1
|
McCaleb MR, Miranda AM, Khammash HA, Torres RM, Pelanda R. Regulation of Foxo1 expression is critical for central B cell tolerance and allelic exclusion. Cell Rep 2024; 43:114283. [PMID: 38796853 PMCID: PMC11246624 DOI: 10.1016/j.celrep.2024.114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Resolving the molecular mechanisms of central B cell tolerance might unveil strategies that prevent autoimmunity. Here, using a mouse model of central B cell tolerance in which Forkhead box protein O1 (Foxo1) is either deleted or over-expressed in B cells, we show that deleting Foxo1 blocks receptor editing, curtails clonal deletion, and decreases CXCR4 expression, allowing high-avidity autoreactive B cells to emigrate to the periphery whereby they mature but remain anergic and short lived. Conversely, expression of degradation-resistant Foxo1 promotes receptor editing in the absence of self-antigen but leads to allelic inclusion. Foxo1 over-expression also restores tolerance in autoreactive B cells harboring active PI3K, revealing opposing roles of Foxo1 and PI3K in B cell selection. Overall, we show that the transcription factor Foxo1 is a major gatekeeper of central B cell tolerance and that PI3K drives positive selection of immature B cells and establishes allelic exclusion by suppressing Foxo1.
Collapse
Affiliation(s)
- Megan R McCaleb
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anjelica M Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hadeel A Khammash
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
New JS, Dizon BLP, Kearney JF, King RG. Glycan-Reactive Innate-like B Cells and Developmental Checkpoints. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1913-1921. [PMID: 38647373 PMCID: PMC11147723 DOI: 10.4049/jimmunol.2300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Using an Ig H chain conferring specificity for N-acetyl-d-glucosamine (GlcNAc), we developed transgenic (VHHGAC39 TG) mice to study the role of self-antigens in GlcNAc-reactive B-1 B cell development. In VHHGAC39 TG mice, GlcNAc-reactive B-1 B cell development during ontogeny and in adult bone marrow was normal. However, adult TG mice exhibited a block at transitional-2 immature B cell stages, resulting in impaired allelic exclusion and accumulation of a B cell subset coexpressing endogenous Ig gene rearrangements. Similarly, VHHGAC39 B cell fitness was impeded compared with non-self-reactive VHJ558 B TG cells in competitive mixed bone marrow chimeras. Nonetheless, adult VHHGAC39 mice immunized with Streptococcus pyogenes produce anti-GlcNAc Abs. Peritoneal cavity B cells transferred from VHHGAC39 TG mice into RAG-/- mice also exhibited robust expansion and anti-GlcNAc Ab production. However, chronic treatment of young VHHGAC39 mice with GlcNAc-specific mAbs leads to lower GlcNAc-binding B cell frequencies while increasing the proportion of GlcNAc-binding B1-a cells, suggesting that Ag masking or clearance of GlcNAc Ags impedes maturation of newly formed GlcNAc-reactive B cells. Finally, BCR H chain editing promotes expression of endogenous nontransgenic BCR alleles, allowing potentially self-reactive TG B cells to escape anergy or deletion at the transitional stage of precursor B cell development. Collectively, these observations indicate that GlcNAc-reactive B cell development is sensitive to the access of autologous Ags.
