were upregulated, and 484 were downregulated. Enrichment analysis indicated that the DEPs were mainly enriched in actin filament formation, microvilli formation, and small intestinal movement pathways. Protein functional analysis and protein interaction networks indicated that RHOA, HCLS1, EZR, CDC42, and RAC1 were important proteins that regulate FE in pigs. This study provided new insights into the important pathways and proteins involved in feed efficiency in pigs.
Collapse
|
31
|
Faust JJ, Millis BA, Tyska MJ. Profilin-Mediated Actin Allocation Regulates the Growth of Epithelial Microvilli. Curr Biol 2019; 29:3457-3465.e3. [PMID: 31607529 DOI: 10.1016/j.cub.2019.08.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 01/18/2023]
Abstract
Transporting epithelial cells, like those that line the intestinal tract, are specialized for solute processing and uptake. One defining feature is the brush border, an array of microvilli that serves to amplify apical membrane surface area and increase functional capacity. During differentiation, upon exit from stem-cell-containing crypts, enterocytes build thousands of microvilli, each supported by a parallel bundle of actin filaments several microns in length. Given the high concentration of actin residing in mature brush borders, we sought to determine whether enterocytes were resource (i.e., actin monomer) limited in assembling this domain. To examine this possibility, we inhibited Arp2/3, the ubiquitous branched actin nucleator, to increase G-actin availability during brush border assembly. In native intestinal tissues, Arp2/3 inhibition led to increased microvilli length on the surface of crypt, but not villus, enterocytes. In a cell culture model of brush border assembly, Arp2/3 inhibition accelerated the growth and increased the length of microvilli; it also led to a redistribution of F-actin from cortical lateral networks into the brush border. Effects on brush border growth were rescued by treatment with the G-actin sequestering drug, latrunculin A. G-actin binding protein, profilin-1, colocalized in the terminal web with G-actin, and knockdown of this factor compromised brush border growth in a concentration-dependent manner. Finally, the acceleration in brush border assembly induced by Arp2/3 inhibition was abrogated by profilin-1 knockdown. Thus, brush border assembly is limited by G-actin availability, and profilin-1 directs unallocated actin monomers into microvillar core bundles during enterocyte differentiation.
Collapse
Affiliation(s)
- James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA; Cell Imaging Shared Resource, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
Liu L, Wei Y, Liu J, Wang K, Zhang J, Zhang P, Zhou Y, Li B. Spatial high resolution of actin filament organization by PeakForce atomic force microscopy. Cell Prolif 2019; 53:e12670. [PMID: 31568631 PMCID: PMC6985672 DOI: 10.1111/cpr.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Objectives To investigate the heterogeneous feature of actin filaments (ACFs) associated with the cellular membrane in HeLa and HCT‐116 cells at the nanoscale level. Materials and Methods Fluorescence microscopy coupled with atomic force microscopy (AFM) was used to identify and characterize ACFs of cells. The distribution of ACFs was detected by Fluor‐488‐phalloidin–labelled actin. The morphology of the ACFs was probed by AFM images. The spatial correlation of the microvilli and ACFs was explored with different forces of AFM loading on cells. Results Intricate but ordered structures of the actin cytoskeletons associated with cellular membrane were characterized and revealed. Two different layers of ACFs with distinct structural organizations were directly observed in HCT‐116 and HeLa cells. Bundle‐shaped ACFs protruding the cellular membrane forming the microvilli, and the network ACFs underneath the cellular membrane were resolved with high resolution under near‐physiological conditions. Approximately 14 nm lateral resolution was achieved when imaging single ACF beneath the cellular membrane. On the basis of the observed spatial distribution of the ultrastructure of the ACF organization, a model for this organization of ACFs was proposed. Conclusions We revealed the two layers of the ACF organization in Hela and HCT‐116 cells. The resolved heterogeneous structures at the nanoscale level provide a spatial view of the ACFs, which would contribute to the understanding of the essential biological functions of the actin cytoskeleton.
