1
|
de Greef PC, Njeru SN, Benz C, Fillatreau S, Malissen B, Agenès F, de Boer RJ, Kirberg J. The TCR assigns naive T cells to a preferred lymph node. SCIENCE ADVANCES 2024; 10:eadl0796. [PMID: 39047099 PMCID: PMC11268406 DOI: 10.1126/sciadv.adl0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Naive T cells recirculate between the spleen and lymph nodes where they mount immune responses when meeting dendritic cells presenting foreign antigen. As this may happen anywhere, naive T cells ought to visit all lymph nodes. Here, deep sequencing almost-complete TCR repertoires led to a comparison of different lymph nodes within and between individual mice. We find strong evidence for a deterministic CD4/CD8 lineage choice and a consistent spatial structure. Specifically, some T cells show a preference for one or multiple lymph nodes, suggesting that their TCR interacts with locally presented (self-)peptides. These findings are mirrored in TCR-transgenic mice showing localized CD69 expression, retention, and cell division. Thus, naive T cells intermittently sense antigenically dissimilar niches, which is expected to affect their homeostatic competition.
Collapse
MESH Headings
- Animals
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Mice, Transgenic
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Peter C. de Greef
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | | | - Claudia Benz
- Division of Immunology, Paul-Ehrlich-Institut, IMG53, Langen, Germany
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Fabien Agenès
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
- Inserm, Délégation Régionale Auvergne Rhône Alpes, 69500 Bron, France
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jörg Kirberg
- Division of Immunology, Paul-Ehrlich-Institut, IMG53, Langen, Germany
| |
Collapse
|
2
|
Rückert T, Romagnani C. Extrinsic and intrinsic drivers of natural killer cell clonality. Immunol Rev 2024; 323:80-106. [PMID: 38506411 DOI: 10.1111/imr.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
Collapse
Affiliation(s)
- Timo Rückert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| | - Chiara Romagnani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
3
|
Croce G, Bobisse S, Moreno DL, Schmidt J, Guillame P, Harari A, Gfeller D. Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells. Nat Commun 2024; 15:3211. [PMID: 38615042 PMCID: PMC11016097 DOI: 10.1038/s41467-024-47461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
T cells have the ability to eliminate infected and cancer cells and play an essential role in cancer immunotherapy. T cell activation is elicited by the binding of the T cell receptor (TCR) to epitopes displayed on MHC molecules, and the TCR specificity is determined by the sequence of its α and β chains. Here, we collect and curate a dataset of 17,715 αβTCRs interacting with dozens of class I and class II epitopes. We use this curated data to develop MixTCRpred, an epitope-specific TCR-epitope interaction predictor. MixTCRpred accurately predicts TCRs recognizing several viral and cancer epitopes. MixTCRpred further provides a useful quality control tool for multiplexed single-cell TCR sequencing assays of epitope-specific T cells and pinpoints a substantial fraction of putative contaminants in public databases. Analysis of epitope-specific dual α T cells demonstrates that MixTCRpred can identify α chains mediating epitope recognition. Applying MixTCRpred to TCR repertoires from COVID-19 patients reveals enrichment of clonotypes predicted to bind an immunodominant SARS-CoV-2 epitope. Overall, MixTCRpred provides a robust tool to predict TCRs interacting with specific epitopes and interpret TCR-sequencing data from both bulk and epitope-specific T cells.
Collapse
Affiliation(s)
- Giancarlo Croce
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Sara Bobisse
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dana Léa Moreno
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Guillame
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Materna M, Delmonte OM, Bosticardo M, Momenilandi M, Conrey PE, Muylder BCD, Bravetti C, Bellworthy R, Cederholm A, Staels F, Ganoza CA, Darko S, Sayed S, Le Floc’h C, Ogishi M, Rinchai D, Guenoun A, Bolze A, Khan T, Gervais A, Krüger R, Völler M, Palterer B, Sadeghi-Shabestari M, de Septenville AL, Schramm CA, Shah S, Tello-Cajiao JJ, Pala F, Amini K, Campos JS, Lima NS, Eriksson D, Lévy R, Seeleuthner Y, Jyonouchi S, Ata M, Al Ali F, Deswarte C, Pereira A, Mégre t J, Le Voyer T, Bastard P, Berteloot L, Dussiot M, Vladikine N, Cardenas PP, Jouanguy E, Alqahtani M, Hasan A, Thanaraj TA, Rosain J, Al Qureshah F, Sabato V, Alyanakian MA, Leruez-Ville M, Rozenberg F, Haddad E, Regueiro JR, Toribio ML, Kelsen JR, Salehi M, Nasiri S, Torabizadeh M, Rokni-Zadeh H, Changi-Ashtiani M, Vatandoost N, Moravej H, Akrami SM, Mazloomrezaei M, Cobat A, Meyts I, Etsushi T, Nishimura M, Moriya K, Mizukami T, Imai K, Abel L, Malissen B, Al-Mulla F, Alkuraya FS, Parvaneh N, von Bernuth H, Beetz C, Davi F, Douek DC, Cheynier R, Langlais D, Landegren N, Marr N, Morio T, Shahrooei M, Schrijvers R, Henrickson SE, Luche H, Notarangelo LD, Casanova JL, Béziat V. The immunopathological landscape of human pre-TCRα deficiency: From rare to common variants. Science 2024; 383:eadh4059. [PMID: 38422122 PMCID: PMC10958617 DOI: 10.1126/science.adh4059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
We describe humans with rare biallelic loss-of-function PTCRA variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αβ T cell counts at birth persisted over time, with normal memory αβ and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αβ T cell development. Only a minority of these individuals were sick, with infection, lymphoproliferation, and/or autoimmunity. We also report that 1 in 4000 individuals from the Middle East and South Asia are homozygous for a common hypomorphic PTCRA variant. They had normal circulating naive αβ T cell counts but high γδ T cell counts. Although residual pre-TCRα expression drove the differentiation of more αβ T cells, autoimmune conditions were more frequent in these patients compared with the general population.
Collapse
Affiliation(s)
- Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Peyton E. Conrey
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | | | - Clotilde Bravetti
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
- Sorbonne University, Paris Cancer Institute CURAMUS, INSERM U1138, Paris, France
| | - Rebecca Bellworthy
- Deptartment of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Frederik Staels
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | | | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samir Sayed
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Corentin Le Floc’h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | | | | | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Mahnaz Sadeghi-Shabestari
- Immunology Research Center, TB and Lung Disease Research Center, Mardaniazar children hospital, Tabriz University of Medical Science, Tabriz, Iran
| | - Anne Langlois de Septenville
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
| | - Chaim A. Schramm
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sanjana Shah
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J. Tello-Cajiao
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Jose S. Campos
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Noemia Santana Lima
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Section of Clinical Genetics, Uppsala, Sweden
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Soma Jyonouchi
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Manar Ata
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Anaïs Pereira
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Jérôme Mégre t
- Cytometry Core Facility, SFR Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Laureline Berteloot
- Department of Pediatric Radiology, University Hospital Necker-Enfants Malades, AP-HP, Paris, France
| | - Michaël Dussiot
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM UMR 1163, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Paula P. Cardenas
- Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Hasan
- Department of Translational Research, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Fahd Al Qureshah
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Vito Sabato
- Department of Immunology, Allergology and Rheumatology, University of Antwerp, Antwerp University Hospital, Belgium
| | - Marie Alexandra Alyanakian
- Immunology Laboratory, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Flore Rozenberg
- University of Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Virology, Cochin Hospital, AP-HP, APHP-CUP, Paris, France
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Jose R. Regueiro
- Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Maria L. Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology and Nutrition at Children's Hospital of Philadelphia
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology,Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Nasiri
- Department of Pediatric Neurology, Children's Medical Center of Abuzar, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Majid Changi-Ashtiani
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Nasimeh Vatandoost
- Department of Genetics and Molecular Biology,Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Moravej
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Akrami
- Medical Genetics Poursina St., Genetic Deptartment, Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
- Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
| | | | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Toyofuku Etsushi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Madoka Nishimura
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tomoyuki Mizukami
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Bernard Malissen
- Immunology Center of Marseille-Luminy, Aix Marseille University, Inserm, CNRS, Marseille, France
- Immunophenomics Center (CIPHE), Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fowzan Sami Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany
| | | | - Frédéric Davi
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
- Sorbonne University, Paris Cancer Institute CURAMUS, INSERM U1138, Paris, France
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rémi Cheynier
- University of Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - David Langlais
- Deptartment of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mohammad Shahrooei
- Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Sarah E. Henrickson
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
- Institute for Immunology and Immune Health, University of Pennsylvania; Philadelphia, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, USA
| | - Hervé Luche
- Immunophenomics Center (CIPHE), Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| |
Collapse
|
5
|
Suliman S, Kjer-Nielsen L, Iwany SK, Lopez Tamara K, Loh L, Grzelak L, Kedzierska K, Ocampo TA, Corbett AJ, McCluskey J, Rossjohn J, León SR, Calderon R, Lecca-Garcia L, Murray MB, Moody DB, Van Rhijn I. Dual TCR-α Expression on Mucosal-Associated Invariant T Cells as a Potential Confounder of TCR Interpretation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1389-1395. [PMID: 35246495 PMCID: PMC9359468 DOI: 10.4049/jimmunol.2100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/12/2022] [Indexed: 05/20/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant TCRα-chain that uses T cell receptor α-variable 1-2 (TRAV1-2) joined to TRAJ33/20/12 and recognizes metabolites from bacterial riboflavin synthesis bound to the Ag-presenting molecule MHC class I related (MR1). Our attempts to identify alternative MR1-presented Ags led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs. Because altered Ag specificity likely alters affinity for the most potent known Ag, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), we performed bulk TCRα- and TCRβ-chain sequencing and single-cell-based paired TCR sequencing on T cells that bound the MR1-5-OP-RU tetramer with differing intensities. Bulk sequencing showed that use of V genes other than TRAV1-2 was enriched among MR1-5-OP-RU tetramerlow cells. Although we initially interpreted these as diverse MR1-restricted TCRs, single-cell TCR sequencing revealed that cells expressing atypical TCRα-chains also coexpressed an invariant MAIT TCRα-chain. Transfection of each non-TRAV1-2 TCRα-chain with the TCRβ-chain from the same cell demonstrated that the non-TRAV1-2 TCR did not bind the MR1-5-OP-RU tetramer. Thus, dual TCRα-chain expression in human T cells and competition for the endogenous β-chain explains the existence of some MR1-5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and noncanonical TCRs on the same T cell means that claims of roles for non-TRAV1-2 TCR in MR1 response must be validated by TCR transfer-based confirmation of Ag specificity.
