1
|
Zhao WB, Shen Y, Cai GX, Li YM, Liu WH, Wu JC, Xu YC, Chen SQ, Zhou Z. Superantigen-fused T cell engagers for tumor antigen-mediated robust T cell activation and tumor cell killing. Mol Ther 2024; 32:490-502. [PMID: 38098228 PMCID: PMC10861957 DOI: 10.1016/j.ymthe.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023] Open
Abstract
Inadequate T cell activation has severely limited the success of T cell engager (TCE) therapy, especially in solid tumors. Enhancing T cell activity while maintaining the tumor specificity of TCEs is the key to improving their clinical efficacy. However, currently, there needs to be more effective strategies in clinical practice. Here, we design novel superantigen-fused TCEs that display robust tumor antigen-mediated T cell activation effects. These innovative drugs are not only armed with the powerful T cell activation ability of superantigens but also retain the dependence of TCEs on tumor antigens, realizing the ingenious combination of the advantages of two existing drugs. Superantigen-fused TCEs have been preliminarily proven to have good (>30-fold more potent) and specific (>25-fold more potent) antitumor activity in vitro and in vivo. Surprisingly, they can also induce the activation of T cell chemotaxis signals, which may promote T cell infiltration and further provide an additional guarantee for improving TCE efficacy in solid tumors. Overall, this proof-of-concept provides a potential strategy for improving the clinical efficacy of TCEs.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Ying Shen
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Guo-Xin Cai
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Ming Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hui Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Cheng Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying-Chun Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Qing Chen
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Zhou
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China; The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.
| |
Collapse
|
2
|
Shepherd FR, Davies K, Miners KL, Llewellyn-Lacey S, Kollnberger S, Redman JE, Grant MM, Ladell K, Price DA, McLaren JE. The superantigens SpeC and TSST-1 specifically activate TRBV12-3/12-4 + memory T cells. Commun Biol 2023; 6:78. [PMID: 36670205 PMCID: PMC9854414 DOI: 10.1038/s42003-023-04420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Severe bacterial or viral infections can induce a state of immune hyperactivation that can culminate in a potentially lethal cytokine storm. The classic example is toxic shock syndrome, a life-threatening complication of Staphylococcus aureus or Streptococcus pyogenes infection, which is driven by potent toxins known as superantigens (SAgs). SAgs are thought to promote immune evasion via the promiscuous activation of T cells, which subsequently become hyporesponsive, and act by cross-linking major histocompatibility complex class II molecules on antigen-presenting cells to particular β-chain variable (TRBV) regions of αβ T cell receptors (TCRs). Although some of these interactions have been defined previously, our knowledge of SAg-responsive TRBV regions is incomplete. In this study, we found that CD4+ and CD8+ T cells expressing TRBV12-3/12-4+ TCRs were highly responsive to streptococcal pyrogenic exotoxin C (SpeC) and toxic shock syndrome toxin-1 (TSST-1). In particular, SpeC and TSST-1 specifically induced effector cytokine production and the upregulation of multiple coinhibitory receptors among TRBV12-3/12-4+ CD4+ and CD8+ memory T cells, and importantly, these biological responses were dependent on human leukocyte antigen (HLA)-DR. Collectively, these data provided evidence of functionally determinative and therapeutically relevant interactions between SpeC and TSST-1 and CD4+ and CD8+ memory T cells expressing TRBV12-3/12-4+ TCRs, mediated via HLA-DR.
Collapse
Affiliation(s)
- Freya R. Shepherd
- grid.5600.30000 0001 0807 5670Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kate Davies
- grid.5600.30000 0001 0807 5670Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kelly L. Miners
- grid.5600.30000 0001 0807 5670Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sian Llewellyn-Lacey
- grid.5600.30000 0001 0807 5670Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Simon Kollnberger
- grid.5600.30000 0001 0807 5670Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - James E. Redman
- grid.5600.30000 0001 0807 5670School of Chemistry, Cardiff University, Cardiff, UK
| | - Melissa M. Grant
- grid.6572.60000 0004 1936 7486School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kristin Ladell
- grid.5600.30000 0001 0807 5670Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - David A. Price
- grid.5600.30000 0001 0807 5670Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK ,grid.5600.30000 0001 0807 5670Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - James E. McLaren
- grid.5600.30000 0001 0807 5670Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Kunkl M, Amormino C, Caristi S, Tedeschi V, Fiorillo MT, Levy R, Popugailo A, Kaempfer R, Tuosto L. Binding of Staphylococcal Enterotoxin B (SEB) to B7 Receptors Triggers TCR- and CD28-Mediated Inflammatory Signals in the Absence of MHC Class II Molecules. Front Immunol 2021; 12:723689. [PMID: 34489975 PMCID: PMC8418141 DOI: 10.3389/fimmu.2021.723689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023] Open
Abstract
The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T-cell activation by binding both T-cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro-inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines. In particular, our finding is that binding of SEB to B7 molecules suffices to trigger both TCR- and CD28-mediated inflammatory signalling. We also provide evidence that, by strengthening the interaction between CD28 and B7, SEB favours the recruitment of the TCR into the immunological synapse, thus inducing lethal inflammatory signalling.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Revital Levy
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Andrey Popugailo
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Clonotypic heterogeneity in cutaneous T-cell lymphoma (mycosis fungoides) revealed by comprehensive whole-exome sequencing. Blood Adv 2020; 3:1175-1184. [PMID: 30967393 DOI: 10.1182/bloodadvances.2018027482] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma, is believed to represent a clonal expansion of a transformed skin-resident memory T cell. T-cell receptor (TCR) clonality (ie, identical sequences of rearranged TCRα, TCRβ, and TCRγ), the key premise of this hypothesis, has been difficult to document conclusively because malignant cells are not readily distinguishable from the tumor-infiltrating reactive lymphocytes that contribute to the TCR clonotypic repertoire of MF. Here, we have successfully adopted targeted whole-exome sequencing (WES) to identify the repertoire of rearranged TCR genes in tumor-enriched samples from patients with MF. Although some of the investigated MF biopsies had the expected frequency of monoclonal rearrangements of TCRγ corresponding to that of tumor cells, the majority of the samples presented multiple TCRγ, TCRα, and TCRβ clonotypes by WES. Our findings are compatible with the model in which the initial malignant transformation in MF does not occur in mature memory T cells but rather at the level of T-lymphocyte progenitors before TCRβ or TCRα rearrangements. We have also shown that WES can be combined with whole-transcriptome sequencing in the same sample, which enables comprehensive characterization of the TCR repertoire in relation to tumor content. WES/whole-transcriptome sequencing might be applicable to other types of T-cell lymphomas to determine clonal dominance and clonotypic heterogeneity in these malignancies.
Collapse
|
5
|
Conley DB, Tripathi A, Seiberling KA, Schleimer RP, Suh LA, Harris K, Paniagua MC, Grammer LC, Kern RC. Superantigens and Chronic Rhinosinusitis: Skewing of T-Cell Receptor Vβ-Distributions in Polyp-Derived CD4+ and CD8+ T Cells. ACTA ACUST UNITED AC 2018; 20:534-9. [PMID: 17063750 PMCID: PMC2802273 DOI: 10.2500/ajr.2006.20.2941] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Recent studies have suggested that Staphylococcus aureus secrete superantigenic toxins that play a role in the etiology of chronic rhinosinusitis with nasal polyposis (CRSwNP). Twenty S. aureus superantigens (SAg's) have been identified, each of which bind the Vβ-region of the T-cell receptor (TCR) outside the peptide-binding site. Approximately 50 distinct Vβ-domains exist in the human repertoire, and distinct SAg's will bind only particular domains generating a pattern of Vβ-enrichment in lymphocytes dependent on the binding characteristics of a given toxin. The aim of this study was to analyze the pattern of Vβ-expression in polyp-derived lymphocytes from CRSwNP patients. Methods Polyps were harvested from 20 patients with CRSwNP and 3 patients with antrochoanal polyps. Flow cytometry was used to analyze the Vβ-repertoire of polyp-derived CD4+ and CD8+ lymphocytes. Data were analyzed in light of the known skewing associated with SAg exposure in vivo and in vitro. Skewing was defined as a percentage of Vβ-expression >2 SD of that seen in normal blood. Results Seven of 20 subjects exhibited skewing in Vβ-domains with strong associations with S. aureus SAg's. The three antrochoanal polyps failed to show any significant Vβ-skewing. Conclusion This study establishes evidence of S. aureus SAg–T-cell interactions in polyp lymphocytes of 35% of CRSwNP patients. Although these results are consistent with intranasal exposure of polyp lymphocytes to SAg's, additional study is necessary to establish the role of these toxins in disease pathogenesis.
