1
|
Minakshi R, Jan AT, Rahman S, Kim J. A Testimony of the Surgent SARS-CoV-2 in the Immunological Panorama of the Human Host. Front Cell Infect Microbiol 2020; 10:575404. [PMID: 33262955 PMCID: PMC7687052 DOI: 10.3389/fcimb.2020.575404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
The resurgence of SARS in the late December of 2019 due to a novel coronavirus, SARS-CoV-2, has shadowed the world with a pandemic. The physiopathology of this virus is very much in semblance with the previously known SARS-CoV and MERS-CoV. However, the unprecedented transmissibility of SARS-CoV-2 has been puzzling the scientific efforts. Though the virus harbors much of the genetic and architectural features of SARS-CoV, a few differences acquired during its evolutionary selective pressure is helping the SARS-CoV-2 to establish prodigious infection. Making entry into host the cell through already established ACE-2 receptor concerted with the action of TMPRSS2, is considered important for the virus. During the infection cycle of SARS-CoV-2, the innate immunity witnesses maximum dysregulations in its molecular network causing fatalities in aged, comorbid cases. The overt immunopathology manifested due to robust cytokine storm shows ARDS in severe cases of SARS-CoV-2. A delayed IFN activation gives appropriate time to the replicating virus to evade the host antiviral response and cause disruption of the adaptive response as well. We have compiled various aspects of SARS-CoV-2 in relation to its unique structural features and ability to modulate innate as well adaptive response in host, aiming at understanding the dynamism of infection.
Collapse
Affiliation(s)
- Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Safikur Rahman
- Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
2
|
Yu W, Geng S, Suo Y, Wei X, Cai Q, Wu B, Zhou X, Shi Y, Wang B. Critical Role of Regulatory T Cells in the Latency and Stress-Induced Reactivation of HSV-1. Cell Rep 2019; 25:2379-2389.e3. [PMID: 30485807 DOI: 10.1016/j.celrep.2018.10.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/22/2018] [Accepted: 10/29/2018] [Indexed: 01/11/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) spreads in populations through a latency entry and reactivation cycle. The role of host immune-suppressive factor regulatory T cells (Treg cells) in controlling latency establishment and reactivation is not completely understood. Here, using an HSV-1 ocular infection murine model, we observe a positive correlation between the level of Treg cells and viral infectivity and demonstrate the requirement for Treg cells in latency establishment. Furthermore, we show that host stress leads to HSV-1 reactivation via increased Treg cell control of CD8+ T cells, permitting viral replication under diminished immune surveillance. Together, we propose that Treg cell regulation may serve as a key target for controlling HSV infection.
Collapse
Affiliation(s)
- Wencong Yu
- Key Laboratory of Medical Molecular Virology of MOH and MOE, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Shuang Geng
- Key Laboratory of Medical Molecular Virology of MOH and MOE, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanzhen Suo
- Medical School of Jiaotong University, Shanghai 200025, China
| | - Xunbin Wei
- Medical School of Jiaotong University, Shanghai 200025, China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology of MOH and MOE, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Wu
- Key Laboratory of Medical Molecular Virology of MOH and MOE, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xian Zhou
- Key Laboratory of Medical Molecular Virology of MOH and MOE, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Shi
- Institute for Immunology, Department of Basic Medical Sciences, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 10084, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology of MOH and MOE, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Impact of epitope density on CD8+ T cell development and function. Mol Immunol 2019; 113:120-125. [DOI: 10.1016/j.molimm.2019.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/17/2019] [Accepted: 03/21/2019] [Indexed: 11/23/2022]
|
4
|
A unique variant of lymphocytic choriomeningitis virus that induces pheromone binding protein MUP: Critical role for CTL. Proc Natl Acad Sci U S A 2019; 116:18001-18008. [PMID: 31427525 DOI: 10.1073/pnas.1907070116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) WE variant 2.2 (v2.2) generated a high level of the major mouse urinary protein: MUP. Mice infected with LCMV WE v54, which differed from v2.2 by a single amino acid in the viral glycoprotein, failed to generate MUP above baseline levels found in uninfected controls. Variant 54 bound at 2.5 logs higher affinity to the LCMV receptor α-dystroglycan (α-DG) than v2.2 and entered α-DG-expressing but not α-DG-null cells. Variant 2.2 infected both α-DG-null or -expressing cells. Variant 54 infected more dendritic cells, generated a negligible CD8 T cell response, and caused a persistent infection, while v2.2 generated cytotoxic T lymphocytes (CTLs) and cleared virus within 10 days. By 20 days postinfection and through the 80-day observation period, significantly higher amounts of MUP were found in v2.2-infected mice. Production of MUP was dependent on virus-specific CTL as deletion of such cells aborted MUP production. Furthermore, MUP production was not elevated in v2.2 persistently infected mice unless virus was cleared following transfer of virus-specific CTL.
Collapse
|
5
|
Analysis of CD8 + T cell response during the 2013-2016 Ebola epidemic in West Africa. Proc Natl Acad Sci U S A 2018; 115:E7578-E7586. [PMID: 30038008 DOI: 10.1073/pnas.1806200115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent Ebola epidemic exemplified the importance of understanding and controlling emerging infections. Despite the importance of T cells in clearing virus during acute infection, little is known about Ebola-specific CD8+ T cell responses. We investigated immune responses of individuals infected with Ebola virus (EBOV) during the 2013-2016 West Africa epidemic in Sierra Leone, where the majority of the >28,000 EBOV disease (EVD) cases occurred. We examined T cell memory responses to seven of the eight Ebola proteins (GP, sGP, NP, VP24, VP30, VP35, and VP40) and associated HLA expression in survivors. Of the 30 subjects included in our analysis, CD8+ T cells from 26 survivors responded to at least one EBOV antigen. A minority, 10 of 26 responders (38%), made CD8+ T cell responses to the viral GP or sGP. In contrast, 25 of the 26 responders (96%) made response to viral NP, 77% to VP24 (20 of 26), 69% to VP40 (18 of 26), 42% (11 of 26) to VP35, with no response to VP30. Individuals making CD8+ T cells to EBOV VP24, VP35, and VP40 also made CD8+ T cells to NP, but rarely to GP. We identified 34 CD8+ T cell epitopes for Ebola. Our data indicate the immunodominance of the EBOV NP-specific T cell response and suggest that its inclusion in a vaccine along with the EBOV GP would best mimic survivor responses and help boost cell-mediated immunity during vaccination.
Collapse
|
6
|
El-Nahass E, El-Dakhly KM, El-Habashi N, Anwar SI, Sakai H, Hirata A, Okada A, Abo-Sakaya R, Fukushi H, Yanai T. Susceptibility of BALB/c-nu/nu mice and BALB/c mice to equine herpesvirus 9 infection. Vet Pathol 2013; 51:581-90. [PMID: 23804999 DOI: 10.1177/0300985813493932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study aimed to clarify the timing and infectivity of equine herpesvirus 9 (EHV-9) infection in BALB/c-nu/nu mice and their immunocompetent counterpart (BALB/c). Following intranasal inoculation with 10(5) PFU of EHV-9, specimens from 8 mice per group were collected at different times postinoculation (PI) and assessed using histopathology, immunohistochemistry for viral antigen, and quantitative real-time polymerase chain reaction for ORF30 gene expression. In BALB/c-nu/nu mice, EHV-9 antigen was abundant in olfactory epithelia of all inoculated animals, and in the olfactory bulb of 1 animal. In contrast, only 1 BALB/c mouse per time point had rhinitis, with mild to moderate immunopositivity starting from 12 to 48 h PI, followed by a gradual virus clearance at 72 h PI. Statistically, significant differences were noted in the immunohistochemistry reactions between the 2 mouse strains, indicating that BALB/c-nu/nu is more susceptible to infection. Relative expression levels of ORF30 gene in olfactory epithelia were significantly different between the 2 groups, with the exception of 12 h PI, when BALB/c-nu/nu animals showed dramatic increases in ORF30 gene expression level until 48 h PI, followed by a decline in expression level until the end of experiment. In contrast, the expression level in brains showed no differences between mouse strain except at 96 h PI. In both strains, the highest messenger RNA expression was detected at 48 h PI, followed by a decline in BALB/c mice, proving a rapid clearance of virus in BALB/c and a gradual slowing down of the increased expression levels in BALB/c-nu/nu.