Collapse
Affiliation(s)
- Sara Suliman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah K Iwany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kattya Lopez Tamara
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Socios en Salud Sucursal Perú, Lima, Peru
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ludivine Grzelak
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | - Megan B Murray
- Department of Global Health and Social Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
6
|
TCRα reporter mice reveal contribution of dual TCRα expression to T cell repertoire and function. Proc Natl Acad Sci U S A 2020; 117:32574-32583. [PMID: 33288689 DOI: 10.1073/pnas.2013188117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is known that a subpopulation of T cells expresses two T cell receptor (TCR) clonotypes, though the extent and functional significance of this is not established. To definitively evaluate dual TCRα cells, we generated mice with green fluorescent protein and red fluorescent protein reporters linked to TCRα, revealing that ∼16% of T cells express dual TCRs, notably higher than prior estimates. Importantly, dual TCR expression has functional consequences, as dual TCR cells predominated response to lymphocytic choriomeningitis virus infection, comprising up to 60% of virus-specific CD4+ and CD8+ T cells during acute responses. Dual receptor expression selectively influenced immune memory, as postinfection memory CD4+ populations contained significantly increased frequencies of dual TCR cells. These data reveal a previously unappreciated contribution of dual TCR cells to the immune repertoire and highlight their potential effects on immune responses.
Collapse
|
7
|
Heikkilä N, Vanhanen R, Yohannes DA, Kleino I, Mattila IP, Saramäki J, Arstila TP. Human thymic T cell repertoire is imprinted with strong convergence to shared sequences. Mol Immunol 2020; 127:112-123. [PMID: 32961421 DOI: 10.1016/j.molimm.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022]
Abstract
A highly diverse repertoire of T cell antigen receptors (TCR) is created in the thymus by recombination of gene segments and the insertion or deletion of nucleotides at the junctions. Using next-generation TCR sequencing we define here the features of recombination and selection in the human TCRα and TCRβ locus, and show that a strikingly high proportion of the repertoire is shared by unrelated individuals. The thymic TCRα nucleotide repertoire was more diverse than TCRβ, with 4.1 × 106 vs. 0.81 × 106 unique clonotypes, and contained nonproductive clonotypes at a higher frequency (69.2% vs. 21.2%). The convergence of distinct nucleotide clonotypes to the same amino acid sequences was higher in TCRα than in TCRβ repertoire (1.45 vs. 1.06 nucleotide sequences per amino acid sequence in thymus). The gene segment usage was biased, and generally all individuals favored the same genes in both TCRα and TCRβ loci. Despite the high diversity, a large fraction of the repertoire was found in more than one donor. The shared fraction was bigger in TCRα than TCRβ repertoire, and more common in in-frame sequences than in nonproductive sequences. Thus, both biases in rearrangement and thymic selection are likely to contribute to the generation of shared repertoire in humans.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Reetta Vanhanen
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Dawit A Yohannes
- Research Programs Unit, Translational Immunology and Medicum, Department of Medical and Clinical Genetics, University of Helsinki. Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Iivari Kleino
- Research Programs Unit, Translational Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital. Stenbäckinkatu 9, 00290 Helsinki, Finland.
| | - Jari Saramäki
- Department of Computer Science, Aalto University. Konemiehentie 2, 02150 Espoo, Finland.
| | - T Petteri Arstila
- Research Programs Unit, Translational Immunology and Medicum, Department of Bacteriology and Immunology, University of Helsinki. Haartmaninkatu 3, 00290 Helsinki, Finland.
| |
Collapse
|
8
|
Sheng H, Marrero I, Maricic I, Fanchiang SS, Zhang S, Sant'Angelo DB, Kumar V. Distinct PLZF +CD8αα + Unconventional T Cells Enriched in Liver Use a Cytotoxic Mechanism to Limit Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2150-2162. [PMID: 31554695 PMCID: PMC6783388 DOI: 10.4049/jimmunol.1900832] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
Abstract
Hepatic immune system is uniquely challenged to mount a controlled effector response to pathogens while maintaining tolerance to diet and microbial Ags. We have identified a novel population of innate-like, unconventional CD8αα+TCRαβ+ T cells in naive mice and in human peripheral blood, called CD8αα Tunc, capable of controlling effector T cell responses. They are NK1.1+ (CD161+ in human), express NK-inhibitory receptors, and express the promyelocytic leukemia zinc finger (PLZF) transcription factor that distinguishes them from conventional CD8+ T cells. These cells display a cytotoxic phenotype and use a perforin-dependent mechanism to control Ag-induced or T cell-mediated autoimmune diseases. CD8αα Tunc are dependent upon IL-15/IL-2Rβ signaling and PLZF for their development and/or survival. They are Foxp3-negative and their regulatory activity is associated with a functionally distinct Qa-1b-dependent population coexpressing CD11c and CD244. A polyclonal TCR repertoire, an activated/memory phenotype, and the presence of CD8αα Tunc in NKT- and in MAIT-deficient as well as in germ-free mice indicates that these cells recognize diverse self-protein Ags. Our studies reveal a distinct population of unconventional CD8+ T cells within the natural immune repertoire capable of controlling autoimmunity and also providing a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Huiming Sheng
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Idania Marrero
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Shaohsuan S Fanchiang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Sai Zhang
- Rutgers University, New Brunswick, NJ 08901
| | | | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093;
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
9
|
Schuldt NJ, Binstadt BA. Dual TCR T Cells: Identity Crisis or Multitaskers? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:637-644. [PMID: 30670579 PMCID: PMC11112972 DOI: 10.4049/jimmunol.1800904] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2024]
Abstract
Dual TCR T cells are a common and natural product of TCR gene rearrangement and thymocyte development. As much as one third of the T cell population may have the capability to express two different TCR specificities on the cell surface. This discovery provoked a reconsideration of the classic model of thymic selection. Many potential roles for dual TCR T cells have since been hypothesized, including posing an autoimmune hazard, dominating alloreactive T cell responses, inducing allergy, and expanding the TCR repertoire to improve protective immunity. Yet, since the initial wave of publications following the discovery of dual TCR T cells, research in the area has slowed. In this study, we aim to provide a brief but comprehensive history of dual TCR T cell research, re-evaluate past observations in the context of current knowledge of the immune system, and identify key issues for future study.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Bryce A Binstadt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
10
|
Sonntag K, Hashimoto H, Eyrich M, Menzel M, Schubach M, Döcker D, Battke F, Courage C, Lambertz H, Handgretinger R, Biskup S, Schilbach K. Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines: a case report. J Transl Med 2018; 16:23. [PMID: 29409514 PMCID: PMC5801813 DOI: 10.1186/s12967-018-1382-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. METHODS Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ+ T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and TH1 polarization. RESULTS A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. CONCLUSIONS Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial.