Collapse
Affiliation(s)
- David B Conley
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gao H, Yu X, Dou Y, Wang J. New Measurement for Correlation of Co-evolution Relationship of Subsequences in Protein. Interdiscip Sci 2015; 7:364-72. [PMID: 26396121 DOI: 10.1007/s12539-015-0024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 11/26/2022]
Abstract
Many computational tools have been developed to measure the protein residues co-evolution. Most of them only focus on co-evolution for pairwise residues in a protein sequence. However, number of residues participate in co-evolution might be multiple. And some co-evolved residues are clustered in several distinct regions in primary structure. Therefore, the co-evolution among the adjacent residues and the correlation between the distinct regions offer insights into function and evolution of the protein and residues. Subsequence is used to represent the adjacent multiple residues in one distinct region. In the paper, co-evolution relationship in each subsequence is represented by mutual information matrix (MIM). Then, Pearson's correlation coefficient: R value is developed to measure the similarity correlation of two MIMs. MSAs from Catalytic Data Base (Catalytic Site Atlas, CSA) are used for testing. R value characterizes a specific class of residues. In contrast to individual pairwise co-evolved residues, adjacent residues without high individual MI values are found since the co-evolved relationship among them is similar to that among another set of adjacent residues. These subsequences possess some flexibility in the composition of side chains, such as the catalyzed environment.
Collapse
Affiliation(s)
- Hongyun Gao
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
- Information and Engineering College, Dalian University, Dalian, 116622, China
| | - Xiaoqing Yu
- College of Sciences, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yongchao Dou
- Center for Plant Science and Innovation, School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Jun Wang
- Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
7
|
Rödström KEJ, Regenthal P, Lindkvist-Petersson K. Structure of Staphylococcal Enterotoxin E in Complex with TCR Defines the Role of TCR Loop Positioning in Superantigen Recognition. PLoS One 2015; 10:e0131988. [PMID: 26147596 PMCID: PMC4492778 DOI: 10.1371/journal.pone.0131988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
T cells are crucial players in cell-mediated immunity. The specificity of their receptor, the T cell receptor (TCR), is central for the immune system to distinguish foreign from host antigens. Superantigens are bacterial toxins capable of inducing a toxic immune response by cross-linking the TCR and the major histocompatibility complex (MHC) class II and circumventing the antigen specificity. Here, we present the structure of staphylococcal enterotoxin E (SEE) in complex with a human T cell receptor, as well as the unligated T cell receptor structure. There are clear structural changes in the TCR loops upon superantigen binding. In particular, the HV4 loop moves to circumvent steric clashes upon complex formation. In addition, a predicted ternary model of SEE in complex with both TCR and MHC class II displays intermolecular contacts between the TCR α-chain and the MHC, suggesting that the TCR α-chain is of importance for complex formation.
Collapse
Affiliation(s)
- Karin E. J. Rödström
- Department of Experimental Medical Science, Lund University, BMC C13, 22 184, Lund, Sweden
| | - Paulina Regenthal
- Department of Experimental Medical Science, Lund University, BMC C13, 22 184, Lund, Sweden
| | | |
Collapse
|
8
|
Gao H, Yu X, Dou Y, Wang J. New measurement for correlation of co-evolution relationship of subsequences in protein. Interdiscip Sci 2015. [PMID: 25663109 DOI: 10.1007/s12539-014-0221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 11/24/2022]
Abstract
Many computational tools have been developed to measure the protein residues co-evolution. Most of them only focus on co-evolution for pairwise residues in a protein sequence. However, number of residues participate in co-evolution might be multiple. And some co-evolved residues are clustered in several distinct regions in primary structure. Therefore, the co-evolution among the adjacent residues, and the correlation between the distinct regions offer insights into function and evolution of the protein and residues. Subsequence is used to represent the adjacent multiple residues in one distinct region. In the paper, co-evolution relationship in each subsequence is represented by mutual information matrix (MIM). Then, Pearson's Correlation Coefficient: R value is developed to measure the similarity correlation of two MIMs. MSAs from Catalytic Data Base (Catalytic Site Atlas, CSA) is used for testing. R value characterizes a specific class of residues. In contrast to individual pairwise co-evolved residues, adjacent residues without high individual MI values are found since the co-evolved relationship among them is similar to that among another set of adjacent residues. These subsequences possess some flexibility in the composition of side chains, such as the catalyzed environment.
Collapse
Affiliation(s)
- Hongyun Gao
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | | | | | | |
Collapse
|
9
|
Gustafson JE, Muthaiyan A, Dupre JM, Ricke SC. WITHDRAWN: Staphylococcus aureus and understanding the factors that impact enterotoxin production in foods: A review. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Rodriguez AR, Hodara V, Murthy K, Morrow L, Sanchez M, Bienvenu AE, Murthy KK. T cell interleukin-15 surface expression in chimpanzees infected with human immunodeficiency virus. Cell Immunol 2014; 288:24-30. [PMID: 24565973 PMCID: PMC4373471 DOI: 10.1016/j.cellimm.2014.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
Interleukin-15 (IL-15) contributes to natural killer cell development and immune regulation. However, IL-15 and interferon-gamma (IFN-γ) production are significantly reduced during progression to AIDS. We have previously reported that HIV infected chimpanzees (Pan troglodytes) express CD3-CD8+ IFN-γ+ natural killer (NK) cells with an inverse correlation to plasma HIV viral load. To expand on our initial study, we examined a larger population of HIV infected chimpanzees (n=10). Whole blood flow cytometry analyses showed that recombinant gp120 (rgp120) or recombinant IL-15 induces specific CD3-CD8+ IFN-γ+ NK cells at higher levels than CD3+CD8+ IFN-γ+ T cells in HIV infected specimens. Interestingly, peripheral blood T cells exhibited 0.5-3% IL-15 surface Tcell/NKT cell phenotypes, and rIL-15 stimulation significantly (P<0.007) up-regulated CD4+CD25+ T cell expression. Importantly, these data demonstrate novel T cell interleukin-15 expression and indicate a plausible regulatory mechanism for this cell-type during viral infection.
Collapse
Affiliation(s)
- Annette R Rodriguez
- Research Centers at Minority Institutions, Biophotonics Core, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States; Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, United States.
| | - Vida Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, United States
| | - Kruthi Murthy
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - LaShayla Morrow
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, United States
| | - Melissa Sanchez
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, United States
| | - Amy E Bienvenu
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, United States
| | - Krishna K Murthy
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78245, United States
| |
Collapse
|
11
|
Mechanisms of staphylococcal enterotoxin-induced emesis. Eur J Pharmacol 2014; 722:95-107. [DOI: 10.1016/j.ejphar.2013.08.050] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/11/2013] [Accepted: 08/03/2013] [Indexed: 01/16/2023]
|
12
|
Sharma P, Postel S, Sundberg EJ, Kranz DM. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity. Protein Eng Des Sel 2013; 26:781-9. [PMID: 24167300 DOI: 10.1093/protein/gzt054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.
Collapse
Affiliation(s)
- P Sharma
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
13
|
Lorenz N, Clow F, Radcliff FJ, Fraser JD. Full functional activity of SSL7 requires binding of both complement C5 and IgA. Immunol Cell Biol 2013; 91:469-76. [PMID: 23797068 DOI: 10.1038/icb.2013.28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/26/2013] [Accepted: 05/26/2013] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is an opportunistic bacterial pathogen responsible for a range of diseases, from local skin infections through to life-threatening illnesses such as toxic shock syndrome. S. aureus produces an assortment of molecules designed to evade or subvert the host immune system. One example is the 23 kDa staphylococcal superantigen-like protein 7 (SSL7) that simultaneously binds immunoglobulin A (IgA) and complement C5 to inhibit complement-mediated hemolytic and bactericidal activity. The avirulent bacterium Lactococcus lactis was engineered to express SSL7 so that its role in bacterial survival could be assessed without interference from other virulence factors. Expression of SSL7 by L. lactis led to significantly enhanced bacterial survival in whole human blood and prevented the membrane attack complex (C5b-9) forming on the cell wall. To further understand the mechanism of action of SSL7, the activity of wild-type SSL7 protein was compared with a panel of mutant proteins lacking the capacity to bind IgA, C5, or both IgA and C5. SSL7 potently inhibited in vitro chemotaxis of inflammatory myeloid cells in response to a pathogenic stimulus and when injected into mice, SSL7 blocked the migration of neutrophils into the peritoneum in response to an inoculum of heat-killed S. aureus. Mutagenesis of the C5-binding site on SSL7 abolished all inhibitory activity, while mutation of the IgA-binding site had only partial effects, indicating that while IgA binding enhances activity it is not essential. SSL7 is an important staphylococcal virulence factor with potent anti-inflammatory properties, which are mediated by targeting complement C5 and IgA.