Collapse
Affiliation(s)
- E El-Nahass
- Department of Veterinary Pathology and Microbiology, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zaiss DMW, Boog CJP, van Eden W, Sijts AJAM. Considerations in the design of vaccines that induce CD8 T cell mediated immunity. Vaccine 2010; 28:7716-22. [PMID: 20851090 DOI: 10.1016/j.vaccine.2010.08.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 12/22/2022]
Abstract
The protective capacity of many currently used vaccines is based on induction of neutralizing antibodies. Many pathogens, however, have adapted themselves in different ways to escape antibody-based immune protection. In particular, for those infections against which conventional neutralizing antibody-based vaccinations appear challenging, CD8 T-cells are considered to be promising candidates for vaccine targeting. The design of vaccines that induce robust and long-lasting protective CD8 T-cell responses however imposes new challenges, as many factors such as kinetics and efficiency of antigen-processing and presentation by antigen presenting cells, T-cell repertoire and cytokine environment during T cell priming contribute to the specificity and functionality of CD8 T-cell responses. In the following, we review the most prominent aspects that underlie CD8 T-cell induction and discuss how this knowledge may help to improve the design of efficient CD8 T-cell inducing vaccines.
Collapse
Affiliation(s)
- D M W Zaiss
- Division of Immunology, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
8
|
Seaman MS, Wilck MB, Baden LR, Walsh SR, Grandpre LE, Devoy C, Giri A, Noble LC, Kleinjan JA, Stevenson KE, Kim HT, Dolin R. Effect of vaccination with modified vaccinia Ankara (ACAM3000) on subsequent challenge with Dryvax. J Infect Dis 2010; 201:1353-60. [PMID: 20350190 DOI: 10.1086/651560] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Despite the success of smallpox vaccination, the immunological correlates of protection are not fully understood. To investigate this question, we examined the effect of immunization with modified vaccinia Ankara (MVA) on subsequent challenge with replication-competent vaccinia virus (Dryvax). METHODS Dryvax challenge by scarification was conducted in 36 healthy subjects who had received MVA (n = 29) or placebo (n = 7) in a previous study of doses and routes of immunization. Subjects were followed up for clinical take, viral shedding, and immune responses. RESULTS MVA administration attenuated clinical takes in 21 (72%) of 29 subjects, compared with 0 of 7 placebo recipients (P = .001). Attenuation was most significant in MVA groups that received 1 x 10(7) median tissue culture infective doses (TCID(50)) intradermally (P = .001) and 1 x 10(7) TCID(50) intramuscularly (P = .001). Both duration and peak titer of viral shedding were reduced in MVA recipients. Peak neutralizing antibody responses to vaccinia virus or MVA previously induced by MVA immunization were associated with attenuated takes (P = .02) and reduced duration (P = .001) and titer (P = .005) of viral shedding. CONCLUSIONS MVA immunization results in clinical and virologic protection against Dryvax challenge. Protection is associated with prior induction of neutralizing antibodies to MVA or vaccinia virus. MVA administered intradermally has protective and immunologic responses similar to those of a 10-fold-higher dose given subcutaneously.
Collapse
Affiliation(s)
- Michael S Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Castellino F, Galli G, Del Giudice G, Rappuoli R. Generating memory with vaccination. Eur J Immunol 2009; 39:2100-5. [DOI: 10.1002/eji.200939550] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection. Proc Natl Acad Sci U S A 2009; 106:1560-5. [PMID: 19164548 DOI: 10.1073/pnas.0812689106] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pulmonary tissue damage resulting from influenza virus infection is caused by both the cytolytic activity of the virus and the host immune response. Immune-mediated injury results from T cell-mediated destruction of virus-infected cells and by release of cytokines and chemokines that attract polymorphonuclear leukocytes (PML) and macrophages to the infected site. The cytokines/chemokines potentiate dendritic cell (DC) activation and T cell expansion, which further enhances local damage. Here we report that immune modulation by local administration to the respiratory tract of sphingosine analog AAL-R significantly dampens the release of cytokines and chemokines while maintaining protective neutralizing antibody and cytotoxic T cell responses. As a result there was a marked reduction of infiltrating PML and macrophages into the lung and resultant pulmonary tissue injury. DC maturation was suppressed, which limited proliferation of specific antiviral T cells in the lung and draining lymph nodes. Further, AAL-R was effective in controlling CD8(+) T cell accumulation in the lungs even when given 4 days after initiation of influenza virus infection. These data indicate that sphingosine analogs display useful potential for controlling the immunopathology caused by influenza virus.
Collapse
|
11
|
Zinkernagel RM. Review: cellular immune responses to intracellular parasites: role of the major histocompatibility gene complex and thymus in determining immune responsiveness and susceptibility to disease. Parasite Immunol 2007; 1:91-109. [PMID: 121771 DOI: 10.1111/j.1365-3024.1979.tb00698.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Abstract
The primary focus of our work is the initiation of an antiviral immune response. While we employ many experimental systems to address this fundamental issue, much of our work revolves around the use of vaccinia virus. Concerns over the negative effects of vaccination have prevented the return of the smallpox immunization program to the general population and underscored the importance of understanding the primary immune response to vaccinia virus. This response is comprised of a complex symphony of immune system components employing a variety of different mechanisms. In this review, we will both highlight the roles of many of these components and touch on the applications of vaccinia virus in the laboratory and the clinic.
Collapse
Affiliation(s)
- Matthew A Fischer
- Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
13
|
Bennett MS, Ng HL, Dagarag M, Ali A, Yang OO. Epitope-dependent avidity thresholds for cytotoxic T-lymphocyte clearance of virus-infected cells. J Virol 2007; 81:4973-80. [PMID: 17329324 PMCID: PMC1900201 DOI: 10.1128/jvi.02362-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are crucial for immune control of viral infections. "Functional avidity," defined by the sensitizing dose of exogenously added epitope yielding half-maximal CTL triggering against uninfected target cells (SD(50)), has been utilized extensively as a measure of antiviral efficiency. However, CTLs recognize infected cells via endogenously produced epitopes, and the relationship of SD(50) to antiviral activity has never been directly revealed. We elucidate this relationship by comparing CTL killing of cells infected with panels of epitope-variant viruses to the corresponding SD(50) for the variant epitopes. This reveals a steeply sigmoid relationship between avidity and infected cell killing, with avidity thresholds (defined as the SD(50) required for CTL to achieve 50% efficiency of infected cell killing [KE(50)]), below which infected cell killing rapidly drops to none and above which killing efficiency rapidly plateaus. Three CTL clones recognizing the same viral epitope show the same KE(50) despite differential recognition of individual epitope variants, while CTLs recognizing another epitope show a 10-fold-higher KE(50), demonstrating epitope dependence of KE(50). Finally, the ability of CTLs to suppress viral replication depends on the same threshold KE(50). Thus, defining KE(50) values is required to interpret the significance of functional avidity measurements and predict CTL efficacy against virus-infected cells in pathogenesis and vaccine studies.