Collapse
Affiliation(s)
- Katja Sonntag
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Hisayoshi Hashimoto
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center Würzburg, Josef-Schneider Street 2, 97080, Würzburg, Germany
| | - Moritz Menzel
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Max Schubach
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dennis Döcker
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Florian Battke
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Carolina Courage
- Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00014, Helsinki, Finland
| | - Helmut Lambertz
- Klinikum Garmisch-Partenkirchen GmbH, Zentrum für Innere Medizin, 82467, Garmisch-Partenkirchen, Germany
| | - Rupert Handgretinger
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Hoppe-Seyler Street 1, 72076, Tübingen, Germany. .,University Children's Hospital, University Medical Center Tübingen, Hoppe-Seyler-Street 1, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW T cells can mediate allograft rejection and graft-versus-host disease (GVHD), but are necessary for tolerance and protective immunity. Identifying T-cell populations differentially responsible for these effects has been a goal in transplant research. This review describes investigation of a small subset of T cells naturally predisposed toward alloreactivity, cells expressing two T-cell receptors (TCRs). RECENT FINDINGS Rare peripheral T cells express two αβTCRs. Their impact on T-cell development and function has been uncertain. Recent work demonstrates an important role for these cells in mouse models and human hematopoietic stem cell transplant patients with acute GVHD. Dual receptor T cells are preferentially activated and expanded in vitro and in vivo by allogeneic stimulation. Genetic elimination of dual TCR expression results in loss of approximately half of the alloreactive repertoire and impedes the earliest steps of GVHD. SUMMARY Identification of dual TCR T cells as predisposed to alloreactivity provides an opportunity to examine responses limiting transplantation. Continued investigation will reveal significant fundamental features of T-cell alloreactivity and important information about the earliest events determining allograft rejection and self-tolerance.
Collapse
|
14
|
Diebner HH, Kirberg J, Roeder I. An evolutionary stability perspective on oncogenesis control in mature T-cell populations. J Theor Biol 2016; 389:88-100. [PMID: 26549469 DOI: 10.1016/j.jtbi.2015.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 01/29/2023]
Abstract
Here we present a mathematical model for the dynamics of oncogenesis control in mature T-cell populations within the blood and lymphatic system. T-cell homeostasis is maintained by clonal competition for trophic niches (survival signals stimulated through interactions with self-antigens bound to major histocompatibility molecules), where a clone is defined as the set of T cells carrying the same antigen specific T-cell receptor (TCR). We analytically derive fitness functions of healthy and leukemic clone variants, respectively, that capture the dependency of the stability of the healthy T-cell pool against leukemic invaders on clonal diversity and kinetic parameters. Similar to the stability of ecosystems with high biodiversity, leukemic mutants are suppressed within polyclonal T-cell populations, i.e., in the presence of a huge number of different TCRs. To the contrary, for a low clonal diversity the leukemic clone variants are able to invade the healthy T-cell pool. The model, therefore, describes the experimentally observed phenomenon that preleukemic clone variants prevail in quasi-monoclonal experimental settings (in mice), whereas in polyclonal settings the healthy TCR variants are able to suppress the outgrowth of tumours. Between the two extremal situations of mono- and polyclonality there exists a range of coexistence of healthy and oncogenic clone variants with moderate fitness (stability) each. A variation of cell cycle times considerably changes the dynamics within this coexistence region. Faster proliferating variants increase their chance to dominate. Finally, a simplified niche variation scheme illustrates a possible mechanism to increase clonal T-cell diversity given a small niche diversity.
Collapse
Affiliation(s)
- Hans H Diebner
- Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | - Jörg Kirberg
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Ingo Roeder
- Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
15
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
16
|
Kekäläinen E, Lehto MK, Smeds E, Pöntynen N, Pekkarinen PT, Ulmanen I, Miettinen A, Arstila TP. Lymphopenia-induced proliferation in the absence of functional Autoimmune regulator (Aire) induces colitis in mice. Immunol Lett 2015; 167:17-22. [PMID: 26112418 DOI: 10.1016/j.imlet.2015.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/03/2015] [Accepted: 06/12/2015] [Indexed: 01/06/2023]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in Autoimmune regulator (Aire), a transcriptional regulator of negative selection in thymus. However, Aire is also expressed in periphery, but the full range of Aire's peripheral function is unknown. Here, we transferred lymphocytes from wildtype donors into lymphopenic recipients with or without functional Aire. Following cell proliferation thus took place in Aire-sufficient or deficient environment. The wildtype lymphocytes hyperproliferated and induced disease in lymphopenic Aire(-/-) but not in Aire(+/+) recipients. The disease was characterized by diarrhea, inflammation, and colitis, and in some recipients pancreatitis, gastritis, and hepatitis was also found. Our results identify Aire as an important regulator of peripheral T cell homeostasis in gastrointestinal tissues. Given a suitable trigger the absence of peripheral Aire leads to dysregulated T cell proliferation and disease.
Collapse
Affiliation(s)
- Eliisa Kekäläinen
- Haartman Institute, Department of Bacteriology and Immunology, Immunobiology Research Program, University of Helsinki, PB 21, Helsinki 00014, Finland.
| | - Maija-Katri Lehto
- Haartman Institute, Department of Bacteriology and Immunology, Immunobiology Research Program, University of Helsinki, PB 21, Helsinki 00014, Finland
| | - Eero Smeds
- Haartman Institute, Department of Bacteriology and Immunology, Immunobiology Research Program, University of Helsinki, PB 21, Helsinki 00014, Finland
| | - Nora Pöntynen
- National Institute for Health and Welfare, Department of Molecular Medicine, Biomedicum, Helsinki, Finland; Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Pirkka T Pekkarinen
- Haartman Institute, Department of Bacteriology and Immunology, Immunobiology Research Program, University of Helsinki, PB 21, Helsinki 00014, Finland
| | - Ismo Ulmanen
- National Institute for Health and Welfare, Department of Molecular Medicine, Biomedicum, Helsinki, Finland
| | - Aaro Miettinen
- HUSLAB Helsinki Central Hospital Laboratory, Division of Clinical Microbiology, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - T Petteri Arstila
- Haartman Institute, Department of Bacteriology and Immunology, Immunobiology Research Program, University of Helsinki, PB 21, Helsinki 00014, Finland
| |
Collapse
|
17
|
Clemens EB, Doherty PC, La Gruta NL, Turner SJ. Fixed expression of single influenza virus-specific TCR chains demonstrates the capacity for TCR α- and β-chain diversity in the face of peptide-MHC class I specificity. THE JOURNAL OF IMMUNOLOGY 2014; 194:898-910. [PMID: 25535284 DOI: 10.4049/jimmunol.1401792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The characteristics of the TCR repertoire expressed by epitope-specific CD8(+) T cells can be an important determinant of the quality of immune protection against virus infection. Most studies of epitope-specific TCR repertoires focus solely on an analysis of TCR β-chains, rather than the combined TCRαβ heterodimers that confer specificity. Hence, the importance of complementary α- and β-chain pairing in determining TCR specificity and T cell function is not well understood. Our earlier study of influenza-specific TCR repertoires in a C57BL/6J mouse model described a structural basis for preferred TCRαβ pairing that determined exquisite specificity for the D(b)PA224 epitope from influenza A virus. We have now extended this analysis using retrogenic mice engineered to express single TCR α- or β-chains specific for the D(b)NP366 or D(b)PA224 epitopes derived from influenza A virus. We found that particular TCRαβ combinations were selected for recognition of these epitopes following infection, indicating that pairing of certain α- and β-chain sequences is key for determining TCR specificity. Furthermore, we demonstrated that some TCRαβ heterodimers were preferentially expanded from the naive repertoire in response to virus infection, suggesting that appropriate αβ pairing confers optimal T cell responsiveness to Ag.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
18
|
Binsfeld M, Beguin Y, Belle L, Otjacques E, Hannon M, Briquet A, Heusschen R, Drion P, Zilberberg J, Bogen B, Baron F, Caers J. Establishment of a murine graft-versus-myeloma model using allogeneic stem cell transplantation. PLoS One 2014; 9:e113764. [PMID: 25415267 PMCID: PMC4240591 DOI: 10.1371/journal.pone.0113764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
Background Multiple myeloma (MM) is a malignant plasma cell disorder with poor long-term survival and high recurrence rates. Despite evidence of graft-versus-myeloma (GvM) effects, the use of allogeneic hematopoietic stem cell transplantation (allo-SCT) remains controversial in MM. In the current study, we investigated the anti-myeloma effects of allo-SCT from B10.D2 mice into MHC-matched myeloma-bearing Balb/cJ mice, with concomitant development of chronic graft-versus-host disease (GvHD). Methods and results Balb/cJ mice were injected intravenously with luciferase-transfected MOPC315.BM cells, and received an allogeneic (B10.D2 donor) or autologous (Balb/cJ donor) transplant 30 days later. We observed a GvM effect in 94% of the allogeneic transplanted mice, as the luciferase signal completely disappeared after transplantation, whereas all the autologous transplanted mice showed myeloma progression. Lower serum paraprotein levels and lower myeloma infiltration in bone marrow and spleen in the allogeneic setting confirmed the observed GvM effect. In addition, the treated mice also displayed chronic GvHD symptoms. In vivo and in vitro data suggested the involvement of effector memory CD4 and CD8 T cells associated with the GvM response. The essential role of CD8 T cells was demonstrated in vivo where CD8 T-cell depletion of the graft resulted in reduced GvM effects. Finally, TCR Vβ spectratyping analysis identified Vβ families within CD4 and CD8 T cells, which were associated with both GvM effects and GvHD, whereas other Vβ families within CD4 T cells were associated exclusively with either GvM or GvHD responses. Conclusions We successfully established an immunocompetent murine model of graft-versus-myeloma. This is the first murine GvM model using immunocompetent mice that develop MM which closely resembles human MM disease and that are treated after disease establishment with an allo-SCT. Importantly, using TCR Vβ spectratyping, we also demonstrated the presence of GvM unique responses potentially associated with the curative capacity of this immunotherapeutic approach.