Collapse
Affiliation(s)
- Natalie Lorenz
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, School of Medical Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
14
|
Miron N, Miron MM. Staphylococcal enterotoxin A: a candidate for the amplification of physiological immunoregulatory responses in the gut. Microbiol Immunol 2011; 54:769-77. [PMID: 21091986 DOI: 10.1111/j.1348-0421.2010.00280.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcal enterotoxin A (SEA) is one of the bacterial products tested for modulation of unwanted immune responses. Of all the staphylococcal enterotoxins, SEA is the most potent stimulator of T cells. When administered orally, SEA acts as a superantigen (SA), producing unspecific stimulation of intra-epithelial lymphocytes (IELs) in the intestinal mucosa. This stimulation results in amplification of the normal local immunologic responses, which are mainly regulatory. This amplification is based on increased local production of IFN-γ by IELs, which acts on the nearby enterocytes. As a result, the enterocytes produce large amounts of tolerosomes, cellular corpuscles which detach themselves from the basal poles of the enterocytes and contain antigenic peptides that are conditioned to be interpreted as tolerogenic by the gut immune system. Tolerosomes are physiologically produced as a response to dietary peptides; it is already known that enterocytes posses the molecular mechanisms for processing peptides in a similar manner to lymphocytes. The fate of tolerosomes is not precisely known, but it seems that they merge with intestinal dendritic cells, conveying to them the information that orally administered peptides must be interpreted as tolerogens. SEA can stimulate this mechanism, thus favoring the development of tolerance to peptides/proteins administered subsequently via the oral route. This characteristic of SEA might be useful in therapy for regulating immune responses. The present paper reviews the current status of research regarding the impact of SEA on the enteric immune system and its potential use in the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Nicolae Miron
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj, Romania.
| | | |
Collapse
|
15
|
Omoe K, Nunomura W, Kato H, Li ZJ, Igarashi O, Araake M, Sano K, Ono HK, Abe Y, Hu DL, Nakane A, Kiyono H, Takakuwa Y, Shinagawa K, Uchiyama T, Imanishi K. High affinity of interaction between superantigen and T cell receptor Vbeta molecules induces a high level and prolonged expansion of superantigen-reactive CD4+ T cells. J Biol Chem 2010; 285:30427-35. [PMID: 20663890 DOI: 10.1074/jbc.m110.140871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mice implanted with an osmotic pump filled with the superantigen (SAG) staphylococcal enterotoxin A (SEA), the Vβ3(+)CD4(+) T cells exhibited a high level of expansion whereas the Vβ11(+)CD4(+) T cells exhibited a mild level of expansion. In contrast, in mice implanted with an osmotic pump filled with SE-like type P (SElP, 78.1% homologous with SEA), the Vβ11(+)CD4(+) T cells exhibited a high level of expansion while the Vβ3(+)CD4(+) T cells exhibited a low level of expansion, suggesting that the level of the SAG-induced response is determined by the affinities between the TCR Vβ molecules and SAG. Analyses using several hybrids of SEA and SElP showed that residue 206 of SEA determines the response levels of Vβ3(+)CD4(+) and Vβ11(+)CD4(+) T cells both in vitro and in vivo. Analyses using the above-mentioned hybrids showed that the binding affinities between SEA and the Vβ3/Vβ11 β chains and between SEA-MHC class II-molecule complex and Vβ3(+)/Vβ11(+) CD4(+) T cells determines the response levels of the SAG-reactive T cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Katsuhiko Omoe
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The systemic and pulmonary immune response to staphylococcal enterotoxins. Toxins (Basel) 2010; 2:1898-912. [PMID: 22069664 PMCID: PMC3153275 DOI: 10.3390/toxins2071898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 07/12/2010] [Indexed: 11/21/2022] Open
Abstract
In response to environmental cues the human pathogen Staphylococcus aureus synthesizes and releases proteinaceous enterotoxins. These enterotoxins are natural etiologic entities of severe food poisoning, toxic shock syndrome, and acute diseases. Staphylococcal enterotoxins are currently listed as Category B Bioterrorism Agents by the Center for Disease Control and Prevention. They are associated with respiratory illnesses, and may contribute to exacerbation of pulmonary disease. This likely stems from the ability of Staphylococcal enterotoxins to elicit powerful episodes of T cell stimulation resulting in release of pro-inflammatory cytokines. Here, we discuss the role of the immune system and potential mechanisms of disease initiation and progression.
Collapse
|
17
|
Foster TJ. Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet Dermatol 2010; 20:456-70. [PMID: 20178484 DOI: 10.1111/j.1365-3164.2009.00825.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The natural habitat of Staphylococcus aureus in humans is the moist squamous epithelium of the anterior nares. Several bacterial surface proteins are implicated in promoting adhesion to desquamated epithelial cells. Clumping factor B (ClfB) and iron-regulated surface determinant A both promote nasal colonization in rodent models, and in the case of ClfB, humans. One of the ligands involved in adhesion is cytokeratin 10. Reduction in nasal colonization can be achieved by active and passive immunization. S. aureus is well endowed with secreted and surface components that compromise innate immune responses, particularly the function of neutrophils. S. aureus secretes proteins that reduce migration of neutrophils from the bloodstream to the site of infection by impeding diapedesis and receptors for chemotactic molecules. Several secreted proteins interfere with complement C3 and C5 convertases, thus reducing the level of C3b opsonin and the chemotactic peptide C5a. Host proteases are recruited to the cell surface to enhance destruction of opsonic C3b and IgG. Surface components ClfA, protein A and polysaccharide capsule compromise the recognition of opsonins on the bacterial cell surface. If engulfed by neutrophils the intracellular bacterium can resist reactive oxygen intermediates, nitric oxide radicals, defensin peptides and bactericidal proteins. A prior infection by S. aureus does not induce complete protective immunity. This could be due to immunosuppression caused by expression of superantigen proteins that disrupt normal activation of T cells and B cells during antigen presentation. By studying the molecular pathogenesis of S. aureus infections markers might be found for investigating S. pseudintermedius infections of dogs.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
18
|
Li ZJ, Omoe K, Shinagawa K, Yagi J, Imanishi K. Interaction between superantigen and T-cell receptor Vβ element determines levels of superantigen-dependent cell-mediated cytotoxicity of CD8+T cells in induction and effector phases. Microbiol Immunol 2009; 53:451-9. [DOI: 10.1111/j.1348-0421.2009.00136.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
KSR1 modulates the sensitivity of mitogen-activated protein kinase pathway activation in T cells without altering fundamental system outputs. Mol Cell Biol 2009; 29:2082-91. [PMID: 19188442 DOI: 10.1128/mcb.01634-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that regulate cell fate decisions. They generate a wide range of signal outputs, including graded and digital responses. In T cells, MAPK activation is digital in response to T-cell-receptor stimulation; however, whether other receptors on T cells that lead to MAPK activation are graded or digital is unknown. Here we evaluate MAPK activation in T cells at the single-cell level. We show that T cells responded digitally to stimulation with superantigen-loaded antigen-presenting cells, whereas they responded in a graded manner to the chemokine SDF-1, demonstrating that the system output of the MAPK module is highly plastic and determined by components upstream of the MAPK module. These findings also confirm that different MAPK system outputs are used by T cells to control discrete biological functions. Scaffold proteins are essential for proper MAPK signaling and function as they physically assemble multiple components and regulators of MAPK cascades. We found that the scaffold protein KSR1 regulated the threshold required for MAPK activation in T cells without affecting the nature of the response. We conclude that KSR1 plays a central role in determining the sensitivity of T-cell responses and is thus well positioned as a key control point.
Collapse
|
20
|
Norgren M, Eriksson A. Streptococcal Superantigens and Their Role in the Pathogenesis of Severe Infections. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549709064091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Gotoh A, Hamada Y, Shiobara N, Kumagai K, Seto K, Horikawa T, Suzuki R. Skew in T cell receptor usage with polyclonal expansion in lesions of oral lichen planus without hepatitis C virus infection. Clin Exp Immunol 2008; 154:192-201. [PMID: 18782324 DOI: 10.1111/j.1365-2249.2008.03763.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oral lichen planus (OLP) is a refractory disorder of the oral mucosa. Its predominant symptoms are pain and haphalgesia that impair the quality of life of patients. OLP develops via a T cell-mediated immune process. Here, we examined the characteristics of the infiltrating T cells in terms of the T cell receptor (TCR) repertoires, T cell clonality, T cell phenotypes and cytokine production profiles. TCR repertoire analyses and CDR3 size spectratyping were performed using peripheral blood mononuclear cells (PBMCs) and tissue specimens of OLP biopsies from 12 patients. The cytokine expression profiles and T cell phenotypes were measured by real-time quantitative polymerase chain reaction. We observed that there were skewed TCR repertoires in the tissue samples (TCRVA8-1, VA22-1, VB2-1, VB3-1 and VB5-1) and PBMCs (TCRVA8-1, VB2-1, VB3-1 and VB5-1) from OLP patients. Furthermore, the CDR3 distributions in the skewed TCR subfamilies exhibited polyclonal patterns. We observed increases in CD4(+) T lymphocytes, interleukin (IL)-5, tumour necrosis factor (TNF)-alpha and human leucocyte antigen D-related in the OLP tissue specimens. Taken together, the present results suggest that T cells bearing these TCRs are involved in the pathogenesis of OLP, and that IL-5 and TNF-alpha may participate in its inflammatory process.