Collapse
Affiliation(s)
- Michael S Bennett
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
14
|
Wahid R, Cannon MJ, Chow M. Virus-specific CD4+ and CD8+ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio. J Virol 2005; 79:5988-95. [PMID: 15857985 PMCID: PMC1091702 DOI: 10.1128/jvi.79.10.5988-5995.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of poliovirus (PV)-specific CD4(+) T cells in individuals vaccinated against polio has been shown, but CD8(+) T-cell responses have not been described. Here, we functionally characterize the CD4(+) T-cell response and show for the first time that dendritic cells and macrophages can stimulate PV-specific CD8(+) T-cell responses in vitro from vaccinees. Both CD4(+) T and CD8(+) T cells secrete gamma interferon in response to PV antigens and are cytotoxic via the perforin/granzyme B-mediated pathway. Furthermore, the T cells also recognize and kill Sabin 1 vaccine-infected targets. The macrophage-stimulated CD4(+) T and CD8(+) T cells most likely represent memory T cells that persist for long periods in vaccinated individuals. Thus, immunity to PV vaccination involves not only an effective neutralizing antibody titer but also long-term CD4(+) and CD8(+) cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Rahnuma Wahid
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 511, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
15
|
Kim TG, Ruprecht R, Langridge WHR. SIVmac Gag p27 capsid protein gene expression in potato. Protein Expr Purif 2005; 36:312-7. [PMID: 15249055 DOI: 10.1016/j.pep.2004.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/16/2004] [Indexed: 11/23/2022]
Abstract
A cDNA encoding the Simian immunodeficiency virus type (SIV(mac)) Gag capsid protein was introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods. The gag gene was detected in the genomic DNA of transformed leaf tissues by PCR DNA amplification. Immunoblot analysis of transformed potato plant extracts with anti-Gag monoclonal antibody showed that biologically active Gag protein was synthesized in transformed tuber tissues. Based on ELISA results, recombinant Gag protein made up 0.006-0.014% of total soluble tuber protein. The synthesis of SIV Gag in transformed potato tubers opens the way for development of Gag-based edible plant vaccines for protection against SIV and potentially HIV-1 infection.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Department of Biochemistry and Microbiology, Center for Molecular Biology and Gene Therapy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
16
|
Abstract
Variola major is the causative agent of smallpox, a severe disease that was arguably one of the most serious human pathogens in recorded history. Humans are the only known reservoir of variola major; no known animal or insect reservoirs have been identified. Thus, after eradication of smallpox through a global immunization effort, this incredibly lethal scourge was eliminated from all corners of the globe. Despite the total eradication of naturally occurring smallpox, there are still stockpiles of smallpox virus maintained in the United States and the former Soviet Union. Unfortunately, it is impossible to know if all smallpox stocks have been accounted for or whether unknown or unreported stocks of smallpox may still exist. In the age of genetic engineering, these viruses could theoretically be modified to increase their virulence to the levels associated with smallpox itself.
Collapse
Affiliation(s)
- Mark K Slifka
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97006-3448, USA
| | | |
Collapse
|
17
|
Abstract
Viruses capable of inducing lysis of malignant cells through their replication process are known as "oncolytic" viruses. Clinical trials in oncology have been performed with oncolytic viruses for nearly fifty years. Both systemic and intratumoral routes of administration have been explored. Toxicity has generally been limited to injection site pain, transient fever, and tumor necrosis. Responses with early crude materials were usually short in duration; however, recent trials with gene-attenuated viruses suggest a more prolonged duration of responses.
Collapse
|
18
|
Kim TG, Langridge WHR. Synthesis of an HIV-1 Tat transduction domain-rotavirus enterotoxin fusion protein in transgenic potato. PLANT CELL REPORTS 2004; 22:382-387. [PMID: 14551730 DOI: 10.1007/s00299-003-0697-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Revised: 07/17/2003] [Accepted: 07/18/2003] [Indexed: 05/24/2023]
Abstract
A DNA fragment encoding a 12-amino acid (aa) HIV-1 Tat transduction peptide fused to a 90-aa murine rotavirus NSP4 enterotoxin protein (Tat-NSP4(90)) was transferred to Solanum tuberosum by Agrobacterium tumefaciens-mediated transformation. The fusion gene was detected in the genomic DNA of transformed plant leaf tissues by PCR DNA amplification. The Tat-NSP4(90 )fusion protein was identified in transformed tuber extracts by immunoblot analysis using anti-NSP4(90) and anti-Tat as the primary antibodies. Enzyme-linked immunosorbent assay results showed that the Tat-NSP4(90) fusion protein made up to 0.0015% of the total soluble tuber protein. The synthesis of Tat-NSP4(90) fusion protein in transformed potato tuber tissues demonstrates the feasibility of plant cell delivery of the HIV-1 Tat transduction domain as a carrier for non-specific targeting of fused antigens to the mucosal immune system.
Collapse
Affiliation(s)
- T-G Kim
- Department of Biochemistry and Microbiology and Center for Molecular Biology and Gene Therapy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | |
Collapse
|
19
|
Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK. Duration of antiviral immunity after smallpox vaccination. Nat Med 2003; 9:1131-7. [PMID: 12925846 DOI: 10.1038/nm917] [Citation(s) in RCA: 672] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 07/20/2003] [Indexed: 11/09/2022]
Abstract
Although naturally occurring smallpox was eliminated through the efforts of the World Health Organization Global Eradication Program, it remains possible that smallpox could be intentionally released. Here we examine the magnitude and duration of antiviral immunity induced by one or more smallpox vaccinations. We found that more than 90% of volunteers vaccinated 25-75 years ago still maintain substantial humoral or cellular immunity (or both) against vaccinia, the virus used to vaccinate against smallpox. Antiviral antibody responses remained stable between 1-75 years after vaccination, whereas antiviral T-cell responses declined slowly, with a half-life of 8-15 years. If these levels of immunity are considered to be at least partially protective, then the morbidity and mortality associated with an intentional smallpox outbreak would be substantially reduced because of pre-existing immunity in a large number of previously vaccinated individuals.
Collapse
Affiliation(s)
- Erika Hammarlund
- Oregon Health & Science University Vaccine and Gene Therapy Institute, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rolph MS, Ramshaw IA. Interleukin-4-mediated downregulation of cytotoxic T lymphocyte activity is associated with reduced proliferation of antigen-specific CD8+ T cells. Microbes Infect 2003; 5:923-32. [PMID: 12941383 DOI: 10.1016/s1286-4579(03)00190-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During virus infection, exogenous IL-4 strongly downregulates expression of antiviral cytokines and cytotoxic T lymphocyte (CTL) responses. In this study, we have employed a T cell receptor (TCR) transgenic system to more closely investigate the effect of IL-4 on CTL activity. This system involves mice transgenic for an H2-Kb restricted TCR recognising an ovalbumin (OVA)-specific peptide (OT-I mice), and recombinant vaccinia viruses expressing the gene for OVA (VV-OVA), or OVA together with IL-4 (VV-OVA-IL-4). Spleen cells from OT-I mice were adoptively transferred to irradiated C57BL/6 mice infected with VV-OVA or VV-OVA-IL-4. Five days following transfer, markedly stronger CTL activity was detected in VV-OVA- than in VV-OVA-IL-4-infected recipients. The reduction in CTL activity was associated with a reduction in the number of OVA-specific CD8+ T cells. Proliferation of cells from VV-OVA-IL-4-infected recipients was dramatically reduced, and this is a likely explanation for the IL-4-mediated reduction in the total number of OVA-specific cells and the reduced cytotoxic activity. On a per cell basis, the production of IFNgamma and cytotoxic activity of OVA-specific CD8+ cells was not influenced by IL-4. Taken together, our results indicate that the reduction in CTL activity by exogenous IL-4 is due to a reduced number of antigen-specific effectors, and does not involve a downregulation of effector function of these cells.
Collapse
Affiliation(s)
- Michael S Rolph
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, P.O. Box 334, Canberra, ACT 2601, Australia.
| | | |
Collapse
|
21
|
Jones E, Price DA, Dahm-Vicker M, Cerundolo V, Klenerman P, Gallimore A. The influence of macrophage inflammatory protein-1alpha on protective immunity mediated by antiviral cytotoxic T cells. Immunology 2003; 109:68-75. [PMID: 12709019 PMCID: PMC1782947 DOI: 10.1046/j.1365-2567.2003.01636.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophage inflammatory protein 1alpha (MIP-1alpha), a member of the CC-chemokine subfamily, is known to induce chemotaxis of a variety of cell types in vivo. Although the role of MIP-1alpha in inflammatory responses generated following primary infection of mice with many different pathogens has been characterized, the influence of this chemokine on the generation of antigen-specific T-cell responses in vivo is less well understood. This is important, as virus-specific CD8+ T lymphocytes (CTL) play a crucial role in defence against viral infections, both acutely and in the long term. In this study, we compared the ability of wild-type and MIP-1alpha-deficient (MIP-1alpha-/-) mice to mount CTL responses specific for the immunodominant epitope derived from influenza nucleoprotein (NP366-374). Influenza-specific CTL responses were compared with respect to frequency, cytotoxic activity and ability to clear subsequent infections with recombinant vaccinia viruses expressing the influenza NP. The results indicate that antiviral CTL generated in MIP-1alpha-/- mice are slightly impaired in their ability to protect against a subsequent infection. However, impaired in vivo CTL-mediated antiviral protection was found to be associated with reduced cytotoxicity rather than with a failure of the CTL to migrate to peripheral sites of infection.