Collapse
Affiliation(s)
- Lin Liu
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhui Wei
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jingyuan Liu
- Fourth Military Medical University, Xi'an, China
| | - Kaizhe Wang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Zhang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Ping Zhang
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Li
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Meenderink LM, Gaeta IM, Postema MM, Cencer CS, Chinowsky CR, Krystofiak ES, Millis BA, Tyska MJ. Actin Dynamics Drive Microvillar Motility and Clustering during Brush Border Assembly. Dev Cell 2019; 50:545-556.e4. [PMID: 31378589 DOI: 10.1016/j.devcel.2019.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 05/03/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Transporting epithelial cells generate arrays of microvilli, known as a brush border, to enhance functional capacity. To understand brush border formation, we used live cell imaging to visualize apical remodeling early in this process. Strikingly, we found that individual microvilli exhibit persistent active motility, translocating across the cell surface at ∼0.2 μm/min. Perturbation with inhibitors and photokinetic experiments revealed that microvillar motility is driven by actin assembly at the barbed ends of core bundles, which in turn is linked to robust treadmilling of these structures. Actin regulatory factors IRTKS and EPS8 localize to the barbed ends of motile microvilli, where they control the kinetics and nature of movement. As the apical surface of differentiating epithelial cells is crowded with nascent microvilli, persistent motility promotes collisions between protrusions and ultimately clustering and consolidation into higher-order arrays. Thus, microvillar motility represents a previously unrecognized driving force for apical surface remodeling and maturation during epithelial differentiation.
Collapse
Affiliation(s)
- Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Isabella M Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colbie R Chinowsky
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Evan S Krystofiak
- Cell Imaging Shared Resource, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA; Cell Imaging Shared Resource, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
34
|
The Cytoskeleton of the Retinal Pigment Epithelium: from Normal Aging to Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20143578. [PMID: 31336621 PMCID: PMC6678077 DOI: 10.3390/ijms20143578] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a unique epithelium, with major roles which are essential in the visual cycle and homeostasis of the outer retina. The RPE is a monolayer of polygonal and pigmented cells strategically placed between the neuroretina and Bruch membrane, adjacent to the fenestrated capillaries of the choriocapillaris. It shows strong apical (towards photoreceptors) to basal/basolateral (towards Bruch membrane) polarization. Multiple functions are bound to a complex structure of highly organized and polarized intracellular components: the cytoskeleton. A strong connection between the intracellular cytoskeleton and extracellular matrix is indispensable to maintaining the function of the RPE and thus, the photoreceptors. Impairments of these intracellular structures and the regular architecture they maintain often result in a disrupted cytoskeleton, which can be found in many retinal diseases, including age-related macular degeneration (AMD). This review article will give an overview of current knowledge on the molecules and proteins involved in cytoskeleton formation in cells, including RPE and how the cytoskeleton is affected under stress conditions—especially in AMD.