Collapse
Affiliation(s)
- J Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Brian L P Dizon
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
3
|
Florova M, Abreu-Mota T, Paesen GC, Beetschen AS, Cornille K, Marx AF, Narr K, Sahin M, Dimitrova M, Swarnalekha N, Beil-Wagner J, Savic N, Pelczar P, Buch T, King CG, Bowden TA, Pinschewer DD. Central tolerance shapes the neutralizing B cell repertoire against a persisting virus in its natural host. Proc Natl Acad Sci U S A 2024; 121:e2318657121. [PMID: 38446855 PMCID: PMC10945855 DOI: 10.1073/pnas.2318657121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Viral mimicry of host cell structures has been postulated to curtail the B cell receptor (BCR) repertoire against persisting viruses through tolerance mechanisms. This concept awaits, however, experimental testing in a setting of natural virus-host relationship. We engineered mouse models expressing a monoclonal BCR specific for the envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV), a naturally persisting mouse pathogen. When the heavy chain of the LCMV-neutralizing antibody KL25 was paired with its unmutated ancestor light chain, most B cells underwent receptor editing, a behavior reminiscent of autoreactive clones. In contrast, monoclonal B cells expressing the same heavy chain in conjunction with the hypermutated KL25 light chain did not undergo receptor editing but exhibited low levels of surface IgM, suggesting that light chain hypermutation had lessened KL25 autoreactivity. Upon viral challenge, these IgMlow cells were not anergic but up-regulated IgM, participated in germinal center reactions, produced antiviral antibodies, and underwent immunoglobulin class switch as well as further affinity maturation. These studies on a persisting virus in its natural host species suggest that central tolerance mechanisms prune the protective antiviral B cell repertoire.
Collapse
Affiliation(s)
- Marianna Florova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Tiago Abreu-Mota
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Sophia Beetschen
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Karen Cornille
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Kerstin Narr
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mehmet Sahin
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mirela Dimitrova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Nivedya Swarnalekha
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Natasa Savic
- ETH Phenomics Center, ETH Zürich, Zürich8093, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel4001, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Carolyn G. King
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| |
Collapse
|
4
|
Friman V, Quinti I, Davydov AN, Shugay M, Farroni C, Engström E, Pour Akaber S, Barresi S, Mohamed A, Pulvirenti F, Milito C, Granata G, Giorda E, Ahlström S, Karlsson J, Marasco E, Marcellini V, Bocci C, Cascioli S, Scarsella M, Phad G, Tilevik A, Tartaglia M, Bemark M, Chudakov DM, Carsetti R, Grimsholm O. Defective peripheral B cell selection in common variable immune deficiency patients with autoimmune manifestations. Cell Rep 2023; 42:112446. [PMID: 37119135 DOI: 10.1016/j.celrep.2023.112446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Common variable immune deficiency (CVID) is a heterogeneous disorder characterized by recurrent infections, low levels of serum immunoglobulins, and impaired vaccine responses. Autoimmune manifestations are common, but B cell central and peripheral selection mechanisms in CVID are incompletely understood. Here, we find that receptor editing, a measure of central tolerance, is increased in transitional B cells from CVID patients and that these cells have a higher immunoglobulin κ:λ ratio in CVID patients with autoimmune manifestations than in those with infection only. Contrariwise, the selection pressure in the germinal center on CD27bright memory B cells is decreased in CVID patients with autoimmune manifestations. Finally, functionally, T cell-dependent activation showed that naive B cells in CVID patients are badly equipped for activation and induction of mismatch repair genes. We conclude that central tolerance is functional whereas peripheral selection is defective in CVID patients with autoimmune manifestations, which could underpin the development of autoimmunity.