Collapse
Affiliation(s)
- Emma Jones
- Nuffield Department of Medicine, University of Oxford, John Radcliffe HospitalOxford, UK
| | | | - Michaela Dahm-Vicker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe HospitalOxford, UK
| | - Vincenzo Cerundolo
- Nuffield Department of Medicine, University of Oxford, John Radcliffe HospitalOxford, UK
| | | | | |
Collapse
|
22
|
Mahalingam S, Meanger J, Foster PS, Lidbury BA. The viral manipulation of the host cellular and immune environments to enhance propagation and survival: a focus on RNA viruses. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Surendran Mahalingam
- Division of Molecular Biosciences, The John Curtin School of Medical Research, The Australian National University, Canberra
| | - Jayesh Meanger
- Macfarlane Burnet Institute for Medical Research and Public Health, Fairfield, Victoria, Australia; and
| | - Paul S. Foster
- Division of Molecular Biosciences, The John Curtin School of Medical Research, The Australian National University, Canberra
| | - Brett A. Lidbury
- Gadi Research Centre, Division of Science and Design, University of Canberra, Australia
| |
Collapse
|
23
|
Abstract
Virtually all of the measurable cell-mediated cytotoxicity delivered by cytotoxic T lymphocytes and natural killer cells comes from either the granule exocytosis pathway or the Fas pathway. The granule exocytosis pathway utilizes perforin to traffic the granzymes to appropriate locations in target cells, where they cleave critical substrates that initiate DNA fragmentation and apoptosis; granzymes A and B induce death via alternate, nonoverlapping pathways. The Fas/FasL system is responsible for activation-induced cell death but also plays an important role in lymphocyte-mediated killing under certain circumstances. The interplay between these two cytotoxic systems provides opportunities for therapeutic interventions to control autoimmune diseases and graft vs. host disease, but oversuppression of these pathways may also lead to increased viral susceptibility and/or decreased tumor cell killing.
Collapse
Affiliation(s)
- John H Russell
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
24
|
Addo MM, Rosenberg ES. Cellular immune responses in transplantation-associated chronic viral infections. Transpl Infect Dis 2002; 4:31-40. [PMID: 12123424 DOI: 10.1034/j.1399-3062.2002.00006.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Viral pathogens are important causes of morbidity following transplantation. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections represent two major viral complications in transplant recipients. Recent advances in methodology have led to a better understanding of host immune responses directed against chronic viral infections. We review the nature of antiviral immunity involved in control of CMV and EBV. Viral mechanisms of immune evasion and immunotherapeutic strategies in the transplantation setting will also be addressed.
Collapse
Affiliation(s)
- M M Addo
- Partners AIDS Research Center, Massachusetts General Hospital, Chalestown, Massachussetts 02114, USA
| | | |
Collapse
|
25
|
Ahlers JD, Belyakov IM, Matsui S, Berzofsky JA. Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int Immunol 2001; 13:897-908. [PMID: 11431420 DOI: 10.1093/intimm/13.7.897] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The ability of cytokines to steer CD4(+) T(h) cell responses toward a T(h)1 or T(h)2 phenotype and enhance the magnitude of both CD8(+) cytotoxic T lymphocytes (CTL) and antibody responses has clearly been demonstrated by our lab and others, but the influence of cytokines on protective immune responses is much less clear. Here we show an essential role for CD4(+) T(h)1 helper cell induction and IFN-gamma production in protection from viral challenge with a recombinant vaccinia virus expressing HIV-1MN viral envelope glycoprotein gp160. Complete protection from viral challenge is achieved only when the triple combination of exogenous cytokines granulocyte macrophage colony stimulating factor (GM-CSF), IL-12 and tumor necrosis factor (TNF)-alpha are co-administered with the peptide vaccine. In vivo depletion of CD4(+) cells or immunization of IFN-gamma-deficient mice abrogates protection. GM-CSF, IL-12 and TNF-alpha also synergize for the enhanced induction of CTL; however, adoptive transfer of a CD8(+) CTL line afforded only partial protection in this viral challenge model. As a possible mechanism of in vivo protection we show that GM-CSF increases the percentage and activity of antigen-presenting dendritic cells in draining lymph nodes where the immune response is initiated. We further demonstrate synergy between IL-12 and the proinflammatory cytokine TNF-alpha in driving IFN-gamma production. Thus, a combination of IL-12 and TNF-alpha is essential for the optimal development of T(h)1 responses and help for CTL induction in BALB/c mice, and is complemented by a third cytokine, GM-CSF, which enhances antigen presentation.
Collapse
Affiliation(s)
- J D Ahlers
- Molecular Immunogenetics and Vaccine Research Section Metabolism Branch, National Cancer Institute, National Institute of Health, Bldg 10, Rm 6B-12 (MSC1578), Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
26
|
Kim EM, Sivanandham M, Stavropoulos CI, Bartolucci AA, Wallack MK. Overview analysis of adjuvant therapies for melanoma--a special reference to results from vaccinia melanoma oncolysate adjuvant therapy trials. Surg Oncol 2001; 10:53-9. [PMID: 11719029 DOI: 10.1016/s0960-7404(01)00020-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A phase III, randomized, double-blind, multi-institutional vaccinia melanoma oncolysate (VMO) trial was performed for patients with stage III (AJCC) melanoma. When compared with the control vaccinia virus (V) therapy, VMO therapy did not show clinical efficacy in the final analysis of data from this trial. However, the data did allude to significant therapeutic efficacy with VMO therapy if it had been compared with an observation arm. Therefore, a comparative overview statistical analysis was performed to identify the therapeutic efficacy of VMO. This review compares VMO results with data from the treatment and observation arms of other prominent randomized anti-melanoma biologic trials (i.e., ECOG EST 1684; SWOG, IFN-gamma (J. Natl. Cancer Inst. 87 (1995) 1710); WHO IFN-alfa-2a (ASCO 14 (1995) 410); Mayo IFN-alfa-2a (J. Clin. Oncol. 13 (1995) 2776); French IFN-alfa-2a (ASCO 15 (1996) 437). The analysis was carried out comparing the disease-free interval (DFI) and overall survival (OS). The analysis shows that the VMO results are fairly comparable to the results of the treatment arms from the ECOG and Mayo trials at the 5-year mark; percent DFI 0.37, 0.37, and 0.4, percent OS 0.48, 0.46, 0.47, respectively. In some cases, VMO DFI is superior to the observation arms from other studies; ECOG, Mayo, and WHO; 0.37 versus 0.26, 0.3, 0.27 (4 years), respectively. These comparative results suggest that the vaccinia arm is not a true observation arm in the VMO trial, and the VMO could have shown an enhanced efficacy had the trial included a no-treatment observation control arm.
Collapse
Affiliation(s)
- E M Kim
- Department of Surgery, Saint Vincents Hospital and Medical Center/New York Medical College, 170 West 12th Street, New York, NY 10011, USA
| | | | | | | | | |
Collapse
|
27
|
Derby M, Alexander-Miller M, Tse R, Berzofsky J. High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1690-7. [PMID: 11160212 DOI: 10.4049/jimmunol.166.3.1690] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we observed that high-avidity CTL are much more effective in vivo than low-avidity CTL in elimination of infected cells, but the mechanisms behind their superior activity remained unclear. In this study, we identify two complementary mechanisms: 1) high-avidity CTL lyse infected cells earlier in the course of a viral infection by recognizing lower Ag densities than those distinguished by low-avidity CTL and 2) they initiate lysis of target cells more rapidly at any given Ag density. Alternative mechanisms were excluded, including: 1) the possibility that low-avidity CTL might control virus given more time (virus levels remained as high at 6 days following transfer as at 3 days) and 2) that differences in efficacy might be correlated with homing ability. Furthermore, adoptive transfer of high- and low-avidity CTL into SCID mice demonstrated that transfer of a 10-fold greater amount of low-avidity CTL could only partially compensate for their decreased ability to eliminate infected cells. Thus, we conclude that high-avidity CTL exploit two complementary mechanisms that combine to prevent the spread of virus within the animal: earlier recognition of infected cells when little viral protein has been made and more rapid lysis of infected cells.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigen Presentation
- Cell Line
- Cell Movement/immunology
- Clone Cells
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic
- Female
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Antigens/metabolism
- HIV Envelope Protein gp160/genetics
- HIV Envelope Protein gp160/immunology
- HIV Envelope Protein gp160/metabolism
- Kinetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Mice, SCID
- Ovarian Diseases/immunology
- Ovarian Diseases/virology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- T-Lymphocyte Subsets/virology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/transplantation
- T-Lymphocytes, Cytotoxic/virology
- Tumor Cells, Cultured
- Vaccinia/immunology
- Vaccinia/virology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Load
Collapse
Affiliation(s)
- M Derby
- Molecular Immunogenetics and Vaccine Research Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA
| | | | | | | |
Collapse
|
28
|
Lechner F, Cuero AL, Kantzanou M, Klenerman P. Studies of human antiviral CD8+ lymphocytes using class I peptide tetramers. Rev Med Virol 2001; 11:11-22. [PMID: 11241799 DOI: 10.1002/rmv.295] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the interactions between a host and a pathogen relies crucially on quantitative measurements of immune responses. Until recently, measurements of the levels of cellular immune responses, i.e. those mediated by CD4+ and CD8+ T lymphocytes have depended largely on culture in vitro and subsequent measurement of specific functions (such as cytolysis). More recently, new technologies based around tetrameric class I peptide complexes (tetramers) have allowed immunologists to measure CD8+ T lymphocyte levels directly ex vivo and independently of function. Since CD8+ lymphocytes play a key role in a number of important human viral infections, these tools have yielded useful insights into the dynamics, phenotype and function of human antiviral lymphocyte populations. In this review we describe some of the basic aspects of the biology of virus-specific CD8+ lymphocytes, and the current methods available to detect them. The use of tetramers has, in just four years, transformed our understanding of the immune responses against HIV, HTLV-1, HBV, HCV, CMV and EBV, and holds promise in a number of areas where quantitative analysis of the antiviral response in terms of both number and function is critical.