Collapse
|
35
|
|
36
|
Du TT, Dewey JB, Wagner EL, Cui R, Heo J, Park JJ, Francis SP, Perez-Reyes E, Guillot SJ, Sherman NE, Xu W, Oghalai JS, Kachar B, Shin JB. LMO7 deficiency reveals the significance of the cuticular plate for hearing function. Nat Commun 2019; 10:1117. [PMID: 30850599 PMCID: PMC6408450 DOI: 10.1038/s41467-019-09074-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
Sensory hair cells, the mechanoreceptors of the auditory and vestibular systems, harbor two specialized elaborations of the apical surface, the hair bundle and the cuticular plate. In contrast to the extensively studied mechanosensory hair bundle, the cuticular plate is not as well understood. It is believed to provide a rigid foundation for stereocilia motion, but specifics about its function, especially the significance of its integrity for long-term maintenance of hair cell mechanotransduction, are not known. We discovered that a hair cell protein called LIM only protein 7 (LMO7) is specifically localized in the cuticular plate and the cell junction. Lmo7 KO mice suffer multiple cuticular plate deficiencies, including reduced filamentous actin density and abnormal stereociliar rootlets. In addition to the cuticular plate defects, older Lmo7 KO mice develop abnormalities in inner hair cell stereocilia. Together, these defects affect cochlear tuning and sensitivity and give rise to late-onset progressive hearing loss.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Cochlea/physiology
- Disease Models, Animal
- Hair Cells, Auditory/physiology
- Hair Cells, Auditory/ultrastructure
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Hearing/genetics
- Hearing/physiology
- Hearing Loss/etiology
- Hearing Loss/genetics
- Hearing Loss/physiopathology
- LIM Domain Proteins/deficiency
- LIM Domain Proteins/genetics
- LIM Domain Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Microscopy, Electron, Scanning
- Stereocilia/genetics
- Stereocilia/physiology
- Stereocilia/ultrastructure
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Ting-Ting Du
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - James B Dewey
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runjia Cui
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, 20892, USA
| | - Jinho Heo
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jeong-Jin Park
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shimon P Francis
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Stacey J Guillot
- Advanced Microscopy core, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas E Sherman
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, 22908, USA
| | - Wenhao Xu
- Genetically Engineered Murine Model (GEMM) core, University of Virginia, Charlottesville, VA, 22908, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bechara Kachar
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, 20892, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
37
|
Pelaseyed T, Bretscher A. Regulation of actin-based apical structures on epithelial cells. J Cell Sci 2018; 131:131/20/jcs221853. [PMID: 30333133 DOI: 10.1242/jcs.221853] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cells of transporting epithelia are characterized by the presence of abundant F-actin-based microvilli on their apical surfaces. Likewise, auditory hair cells have highly reproducible rows of apical stereocilia (giant microvilli) that convert mechanical sound into an electrical signal. Analysis of mutations in deaf patients has highlighted the critical components of tip links between stereocilia, and related structures that contribute to the organization of microvilli on epithelial cells have been found. Ezrin/radixin/moesin (ERM) proteins, which are activated by phosphorylation, provide a critical link between the plasma membrane and underlying actin cytoskeleton in surface structures. Here, we outline recent insights into how microvilli and stereocilia are built, and the roles of tip links. Furthermore, we highlight how ezrin is locally regulated by phosphorylation, and that this is necessary to maintain polarity. Localized phosphorylation is achieved through an intricate coincidence detection mechanism that requires the membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the apically localized ezrin kinase, lymphocyte-oriented kinase (LOK, also known as STK10) or Ste20-like kinase (SLK). We also discuss how ezrin-binding scaffolding proteins regulate microvilli and how, despite these significant advances, it remains to be discovered how the cell polarity program ultimately interfaces with these processes.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anthony Bretscher
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Postema MM, Grega-Larson NE, Neininger AC, Tyska MJ. IRTKS (BAIAP2L1) Elongates Epithelial Microvilli Using EPS8-Dependent and Independent Mechanisms. Curr Biol 2018; 28:2876-2888.e4. [PMID: 30197089 DOI: 10.1016/j.cub.2018.07.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/05/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022]
Abstract
Transporting epithelial cells like those that line the gut build large arrays of actin-supported protrusions called microvilli, which extend from the apical surface into luminal spaces to increase functional surface area. Although critical for maintaining physiological homeostasis, mechanisms controlling the formation of microvilli remain poorly understood. Here, we report that the inverse-bin-amphiphysin-Rvs (I-BAR)-domain-containing protein insulin receptor tyrosine kinase substrate (IRTKS) (also known as BAIAP2L1) promotes the growth of epithelial microvilli. Super-resolution microscopy and live imaging of differentiating epithelial cells revealed that IRTKS localizes to the distal tips of actively growing microvilli via a mechanism that requires its N-terminal I-BAR domain. At microvillar tips, IRTKS promotes elongation through a mechanism involving its C-terminal actin-binding WH2 domain. IRTKS can also drive microvillar elongation using its SH3 domain to recruit the bundling protein EPS8 to microvillar tips. These results provide new insight on mechanisms that control microvillar growth during the differentiation of transporting epithelial cells and help explain why IRTKS is targeted by enteric pathogens that disrupt microvillar structure during infection of the intestinal epithelium.