Collapse
Affiliation(s)
- A Gotoh
- First Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Ferry T, Thomas D, Perpoint T, Lina G, Monneret G, Mohammedi I, Chidiac C, Peyramond D, Vandenesch F, Etienne J. Analysis of superantigenic toxin Vβ T-cell signatures produced during cases of staphylococcal toxic shock syndrome and septic shock. Clin Microbiol Infect 2008; 14:546-54. [DOI: 10.1111/j.1469-0691.2008.01975.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Activation-induced cell death signalling in CD4+ T cells by staphylococcal enterotoxin A. Toxicol Lett 2007; 176:77-84. [PMID: 18054450 DOI: 10.1016/j.toxlet.2007.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/19/2007] [Accepted: 10/23/2007] [Indexed: 01/25/2023]
Abstract
Staphylococcal enterotoxin A (SEA) is a potent stimulator of CD4+ and CD8+ T cells, the immunotoxic action of which remains unclear. We investigated the in vitro effects of SEA on freshly isolated human peripheral blood lymphocytes depleted of CD8+ T cells. Proliferation and flow cytometry analysis indicated that SEA generated an activation-induced cell death (AICD) phenomenon that was characterized by an increased expression of the chemokine receptor CCR5 on the CD4+/CD45RO+ T cell subset. Incubation of cells with glycoprotein secretion inhibitor monensin A completely blocked cell proliferation, affecting mainly the CD4+/CD45RO+ T cell subset. The IL-2 mRNA levels were increased just hours after SEA stimulation, accompanied by an increase in the expression of CD25, indicating a possible involvement of IL-2 in the AICD process. We observed a 15-fold mRNA reduction of the transcription factor Yin Yang 1 (YY1) at the proliferation peak, and an increase of the receptors CCR5, CD95 and DR5 on the CD45RO+/CD4+ T cell subset. These findings suggest that SEA triggers a TCR-mediated AICD mechanism in CD4+ T cells, the intracellular signalling of which is probably modulated, at least, by YY1.
Collapse
|
24
|
Baker HM, Basu I, Chung MC, Caradoc-Davies T, Fraser JD, Baker EN. Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins. J Mol Biol 2007; 374:1298-308. [PMID: 17996251 DOI: 10.1016/j.jmb.2007.09.091] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.
Collapse
Affiliation(s)
- Heather M Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
25
|
Ramsland PA, Willoughby N, Trist HM, Farrugia W, Hogarth PM, Fraser JD, Wines BD. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc Natl Acad Sci U S A 2007; 104:15051-6. [PMID: 17848512 PMCID: PMC1986611 DOI: 10.1073/pnas.0706028104] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Indexed: 11/18/2022] Open
Abstract
Infection by Staphylococcus aureus can result in severe conditions such as septicemia, toxic shock, pneumonia, and endocarditis with antibiotic resistance and persistent nasal carriage in normal individuals being key drivers of the medical impact of this virulent pathogen. In both virulent infection and nasal colonization, S. aureus encounters the host immune system and produces a wide array of factors that frustrate host immunity. One in particular, the prototypical staphylococcal superantigen-like protein SSL7, potently binds IgA and C5, thereby inhibiting immune responses dependent on these major immune mediators. We report here the three-dimensional structure of the complex of SSL7 with Fc of human IgA1 at 3.2 A resolution. Two SSL7 molecules interact with the Fc (one per heavy chain) primarily at the junction between the Calpha2 and Calpha3 domains. The binding site on each IgA chain is extensive, with SSL7 shielding most of the lateral surface of the Calpha3 domain. However, the SSL7 molecules are positioned such that they should allow binding to secretory IgA. The key IgA residues interacting with SSL7 are also bound by the leukocyte IgA receptor, FcalphaRI (CD89), thereby explaining how SSL7 potently inhibits IgA-dependent cellular effector functions mediated by FcalphaRI, such as phagocytosis, degranulation, and respiratory burst. Thus, the ability of S. aureus to subvert IgA-mediated immunity is likely to facilitate survival in mucosal environments such as the nasal passage and may contribute to systemic infections.
Collapse
MESH Headings
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Binding Sites, Antibody
- Cells, Cultured
- Crystallography, X-Ray
- Genes, Bacterial/immunology
- Humans
- Immunoglobulin A/chemistry
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Models, Molecular
- Mutagenesis
- Protein Conformation
- Receptors, Fc/chemistry
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Staphylococcus aureus/immunology
- Superantigens/chemistry
- Superantigens/immunology
Collapse
Affiliation(s)
- Paul A. Ramsland
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - Natasha Willoughby
- The Maurice Wilkins Centre and School of Medical Sciences, University of Auckland, Auckland 1020, New Zealand
| | - Halina M. Trist
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
| | - William Farrugia
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
| | - P. Mark Hogarth
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - John D. Fraser
- The Maurice Wilkins Centre and School of Medical Sciences, University of Auckland, Auckland 1020, New Zealand
| | - Bruce D. Wines
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
26
|
Brouillard JNP, Günther S, Varma AK, Gryski I, Herfst CA, Rahman AKMNU, Leung DYM, Schlievert PM, Madrenas J, Sundberg EJ, McCormick JK. Crystal structure of the streptococcal superantigen SpeI and functional role of a novel loop domain in T cell activation by group V superantigens. J Mol Biol 2007; 367:925-34. [PMID: 17303163 DOI: 10.1016/j.jmb.2007.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 01/03/2007] [Accepted: 01/06/2007] [Indexed: 11/15/2022]
Abstract
Superantigens (SAgs) are potent microbial toxins that bind simultaneously to T cell receptors (TCRs) and class II major histocompatibility complex molecules, resulting in the activation and expansion of large T cell subsets and the onset of numerous human diseases. Within the bacterial SAg family, streptococcal pyrogenic exotoxin I (SpeI) has been classified as belonging to the group V SAg subclass, which are characterized by a unique, relatively conserved approximately 15 amino acid extension (amino acid residues 154 to 170 in SpeI; herein referred to as the alpha3-beta8 loop), absent in SAg groups I through IV. Here, we report the crystal structure of SpeI at 1.56 A resolution. Although the alpha3-beta8 loop in SpeI is several residues shorter than that of another group V SAg, staphylococcal enterotoxin serotype I, the C-terminal portions of these loops, which are located adjacent to the putative TCR binding site, are structurally similar. Mutagenesis and subsequent functional analysis of SpeI indicates that TCR beta-chains are likely engaged in a similar general orientation as other characterized SAgs. We show, however, that the alpha3-beta8 loop length, and the presence of key glycine residues, are necessary for optimal activation of T cells. Based on Vbeta-skewing analysis of human T cells activated with SpeI and structural models, we propose that the alpha3-beta8 loop is positioned to form productive intermolecular contacts with the TCR beta-chain, likely in framework region 3, and that these contacts are required for optimal TCR recognition by SpeI, and likely all other group V SAgs.
Collapse
Affiliation(s)
- Jean-Nicholas P Brouillard
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada N6A 5B8
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Staphylococcus aureus can cause superficial skin infections and, occasionally, deep-seated infections that entail spread through the blood stream. The organism expresses several factors that compromise the effectiveness of neutrophils and macrophages, the first line of defence against infection. S. aureus secretes proteins that inhibit complement activation and neutrophil chemotaxis or that lyse neutrophils, neutralizes antimicrobial defensin peptides, and its cell surface is modified to reduce their effectiveness. The organism can survive in phagosomes, express polysaccharides and proteins that inhibit opsonization by antibody and complement, and its cell wall is resistant to lysozyme. Furthermore, S. aureus expresses several types of superantigen that corrupt the normal humoral immune response, resulting in anergy and immunosuppression. In contrast, Staphylococcus epidermidis must rely primarily on cell-surface polymers and the ability to form a biolfilm to survive in the host.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
28
|
Omoe K, Imanishi K, Hu DL, Kato H, Fugane Y, Abe Y, Hamaoka S, Watanabe Y, Nakane A, Uchiyama T, Shinagawa K. Characterization of novel staphylococcal enterotoxin-like toxin type P. Infect Immun 2005; 73:5540-6. [PMID: 16113270 PMCID: PMC1231067 DOI: 10.1128/iai.73.9.5540-5546.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the biological properties of a novel staphylococcal enterotoxin (SE)-like toxin type P (SElP). SElP induced a substantial proliferative response and the production of cytokines interleukin-2, gamma interferon, tumor necrosis factor alpha, and interleukin-4 from human T cells when administered at a concentration of 0.4 pM (0.01 ng/ml) or more. The expression of major histocompatibility complex class II molecules on accessory cells was required for T-cell stimulation by SElP. SElP selectively stimulated a vast number of human T cells bearing receptors Vbeta 5.1, 6, 8, 16, 18, and 21.3. These results indicated that SElP acts as a superantigen. SElP proved to be emetic in the house musk shrew emetic assay, although at a relatively high dose (50 to 150 mug/animal). A quantitative assay of SElP production with 30 Staphylococcus aureus strains harboring selp showed that 60% of these strains produced significant amounts of SElP in vitro. All 10 strains carrying seb and selp produced SEB but not SElP, suggesting the inactivation of the selp locus in S. aureus strains with a particular se gene constitution.