Collapse
Affiliation(s)
- Marilène Binsfeld
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Ludovic Belle
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Eléonore Otjacques
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Muriel Hannon
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Alexandra Briquet
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | | | - Jenny Zilberberg
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, United States of America
| | - Bjarne Bogen
- Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen centre for research on influenza vaccines, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA-Research, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
19
|
Lucca LE, Desbois S, Ramadan A, Ben-Nun A, Eisenstein M, Carrié N, Guéry JC, Sette A, Nguyen P, Geiger TL, Mars LT, Liblau RS. Bispecificity for myelin and neuronal self-antigens is a common feature of CD4 T cells in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:3267-77. [PMID: 25135834 DOI: 10.4049/jimmunol.1400523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recognition of multiple ligands by a single TCR is an intrinsic feature of T cell biology, with important consequences for physiological and pathological processes. Polyspecific T cells targeting distinct self-antigens have been identified in healthy individuals as well as in the context of autoimmunity. We have previously shown that the 2D2 TCR recognizes the myelin oligodendrocyte glycoprotein epitope (MOG)35-55 as well as an epitope within the axonal protein neurofilament medium (NF-M15-35) in H-2(b) mice. In this study, we assess whether this cross-reactivity is a common feature of the MOG35-55-specific T cell response. To this end, we analyzed the CD4 T cell response of MOG35-55-immunized C57BL/6 mice for cross-reactivity with NF-M15-35. Using Ag recall responses, we established that an important proportion of MOG35-55-specific CD4 T cells also responded to NF-M15-35 in all mice tested. To study the clonality of this response, we analyzed 22 MOG35-55-specific T cell hybridomas expressing distinct TCR. Seven hybridomas were found to cross-react with NF-M15-35. Using an alanine scan of NF-M18-30 and an in silico predictive model, we dissected the molecular basis of cross-reactivity between MOG35-55 and NF-M15-35. We established that NF-M F24, R26, and V27 proved important TCR contacts. Strikingly, the identified TCR contacts are conserved within MOG38-50. Our data indicate that due to linear sequence homology, part of the MOG35-55-specific T cell repertoire of all C57BL/6 mice also recognizes NF-M15-35, with potential implications for CNS autoimmunity.
Collapse
Affiliation(s)
- Liliana E Lucca
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Sabine Desbois
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Abdulraouf Ramadan
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Avraham Ben-Nun
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miriam Eisenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadège Carrié
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Jean-Charles Guéry
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - Phuong Nguyen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Lennart T Mars
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France
| | - Roland S Liblau
- INSERM, U1043, Toulouse F-31300, France; Centre National de la Recherche Scientifique, U5282, Toulouse F-31300, France; Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse F-31300, France; Département d'Immunologie, Centre Hospitalier Universitaire Toulouse, Hôpital Purpan, Toulouse F-31300, France
| |
Collapse
|
20
|
Steinel NC, Fisher MR, Yang-Iott KS, Bassing CH. The ataxia telangiectasia mutated and cyclin D3 proteins cooperate to help enforce TCRβ and IgH allelic exclusion. THE JOURNAL OF IMMUNOLOGY 2014; 193:2881-90. [PMID: 25127855 DOI: 10.4049/jimmunol.1302201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coordination of V rearrangements between loci on homologous chromosomes is critical for Ig and TCR allelic exclusion. The Ataxia Telangietasia mutated (ATM) protein kinase promotes DNA repair and activates checkpoints to suppress aberrant Ig and TCR rearrangements. In response to RAG cleavage of Igκ loci, ATM inhibits RAG expression and suppresses further Vκ-to-Jκ rearrangements to enforce Igκ allelic exclusion. Because V recombination between alleles is more strictly regulated for TCRβ and IgH loci, we evaluated the ability of ATM to restrict biallelic expression and V-to-DJ recombination of TCRβ and IgH genes. We detected greater frequencies of lymphocytes with biallelic expression or aberrant V-to-DJ rearrangement of TCRβ or IgH loci in mice lacking ATM. A preassembled DJβ complex that decreases the number of TCRβ rearrangements needed for a productive TCRβ gene further increased frequencies of ATM-deficient cells with biallelic TCRβ expression. IgH and TCRβ proteins drive proliferation of prolymphocytes through cyclin D3 (Ccnd3), which also inhibits VH transcription. We show that inactivation of Ccnd3 leads to increased frequencies of lymphocytes with biallelic expression of IgH or TCRβ genes. We also show that Ccnd3 inactivation cooperates with ATM deficiency to increase the frequencies of cells with biallelic TCRβ or IgH expression while decreasing the frequency of ATM-deficient lymphocytes with aberrant V-to-DJ recombination. Our data demonstrate that core components of the DNA damage response and cell cycle machinery cooperate to help enforce IgH and TCRβ allelic exclusion and indicate that control of V-to-DJ rearrangements between alleles is important to maintain genomic stability.
Collapse
Affiliation(s)
- Natalie C Steinel
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Megan R Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katherine S Yang-Iott
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
Ni PP, Solomon B, Hsieh CS, Allen PM, Morris GP. The ability to rearrange dual TCRs enhances positive selection, leading to increased Allo- and Autoreactive T cell repertoires. THE JOURNAL OF IMMUNOLOGY 2014; 193:1778-86. [PMID: 25015825 DOI: 10.4049/jimmunol.1400532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thymic selection is designed to ensure TCR reactivity to foreign Ags presented by self-MHC while minimizing reactivity to self-Ags. We hypothesized that the repertoire of T cells with unwanted specificities such as alloreactivity or autoreactivity are a consequence of simultaneous rearrangement of both TCRα loci. We hypothesized that this process helps maximize production of thymocytes capable of successfully completing thymic selection, but results in secondary TCRs that escape stringent selection. In T cells expressing two TCRs, one TCR can mediate positive selection and mask secondary TCR from negative selection. Examination of mice heterozygous for TRAC (TCRα(+/-)), capable of only one functional TCRα rearrangement, demonstrated a defect in generating mature T cells attributable to decreased positive selection. Elimination of secondary TCRs did not broadly alter the peripheral T cell compartment, though deep sequencing of TCRα repertoires of dual TCR T cells and TCRα(+/-) T cells demonstrated unique TCRs in the presence of secondary rearrangements. The functional impact of secondary TCRs on the naive peripheral repertoire was evidenced by reduced frequencies of T cells responding to autoantigen and alloantigen peptide-MHC tetramers in TCRα(+/-) mice. T cell populations with secondary TCRs had significantly increased ability to respond to altered peptide ligands related to their allogeneic ligand as compared with TCRα(+/-) cells, suggesting increased breadth in peptide recognition may be a mechanism for their reactivity. Our results imply that the role of secondary TCRs in forming the T cell repertoire is perhaps more significant than what has been assumed.
Collapse
Affiliation(s)
- Peggy P Ni
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin Solomon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gerald P Morris
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
22
|
Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response. Proc Natl Acad Sci U S A 2014; 111:2674-9. [PMID: 24550295 DOI: 10.1073/pnas.1323845111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD1d-restricted natural killer T (NKT) cells are innate-like T cells with potent immunomodulatory function via rapid production of both Th1 and Th2 cytokines. NKT cells comprise well-characterized type I NKT cells, which can be detected by α-galactosylceramide-loaded CD1d tetramers, and less-studied type II NKT cells, which do not recognize α-galactosylceramide. Here we characterized type II NKT cells on a polyclonal level by using a Jα18-deficient IL-4 reporter mouse model. This model allows us to track type II NTK cells by the GFP(+)TCRβ(+) phenotype in the thymus and liver. We found type II NKT cells, like type I NKT cells, exhibit an activated phenotype and are dependent on the transcriptional regulator promyelocytic leukemia zinc finger (PLZF) and the adaptor molecule signaling lymphocyte activation molecule-associated protein (SAP) for their development. Type II NKT cells are potently activated by β-D-glucopyranosylceramide (β-GlcCer) but not sulfatide or phospholipids in a CD1d-dependent manner, with the stimulatory capacity of β-GlcCer influenced by acyl chain length. Compared with type I NKT cells, type II NKT cells produce lower levels of IFN-γ but comparable amounts of IL-13 in response to polyclonal T-cell receptor stimulation, suggesting they may play different roles in regulating immune responses. Furthermore, type II NKT cells can be activated by CpG oligodeoxynucletides to produce IFN-γ, but not IL-4 or IL-13. Importantly, CpG-activated type II NKT cells contribute to the antitumor effect of CpG in the B16 melanoma model. Taken together, our data reveal the characteristics of polyclonal type II NKT cells and their potential role in antitumor immunotherapy.