Collapse
Affiliation(s)
- F Lechner
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | |
Collapse
|
29
|
Sandberg JK, Leandersson AC, Devito C, Kohleisen B, Erfle V, Achour A, Levi M, Schwartz S, Kärre K, Wahren B, Hinkula J. Human immunodeficiency virus type 1 Nef epitopes recognized in HLA-A2 transgenic mice in response to DNA and peptide immunization. Virology 2000; 273:112-9. [PMID: 10891413 DOI: 10.1006/viro.2000.0360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the immune response against a human immunodeficiency virus type 1 (HIV-1) nef DNA sequence administered epidermally in mice transgenic for the human major histocompatibility complex (MHC) class I molecule HLA-A201. Ten potential HLA-A2 binding 9-mer Nef peptides were identified by a computer-based search algorithm. By a cell surface MHC class I stabilization assay, four peptides were scored as good binders, whereas two peptides bound weakly to HLA-A2. After DNA immunization, cytotoxic T lymphocyte (CTL) responses were predominantly directed against the Nef 44-52, 81-89, and 85-93 peptides. Interestingly, the 44-52 epitope resides outside the regions of Nef where previously described CTL epitopes are clustered. Dominance among Nef-derived peptides did not strictly correlate with HLA-A2 binding, in that only one of the high-affinity binding peptides was targeted in the CTL response. The 44-52, 85-93, and 139-147 peptides also generated specific CTLs in response to peptide immunization. T helper cell proliferation was detected after stimulation with 20-mer peptides in vitro. Three Nef regions (16-35, 106-125, and 166-185) dominated the T helper cell proliferation. The implications of these results for the development of DNA-based vaccines against HIV is discussed.
Collapse
MESH Headings
- AIDS Vaccines/chemistry
- AIDS Vaccines/immunology
- Amino Acid Sequence
- Animals
- Cell Division
- Cell Line
- DNA, Viral/genetics
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Products, nef/chemistry
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, nef/metabolism
- HIV Antigens/chemistry
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV Antigens/metabolism
- HIV-1/genetics
- HIV-1/immunology
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- J K Sandberg
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, 171 77, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wagner H, Häcker H, Lipford GB. Immunostimulatory DNA sequences help to eradicate intracellular pathogens. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:147-52. [PMID: 10944809 DOI: 10.1007/s002810000025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- H Wagner
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Germany
| | | | | |
Collapse
|
31
|
Mavoungou E, Touré FS, Yaba P, Sall A, Délicat A, Poaty-Mavoungou V. Detection of simian immunodeficiency virus (SIV)-specific T-cell-mediated cytotoxicity in the peripheral blood from infected cynomolgus monkeys. J Med Primatol 1999; 28:307-17. [PMID: 10733203 DOI: 10.1111/j.1600-0684.1999.tb00279.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have previously demonstrated that peptide immunization restimulates the memory CD4 T-cell response, but fails to induce cytotoxic T lymphocyte (CTL) in cynomolgus macaques. To examine the nature of protective immunity to simian immunodeficiency virus (SIV) in this study, freshly isolated peripheral blood mononuclear cells (PBMC) from four infected juvenile cynomolgus macaques and from three uninfected control macaques were assessed for CTL activity monthly for 9 consecutive months, beginning 1 month after detection of infection. Target cells consisted of major histocompatibility (MHC) haploidentical parental PBMC which were stimulated with mitogen and then pulsed with heat-killed SIVcyn. CTL activity was demonstrated in PBMCs from all four infected animals. The effector cells are T cells which mediate cytotoxicity against SIVcyn-pulsed target cells in an MHC-restricted manner. Furthermore, the cytotoxicity is virus specific and predominantly, if not exclusively, mediated by CD8+ T cells; it is also MHC class I restricted. Incubation of target cells with pepstatin A during antigen pulsing prior to the cytotoxic assay inhibited target cell generation, suggesting that viral antigens are processed via an endocytic pathway.
Collapse
Affiliation(s)
- E Mavoungou
- Centre International de Recherches Médicales de Franceville, Gabon.
| | | | | | | | | | | |
Collapse
|
32
|
Brander C, Walker BD. T lymphocyte responses in HIV-1 infection: implications for vaccine development. Curr Opin Immunol 1999; 11:451-9. [PMID: 10448136 DOI: 10.1016/s0952-7915(99)80076-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Substantial progress has been made over the past year in understanding the cellular immune response in HIV pathogenesis. Cytotoxic T lymphocytes play a critical role in establishing the level of viremia and virus-specific Th cell responses appear to affect the in vivo efficacy of cytotoxic T lymphocytes. Together, these new data provide important insights to refocus efforts aimed at immunotherapeutic interventions and vaccine development.
Collapse
Affiliation(s)
- C Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, MGH-East, 5th floor, 149 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
33
|
Oxenius A, Martinic MM, Hengartner H, Klenerman P. CpG-containing oligonucleotides are efficient adjuvants for induction of protective antiviral immune responses with T-cell peptide vaccines. J Virol 1999; 73:4120-6. [PMID: 10196308 PMCID: PMC104191 DOI: 10.1128/jvi.73.5.4120-4126.1999] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthetic nonmethylated oligonucleotides containing CpG dinucleotides (CpG-ODNs) have been shown to exhibit immunostimulatory activity. CpG-ODNs have the capacity to directly activate B cells, macrophages, and dendritic cells, and we show here that this is reflected by cell surface binding of oligonucleotides to these cell subsets. However, T cells are not directly activated by CpG-ODNs, which correlates with the failure to bind to the T-cell surface. Efficient competition for CpG-induced B-cell activation by non-CpG-containing oligonucleotides suggests that oligonucleotides might bind to an as yet undefined sequence-nonspecific receptor prior to cellular activation. Induction of protective T-cell responses against challenge infection with lymphocytic choriomeningitis virus (LCMV) or with recombinant vaccinia virus expressing the LCMV glycoprotein was achieved by immunizing mice with the immunodominant major histocompatibility complex class I-binding LCMV glycoprotein-derived peptide gp33 together with CpG-ODNs. In these experiments, B cells, potentially serving as CpG-ODN-activated antigen-presenting cells (APCs), were not required for induction of protective immunity since CpG-ODN-gp33-immunized B-cell-deficient mice were equally protected against challenge infection with both viruses. This finding suggested that macrophages and/or dendritic cells were sufficiently activated in vivo by CpG-ODNs to serve as potent APCs for the induction of naive T cells. Furthermore, treatment with CpG-ODN alone induced protection against infection with Listeria monocytogenes via antigen-independent activation of macrophages. These data suggest that CpG activation of macrophages and dendritic cells may provide a critical step in CpG-ODN adjuvant activity.