Collapse
Affiliation(s)
- Katsuhiko Omoe
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Superantigens are a class of highly potent immuno-stimulatory molecules produced by Staphylococcus aureus and Streptococcus pyogenes. These toxins possess the unique ability to interact simultaneously with MHC class II molecules and T-cell receptors, forming a trimolecular complex that induces profound T-cell proliferation. The resultant massive cytokine release causes epithelial damage and leads to capillary leak and hypotension. The staphylococcal superantigens are designated staphylococcal enterotoxins A, B, C (and antigenic variants), D, E, and the recently discovered enterotoxins G to Q, and toxic shock syndrome toxin-1. The streptococcal superantigens include the pyrogenic exotoxins A (and antigenic variants), C, G-J, SMEZ, and SSA. Superantigens are implicated in several diseases including toxic shock syndrome, scarlet fever and food poisoning; and their function appears primarily to debilitate the host sufficiently to permit the causation of disease. Structural studies over the last 10 years have provided a great deal of information regarding the complex interactions of these molecules with their receptors. This, combined with the wealth of new information from genomics initiatives, have shown that, despite their common molecular architecture, superantigens are able to crosslink MHC class II molecules and T-cell receptors by a variety of subtly different ways through the use of various structural regions within each toxin.
Collapse
Affiliation(s)
- Matthew D Baker
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | |
Collapse
|
30
|
Llewelyn M, Sriskandan S, Peakman M, Ambrozak DR, Douek DC, Kwok WW, Cohen J, Altmann DM. HLA class II polymorphisms determine responses to bacterial superantigens. THE JOURNAL OF IMMUNOLOGY 2004; 172:1719-26. [PMID: 14734754 DOI: 10.4049/jimmunol.172.3.1719] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The excessive immunological response triggered by microbial superantigens has been implicated in the etiology of a wide range of human diseases but has been most clearly defined for the staphylococcal and streptococcal toxic shock syndromes. Because MHC class II presentation of superantigens to T cells is not MHC-restricted, the possibility that HLA polymorphisms could influence superantigenicity, and thus clinical susceptibility to the toxicity of individual superantigens, has received little attention. In this study, we demonstrate that binding of streptococcal and staphylococcal superantigens to HLA class II is influenced by allelic differences in class II. For the superantigen streptococcal pyrogenic exotoxin A, class II binding is dependent on DQ alpha-chain polymorphisms such that HLA-DQA1*01 alpha-chains show greater binding than DQA1*03/05 alpha-chains. The functional implications of differential binding on T cell activation were investigated in various experimental systems using human T cells and murine Vbeta8.2 transgenic cells as responders. These studies showed quantitative and qualitative differences resulting from differential HLA-DQ binding. We observed changes in T cell proliferation and cytokine production, and in the Vbeta specific changes in T cell repertoire that have hitherto been regarded as a defining feature of an individual superantigen. Our observations reveal a mechanism for the different outcomes seen following infection by toxigenic bacteria.
Collapse
Affiliation(s)
- Martin Llewelyn
- Department of Infectious Diseases, Faculty of Medicine, Imperial College, Department of Immunology, Guy's, Kings and St. Thomas' School of Medicine, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ma W, Yu H, Wang Q, Bao J, Yan J, Jin H. In vitro biological activities of transmembrane superantigen staphylococcal enterotoxin A fusion protein. Cancer Immunol Immunother 2004; 53:118-24. [PMID: 14574492 PMCID: PMC11032846 DOI: 10.1007/s00262-003-0437-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 07/07/2003] [Indexed: 10/26/2022]
Abstract
The bacterial superantigen staphylococcal enterotoxin A (SEA) stimulates T cells bearing certain TCR Vbeta domains when binding to MHC II molecules, and is a potent inducer of CTL activity and cytokine production. Antibody-targeted SEA such as C215 Fab-SEA and C242 Fab-SEA has been investigated for cancer therapy in recent years. We have previously reported significant tumor inhibition and prolonged survival time in tumor-bearing mice treated with a combination of both C215Fab-SEA and Ad IL-18 (Wang et al., Gene Therapy 8:542-550, 2001). In order to develop SEA as an universal biological preparation in cancer therapy, we first cloned a SEA gene from S. aureus (ATCC 13565) and a transmembrane (TM) sequence from a c- erb-b2 gene derived from human ovarian cancer cell line HO-8910, then generated a TM-SEA fusion gene by using the splice overlap extension method, and constructed the recombinant expression vector pET-28a-TM-SEA. Fusion protein TM-SEA was expressed in E. coli BL21(DE3)pLysS and purified by using the histidine tag in this vector. Purified TM-SEA spontaneously associated with cell membranes as detected by flow cytometry. TM-SEA stimulated the proliferation of both human PBLs and splenocytes derived from C57BL/6 (H-2b) mice in vitro. This study thus demonstrated a novel strategy for anchoring superantigen SEA onto the surfaces of tumor cells without any genetic manipulation.
Collapse
Affiliation(s)
- Wenxue Ma
- Cancer Institute, Zhejiang University School of Medicine, 88 Jiefang Road, 310009, Hangzhou, China.
| | | | | | | | | | | |
Collapse
|
32
|
Popa ER, Stegeman CA, Bos NA, Kallenberg CGM, Tervaert JWC. Staphylococcal superantigens and T cell expansions in Wegener's granulomatosis. Clin Exp Immunol 2003; 132:496-504. [PMID: 12780698 PMCID: PMC1808727 DOI: 10.1046/j.1365-2249.2003.02157.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In Wegener's granulomatosis (WG), a form of autoimmune systemic vasculitis, chronic carriage of Staphylococcus aureus constitutes a risk factor for the development of exacerbations. Circulating T cells in this disease are persistently activated, suggesting the presence of a chronic stimulus. A causal link between chronic carriage of S. aureus and chronic T cell activation in WG is conceivable, because S. aureus produces superantigens (SAg), which are potent T cell stimulators. Superantigenic stimulation of T cells results in expansion of T cell subsets expressing SAg-binding T cell receptor V-beta (Vbeta) chains. In the present study we hypothesized that in WG the presence of staphylococcal SAg is accompanied by expansion of SAg-reacting T cell subsets. We tested our hypothesis in a cross-sectional and a longitudinal study in which the association between seven staphylococcal SAg genes [typed by poplymerase chain reaction (PCR)], eight SAg-binding Vbeta chains and four SAg-non-binding Vbeta chains (assessed by flow-cytometry) was assessed. Both studies showed that T cell expansions were present at a significantly higher rate in WG patients than in healthy individuals, but were not associated with the presence of either S. aureus or its SAg. Moreover, T cell expansions were generally of small extent, and did not appear simultaneously in both CD4 and CD8 subsets. We conclude that in WG S. aureus effects its supposed pathogenic function by a mechanism other than superantigenic T cell activation.
Collapse
Affiliation(s)
- E R Popa
- Department of Clinical Immunology, University Hospital, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Schafer PH, Gandhi AK, Loveland MA, Chen RS, Man HW, Schnetkamp PPM, Wolbring G, Govinda S, Corral LG, Payvandi F, Muller GW, Stirling DI. Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J Pharmacol Exp Ther 2003; 305:1222-32. [PMID: 12649301 DOI: 10.1124/jpet.102.048496] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CC-4047 (Actimid) and CC-5013 (Revimid) belong to a class of thalidomide analogs collectively known as the immunomodulatory drugs (IMiDs), which are currently being assessed in the treatment of patients with multiple myeloma and other cancers. IMiDs potently enhance T cell and natural killer cell responses and inhibit tumor necrosis factor-alpha, interleukin (IL)-1 beta, and IL-12 production from LPS-stimulated peripheral blood mononuclear cells. However, the molecular mechanism of action for these compounds is unknown. Herein, we report on the ability of the IMiDs to up-regulate production of IL-2 from activated human CD4+ and CD8+ peripheral blood T cells, production of IL-2 and IFN-gamma from T helper (Th)1-type cells, and production of IL-5 and IL-10 from Th2-type cells. Elevation of IL-2 production from Jurkat T cells was observed as early as 6 h poststimulation and correlated with an increase in IL-2 promoter activity that was dependent upon the proximal but not the distal AP-1 binding site. The IMiDs enhanced AP-1-driven transcriptional activity 2- to 4-fold after 6 h of T cell stimulation, and their relative potencies for AP-1 activation correlated with their potencies for increased IL-2 production in Jurkat T cells and in CD4+ or CD8+ human peripheral blood T cells. The most potent of these IMiDs, CC-4047, had no effect on nuclear factor of activated T cells transcriptional activity, calcium signaling, or phosphorylation of extracellular signal-regulated kinase 1/2, c-Jun NH2-terminal kinase 1/2, p38 mitogen-activated protein kinase, or c-Jun/Jun D in Jurkat T cells. These data suggest that IMiDs increase T cell cytokine production by potentiating AP-1 transcriptional activity.