Collapse
|
23
|
Visualization and quantification of monoallelic TCRα gene rearrangement in αβ T cells. Immunol Cell Biol 2014; 92:409-16. [PMID: 24418818 DOI: 10.1038/icb.2013.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 11/08/2022]
Abstract
T-cell receptor α (TCRα) chain rearrangement is not constrained by allelic exclusion and thus αβ T cells frequently have rearranged both alleles of this locus. Thereby, stepwise secondary rearrangements of both TCRα loci further increase the odds for generation of an α-chain that can be positively selected in combination with a pre-existing TCRβ chain. Previous studies estimated that approximately 2-12% of murine and human αβ T cells still carry one TCRα locus in germline configuration, which must comprise a partially or even fully rearranged TCRδ locus. However, these estimates are based on a relatively small amount of individual αβ T-cell clones and αβ T-cell hybridomas analyzed to date. To address this issue more accurately, we made use of a mouse model, in which a fluorescent reporter protein is introduced into the constant region of the TCRδ locus. In this TcrdH2BeGFP system, fluorescence emanating from retained TCRδ loci enabled us to quantify monoallelically rearranged αβ T cells on a single-cell basis. Via fluorescence-activated cell sorting analysis, we determined the frequency of monoallelic TCRα rearrangements to be 1.7% in both peripheral CD4(+) and CD8(+) αβ T cells. Furthermore, we found a skewed 5' Jα gene utilization of the rearranged TCRα allele in T cells with monoallelic TCRα rearrangements. This is in line with previous descriptions of a tight interallelic positional coincidence of Jα gene segments used on both TCRα alleles. Finally, analysis of T cells from transgenic mice harboring only one functional TCRα locus implied the existence of very rare unusual translocation or episomal reintegration events of formerly excised TCRδ loci.
Collapse
|
24
|
Breakdown of immune privilege and spontaneous autoimmunity in mice expressing a transgenic T cell receptor specific for a retinal autoantigen. J Autoimmun 2013; 44:21-33. [PMID: 23810578 DOI: 10.1016/j.jaut.2013.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
Despite presence of circulating retina-specific T cells in healthy individuals, ocular immune privilege usually averts development of autoimmune uveitis. To study the breakdown of immune privilege and development of disease, we generated transgenic (Tg) mice that express a T cell receptor (TCR) specific for interphotoreceptor retinoid-binding protein (IRBP), which serves as an autoimmune target in uveitis induced by immunization. Three lines of TCR Tg mice, with different levels of expression of the transgenic R161 TCR and different proportions of IRBP-specific CD4⁺ T cells in their peripheral repertoire, were successfully established. Importantly, two of the lines rapidly developed spontaneous uveitis, reaching 100% incidence by 2 and 3 months of age, respectively, whereas the third appeared "poised" and only developed appreciable disease upon immune perturbation. Susceptibility roughly paralleled expression of the R161 TCR. In all three lines, peripheral CD4⁺ T cells displayed a naïve phenotype, but proliferated in vitro in response to IRBP and elicited uveitis upon adoptive transfer. In contrast, CD4⁺ T cells infiltrating uveitic eyes mostly showed an effector/memory phenotype, and included Th1, Th17 as well as T regulatory cells that appeared to have been peripherally converted from conventional CD4⁺ T cells rather than thymically derived. Thus, R161 mice provide a new and valuable model of spontaneous autoimmune disease that circumvents the limitations of active immunization and adjuvants, and allows to study basic mechanisms involved in maintenance and breakdown of immune homeostasis affecting immunologically privileged sites such as the eye.
Collapse
|
25
|
Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat Immunol 2012; 13:857-63. [DOI: 10.1038/ni.2372] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022]
|
26
|
Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol 2012; 42:102-11. [PMID: 22095454 PMCID: PMC3266166 DOI: 10.1007/s12016-011-8294-7] [Citation(s) in RCA: 361] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A variety of mechanisms have been suggested as the means by which infections can initiate and/or exacerbate autoimmune diseases. One mechanism is molecular mimicry, where a foreign antigen shares sequence or structural similarities with self-antigens. Molecular mimicry has typically been characterized on an antibody or T cell level. However, structural relatedness between pathogen and self does not account for T cell activation in a number of autoimmune diseases. A proposed mechanism that could have been misinterpreted for molecular mimicry is the expression of dual T cell receptors (TCR) on a single T cell. These T cells have dual reactivity to both foreign and self-antigens leaving the host vulnerable to foreign insults capable of triggering an autoimmune response. In this review, we briefly discuss what is known about molecular mimicry followed by a discussion of the current understanding of dual TCRs. Finally, we discuss three mechanisms, including molecular mimicry, dual TCRs, and chimeric TCRs, by which dual reactivity of the T cell may play a role in autoimmune diseases.
Collapse
Affiliation(s)
- Matthew F Cusick
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
27
|
Young GR, Ploquin MJY, Eksmond U, Wadwa M, Stoye JP, Kassiotis G. Negative selection by an endogenous retrovirus promotes a higher-avidity CD4+ T cell response to retroviral infection. PLoS Pathog 2012; 8:e1002709. [PMID: 22589728 PMCID: PMC3349761 DOI: 10.1371/journal.ppat.1002709] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022] Open
Abstract
Effective T cell responses can decisively influence the outcome of retroviral infection. However, what constitutes protective T cell responses or determines the ability of the host to mount such responses is incompletely understood. Here we studied the requirements for development and induction of CD4+ T cells that were essential for immunity to Friend virus (FV) infection of mice, according to their TCR avidity for an FV-derived epitope. We showed that a self peptide, encoded by an endogenous retrovirus, negatively selected a significant fraction of polyclonal FV-specific CD4+ T cells and diminished the response to FV infection. Surprisingly, however, CD4+ T cell-mediated antiviral activity was fully preserved. Detailed repertoire analysis revealed that clones with low avidity for FV-derived peptides were more cross-reactive with self peptides and were consequently preferentially deleted. Negative selection of low-avidity FV-reactive CD4+ T cells was responsible for the dominance of high-avidity clones in the response to FV infection, suggesting that protection against the primary infecting virus was mediated exclusively by high-avidity CD4+ T cells. Thus, although negative selection reduced the size and cross-reactivity of the available FV-reactive naïve CD4+ T cell repertoire, it increased the overall avidity of the repertoire that responded to infection. These findings demonstrate that self proteins expressed by replication-defective endogenous retroviruses can heavily influence the formation of the TCR repertoire reactive with exogenous retroviruses and determine the avidity of the response to retroviral infection. Given the overabundance of endogenous retroviruses in the human genome, these findings also suggest that endogenous retroviral proteins, presented by products of highly polymorphic HLA alleles, may shape the human TCR repertoire that reacts with exogenous retroviruses or other infecting pathogens, leading to interindividual heterogeneity.
Collapse
Affiliation(s)
- George R. Young
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
| | - Mickaël J.-Y. Ploquin
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
| | - Urszula Eksmond
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
| | - Munisch Wadwa
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
| | - Jonathan P. Stoye
- Division of Virology, MRC National Institute for Medical Research, London, United Kingdom
| | - George Kassiotis
- Division of Immunoregulation, MRC National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
28
|
Barnaba V, Paroli M, Piconese S. The ambiguity in immunology. Front Immunol 2012; 3:18. [PMID: 22566903 PMCID: PMC3341998 DOI: 10.3389/fimmu.2012.00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/02/2012] [Indexed: 01/07/2023] Open
Abstract
In the present article, we discuss the various ambiguous aspects of the immune system that render this complex biological network so highly flexible and able to defend the host from different external invaders. This ambiguity stems mainly from the property of the immune system to be both protective and harmful. Immunity cannot be fully protective without producing a certain degree of damage (immunopathology) to the host. The balance between protection and tissue damage is, therefore, critical for the establishment of immune homeostasis and protection. In this review, we will consider as ambiguous, various immunological tactics including: (a) the opposing functions driving immune responses, immune-regulation, and contra-regulation, as well as (b) the phenomenon of chronic immune activation as a result of a continuous cross-presentation of apoptotic T cells by dendritic cells. All these plans participate principally to maintain a state of chronic low-level inflammation during persisting infections, and ultimately to favor the species survival.
Collapse
Affiliation(s)
- Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma Rome, Italy
| | | | | |
Collapse
|
29
|
|
30
|
Uldrich AP, Patel O, Cameron G, Pellicci DG, Day EB, Sullivan LC, Kyparissoudis K, Kjer-Nielsen L, Vivian JP, Cao B, Brooks AG, Williams SJ, Illarionov P, Besra GS, Turner SJ, Porcelli SA, McCluskey J, Smyth MJ, Rossjohn J, Godfrey DI. A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties. Nat Immunol 2011; 12:616-23. [PMID: 21666690 DOI: 10.1038/ni.2051] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/11/2011] [Indexed: 12/12/2022]
Abstract
Type I natural killer T cells (NKT cells) are characterized by an invariant variable region 14-joining region 18 (V(α)14-J(α)18) T cell antigen receptor (TCR) α-chain and recognition of the glycolipid α-galactosylceramide (α-GalCer) restricted to the antigen-presenting molecule CD1d. Here we describe a population of α-GalCer-reactive NKT cells that expressed a canonical V(α)10-J(α)50 TCR α-chain, which showed a preference for α-glucosylceramide (α-GlcCer) and bacterial α-glucuronic acid-containing glycolipid antigens. Structurally, despite very limited TCRα sequence identity, the V(α)10 TCR-CD1d-α-GlcCer complex had a docking mode similar to that of type I TCR-CD1d-α-GalCer complexes, although differences at the antigen-binding interface accounted for the altered antigen specificity. Our findings provide new insight into the structural basis and evolution of glycolipid antigen recognition and have notable implications for the scope and immunological role of glycolipid-specific T cell responses.