Collapse
Affiliation(s)
- Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
39
|
Subcellular Imaging of Liquid Silicone Coated-Intestinal Epithelial Cells. Sci Rep 2018; 8:10763. [PMID: 30018393 PMCID: PMC6050225 DOI: 10.1038/s41598-018-28912-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/03/2018] [Indexed: 12/27/2022] Open
Abstract
Surface contamination and the formation of water bridge at the nanoscopic contact between an atomic force microscope tip and cell surface limits the maximum achievable spatial resolution on cells under ambient conditions. Structural information from fixed intestinal epithelial cell membrane is enhanced by fabricating a silicone liquid membrane that prevents ambient contaminants and accumulation of water at the interface between the cell membrane and the tip of an atomic force microscope. The clean and stable experimental platform permits the visualisation of the structure and orientation of microvilli present at the apical cell membrane under standard laboratory conditions together with registering subcellular details within a microvillus. The method developed here can be implemented for preserving and imaging contaminant-free morphology of fixed cells which is central for both fundamental studies in cell biology and in the emerging field of digital pathology.
Collapse
|
40
|
Li Q, Tanaka Y, Miwa N. Effects of hydrogen-occluding-silica microparticles on wound repair and cell migratory behavior of normal human esophageal epitheliocytes. Med Gas Res 2018; 8:57-63. [PMID: 30112167 PMCID: PMC6070841 DOI: 10.4103/2045-9912.235128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many conventional studies on molecular hydrogen have not examined cell migration ability and the relationship between apoptosis and the cytoskeleton. Here we investigated the influence of hydrogen-occluding silica microparticles (H2-silica) on cell migration motility and changes of the cytoskeleton (F-actin) in normal human esophageal epithelial cells (HEEpiCs). As the results, cell migration was promoted, and formation of microvilli was activated in the 100 ppm (low concentration) scratched group. After performing a wound healing assay, cells exhibited migration after 48 hours and 72 hours for both 10 ppm and 100 ppm groups, suggesting that the wound-repairing effects could be attributed to the antioxidant ability of H2-silica. In scratched groups, high levels of activated caspase-3 were relatively expressed and presented a tendency to increase the observed Bax/Bcl-2 ratio at more than 300 ppm groups. The above-mentioned results show that H2-silica induced apoptosis in HEEpiCs, especially in the scratched cells. Toxicity may cause an exaggerated apoptosis. Furthermore, since the ratio of fascin/tubulin in the 100, 300, and 600 ppm groups tended to increase in both the scratched and the non-scratched control groups, H2-silica was thought to be able to promote fascin action on normal cells and may be have a proliferative effect.
Collapse
Affiliation(s)
- Qiang Li
- Department of Radiological Technology, Faculty of Health Sciences, Butsuryo College of Osaka, Osaka, Japan
| | - Yoshiharu Tanaka
- Division of Biology, Faculty of Liberal Arts and Sciences, and Division of Quantum Radiation, Faculty of Technology, Osaka Prefecture University, Osaka, Japan
| | - Nobuhiko Miwa
- Prefectural University of Hiroshima; Japanese Center for AntiAging MedSciences, Hiroshima, Japan
| |
Collapse
|
41
|
Engevik AC, Goldenring JR. Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027979. [PMID: 28264818 DOI: 10.1101/cshperspect.a027979] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function.