Collapse
Affiliation(s)
- Peter H Schafer
- Celgene Corporation, 7 Powder Horn Dr., Warren, NJ 07059, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kawamura E, Nakamura S, Sasaki M, Ohyama Y, Kadena T, Kumamaru W, Shirasuna K. Accumulation of oligoclonal T cells in the infiltrating lymphocytes in oral lichen planus. J Oral Pathol Med 2003; 32:282-9. [PMID: 12694352 DOI: 10.1034/j.1600-0714.2003.00143.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Identification of a disease-specific and possibly pathogenic T-cell receptor (TCR) in oral lichen planus (OLP) is one of the most important steps to reveal the pathogenic antigen recognized by the T cells and thereby elucidate the pathogenesis and etiology of OLP. METHODS In buccal mucosa biopsy specimens and peripheral blood mononuclear cells (PBMC) from seven patients with OLP, the TCR V beta gene usage was examined by polymerase chain reaction-based and single-strand conformation polymorphism analyses. RESULTS The V beta families expressed in the biopsy specimens were markedly heterogeneous, but they were restricted in comparison to those observed in the PBMC. The V beta families predominantly expressed in the biopsy specimens in comparison with the PBMC were still heterogeneous in individual patients and differed from patient to patient; however, V beta 2, V beta 6, and V beta 19 were commonly predominant in the biopsy specimens from more than half of the patients. Among the V beta families predominantly expressed in the biopsy specimens, the accumulation of T-cell clonotypes was observed in the majority of the V beta families including V beta 6 and V beta 19; however, it was not observed in the minority of the V beta families including V beta 2. CONCLUSIONS These results suggest that unique T-cell populations bearing V beta 2, V beta 6, or V beta 19 gene products tend to expand in OLP lesions as a consequence of in situ stimulation with a restricted epitope of either a nominal antigen on the MHC molecule for the majority of the V beta families, even if only in minor populations, or of a common superantigen for the minority of the V beta families.
Collapse
Affiliation(s)
- E Kawamura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Hermann C, von Aulock S, Graf K, Hartung T. A model of human whole blood lymphokine release for in vitro and ex vivo use. J Immunol Methods 2003; 275:69-79. [PMID: 12667671 DOI: 10.1016/s0022-1759(03)00003-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Endotoxin (lipopolysaccharide, LPS) inducible cytokine release by human whole blood is increasingly used to model inflammatory responses in vitro, to detect the presence of pyrogenic contaminations as well as to monitor disease states or immunomodulatory treatments ex vivo. However, the LPS-stimulated blood model primarily allows the assessment of monocyte responses. Here, a whole blood model was established which allows assessment of lymphocyte responses. Four different superantigens, namely staphylococcal enterotoxin A and B (SEA, SEB), toxic shock syndrome toxin-1 (TSST-1) or streptococcal exotoxin A (SPEA) were tested with respect to the induction of lymphokine release. All superantigens were capable of inducing significant amounts of the lymphokines interferon-gamma (IFNgamma), interleukin 2 (IL-2), IL-4, IL-5, IL-13 and tumor necrosis factor beta (TNFbeta) after 72 h of incubation. Concentration-dependencies and kinetics were determined. Blood from 160 healthy donors was used to assess the variability of SEB-inducible lymphokine release. Interindividual differences were more pronounced compared to LPS-inducible monokine release. However, the individual response was maintained when blood from six donors was tested once a week for 8 weeks, suggesting that the individual response represents a donor characteristic. The model appears to be suitable for the evaluation of immunomodulatory agents in vitro as well as ex vivo.
Collapse
Affiliation(s)
- Corinna Hermann
- Biochemical Pharmacology, University of Konstanz, 78457, Constance, Germany
| | | | | | | |
Collapse
|
36
|
Proft T, Webb PD, Handley V, Fraser JD. Two novel superantigens found in both group A and group C Streptococcus. Infect Immun 2003; 71:1361-9. [PMID: 12595453 PMCID: PMC148831 DOI: 10.1128/iai.71.3.1361-1369.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two novel streptococcal superantigen genes (speL(Se) and speM(Se)) were identified from the Streptococcus equi genome database at the Sanger Center. Genotyping of 8 S. equi isolates and 40 Streptococcus pyogenes isolates resulted in the detection of the orthologous genes speL and speM in a restricted number of S. pyogenes isolates (15 and 5%, respectively). Surprisingly, the novel superantigen genes could not be found in any of the analyzed S. equi isolates. The results suggest that both genes are located on a mobile element that enables gene transfer between individual isolates and between streptococci from different Lancefield groups. S. equi pyrogenic exotoxin L (SPE-L(Se))/streptococcal pyrogenic exotoxin L (SPE-L) and SPE-M(Se)/SPE-M are most closely related to SMEZ, SPE-C, SPE-G, and SPE-J, but build a separate branch within this group. Recombinant SPE-L (rSPE-L) and rSPE-M were highly mitogenic for human peripheral blood lymphocytes, with half-maximum responses at 1 and 10 pg/ml, respectively. The results from competitive binding experiments suggest that both proteins bind major histocompatibility complex class II at the beta-chain, but not at the alpha-chain. The most common targets for both toxins were human Vbeta1.1 expressing T cells. Seroconversion against SPE-L and SPE-M was observed in healthy blood donors, suggesting that the toxins are expressed in vivo. Interestingly, the speL gene is highly associated with S. pyogenes M89, a serotype that is linked to acute rheumatic fever in New Zealand.
Collapse
Affiliation(s)
- Thomas Proft
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
37
|
Kusunoki Y, Yamaoka M, Kasagi F, Hayashi T, Koyama K, Kodama K, MacPhee DG, Kyoizumi S. T cells of atomic bomb survivors respond poorly to stimulation by Staphylococcus aureus toxins in vitro: does this stem from their peripheral lymphocyte populations having a diminished naïve CD4 T-cell content? Radiat Res 2002; 158:715-24. [PMID: 12452774 DOI: 10.1667/0033-7587(2002)158[0715:tcoabs]2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We found previously that the peripheral CD4 T-cell populations of heavily exposed A-bomb survivors contained fewer naïve T cells than we detected in the corresponding unexposed controls. To determine whether this demonstrable impairment of the CD4 T-cell immunity of A-bomb survivors was likely to affect the responsiveness of their immune systems to infection by common pathogens, we tested the T cells of 723 survivors for their ability to proliferate in vitro after a challenge by each of the Staphylococcus aureus toxins SEB, SEC-2, SEC-3, SEE and TSST-1. The results presented here reveal that the proliferative responses of T cells of A-bomb survivors became progressively weaker as the radiation dose increased and did so in a manner that correlated well with the decreasing CD45RA-positive (naïve) [but not CD45RA-negative (memory)] CD4 T-cell percentages that we found in their peripheral blood lymphocyte (PBL) populations. We also noted that the T cells of survivors with a history of myocardial infarction tended to respond poorly to several (or even all) of the S. aureus toxins, and that these same individuals had proportionally fewer CD45RA-positive (naïve) CD4 T cells in their PBL populations than we detected in survivors with no myocardial infarction in their history. Taken together, these results clearly indicate that A-bomb irradiation led to an impairment of the ability of exposed individuals to maintain their naïve T-cell pools. This may explain why A-bomb survivors tend to respond poorly to toxins encoded by the common pathogenic bacterium S. aureus.
Collapse
Affiliation(s)
- Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The concept of cancer immunotherapy and the resulting technical advances have evolved considerably during the last decade. However, cancer treatment by recombinant IL-2 or IFN-alpha still represents today the best therapeutic way for the treatment of renal carcinoma, melanoma and in some cases lymphoma. The immunotherapy approaches such as vaccination, gene and cellular therapy, have not yet demonstrated a sufficient clinical efficacy for the treatment of solid tumors. The goal of this review is to summarize the different approaches to cancer immunotherapy developed today. Specific approaches such as antigenic vaccination will be first described, then non-specific approaches such as gene transfer on the tumor site of immuno-stimulating genes will be discussed.
Collapse
Affiliation(s)
- S Paul
- Transgène S.A., laboratoire d'immunologie clinique et expérimentale, 2, rue Adolphe-Hirn, 67082 cedex, Strasbourg, France.
| | | | | |
Collapse
|
39
|
Llewelyn M, Cohen J. Superantigens: microbial agents that corrupt immunity. THE LANCET. INFECTIOUS DISEASES 2002; 2:156-62. [PMID: 11944185 DOI: 10.1016/s1473-3099(02)00222-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbial superantigens are a family of protein exotoxins that share the ability to trigger excessive and aberrant activation of T cells. The best characterised are the staphylococcal enterotoxins and the streptococcal pyrogenic exotoxins that trigger the staphylococcal and streptococcal toxic shock syndromes. It is now apparent that superantigens have a wider role in the pathology of infectious diseases than has previously been appreciated. Staphylococcus aureus and Streptococcus pyogenes together produce 19 different superantigens. The range of microorganisms known to produce superantigens has expanded to include Gram negative bacteria, mycoplasma, and viruses. Research is beginning to shed light on the more subtle parts these molecules play in causing disease and to produce some real possibilities for specific treatment of superantigen-induced toxicity. We aim to highlight these new developments and review the science behind these fascinating molecules.