Collapse
Affiliation(s)
- A Oxenius
- Institute of Experimental Immunology, Department of Pathology, University of Zurich, 8091 Zurich, Switzerland.
| | | | | | | |
Collapse
|
34
|
Zatechka DS, Hegde NR, Hariharan K, Srikumaran S. Identification of murine cytotoxic T-lymphocyte epitopes of bovine herpesvirus 1. Vaccine 1999; 17:686-94. [PMID: 10067674 DOI: 10.1016/s0264-410x(98)00251-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present endogenously derived viral peptides to CD8+ cytotoxic T-lymphocytes (CTLs). The objective of this study was to identify the H-2Dd- and H-2Kd-restricted CTL epitopes of bovine herpesvirus 1 (BHV-1), based on the allele-specific peptide motifs (ASPMs) of the above class I molecules. Nine sequences conforming to the H-2Dd and H-2Kd ASPMs were identified on BHV-1 proteins, and the respective peptides were synthesized. Five of these peptides exhibited moderate to strong binding to the Dd molecule. CTLs generated by BALB/c mice immunized with BHV-1 proteins emulsified in a suitable adjuvant effectively lysed peptide-pulsed syngeneic targets, indicating that these epitopes were generated in vivo. Mice immunized with these peptides emulsified in a suitable adjuvant also developed anti-BHV-1 CTLs. These CTLs identified three veritable CTL epitopes among the "potential epitopes" synthesized based on the ASPMs. The elucidation of the CTL epitopes of BHV-1 should aid in the development of efficacious vaccines against this virus.
Collapse
Affiliation(s)
- D S Zatechka
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 68583-0905, USA
| | | | | | | |
Collapse
|
35
|
Large MK, Kittlesen DJ, Hahn YS. Suppression of Host Immune Response by the Core Protein of Hepatitis C Virus: Possible Implications for Hepatitis C Virus Persistence. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Hepatitis C virus (HCV) is a major human pathogen causing mild to severe liver disease worldwide. This positive strand RNA virus is remarkably efficient at establishing chronic infections. Although a high rate of genetic variability may facilitate viral escape and persistence in the face of Ag-specific immune responses, HCV may also encode proteins that facilitate evasion of immunological surveillance. To address the latter possibility, we examined the influence of specific HCV gene products on the host immune response to vaccinia virus in a murine model. Various vaccinia/HCV recombinants expressing different regions of the HCV polyprotein were used for i.p. inoculation of BALB/c mice. Surprisingly, a recombinant expressing the N-terminal half of the polyprotein (including the structural proteins, p7, NS2, and a portion of NS3; vHCV-S) led to a dose-dependent increase in mortality. Increased mortality was not observed for a recombinant expressing the majority of the nonstructural region or for a negative control virus expressing the β-galactosidase protein. Examination of T cell responses in these mice revealed a marked suppression of vaccinia-specific CTL responses and a depressed production of IFN-γ and IL-2. By using a series of vaccinia/HCV recombinants, we found that the HCV core protein was sufficient for immunosuppression, prolonged viremia, and increased mortality. These results suggest that the HCV core protein plays an important role in the establishment and maintenance of HCV infection by suppressing host immune responses, in particular the generation of virus-specific CTLs.
Collapse
Affiliation(s)
| | | | - Young S. Hahn
- *Beirne Carter Center for Immunology Research and
- †Department of Pathology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
36
|
Sin JI, Kim JJ, Boyer JD, Ciccarelli RB, Higgins TJ, Weiner DB. In vivo modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex virus type 2 mouse model. J Virol 1999; 73:501-9. [PMID: 9847356 PMCID: PMC103857 DOI: 10.1128/jvi.73.1.501-509.1999] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several vaccines have been investigated experimentally in the herpes simplex virus type 2 (HSV-2) model system. While it is believed that CD4(+)-T-cell responses are important for protection in general, the correlates of protection from HSV-2 infection are still under investigation. Recently, the use of molecular adjuvants to drive vaccine responses induced by DNA vaccines has been reported in a number of experimental systems. We sought to take advantage of this immunization model to gain insight into the correlates of immune protection in the HSV-2 mouse model system and to further explore DNA vaccine technology. To investigate whether the Th1- or Th2-type immune responses are more important for protection from HSV-2 infection, we codelivered the DNA expression construct encoding the HSV-2 gD protein with the gene plasmids encoding the Th1-type (interleukin-2 [IL-2], IL-12, IL-15, and IL-18) and Th2-type (IL-4 and IL-10) cytokines in an effort to drive immunity induced by vaccination. We then analyzed the modulatory effects of the vaccine on the resulting immune phenotype and on the mortality and the morbidity of the immunized animals following a lethal challenge with HSV-2. We observed that Th1 cytokine gene coadministration not only enhanced the survival rate but also reduced the frequency and severity of herpetic lesions following intravaginal HSV challenge. On the other hand, coinjection with Th2 cytokine genes increased the rate of mortality and morbidity of the challenged mice. Moreover, of the Th1-type cytokine genes tested, IL-12 was a particularly potent adjuvant for the gD DNA vaccination.
Collapse
Affiliation(s)
- J I Sin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sin JI, Kim JJ, Ugen KE, Ciccarelli RB, Higgins TJ, Weiner DB. Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte-macrophage colony-stimulating factor expression cassettes. Eur J Immunol 1998; 28:3530-40. [PMID: 9842896 DOI: 10.1002/(sici)1521-4141(199811)28:11<3530::aid-immu3530>3.0.co;2-c] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) could in theory attract antigen-presenting cells in muscle following intramuscular DNA immunization, resulting in enhanced antigen-specific immune responses. Thus, such adjuvants could constitute an important addition to a herpes vaccine by amplifying specific immune responses. Here we investigate the utility of GM-CSF cDNA as a vaccine adjuvant for herpes simplex virus (HSV)-2 in a mouse challenge model. GM-CSF cDNA co-injection enhanced levels of specific IgG, IgE and IgA against HSV-2 gD protein significantly higher than gD plasmid vaccination alone. Moreover, GM-CSF co-injection induced a dramatic increase in IgG1 levels, as compared to IgG2a levels, suggesting a Th2 bias in the response. T helper cell proliferation and secretion of cytokines (IL-2 and IFN-gamma) were significantly increased by GM-CSF cDNA co-injection. When challenged with a lethal dose of HSV-2, GM-CSF co-injection increased survival rates to 90%, an improvement as compared to gD vaccination alone (60-63%). Furthermore, GM-CSF cDNA co-injection reduced herpetic lesions and resulted in a faster recovery from lesions. These data indicate that GM-CSF cDNA enhances both humoral and cellular immune responses and enhances vaccine efficacy, resulting in reduced HSV-2-derived morbidity as well as mortality.
Collapse
Affiliation(s)
- J I Sin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
38
|
Oxenius A, Zinkernagel RM, Hengartner H. CD4+ T-cell induction and effector functions: a comparison of immunity against soluble antigens and viral infections. Adv Immunol 1998; 70:313-67. [PMID: 9755341 DOI: 10.1016/s0065-2776(08)60390-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A Oxenius
- Department of Pathology, University of Zurich, Switzerland
| | | | | |
Collapse
|
39
|
Ehl S, Klenerman P, Aichele P, Hengartner H, Zinkernagel RM. A functional and kinetic comparison of antiviral effector and memory cytotoxic T lymphocyte populations in vivo and in vitro. Eur J Immunol 1997; 27:3404-13. [PMID: 9464829 DOI: 10.1002/eji.1830271240] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To analyze the critical parameters for effective antiviral cytotoxic T lymphocyte (CTL) activity in vivo, control of lymphocytic choriomeningitis virus (LCMV) infection in the spleen was studied after adoptive transfer of different spleen cell populations into preinfected recipients. The quantitative, qualitative and kinetic requirements for virus control were defined and related to in vitro assays to compare the antiviral protective function of CTL from naive, acutely infected and memory mice. Treatment of mice with an established but limited LCMV infection by adoptive transfer of spleen cells from acutely LCMV-infected mice led to complete virus elimination mainly mediated by donor-derived CD8+ T cell-mediated, perforin-dependent cytotoxicity. Since virus is continuously spreading and the number of infected target cells rapidly increases, the time until target cell lysis is achieved was critical: if release of viral progeny was not prevented early, additional time to perform effector function did not improve overall virus control. When the function of various cell populations was compared in this model, we found that CTL from naive and memory mice perform considerably less well than CTL from acutely infected mice. In vitro studies indicated that this is probably due to the fact that they can not fulfill the limiting time requirements for immediate antiviral protection: while CTL from acutely infected mice can perform lytic effector function immediately, memory CTL require a considerable reactivation time before they can lyse infected target cells. This reactivation does not necessarily involve cell division. These findings illustrate how critical time limitations are for CTL to mediate early control of a dynamic virus infection in vivo.