Collapse
Affiliation(s)
- Amy Christine Engevik
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232.,Nashville VA Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
42
|
Abstract
The actin cytoskeleton-a collection of actin filaments with their accessory and regulatory proteins-is the primary force-generating machinery in the cell. It can produce pushing (protrusive) forces through coordinated polymerization of multiple actin filaments or pulling (contractile) forces through sliding actin filaments along bipolar filaments of myosin II. Both force types are particularly important for whole-cell migration, but they also define and change the cell shape and mechanical properties of the cell surface, drive the intracellular motility and morphogenesis of membrane organelles, and allow cells to form adhesions with each other and with the extracellular matrix.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, 221 Leidy Labs, Philadelphia, Pennsylvania 19104
| |
Collapse
|
43
|
Figard L, Wang M, Zheng L, Golding I, Sokac AM. Membrane Supply and Demand Regulates F-Actin in a Cell Surface Reservoir. Dev Cell 2017; 37:267-78. [PMID: 27165556 DOI: 10.1016/j.devcel.2016.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 11/19/2015] [Accepted: 04/12/2016] [Indexed: 11/16/2022]
Abstract
Cells store membrane in surface reservoirs of pits and protrusions. These membrane reservoirs facilitate cell shape change and buffer mechanical stress, but we do not know how reservoir dynamics are regulated. During cellularization, the first cytokinesis in Drosophila embryos, a reservoir of microvilli unfolds to fuel cleavage furrow ingression. We find that regulated exocytosis adds membrane to the reservoir before and during unfolding. Dynamic F-actin deforms exocytosed membrane into microvilli. Single microvilli extend and retract in ∼20 s, while the overall reservoir is depleted in sync with furrow ingression over 60-70 min. Using pharmacological and genetic perturbations, we show that exocytosis promotes microvillar F-actin assembly, while furrow ingression controls microvillar F-actin disassembly. Thus, reservoir F-actin and, consequently, reservoir dynamics are regulated by membrane supply from exocytosis and membrane demand from furrow ingression.
Collapse
Affiliation(s)
- Lauren Figard
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM125, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengyu Wang
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM125, Houston, TX 77030, USA; Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liuliu Zheng
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM125, Houston, TX 77030, USA
| | - Ido Golding
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM125, Houston, TX 77030, USA; Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Anna Marie Sokac
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM125, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Tan BH, Guo CY, Xiong TQ, Chen LM, Li YC. The unique organization of filamentous actin in the medullary canal of the medulla oblongata. Tissue Cell 2017; 49:336-344. [PMID: 28187870 DOI: 10.1016/j.tice.2017.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 11/17/2022]
Abstract
In the central canal, F-actin is predominantly localized in the apical region, forming a ring-like structure around the circumference of the lumen. However, an exception is found in the medulla oblongata, where the apical F-actin becomes interrupted in the ventral aspect of the canal. To clarify the precise localization of F-actin, the fluorescence signals for F-actin were converted to the peroxidase/DAB reaction products in this study by a phalloidin-based ultrastructural technique, which demonstrated that F-actin is located mainly in the microvilli and terminal webs in the ependymocytes. It is because the ventrally oriented ependymocytes do not possess well-developed microvilli or terminal web that led to a discontinuous labeling of F-actin in the medullary canal. Since spinal motions can change the shape and size of the central canal, we next examined the cytoskeletons in the medullary canal in both rats and monkeys, because these two kinds of animals show different kinematics at the atlanto-occipital articulation. Our results first demonstrated that the apical F-actin in the medullary canal is differently organized in the animals with different head-neck kinemics, which suggests that the mechanic stretching of spinal motions is capable of inducing F-actin reorganization and the subsequent cell-shape changes in the central canal.