Collapse
Affiliation(s)
- Martin Llewelyn
- Department of Infectious Diseases, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
40
|
Proft T, Arcus VL, Handley V, Baker EN, Fraser JD. Immunological and biochemical characterization of streptococcal pyrogenic exotoxins I and J (SPE-I and SPE-J) from Streptococcus pyogenes. THE JOURNAL OF IMMUNOLOGY 2001; 166:6711-9. [PMID: 11359827 DOI: 10.4049/jimmunol.166.11.6711] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, we described the identification of novel streptococcal superantigens (SAgs) by mining the Streptococcus pyogenes M1 genome database at Oklahoma University. Here, we report the cloning, expression, and functional analysis of streptococcal pyrogenic exotoxin (SPE)-J and another novel SAg (SPE-I). SPE-I is most closely related to SPE-H and staphylococcal enterotoxin I, whereas SPE-J is most closely related to SPE-C. Recombinant forms of SPE-I and SPE-J were mitogenic for PBL, both reaching half maximum responses at 0.1 pg/ml. Evidence from binding studies and cell aggregation assays using a human B-lymphoblastoid cell line (LG-2) suggests that both toxins exclusively bind to the polymorphic MHC class II beta-chain in a zinc-dependent mode but not to the generic MHC class II alpha-chain. The results from analysis by light scattering indicate that SPE-J exists as a dimer in solution above concentrations of 4.0 mg/ml. Moreover, SPE-J induced a rapid homotypic aggregation of LG-2 cells, suggesting that this toxin might cross-link MHC class II molecules on the cell surface by building tetramers of the type HLA-DRbeta-SPE-J-SPE-J-HLA-DRbeta. SPE-I preferably stimulates T cells bearing the Vbeta18.1 TCR, which is not targeted by any other known SAG: SPE-J almost exclusively stimulates Vbeta2.1 T cells, a Vbeta that is targeted by several other streptococcal SAgs, suggesting a specific role for this T cell subpopulation in immune defense. Despite a primary sequence diversity of 51%, SPE-J is functionally indistinguishable from SPE-C and might play a role in streptococcal disease, which has previously been addressed to SPE-C.
Collapse
Affiliation(s)
- T Proft
- Division of Molecular Medicine and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
41
|
Morita CT, Li H, Lamphear JG, Rich RR, Fraser JD, Mariuzza RA, Lee HK. Superantigen recognition by gammadelta T cells: SEA recognition site for human Vgamma2 T cell receptors. Immunity 2001; 14:331-44. [PMID: 11290341 DOI: 10.1016/s1074-7613(01)00113-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human gammadelta T cells expressing the Vgamma2Vdelta2 antigen receptors recognize nonpeptide prenyl pyrophosphate and alkylamine antigens. We find that they also recognize staphylococcal enterotoxin A superantigens in a manner distinct from the recognition of nonpeptide antigens. Using chimeric and mutant toxins, SEA amino acid residues 20-27 were shown to be required for gammadelta TCR recognition of SEA. Residues at 200-207 that are critical for specific alphabeta TCR recognition of SEA do not affect gammadelta TCR recognition. SEA residues 20-27 are located in an area contiguous with the binding site of V beta chains. This study defines a superantigen recognition site for a gammadelta T cell receptor and demonstrates the differences between Vgamma2Vdelta2+ T cell recognition of superantigens and nonpeptide antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Binding Sites
- Biological Evolution
- Cell Line
- Clone Cells/immunology
- Clone Cells/metabolism
- Enterotoxins/chemistry
- Enterotoxins/immunology
- HLA-D Antigens/immunology
- Humans
- Models, Molecular
- Molecular Sequence Data
- Polyisoprenyl Phosphates/chemistry
- Polyisoprenyl Phosphates/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Substrate Specificity
- Superantigens/chemistry
- Superantigens/immunology
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- C T Morita
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hâkansson M, Petersson K, Nilsson H, Forsberg G, Björk P, Antonsson P, Svensson LA. The crystal structure of staphylococcal enterotoxin H: implications for binding properties to MHC class II and TcR molecules. J Mol Biol 2000; 302:527-37. [PMID: 10986116 DOI: 10.1006/jmbi.2000.4093] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray structure of the superantigen staphylococcal enterotoxin H (SEH) has been determined at 1.69 A resolution. In this paper we present two structures of zinc-free SEH (apoSEH) and one zinc-loaded form of SEH (ZnSEH). SEH exhibits the conventional superantigen (SAg) fold with two characteristic domains. In ZnSEH one zinc ion per SEH molecule is bound to the C-terminal beta-sheet in the region implicated for major histocompatibility complex class II (MHC class II) binding in SEA, SED and SEE. Surprisingly, the zinc ion has only two ligating amino acid residues His206 and Asp208. The other ligands to the zinc ion are two water molecules. An extensive packing interaction between two symmetry-related molecules in the crystal, 834 A(2)/molecule, forms a cavity that buries the zinc ions of the molecules. This dimer-like interaction is found in two crystal forms. Nevertheless, zinc-dependent dimerisation is not observed in solution, as seen in the case of SED. A unique feature of SEH as compared to other staphylococcal enterotoxins is a large negatively charged surface close to the Zn(2+) site. The interaction of SEH with MHC class II is the strongest known among the staphylococcal enterotoxins. However, SEH seems to lack a SEB-like MHC class II binding site, since the side-chain properties of structurally equivalent amino acid residues in SEH and those in SEB-binding MHC class II differ dramatically. There is also a structural flexibility between the domains of SEH. The domains of two apoSEH structures are related by a 5 degrees rotation leading to at most 3 A difference in C(alpha) positions. Since the T-cell receptor probably interacts with both domains, SEH by this rotation may modulate its binding to different TcR Vbeta-chains.
Collapse
Affiliation(s)
- M Hâkansson
- Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, Lund, S-221 00, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Arcus VL, Proft T, Sigrell JA, Baker HM, Fraser JD, Baker EN. Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes. J Mol Biol 2000; 299:157-68. [PMID: 10860729 DOI: 10.1006/jmbi.2000.3725] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial superantigens (SAgs) are a structurally related group of protein toxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They are implicated in a range of human pathologies associated with bacterial infection whose symptoms result from SAg-mediated stimulation of a large number (2-20%) of T-cells. At the molecular level, bacterial SAgs bind to major histocompatability class II (MHC-II) molecules and disrupt the normal interaction between MHC-II and T-cell receptors (TCRs). We have determined high-resolution crystal structures of two newly identified streptococcal superantigens, SPE-H and SMEZ-2. Both structures conform to the generic bacterial superantigen folding pattern, comprising an OB-fold N-terminal domain and a beta-grasp C-terminal domain. SPE-H and SMEZ-2 also display very similar zinc-binding sites on the outer concave surfaces of their C-terminal domains. Structural comparisons with other SAgs identify two structural sub-families. Sub-families are related by conserved core residues and demarcated by variable binding surfaces for MHC-II and TCR. SMEZ-2 is most closely related to the streptococcal SAg SPE-C, and together they constitute one structural sub-family. In contrast, SPE-H appears to be a hybrid whose N-terminal domain is most closely related to the SEB sub-family and whose C-terminal domain is most closely related to the SPE-C/SMEZ-2 sub-family. MHC-II binding for both SPE-H and SMEZ-2 is mediated by the zinc ion at their C-terminal face, whereas the generic N-terminal domain MHC-II binding site found on many SAgs appears not to be present. Structural comparisons provide evidence for variations in TCR binding between SPE-H, SMEZ-2 and other members of the SAg family; the extreme potency of SMEZ-2 (active at 10(-15) g ml-1 levels) is likely to be related to its TCR binding properties. The smez gene shows allelic variation that maps onto a considerable proportion of the protein surface. This allelic variation, coupled with the varied binding modes of SAgs to MHC-II and TCR, highlights the pressure on SAgs to avoid host immune defences.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Binding Sites
- Conserved Sequence/genetics
- Crystallography, X-Ray
- Disulfides/metabolism
- Evolution, Molecular
- Genes, Bacterial
- Genetic Variation/genetics
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Protein Binding
- Protein Folding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Sequence Alignment
- Streptococcus pyogenes/chemistry
- Streptococcus pyogenes/classification
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/immunology
- Superantigens/chemistry
- Superantigens/classification
- Superantigens/immunology
- Superantigens/metabolism
- Zinc/metabolism
Collapse
Affiliation(s)
- V L Arcus
- School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
44
|
Proft T, Moffatt SL, Weller KD, Paterson A, Martin D, Fraser JD. The streptococcal superantigen SMEZ exhibits wide allelic variation, mosaic structure, and significant antigenic variation. J Exp Med 2000; 191:1765-76. [PMID: 10811869 PMCID: PMC2193151 DOI: 10.1084/jem.191.10.1765] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The frequencies of the newly identified streptococcal superantigen genes smez, spe-g, and spe-h were determined in a panel of 103 clinical isolates collected between 1976 and 1998 at various locations throughout New Zealand. smez and spe-g were found in every group A Streptococcus (GAS) isolate, suggesting a chromosomal location. The spe-h gene was found in only 24% of the GAS isolates and is probably located on a mobile DNA element. The smez gene displays extensive allelic variation and appears to be in linkage equilibrium with the M/emm type. 22 novel smez alleles were identified from 21 different M/emm types in addition to the already reported alleles smez and smez-2 with sequence identities between 94. 5 and 99.9%. Three alleles are nonfunctional due to a single base pair deletion. The remaining 21 alleles encode distinct SMEZ variants. The mosaic structure of the smez gene suggests that this polymorphism has arisen from homologous recombination events rather than random point mutation. The recently resolved SMEZ-2 crystal structure shows that the polymorphic residues are mainly surface exposed and scattered over the entire protein. The allelic variation did not affect either Vbeta specificity or potency, but did result in significant antigenic differences. Neutralizing antibody responses of individual human sera against different SMEZ variants varied significantly. 98% of sera completely neutralized SMEZ-1, but only 85% neutralized SMEZ-2, a very potent variant that has not yet been found in any New Zealand isolate. SMEZ-specific Vbeta8 activity was found in culture supernatants of 66% of the GAS isolates, indicating a potential base for the development of a SMEZ targeting vaccine.