Collapse
Affiliation(s)
- S Ehl
- Institute of Experimental Immunology, Department of Pathology, University of Zürich, Switzerland. stephehl.@usz.unizh.ch
| | | | | | | | | |
Collapse
|
40
|
Yang OO, Walker BD. CD8+ cells in human immunodeficiency virus type I pathogenesis: cytolytic and noncytolytic inhibition of viral replication. Adv Immunol 1997; 66:273-311. [PMID: 9328644 DOI: 10.1016/s0065-2776(08)60600-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- O O Yang
- AIDS Research Center, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
41
|
Yang OO, Tran AC, Kalams SA, Johnson RP, Roberts MR, Walker BD. Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells. Proc Natl Acad Sci U S A 1997; 94:11478-83. [PMID: 9326635 PMCID: PMC23511 DOI: 10.1073/pnas.94.21.11478] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/1997] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that HIV-1-specific cytotoxic T lymphocytes (CTLs) are a key host immune response to HIV-1 infection. Generation of CTL responses for prevention or therapy of HIV-1 infection has several intrinsic technical barriers such as antigen expression and presentation, the varying HLA restrictions between different individuals, and the potential for viral escape by sequence variation or surface molecule alteration on infected cells. A strategy to circumvent these limitations is the construction of a chimeric T cell receptor containing human CD4 or HIV-1-specific Ig sequences linked to the signaling domain of the T cell receptor zeta chain (universal T cell receptor). CD8+ CTLs transduced with this universal receptor can then bind and lyse infected cells that express surface HIV-1 gp120. We evaluated the ability of universal-receptor-bearing CD8+ cells from a seronegative donor to lyse acutely infected cells and inhibit HIV-1 replication in vitro. The kinetics of lysis and efficiency of inhibition were comparable to that of naturally occurring HIV-1-specific CTL clones isolated from infected individuals. Further study will be required to determine the utility of these cells as a therapeutic strategy in vivo.
Collapse
Affiliation(s)
- O O Yang
- AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
This article lists the vaccines current available for the control of both viral and bacterial infections. They may be attenuated live or inactivated whole microorganisms, or subunit preparations. Many more are in the pipeline and increasing attention is being given to establishing their safety before registration. Following the earlier eradication of smallpox, good progress is now being made toward the global eradication of poliomyelitis and a new program to eliminate measles from the Americas has begun. A variety of new approaches to vaccine development is now available. The hepatitis B virus surface antigen, made by DNA-transfected yeast or mammalian cells, is the basis of the first genetically engineered vaccine. Early in the 21st century, new vaccines based on oligopeptides, recombinant live viral or bacterial vectors (often existing live vaccines), or recombinant DNA plasmids are likely to be registered for human use. The efficacy of vaccines depends on the immune responses generated, and the recent substantial increase in our understanding of the mammalian immune system now offers great opportunities for manipulation to best obtain desired responses. These include mixing vaccine formulations to maximize immune responses, and combining vaccines to simplify their administration. Despite these advances, some persisting infections, such as those caused by HIV, plasmodia, and mycobacteria, still pose a great challenge to vaccine developers.
Collapse
Affiliation(s)
- G Ada
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University
| |
Collapse
|
43
|
Huang SN, Chen TC, Tsai SL, Liaw YF. Histopathology and pathobiology of hepatotropic virus-induced liver injury. J Gastroenterol Hepatol 1997; 12:S195-217. [PMID: 9407339 DOI: 10.1111/j.1440-1746.1997.tb00502.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present report concerns current knowledge regarding immunopathogenesis that can be applied in the interpretation of histopathological changes in acute and chronic viral hepatitis. The histopathological features of viral hepatitis have not been changed and light microscopic examination remains essential for making a diagnosis and classification of chronic hepatitis and for the provision of objective parameters on grading and staging. However, new understanding and knowledge of viral pathogenesis, host immune responses, the biological behaviour of the causative viral agents and, in particular, viral interference in multiple hepatotropic viral infections must be taken into consideration in the interpretation of histopathological and immunopathological findings of liver tissues. This report also presents some histopathological analyses on multiple hepatotropic viral infections. It can be concluded that the diagnostic histological criteria for acute hepatitis remain applicable in such settings. However, the cause of acute flare up in chronic hepatitis could not be determined without clinical, virological and serological information. Routine histopathology cannot distinguish a new infection from an acute exacerbation due to a high level of viral replication or mutant virus. A repertoire of immunocytochemical stainings for viral antigens is helpful, but caution must be exercised in suggesting a specific viral aetiology due to the fact that suppression of pre-existing viral antigens can be pronounced when the new or concurrent infection is hepatitis C virus related.
Collapse
Affiliation(s)
- S N Huang
- Department of Pathology, Sunnybrook Health Science Centre, University of Toronto, North York, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Drescher KM, Pease LR, Rodriguez M. Antiviral immune responses modulate the nature of central nervous system (CNS) disease in a murine model of multiple sclerosis. Immunol Rev 1997; 159:177-93. [PMID: 9416511 DOI: 10.1111/j.1600-065x.1997.tb01015.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The spectrum of disease is influenced by factors related to both the pathogen and the host, as well as the end points used in defining disease. In this article, the issue of disease resistance versus susceptibility will be examined in the framework that genetic manipulation of either the pathogen or the host immune response alters the balance from disease protection towards pathogenesis. The response of the host may trigger both a protective and a pathogenic immune response. The failure to mount a protective immune response predisposes the pathogen to persistence, which then becomes the target for immunopathology. This review will examine the factors involved both in virus-mediated pathogenesis and in disease protection in the Theiler's model of human multiple sclerosis. By manipulating the character of the virus pathogen and the specificity of the immune response, the entire spectrum of human demyelinating disease is reproduced.
Collapse
Affiliation(s)
- K M Drescher
- Department of Immunology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
45
|
Klenerman P, Zinkernagel RM. What can we learn about human immunodeficiency virus infection from a study of lymphocytic choriomeningitis virus? Immunol Rev 1997; 159:5-16. [PMID: 9416499 DOI: 10.1111/j.1600-065x.1997.tb01003.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of cytotoxic T lymphocytes (CTL) in human immunodeficiency virus (HIV) infection remains elusive. Since the discovery 10 years ago of high levels of specific CTL in this disease, some have argued that they play an important role in virus control, others that they drive disease progression through destruction of T helper cells, and others still that they play no obvious role at all. By contrast, the central role of CTL in murine lymphocytic choriomeningitis virus (LCMV) infection has been very clearly worked out through the use of in vivo depletion and adoptive transfer experiments, as well as knockout and transgenic mice. To interpret the possible roles for CTL in HIV, we have therefore made a comparison between what is known about CTL and their interaction with virus-infected cells in these two infections. This illustrates a potential critical role for these cells in both control of HIV replication and immune-mediated pathology, but one that is highly dependent on virus dose, distribution and dynamics.