Collapse
Affiliation(s)
- Adam P Uldrich
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Han X, Ye P, Luo L, Zheng L, Liu Y, Chen L, Wang S. The development and functions of CD4(+) T cells expressing a transgenic TCR specific for an MHC-I-restricted tumor antigenic epitope. Cell Mol Immunol 2011; 8:333-40. [PMID: 21643003 DOI: 10.1038/cmi.2011.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
It has been reported that the ratio of CD4(+) to CD8(+) T cells has no bias in a few class I major histocompatibility complex (MHC-I)-restricted T-cell receptor (TCR)-transgenic mice specific for alloantigens or autoantigens, in which most CD4(+) T cells express an MHC-I-restricted TCR. In this study, we further showed that more than 50% of CD4(+) T cells in MHC-I-restricted P1A tumor antigen-specific TCR (P1ATCR)-transgenic mice could specifically bind to MHC-I/P1A peptide complex. P1A peptide could stimulate the transgenic CD4(+) T cells to proliferate and secrete both type 1 helper T cell and type 2 helper T cell cytokines. The activated CD4(+) T cells also showed cytotoxicity against P1A-expressing tumor cells. The analysis of TCR α-chains showed that these CD4(+) T cells were selected by co-expressing endogenous TCRs. Our results show that CD4(+) T cells from P1ATCR transgenic mice co-expressed an MHC-I-restricted transgenic TCR and another rearranged endogenous TCRs, both of which were functional.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Mycobacterium tuberculosis culture filtrate protein 10-specific effector/memory CD4⁺ and CD8⁺ T cells in tubercular pleural fluid, with biased usage of T cell receptor Vβ chains. Infect Immun 2011; 79:3358-65. [PMID: 21606188 DOI: 10.1128/iai.00014-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell-mediated immunity is critical for the control of Mycobacterium tuberculosis infection. Identifying the precise immune mechanisms that lead to control of initial M. tuberculosis infection and preventing reactivation of latent infection are crucial for combating tuberculosis. However, a detailed understanding of the role of T cells in the immune response to infection has been hindered. In addition, there are few flow cytometry studies characterizing the Vβ repertoires of T cell receptors (TCRs) at local sites of M. tuberculosis infection in adult tuberculosis. In this study, we used culture filtrate protein 10 (CFP-10) from M. tuberculosis to characterize T cells at local sites of infection. We simultaneously analyzed the correlation of the production of cytokines with TCR Vβ repertoires in CFP-10-specific CD4(+) and CD8(+) T cell subsets. For the first time, we demonstrate that CFP-10-specific CD4(+) or CD8(+) T cells from tubercular pleural fluid can produce high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and upregulate the expression of CD107a/b on the cell surface. The CFP-10-specific cells were effector/memory cells with a CD45RO(+) CD62L(-) CCR7(-) CD27(-) expression profile. In addition, we found CFP-10-specific CD4(+) and CD8(+) T cells in tubercular pleural fluid, with biased usage of TCR Vβ9, Vβ12, or Vβ7.2. Our findings of CFP-10-specific CD4(+) and CD8(+) T cells in tubercular pleural fluid are critical for understanding the mechanisms of the local cellular immune response and developing more effective therapeutic interventions in cases of M. tuberculosis infection.
Collapse
|
33
|
Dash P, McClaren JL, Oguin TH, Rothwell W, Todd B, Morris MY, Becksfort J, Reynolds C, Brown SA, Doherty PC, Thomas PG. Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. J Clin Invest 2011; 121:288-95. [PMID: 21135507 PMCID: PMC3007160 DOI: 10.1172/jci44752] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/20/2010] [Indexed: 11/17/2022] Open
Abstract
Characterizing the TCRα and TCRβ chains expressed by T cells responding to a given pathogen or underlying autoimmunity helps in the development of vaccines and immunotherapies, respectively. However, our understanding of complementary TCRα and TCRβ chain utilization is very limited for pathogen- and autoantigen-induced immunity. To address this problem, we have developed a multiplex nested RT-PCR method for the simultaneous amplification of transcripts encoding the TCRα and TCRβ chains from single cells. This multiplex method circumvented the lack of antibodies specific for variable regions of mouse TCRα chains and the need for prior knowledge of variable region usage in the TCRβ chain, resulting in a comprehensive, unbiased TCR repertoire analysis with paired coexpression of TCRα and TCRβ chains with single-cell resolution. Using CD8+ CTLs specific for an influenza epitope recovered directly from the pneumonic lungs of mice, this technique determined that 25% of such effectors expressed a dominant, nonproductively rearranged Tcra transcript. T cells with these out-of-frame Tcra mRNAs also expressed an alternate, in-frame Tcra, whereas approximately 10% of T cells had 2 productive Tcra transcripts. The proportion of cells with biallelic transcription increased over the course of a response, a finding that has implications for immune memory and autoimmunity. This technique may have broad applications in mouse models of human disease.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Antigens, Viral/immunology
- Complementarity Determining Regions
- Epitopes/immunology
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Orthomyxoviridae/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- T-Lymphocytes, Cytotoxic/immunology
- Transcription, Genetic
Collapse
Affiliation(s)
- Pradyot Dash
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer L. McClaren
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas H. Oguin
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - William Rothwell
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Brandon Todd
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa Y. Morris
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jared Becksfort
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Cory Reynolds
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Scott A. Brown
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter C. Doherty
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul G. Thomas
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Al-Shami A, Jhaver KG, Vogel P, Wilkins C, Humphries J, Davis JJ, Xu N, Potter DG, Gerhardt B, Mullinax R, Shirley CR, Anderson SJ, Oravecz T. Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development. PLoS One 2010; 5:e13654. [PMID: 21048919 PMCID: PMC2965108 DOI: 10.1371/journal.pone.0013654] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/01/2010] [Indexed: 11/18/2022] Open
Abstract
Rpn13 is a novel mammalian proteasomal receptor that has recently been identified as an amplification target in ovarian cancer. It can interact with ubiquitin and activate the deubiquitinating enzyme Uch37 at the 26S proteasome. Since neither Rpn13 nor Uch37 is an integral proteasomal subunit, we explored whether either protein is essential for mammalian development and survival. Deletion of Uch37 resulted in prenatal lethality in mice associated with severe defect in embryonic brain development. In contrast, the majority of Rpn13-deficient mice survived to adulthood, although they were smaller at birth and fewer in number than wild-type littermates. Absence of Rpn13 produced tissue-specific effects on proteasomal function: increased proteasome activity in adrenal gland and lymphoid organs, and decreased activity in testes and brain. Adult Rpn13(-/-) mice reached normal body weight but had increased body fat content and were infertile due to defective gametogenesis. Additionally, Rpn13(-/-) mice showed increased T-cell numbers, resembling growth hormone-mediated effects. Indeed, serum growth hormone and follicular stimulating hormone levels were significantly increased in Rpn13(-/-) mice, while growth hormone receptor expression was reduced in the testes. In conclusion, this is the first report characterizing the physiological roles of Uch37 and Rpn13 in murine development and implicating a non-ATPase proteasomal protein, Rpn13, in the process of gametogenesis.
Collapse
Affiliation(s)
- Amin Al-Shami
- Lexicon Pharmaceuticals, Inc, The Woodlands, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kekäläinen E, Hänninen A, Maksimow M, Arstila TP. T cells expressing two different T cell receptors form a heterogeneous population containing autoreactive clones. Mol Immunol 2010; 48:211-8. [PMID: 20828824 DOI: 10.1016/j.molimm.2010.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/20/2023]
Abstract
During T cell development both alleles of the T cell receptor (TCR) alpha locus are rearranged. As a result, a sizeable proportion of T cells can express two distinct TCRs, but the functional significance of this phenomenon remains controversial. Studies on transgenic mice with two TCRs have focused on the risk of immunopathology that such cells may pose, while some have suggested that most dual-specific T cells are nonfunctional or even protective. We tracked the fate and TCR repertoire of single- and dual-specific T cells within a normal polyclonal population undergoing lymphopenia-induced proliferation, a setting which has been shown to cause immunopathology and autoimmunity. After the expansion the repertoire of dual-specific T cells had become highly biased, with both prominent clonal expansions and the complete disappearance of other clones. Our results suggest that the normal repertoire of dual-specific T cells contains both nonfunctional cells and a small, 5% fraction of clones which display a much higher than average affinity to antigens normally tolerated as harmless. This heterogeneity may also help in reconciling some of the earlier, conflicting results.