Collapse
Affiliation(s)
- Thomas Proft
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - S. Louise Moffatt
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Kylie D. Weller
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - A. Paterson
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Diana Martin
- Institute of Environmental Science and Research Limited, Porirua, New Zealand
| | - John D. Fraser
- Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Fraser J, Arcus V, Kong P, Baker E, Proft T. Superantigens - powerful modifiers of the immune system. MOLECULAR MEDICINE TODAY 2000; 6:125-32. [PMID: 10689316 DOI: 10.1016/s1357-4310(99)01657-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Superantigens are powerful microbial toxins that activate the immune system by binding to class II major histocompatibility complex and T-cell receptor molecules. They cause a number of diseases characterized by fever and shock and are important virulence factors for two human commensal organisms, Staphylococcus aureus and Streptococcus pyogenes, as well as for some viruses. Their mode of action and variation around the common theme of over-stimulating T cells, provides a rich insight into the constant battle between microbes and the immune system.
Collapse
Affiliation(s)
- J Fraser
- School of Biological Sciences, Department of Molecular Medicine, University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
46
|
Macphail S. Superantigens: mechanisms by which they may induce, exacerbate and control autoimmune diseases. Int Rev Immunol 1999; 18:141-80. [PMID: 10614742 DOI: 10.3109/08830189909043022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Superantigens are polypeptide molecules produced by a broad range of infectious microorganisms which elicit excessive and toxic T-cell responses in mammalian hosts. In light of this property and the fact that autoimmune diseases are frequently the sequelae of microbial infections, it has been suggested that superantigens may be etiologic agents of autoreactive immunological responses resulting in initiation, exacerbation or relapse of autoimmune diseases. This article relates the biology of superantigens to possible mechanisms by which they may exert these activities and reviews the evidence for their roles in various human and animal models of autoimmune disease. Finally, a mechanism of active suppression by superantigen-activated CD4+ T-cells that could be exploited for therapy as well as prophylaxis of human autoimmune diseases is proposed.
Collapse
Affiliation(s)
- S Macphail
- Department of Surgery, North Shore University Hospital, New York University School of Medicine and Cornell University Medical College, Manhasset, USA.
| |
Collapse
|
47
|
Lavoie PM, Thibodeau J, Erard F, Sékaly RP. Understanding the mechanism of action of bacterial superantigens from a decade of research. Immunol Rev 1999; 168:257-69. [PMID: 10399079 DOI: 10.1111/j.1600-065x.1999.tb01297.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the face of the unique diversity and plasticity of the immune system pathogenic organisms have developed multiple mechanisms in adaptation to their hosts, including the expression of a particular class of molecules called superantigens. Bacterial superantigens are the most potent stimulators of T cells. The functional consequences of the expression of superantigens by bacteria can be extended not only to T lymphocytes, but also to B lymphocytes and to cells of the myeloid compartment, including antigen-presenting cells and phagocytes. The biological effects of bacterial superantigens as well as their molecular aspects have now been studied for a decade. Although there is still a long way to go to clearly understand the role these molecules play in the establishment of disease, recently acquired knowledge of their biochemistry now offers unique experimental opportunities in defining the molecular rules of T-cell activation. Here, we present some of the most recent functional and molecular aspects of the interaction of bacterial superantigens with MHC class II molecules and the T-cell receptor.
Collapse
Affiliation(s)
- P M Lavoie
- Department of Experimental Medicine, McGill School of Medicine, Montréal, Canada
| | | | | | | |
Collapse
|
48
|
Proft T, Moffatt SL, Berkahn CJ, Fraser JD. Identification and characterization of novel superantigens from Streptococcus pyogenes. J Exp Med 1999; 189:89-102. [PMID: 9874566 PMCID: PMC1887688 DOI: 10.1084/jem.189.1.89] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Three novel streptococcal superantigen genes (spe-g, spe-h, and spe-j) were identified from the Streptococcus pyogenes M1 genomic database at the University of Oklahoma. A fourth novel gene (smez-2) was isolated from the S. pyogenes strain 2035, based on sequence homology to the streptococcal mitogenic exotoxin z (smez) gene. SMEZ-2, SPE-G, and SPE-J are most closely related to SMEZ and streptococcal pyrogenic exotoxin (SPE)-C, whereas SPE-H is most similar to the staphylococcal toxins than to any other streptococcal toxin. Recombinant (r)SMEZ, rSMEZ-2, rSPE-G, and rSPE-H were mitogenic for human peripheral blood lymphocytes with half-maximal responses between 0.02 and 50 pg/ml (rSMEZ-2 and rSPE-H, respectively). SMEZ-2 is the most potent superantigen (SAg) discovered thus far. All toxins, except rSPE-G, were active on murine T cells, but with reduced potency. Binding to a human B-lymphoblastoid line was shown to be zinc dependent with high binding affinity of 15-65 nM. Evidence from modeled protein structures and competitive binding experiments suggest that high affinity binding of each toxin is to the major histocompatibility complex class II beta chain. Competition for binding between toxins was varied and revealed overlapping but discrete binding to subsets of class II molecules in the hierarchical order (SMEZ, SPE-C) > SMEZ-2 > SPE-H > SPE-G. The most common targets for the novel SAgs were human Vbeta2.1- and Vbeta4-expressing T cells. This might reflect a specific role for this subset of Vbetas in the immune defense of gram-positive bacteria.
Collapse
Affiliation(s)
- T Proft
- Department of Molecular Medicine, School of Medicine, University of Auckland, 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
49
|
Eriksson A, Holm SE, Norgren M. Identification of domains involved in superantigenicity of streptococcal pyrogenic exotoxin F (SpeF). Microb Pathog 1998; 25:279-90. [PMID: 9878456 DOI: 10.1006/mpat.1998.0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of 11 synthetic peptides of 30 amino acids, each with 10 amino acids overlap which spanned the entire sequence of streptococcal pyrogenic exotoxin F (SpeF), were employed in proliferation studies on human peripheral blood mononuclear cells (PBMCs). Regions 41-70, 141-170 and 181-210 were identified as important for SpeF-induced lymphocyte activation. Secondary structure predictions of these peptides showed similarities to regions in other superantigens known to be important for T cell mitogenicity. Furthermore, antisera specific to peptides covering amino acids 1-70 and 181-228 were able to inhibit SpeF-induced mitogenicity by 25% when pre-incubated with SpeF prior to PBMC activation.
Collapse
Affiliation(s)
- A Eriksson
- Department of Clinical Bacteriology, Umeå University, Umeå, S-901 85, Sweden
| | | | | |
Collapse
|
50
|
Papageorgiou AC, Tranter HS, Acharya KR. Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 A resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J Mol Biol 1998; 277:61-79. [PMID: 9514739 DOI: 10.1006/jmbi.1997.1577] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcal enterotoxin B is a member of a family of toxins known as superantigens that activate a large number of T-cells (up to 20%) by cross-linking MHC class II molecules with T-cell receptors in a Vbeta-restricted fashion. The crystal structure of staphylococcal enterotoxin B presented here has been determined at 1.5 A resolution, the highest resolution so far for a superantigen. The final model contains 1948 protein atoms and 177 water molecules and has excellent geometry with root-mean-square (rms) deviation of 0.007 A and 1.73 degrees in bond lengths and bond angles, respectively. The overall fold is similar to that of other microbial superantigens, but as it lacks the zinc-binding site found in other members of this family, such as staphylococcal enterotoxin A, C2 and D, this enterotoxin possesses only one MHC class II binding site. Comparison of the crystal structure of free SEB and in complex with an MHC class II molecule revealed no major changes in the MHC-binding site upon complex formation. However, a number of water molecules found in the free SEB may be displaced in the complex or contribute further to its stability. Detailed analysis of the TcR-binding site of SEB, SEA and SEC2 shows significant differences which may account for the ability of each superantigen to bind specific Vbeta sequences.
Collapse
Affiliation(s)
- A C Papageorgiou
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K
| | | | | |
Collapse
|