Collapse
Affiliation(s)
- Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Chun-Yan Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Tian-Qing Xiong
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Ling-Meng Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province, 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin Province, 130021, PR China.
| |
Collapse
|
45
|
Moran ET. Gastric digestion of protein through pancreozyme action optimizes intestinal forms for absorption, mucin formation and villus integrity. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Schnittler H. Contraction of endothelial cells: 40 years of research, but the debate still lives. Histochem Cell Biol 2016; 146:651-656. [PMID: 27680546 DOI: 10.1007/s00418-016-1501-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 12/23/2022]
Abstract
Force generation in non-muscle cells is vital for many cellular and tissue functions. Force-generating mechanisms include actomyosin-mediated contraction, actin polymerization that drives plasma membrane protrusions and filopodia as well as kinesin- and dynein-controlled transport of vesicles and organelles along the microtubule cytoskeleton. The actomyosin-mediated contractility and actin remodeling in both epithelium and endothelium were shown to have significant impact on cell migration, shape change and formation and control of intercellular junctions. In endothelium, contraction is supposed to control permeability for fluid and solutes. However, recent studies demonstrated the constitutive appearance of junction-associated intermittent lamellipodia (JAIL) that drive vascular endothelial cadherin (VE-cadherin) dynamics and control endothelial permeability. Since thrombin blocks JAIL formation and thus increases endothelial permeability, the concept of a simple Rho GTPase-controlled contraction, which is supposed to open endothelial junctions, becomes challenged. Furthermore, specific tyrosine phosphorylation sites of VE-cadherin and catenins have been shown to be involved in control of VE-cadherin-mediated cell adhesion. How the causal-mechanistic interdependency between contractility, VE-cadherin and catenin phosphorylation and JAIL-mediated dynamic remodeling of VE-cadherin is regulated is still an open question and needs to be further addressed.
Collapse
Affiliation(s)
- Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Vesaliusweg 2-4, 48149, Münster, Germany.
| |
Collapse
|
47
|
Weck ML, Crawley SW, Stone CR, Tyska MJ. Myosin-7b Promotes Distal Tip Localization of the Intermicrovillar Adhesion Complex. Curr Biol 2016; 26:2717-2728. [PMID: 27666969 DOI: 10.1016/j.cub.2016.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/01/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Transporting epithelial cells interact with the luminal environment using a tightly packed array of microvilli known as the brush border. During intestinal epithelial differentiation, microvillar packing and organization are driven by cadherin-dependent adhesion complexes that localize to the distal tips of microvilli, where they drive physical interactions between neighboring protrusions. Although enrichment of the "intermicrovillar adhesion complex" (IMAC) at distal tips is required for proper function, the mechanism driving tip accumulation of these factors remains unclear. Here, we report that the actin-based motor myosin-7b (Myo7b) promotes the accumulation of IMAC components at microvillar tips. Myo7b is highly enriched at the tips of microvilli in both kidney and intestinal brush borders, and loss of Myo7b in differentiating intestinal epithelial cells disrupts intermicrovillar adhesion and, thus, brush border assembly. Analysis of cells lacking Myo7b revealed that IMAC components and the resulting intermicrovillar adhesion links are mislocalized along the microvillar axis rather than enriched at the distal tips. We also found that Myo7b motor domains are capable of supporting tip-directed transport. However, motor activity is supplemented by other passive targeting mechanisms that together drive highly efficient IMAC accumulation at the tips. These findings illuminate the molecular basis of IMAC enrichment at microvillar tips and hold important implications for understanding apical morphogenesis in transporting and sensory epithelial tissues.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Scott W Crawley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Colin R Stone
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
48
|
Hegan PS, Lanahan AA, Simons M, Mooseker MS. Myosin VI and cardiomyopathy: Left ventricular hypertrophy, fibrosis, and both cardiac and pulmonary vascular endothelial cell defects in the Snell's waltzer mouse. Cytoskeleton (Hoboken) 2016; 72:373-87. [PMID: 26265212 DOI: 10.1002/cm.21236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