Collapse
Affiliation(s)
- Eliisa Kekäläinen
- Haartman Institute, Department of Immunology, University of Helsinki, P.O. box 21, 00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
36
|
Abstract
The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
37
|
Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc Natl Acad Sci U S A 2010; 107:10984-9. [PMID: 20534460 DOI: 10.1073/pnas.1000576107] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TCR-mediated recognition of beta-linked self-glycolipids bound to CD1d is poorly understood. Here, we have characterized the TCR repertoire of a CD1d-restricted type II NKT cell subset reactive to sulfatide involved in the regulation of autoimmunity and antitumor immunity. The sulfatide/CD1d-tetramer(+) cells isolated from naïve mice show an oligoclonal TCR repertoire with predominant usage of the Valpha3/Valpha1-Jalpha7/Jalpha9 and Vbeta8.1/Vbeta3.1-Jbeta2.7 gene segments. The CDR3 regions of both the alpha- and beta-chains are encoded by either germline or nongermline gene segments of limited lengths containing several conserved residues. Presence of dominant clonotypes with limited TCR gene usage for both TCR alpha- and beta-chains in type II NKT cells reflects specific antigen recognition not found in the type I NKT cells but similar to the MHC-restricted T cells. Although potential CD1d-binding tyrosine residues in the CDR2beta region are conserved between most type I and type II NKT TCRs, CDR 1alpha and 3alpha regions differ significantly between the two subsets. Collectively, the TCR repertoire of sulfatide-reactive type II NKT cells exhibits features of both antigen-specific conventional T cells and innate-like cells, and these findings provide important clues to the recognition of beta-linked glycolipids by CD1d-restricted T cells in general.
Collapse
|
38
|
Öling V, Geubtner K, Ilonen J, Reijonen H. A low antigen dose selectively promotes expansion of high-avidity autoreactive T cells with distinct phenotypic characteristics: A study of human autoreactive CD4+T cells specific for GAD65. Autoimmunity 2010; 43:573-82. [DOI: 10.3109/08916930903540424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Abstract
Antigen receptor-controlled checkpoints in B lymphocyte development are crucial for the prevention of autoimmune diseases such as systemic lupus erythematosus. Checkpoints at the stage of pre-B cell receptor (pre-BCR) and BCR expression can eliminate certain autoreactive BCRs either by deletion of or anergy induction in cells expressing autoreactive BCRs or by receptor editing. For T cells, the picture is more complex because there are regulatory T (T(reg)) cells that mediate dominant tolerance, which differs from the recessive tolerance mediated by deletion and anergy. Negative selection of thymocytes may be as essential as T(reg) cell generation in preventing autoimmune diseases such as type 1 diabetes, but supporting evidence is scarce. Here we discuss several scenarios in which failures at developmental checkpoints result in autoimmunity.
Collapse
|
40
|
von Boehmer H. Central tolerance: Essential for preventing autoimmune disease? Eur J Immunol 2009; 39:2313-6. [DOI: 10.1002/eji.200939575] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Morris GP, Allen PM. Cutting edge: Highly alloreactive dual TCR T cells play a dominant role in graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:6639-43. [PMID: 19454656 DOI: 10.4049/jimmunol.0900638] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alloreactivity is the response of T cells to MHC molecules not encountered during thymic development. A small population (1-8%) of peripheral T cells in mice and humans express two TCRs due to incomplete allelic exclusion of TCRalpha, and we hypothesized they are highly alloreactive. FACS analysis of mouse T cell MLR revealed increased dual TCR T cells among alloreactive cells. Quantitative assessment of the alloreactive repertoire demonstrated a nearly 50% reduction in alloreactive T cell frequency among T cells incapable of expressing a secondary TCR. We directly demonstrated expansion of the alloreactive T cell repertoire at the single cell level by identifying a dual TCR T cell with distinct alloreactivities for each TCR. The importance of dual TCR T cells is clearly demonstrated in a parent-into-F(1) model of graft-vs-host disease, where dual TCR T cells comprised up to 60% of peripheral activated T cells, demonstrating a disproportionate contribution to disease.
Collapse
Affiliation(s)
- Gerald P Morris
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Hendricks DW, Fink PJ. Uneven colonization of the lymphoid periphery by T cells that undergo early TCR{alpha} rearrangements. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:4267-74. [PMID: 19299725 PMCID: PMC2709763 DOI: 10.4049/jimmunol.0804180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A sparse population of thymocytes undergoes TCRalpha gene rearrangement early in development, before the double-positive stage. The potential of these cells to contribute to the peripheral T cell pool is unknown. To examine the peripheral T cell compartment expressing a repertoire biased to early TCR gene rearrangements, we developed a mouse model in which TCRalpha rearrangements are restricted to the double-negative stage of thymocyte development. These mice carry floxed RAG2 alleles and a Cre transgene driven by the CD4 promoter. As expected, conventional T cell development is compromised in such Cre(+) RAG2(fl/fl) mice, and the TCRalphabeta(+) T cells that develop are limited in their TCRalpha repertoire, preferentially using early rearranging Valpha genes. In the gut, the Thy-1(+)TCRalphabeta(+) intraepithelial lymphocyte (IEL) compartment is surprisingly intact, whereas the Thy-1(-)TCRalphabeta(+) subset is almost completely absent. Thus, T cells expressing a TCRalpha repertoire that is the product of early gene rearrangements can preferentially populate distinct IEL compartments. Despite this capacity, Cre(+) RAG2(fl/fl) T cell progenitors cannot compete with wild-type T cell progenitors in mixed bone marrow chimeras, suggesting that in normal mice, there is only a small contribution to the peripheral T cell pool by cells that have undergone early TCRalpha rearrangements. In the absence of wild-type competitors, aggressive homeostatic proliferation in the IEL compartment can promote a relatively normal Thy-1(+) TCRalphabeta(+) T cell pool from the limited population derived from Cre(+) RAG2(fl/fl) progenitors.
Collapse
Affiliation(s)
| | - Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, WA 98195
| |
Collapse
|
43
|
Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, Ciszewski C, Curran SA, Murray JA, David CS, Sollid LM, Koning F, Teyton L, Jabri B. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 2008. [PMID: 19037317 DOI: 10.1038/nature075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Major histocompatibility complex (MHC) class II alleles HLA-DQ8 and the mouse homologue I-A(g7) lacking a canonical aspartic acid residue at position beta57 are associated with coeliac disease and type I diabetes. However, the role of this single polymorphism in disease initiation and progression remains poorly understood. The lack of Asp 57 creates a positively charged P9 pocket, which confers a preference for negatively charged peptides. Gluten lacks such peptides, but tissue transglutaminase (TG2) introduces negatively charged residues at defined positions into gluten T-cell epitopes by deamidating specific glutamine residues on the basis of their spacing to proline residues. The commonly accepted model, proposing that HLA-DQ8 simply favours binding of negatively charged peptides, does not take into account the fact that TG2 requires inflammation for activation and that T-cell responses against native gluten peptides are found, particularly in children. Here we show that beta57 polymorphism promotes the recruitment of T-cell receptors bearing a negative signature charge in the complementary determining region 3beta (CDR3beta) during the response against native gluten peptides presented by HLA-DQ8 in coeliac disease. These T cells showed a crossreactive and heteroclitic (stronger) response to deamidated gluten peptides. Furthermore, gluten peptide deamidation extended the T-cell-receptor repertoire by relieving the requirement for a charged residue in CDR3beta. Thus, the lack of a negative charge at position beta57 in MHC class II was met by negatively charged residues in the T-cell receptor or in the peptide, the combination of which might explain the role of HLA-DQ8 in amplifying the T-cell response against dietary gluten.
Collapse
Affiliation(s)
- Zaruhi Hovhannisyan
- Department of Medicine, Pathology, Pediatrics and Committee of Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, Ciszewski C, Curran SA, Murray JA, David CS, Sollid LM, Koning F, Teyton L, Jabri B. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 2008; 456:534-8. [PMID: 19037317 PMCID: PMC3784325 DOI: 10.1038/nature07524] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/06/2008] [Indexed: 12/20/2022]
Abstract
Major histocompatibility complex (MHC) class II alleles HLA-DQ8 and the mouse homologue I-A(g7) lacking a canonical aspartic acid residue at position beta57 are associated with coeliac disease and type I diabetes. However, the role of this single polymorphism in disease initiation and progression remains poorly understood. The lack of Asp 57 creates a positively charged P9 pocket, which confers a preference for negatively charged peptides. Gluten lacks such peptides, but tissue transglutaminase (TG2) introduces negatively charged residues at defined positions into gluten T-cell epitopes by deamidating specific glutamine residues on the basis of their spacing to proline residues. The commonly accepted model, proposing that HLA-DQ8 simply favours binding of negatively charged peptides, does not take into account the fact that TG2 requires inflammation for activation and that T-cell responses against native gluten peptides are found, particularly in children. Here we show that beta57 polymorphism promotes the recruitment of T-cell receptors bearing a negative signature charge in the complementary determining region 3beta (CDR3beta) during the response against native gluten peptides presented by HLA-DQ8 in coeliac disease. These T cells showed a crossreactive and heteroclitic (stronger) response to deamidated gluten peptides. Furthermore, gluten peptide deamidation extended the T-cell-receptor repertoire by relieving the requirement for a charged residue in CDR3beta. Thus, the lack of a negative charge at position beta57 in MHC class II was met by negatively charged residues in the T-cell receptor or in the peptide, the combination of which might explain the role of HLA-DQ8 in amplifying the T-cell response against dietary gluten.