Collapse
Affiliation(s)
- P Klenerman
- Institute for Experimental Immunology, University Hospital, Zurich, Switzerland.
| | | |
Collapse
|
46
|
Bonneau RH, Brehm MA, Kern AM. The impact of psychological stress on the efficacy of anti-viral adoptive immunotherapy in an immunocompromised host. J Neuroimmunol 1997; 78:19-33. [PMID: 9307225 DOI: 10.1016/s0165-5728(97)00079-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adoptive immunotherapy represents a potentially effective approach by which to control the extent of viral infections in an immunocompromised host. However, the impact of psychological stress and its associated neuroendocrine components on the efficacy of such a treatment strategy has yet to be determined. In the studies described herein, we have developed and utilized a model of primary, local herpes simplex virus (HSV) infection in radiation-induced, immunosuppressed C57BL/6 mice to investigate the role of stress in altering the protective capacity of adoptively transferred lymphocytes that contribute to the resolution of primary HSV infection. The sublethal dose of irradiation chosen for this model was shown to abrogate the local, adaptive immune response to HSV infection as measured by the degree of in vivo lymphoproliferation, development of HSV-specific cytotoxic T lymphocytes (CTL), and production of gamma interferon (IFN-gamma). Both short- and long-term acute stress, applied in the form of physical restraint, diminished the effectiveness of adoptively transferred lymphocytes as was indicated by an enhancement of viral replication in the footpad tissue and an increased rate of mortality. A reduction in the levels of IFN-gamma at the site of primary HSV infection represented at least one mechanism underlying this suppression of anti-viral immunity. Furthermore, the time-dependent restoration of immune function following irradiation was shown to be compromised in mice subjected to the restraint stress procedure. Together, these findings emphasize the potential role of psychological stress in suppressing both the capability of adoptive immunotherapeutic procedures to combat viral infection and the reestablishment of immune function in individuals who have undergone immunosuppressive therapy.
Collapse
Affiliation(s)
- R H Bonneau
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | | | |
Collapse
|
47
|
Hommel-Berrey GA, Bochan MR, Montel AH, Goebel WS, Froelich CJ, Brahmi Z. Granzyme B independently of perforin mediates noncytolytic intracellular inactivation of vesicular stomatitis virus. Cell Immunol 1997; 180:1-9. [PMID: 9316633 DOI: 10.1006/cimm.1997.1173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytotoxic cells provide a crucial defense against DNA and RNA viral infections. Here we describe an in vitro model to study the fate of vesicular stomatitis virus (VSV) RNA in cells undergoing apoptosis. Using the [3H]uridine release assay, we show that human LAK cells induce the degradation of RNA in infected U937 cells in addition to inhibiting the production of infectious virions. LAK cell-mediated RNA degradation was blocked by the serine protease inhibitor, 3,4-dichloroisocoumarin. Purified human granzyme B but not inactivated granzyme B, granzyme A, or perforin rapidly induced degradation of RNA in VSV-infected U937 cells in a dose- and time-dependent manner without lysing the cells and suppressed viral production. Northern analysis of RNA extracted from infected cells with a VSV full-length cDNA probe confirmed that levels of viral transcripts were reduced by treatment with granzyme B. Nevertheless, the amount of host beta-actin mRNA was also reduced in infected cells, suggesting that treatment with granzyme B induced apoptosis. Consistent with this notion, infected cells exposed to granzyme B rapidly developed DNA strand breakage. Taken together, the data suggest that granzyme B in the absence of perforin reduced VSV production by activating a mechanism that degraded viral transcripts in infected U937 cells.
Collapse
Affiliation(s)
- G A Hommel-Berrey
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
48
|
Yang OO, Kalams SA, Trocha A, Cao H, Luster A, Johnson RP, Walker BD. Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J Virol 1997; 71:3120-8. [PMID: 9060675 PMCID: PMC191444 DOI: 10.1128/jvi.71.4.3120-3128.1997] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although CD8+ lymphocytes in human immunodeficiency virus type 1 (HIV-1)-infected individuals have been demonstrated to suppress viral replication, the mechanisms of inhibition have not been defined precisely. A large body of evidence indicates that these cells act via soluble inhibitory factors, but the potential role of HLA class I-restricted cytolysis has remained controversial. Here we demonstrate that HIV-1-specific cytotoxic T lymphocytes (CTL) mediate antiviral suppression by both cytolytic and noncytolytic mechanisms. The predominant mechanism requires direct contact of CTL with the infected cells, is HLA class I restricted, and can achieve complete elimination of detectable virus in infected cell cultures. Inhibition occurs even at high multiplicities of infection or at ratios of CTL to CD4 cells as low as 1:1,000. The other mechanism is mediated by soluble inhibitory factors which are triggered in an antigen-specific and HLA-restricted fashion but then act without HLA restriction. These include MIP-1alpha, MIP-1beta, and RANTES, as well as a distinct factor(s) capable of inhibiting HIV-1 strains insensitive to these chemokines. These data indicate that HIV-1-specific CTL are potent mediators of HIV-1 suppression at cell ratios existing in vivo and demonstrate an antigen-specific trigger for CD8+ cell-derived soluble inhibitory factors. These results suggest that CTL play an important role in the observed antiviral activity of CD8+ cells from infected individuals.
Collapse
Affiliation(s)
- O O Yang
- AIDS Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Lin X, Pease LR, Rodriguez M. Differential generation of class I H-2D- versus H-2K-restricted cytotoxicity against a demyelinating virus following central nervous system infection. Eur J Immunol 1997; 27:963-70. [PMID: 9130651 DOI: 10.1002/eji.1830270424] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Despite the fact that both H-2K and D molecules are up-regulated in the central nervous system (CNS) following Theiler's murine encephalomyelitis virus (TMEV) infection, resistance in this virus model of multiple sclerosis maps exclusively to D. To address this paradox, we examined the ability of the K and D molecules to present viral antigens to cytotoxic T lymphocytes (CTL). Whereas no virus-specific CTL were detected in the CNS of susceptible B10.Q and B10.S mice 7 days post-infection, D-restricted CTL were identified readily in the CNS of resistant B10 animals. There was no evidence of K-restricted CTL in the CNS of B10 mice at day 7 post-infection. The presence of both K- and D-restricted virus-specific CTL in the spleen of immunized B10 mice demonstrates that the exclusive use of D molecules by CTL in the CNS of mice 7 days post-infection is not due to the inability of the K molecules to present viral peptides to lymphocytes. We conclude that the prominent role of the D locus in determining resistance or susceptibility to TMEV-induced demyelination is determined by factors governing the regulation of the immune response, and not by the presence or absence of CTL precursors capable of recognizing viral peptides presented by the K and D antigen-presenting molecules, or by differences in the ability of the K and D molecules to present viral peptides.
Collapse
Affiliation(s)
- X Lin
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
50
|
Brownstein DG, Gras L. Differential pathogenesis of lethal mousepox in congenic DBA/2 mice implicates natural killer cell receptor NKR-P1 in necrotizing hepatitis and the fifth component of complement in recruitment of circulating leukocytes to spleen. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 150:1407-20. [PMID: 9094996 PMCID: PMC1858154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Innate resistance of C57BL/6 (B6) mice to lethal mousepox is controlled by multiple genes. Previously, four resistance genes were localized to specific subchromosomal regions and transferred onto a susceptible DBA/2 (D2) background by serial backcrossing and intercrossing to produce congenic strains. Intraperitoneally inoculated ectromelia virus was uniformly lethal and achieved similar titers in B6 and D2 mice but elicited differential responses in liver, spleen, and circulating blood leukocytes. The distribution of these response phenotypes in congenic strains linked control of phenotypes with specific subchromosomal regions. D2.R1 mice, which carried a differential segment of chromosome 6, exhibited a B6 liver response and intermediate spleen and circulating leukocyte responses. D2.R2 and D2.R4 mice, which carried differential segments of chromosomes 2 and 1, respectively, exhibited a D2 liver response, a B6 spleen response, and an intermediate circulating leukocyte response. The localization of control of liver response phenotypes to chromosome 6 implicates cells that express natural killer (NK) cell receptor NKR-P1 alloantigens. The localization of control of spleen and circulating leukocyte responses to chromosomes 1, 2, and 6 implicates NK cells, the fifth component of complement, and a gene near the selectin gene complex in recruitment of circulating leukocytes to spleen.
Collapse
MESH Headings
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/toxicity
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Chromosome Mapping
- Complement C5/genetics
- Complement C5/toxicity
- Crosses, Genetic
- Ectromelia, Infectious/etiology
- Ectromelia, Infectious/genetics
- Ectromelia, Infectious/immunology
- Ectromelia, Infectious/mortality
- Ectromelia, Infectious/pathology
- Female
- Genetic Linkage
- Hepatitis, Animal/etiology
- Hepatitis, Animal/genetics
- Hepatitis, Animal/immunology
- Hepatitis, Animal/pathology
- Immunity, Innate
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Lectins, C-Type
- Leukocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Microsatellite Repeats
- NK Cell Lectin-Like Receptor Subfamily B
- Necrosis
- Spleen/pathology
Collapse
Affiliation(s)
- D G Brownstein
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520-8016, USA
| | | |
Collapse
|