In mice and humans, loss of myosin VI (Myo6) function results in deafness, and certain Myo6 mutations also result in cardiomyopathies in humans. The current studies have utilized the Snell's waltzer (sv) mouse (a functional null mutation for Myo6) to determine if this mouse also exhibits cardiac defects and thus used to determine the cellular and molecular basis for Myo6-associated heart disease. Myo6 is expressed in mouse heart where it is predominantly expressed in vascular endothelial cells (VECs) based on co-localization with the VEC cell marker CD31. Sv/sv heart mass is significantly greater than that of sv/+ littermates, a result of left ventricle hypertrophy. The left ventricle of the sv/sv exhibits extensive fibrosis, both interstitial and perivascular, based on histologic staining, and immunolocalization of several markers for fibrosis including fibronectin, collagen IV, and the fibroblast marker vimentin. Myo6 is also expressed in lung VECs but not in VECs of intestine, kidney, or liver. Sv/sv lungs exhibit increased periaveolar fibrosis and enlarged air sacs. Electron microscopy of sv/sv cardiac and lung VECs revealed abnormal ultrastructure, including luminal protrusions and increased numbers of cytoplasmic vesicles. Previous studies have shown that loss of function of either Myo6 or its adaptor binding partner synectin/GIPC results in impaired arterial development due to defects in VEGF signaling. However, examination of synectin/GIPC-/- heart revealed no fibrosis or significantly altered VEC ultrastructure, suggesting that the cardiac and lung defects observed in the sv/sv mouse are not due to Myo6 function in arterial development.
Collapse
Affiliation(s)
- Peter S Hegan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Anthony A Lanahan
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Michael Simons
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Mark S Mooseker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
49
|
Hegan PS, Chandhoke SK, Barone C, Egan M, Bähler M, Mooseker MS. Mice lacking myosin IXb, an inflammatory bowel disease susceptibility gene, have impaired intestinal barrier function and superficial ulceration in the ileum. Cytoskeleton (Hoboken) 2016; 73:163-79. [PMID: 26972322 DOI: 10.1002/cm.21292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/16/2022]
Abstract
Genetic studies have implicated MYO9B, which encodes myosin IXb (Myo9b), a motor protein with a Rho GTPase activating domain (RhoGAP), as a susceptibility gene for inflammatory bowel disease (IBD). Moreover, we have recently shown that knockdown of Myo9b in an intestinal epithelial cell line impairs wound healing and barrier function. Here, we investigated whether mice lacking Myo9b have impaired intestinal barrier function and features of IBD. Myo9b knock out (KO) mice exhibit impaired weight gain and fecal occult blood (indicator of gastrointestinal bleeding), and increased intestinal epithelial cell apoptosis could be detected along the entire intestinal axis. Histologic analysis revealed intestinal mucosal damage, most consistently observed in the ileum, which included superficial ulceration and neutrophil infiltration. Focal lesions contained neutrophils and ultrastructural examination confirmed epithelial discontinuity and the deposition of extracellular matrix. We also observed impaired mucosal barrier function in KO mice. Transepithelial electrical resistance of KO ileum is >3 fold less than WT ileum. The intestinal mucosa is also permeable to high molecular weight dextran, presumably due to the presence of mucosal surface ulcerations. There is loss of tight junction-associated ZO-1, decreased lateral membrane associated E-cadherin, and loss of terminal web associated cytokeratin filaments. Consistent with increased Rho activity in the KO, there is increased subapical expression of activated myosin II (Myo2) based on localization of phosphorylated Myo2 regulatory light chain. Except for a delay in disease onset in the KO, no difference in dextran sulfate sodium-induced colitis and lethality was observed between wild-type and Myo9b KO mice.
Collapse
Affiliation(s)
- Peter S Hegan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Surjit K Chandhoke
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Christina Barone
- Department of Respiratory Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Marie Egan
- Department of Respiratory Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany
| | - Mark S Mooseker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut.,Departments of Cell Biology and Pathology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
50
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|