Collapse
Affiliation(s)
- Zaruhi Hovhannisyan
- Department of Medicine, Pathology, Pediatrics and Committee of Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chikhladze NM, Samedova KF, Sudomoina MA, Min K, Koliadina IA, Litonova GN, Favorov AV, Chazova IE, Favorova OO. [Comparative genetic analysis of different forms of low-renin arterial hypertension]. Mol Biol (Mosk) 2008; 42:588-98. [PMID: 18856058 DOI: 10.1134/s0026893308040158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High level of clinical and genetic heterogeneity is a characteristic of arterial hypertension (AH) that is one of the most wide-spread cardiovascular diseases. In most cases (excluding a few monogenic forms), AH is a polygenic disease and genes of renin-angiotensin-aldosterone system play an important role in AH predisposition. 20-25% AH cases occur during low activity of renin in blood plasma (low-renin form of AH) while aldosterone production can be increased (hyperaldosteronism, HA) or normal. We examined polymorphism of genes that code the renin-angiotensin-aldosterone system components in the groups of low-renin forms of AH, namely, primary HA, idiopathic HA and AH with normal level of aldosterone. For all HA cases, the absence of chimeric CYP11B2/CYP11B1 gene that is a cause for monogenic disease--amilial HA of first type, was shown. A comparison of distributions of alleles and genotypes of polymorphous regions of genes: CYP11B2 (C-344T), REN (C-5434T, C-5312T and A BglI G), AGT (Thr174Met), ACE (I/D), CMA (G-1903A), AT2R1 (A1166C) and of their combinations is the groups described above was done. The analysis of carriership of the alleles and genotypes combinations of the polymorphous regions has shown that genes CYP11B2, REN, ACE, CMA andA T2R1 participate in development of low-renin HA. The results are evidence of similarities and some definite differences in genetic nature of the different forms of low-renin AH and, to say more widely, argue that the investigation of genetic predisposition for clinically heterogeneous forms of polygene diseases by comparison of groups of patients, separated in accordance with peculiarities of disease course, holds much promise for their hereditary background understanding.
Collapse
|
46
|
Kawamura K, Yao K, Shukaliak-Quandt JA, Huh J, Baig M, Quigley L, Ito N, Necker A, McFarland HF, Muraro PA, Martin R, Ito K. Different development of myelin basic protein agonist- and antagonist-specific human TCR transgenic T cells in the thymus and periphery. THE JOURNAL OF IMMUNOLOGY 2008; 181:5462-72. [PMID: 18832703 DOI: 10.4049/jimmunol.181.8.5462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myelin basic protein (MBP)-specific T cells are thought to play a role in the development of multiple sclerosis. MBP residues 111-129 compose an immunodominant epitope cluster restricted by HLA-DRB1*0401. The sequence of residues 111-129 of MBP (MBP(111-129)) differs in humans (MBP122:Arg) and mice (MBP122:Lys) at aa 122. We previously found that approximately 50% of human MBP(111-129) (MBP122:Arg)-specific T cell clones, including MS2-3C8 can proliferate in response to mouse MBP(111-129) (MBP122:Lys). However, the other half of T cell clones, including HD4-1C2, cannot proliferate in response to MBP(111-129) (MBP122:Lys). We found that MBP(111-129) (MBP122:Lys) is an antagonist for HD4-1C2 TCR, therefore, MS2-3C8 and HD4-1C2 TCRs are agonist- and antagonist-specific TCRs in mice, respectively. Therefore, we examined the development of HD4-1C2 TCR and MS2-3C8 TCR transgenic (Tg) T cells in the thymus and periphery. We found that dual TCR expression exclusively facilitates the development of MBP(111-129) TCR Tg T cells in the periphery of HD4-1C2 TCR/HLA-DRB1*0401 Tg mice although it is not required for their development in the thymus. We also found that MS2-3C8 TCR Tg CD8(+) T cells develop along with MS2-3C8 TCR Tg CD4(+) T cells, and that dual TCR expression was crucial for the development of MS2-3C8 TCR Tg CD4(+) and CD8(+) T cells in the thymus and periphery, respectively. These results suggest that thymic and peripheral development of MBP-specific T cells are different; however, dual TCR expression can facilitate their development.
Collapse
Affiliation(s)
- Kazuyuki Kawamura
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Peripheral CD8+ T cell tolerance to self-proteins is regulated proximally at the T cell receptor. Immunity 2008; 28:662-74. [PMID: 18424189 DOI: 10.1016/j.immuni.2008.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/12/2008] [Accepted: 03/04/2008] [Indexed: 11/20/2022]
Abstract
CD8(+) T cell tolerance, although essential for preventing autoimmunity, poses substantial obstacles to eliciting immune responses to tumor antigens, which are generally overexpressed normal proteins. Development of effective strategies to overcome tolerance for clinical applications would benefit from elucidation of the immunologic mechanism(s) regulating T cell tolerance to self. To examine how tolerance is maintained in vivo, we engineered dual-T cell receptor (TCR) transgenic mice in which CD8(+) T cells recognize two distinct antigens: a foreign viral-protein and a tolerizing self-tumor protein. Encounter with peripheral self-antigen rendered dual-TCR T cells tolerant to self, but these cells responded normally through the virus-specific TCR. Moreover, proliferation induced by virus rescued function of tolerized self-tumor-reactive TCR, restoring anti-tumor activity. These studies demonstrate that peripheral CD8(+) T cell tolerance to self-proteins can be regulated at the level of the self-reactive TCR complex rather than by central cellular inactivation and suggest an alternate strategy to enhance adoptive T cell immunotherapy.
Collapse
|
48
|
Takahashi H, Amagai M, Nishikawa T, Fujii Y, Kawakami Y, Kuwana M. Novel System Evaluating In Vivo Pathogenicity of Desmoglein 3-Reactive T Cell Clones Using Murine Pemphigus Vulgaris. THE JOURNAL OF IMMUNOLOGY 2008; 181:1526-35. [DOI: 10.4049/jimmunol.181.2.1526] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Ozawa T, Tajiri K, Kishi H, Muraguchi A. Comprehensive analysis of the functional TCR repertoire at the single-cell level. Biochem Biophys Res Commun 2008; 367:820-5. [PMID: 18191637 DOI: 10.1016/j.bbrc.2008.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 01/03/2008] [Indexed: 02/08/2023]
Abstract
A Vbeta TCR repertoire is analyzed for understanding the T-cell population in the immune response. However, the TCR repertoire of the Valpha-Vbeta pair is difficult to analyze because no suitable analytical method is available. Here, we have applied the single-cell 5'-RACE method for amplifying TCR cDNAs from single T-cells and analyzed the repertoire of Valpha-Vbeta pairs in human T-cells that responded to a superantigen, SEB. We found that the TCR Vbeta profile of the SEB-stimulated CD4(+) T-cells was in accordance with the previous reports, that the TCR Valpha profile also exhibited a prominent difference, and that the TCR Valpha-Vbeta pairs of the SEB-responding T-cells were promiscuous. We have also found a significant dual TCRalpha expression in single T-cells. This is the first report of a comprehensive analysis of the functional repertoire of Valpha-Vbeta pairs at the single T-cell level. This novel method may contribute to TCR-based immunotherapeutics.
Collapse
Affiliation(s)
- Tatsuhiko Ozawa
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
50
|
Velez MG, Kane M, Liu S, Gauld SB, Cambier JC, Torres RM, Pelanda R. Ig allotypic inclusion does not prevent B cell development or response. THE JOURNAL OF IMMUNOLOGY 2007; 179:1049-57. [PMID: 17617597 DOI: 10.4049/jimmunol.179.2.1049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
B cells expressing two different Ig kappa L chains (allotype included) have been occasionally observed. To determine frequency and function of these cells, we have analyzed gene-targeted mice that carry a human and a mouse Igk C region genes. Using different methodologies, we found that cells expressing two distinct kappa-chains were 1.4-3% of all B cells and that they were present in the follicular, marginal zone, and B1 mature B cell subsets. When stimulated in vitro with anti-IgM, dual kappa surface-positive cells underwent activation that manifested with cell proliferation and/or up-regulation of activation markers and similar to single kappa-expressing B cells. Yet, when activated by divalent reagents that bound only one of the two kappa-chains, dual kappa B cells responded suboptimally in vitro, most likely because of reduced Ag receptor cross-linking. Nonetheless, dual kappa B cells participated in a SRBC-specific immune response in vivo. Finally, we found that Ig allotype-included B cells that coexpress autoreactive and nonautoreactive Ag receptors were also capable of in vitro responses following BCR aggregation. In summary, our studies demonstrate that Ig kappa allotype-included B cells are present in the mouse mature B cell population and are responsive to BCR stimulation both in vitro and in vivo. Moreover, because in vitro activation in response to anti-IgM was also observed in cells coexpressing autoreactive and nonautoreactive Abs, our studies suggest a potential role of allotype-included B cells in both physiological and pathological immune responses.
Collapse
Affiliation(s)
- Maria-Gabriela Velez
- Integrated Department of Immunology, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|