Collapse
Affiliation(s)
- Vanda Friman
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Mikhail Shugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani (IRCCS), Rome, Italy; B Cell Pathophysiology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Erik Engström
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shirin Pour Akaber
- Institute of Pathophysiology and Allergy Research, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Ahmed Mohamed
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Federica Pulvirenti
- Centre for Primary Immune Deficiency, AUO Policlinico Umberto I, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Granata
- Clinical and Research Department for Infectious Diseases, National Institute for Infectious Diseases L. Spallanzani (IRCCS), 00149 Rome, Italy
| | - Ezio Giorda
- Research Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Sara Ahlström
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emiliano Marasco
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Chiara Bocci
- B Cell Pathophysiology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Simona Cascioli
- Research Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marco Scarsella
- Research Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ganesh Phad
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dmitriy M Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Central European Institute of Technology, Brno, Czech Republic
| | - Rita Carsetti
- B Cell Pathophysiology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy; Unit of Diagnostic Immunology, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ola Grimsholm
- Institute of Pathophysiology and Allergy Research, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria; Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; B Cell Pathophysiology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Okoreeh MK, Kennedy DE, Emmanuel AO, Veselits M, Moshin A, Ladd RH, Erickson S, McLean KC, Madrigal B, Nemazee D, Maienschein-Cline M, Mandal M, Clark MR. Asymmetrical forward and reverse developmental trajectories determine molecular programs of B cell antigen receptor editing. Sci Immunol 2022; 7:eabm1664. [PMID: 35930652 PMCID: PMC9636592 DOI: 10.1126/sciimmunol.abm1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During B lymphopoiesis, B cell progenitors progress through alternating and mutually exclusive stages of clonal expansion and immunoglobulin (Ig) gene rearrangements. Great diversity is generated through the stochastic recombination of Ig gene segments encoding heavy and light chain variable domains. However, this commonly generates autoreactivity. Receptor editing is the predominant tolerance mechanism for self-reactive B cells in the bone marrow (BM). B cell receptor editing rescues autoreactive B cells from negative selection through renewed light chain recombination first at Igκ then Igλ loci. Receptor editing depends on BM microenvironment cues and key transcription factors such as NF-κB, FOXO, and E2A. The specific BM factor required for receptor editing is unknown. Furthermore, how transcription factors coordinate these developmental programs to promote usage of the λ chain remains poorly defined. Therefore, we used two mouse models that recapitulate pathways by which Igλ light chain-positive B cells develop. The first has deleted J kappa (Jκ) genes and hence models Igλ expression resulting from failed Igκ recombination (Igκdel). The second models autoreactivity by ubiquitous expression of a single-chain chimeric anti-Igκ antibody (κ-mac). Here, we demonstrated that autoreactive B cells transit asymmetric forward and reverse developmental trajectories. This imparted a unique epigenetic landscape on small pre-B cells, which opened chromatin to transcription factors essential for Igλ recombination. The consequences of this asymmetric developmental path were both amplified and complemented by CXCR4 signaling. These findings reveal how intrinsic molecular programs integrate with extrinsic signals to drive receptor editing.
Collapse
Affiliation(s)
- Michael K. Okoreeh
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
- Growth, Development, Disabilities Training program (GDDTP), Pritzker School of Medicine, University of Chicago, IL, 60637, USA
| | - Domenick E. Kennedy
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
- Present Address: Drug Discovery Science and Technology, Discovery Platform Technologies, Chemical Biology and Emerging Therapeutics, AbbVie, North Chicago, IL, United States
| | - Akinola Olumide Emmanuel
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Veselits
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Azam Moshin
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Robert H. Ladd
- Cytometry and Antibody Technologies Facility, University of Chicago, Chicago, IL, 60637, USA
| | - Steven Erickson
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Kaitlin C. McLean
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Brianna Madrigal
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Malay Mandal
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R. Clark
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
6
|
Young C, Lau AWY, Burnett DL. B cells in the balance: Offsetting self-reactivity avoidance with protection against foreign. Front Immunol 2022; 13:951385. [PMID: 35967439 PMCID: PMC9364820 DOI: 10.3389/fimmu.2022.951385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Antibodies are theoretically limitless in their diversity and specificity to foreign antigens; however they are constrained by the need to avoid binding to self. Germinal centers (GC) allow diversification and maturation of the antibody response towards the foreign antigen. While self-tolerance mechanisms controlling self-reactivity during B cell maturation are well recognized, the mechanisms by which GCs balance self-tolerance and foreign binding especially in the face of cross-reactivity between self and foreign, remain much less well defined. In this review we explore the extent to which GC self-tolerance restricts affinity maturation. We present studies suggesting that the outcome is situationally dependent, affected by affinity and avidity to self-antigen, and the extent to which self-binding and foreign-binding are interdependent. While auto-reactive GC B cells can mutate away from self while maturing towards the foreign antigen, if no mutational trajectories allow for self-reactive redemption, self-tolerance prevails and GC responses to the foreign pathogen are restricted, except when self-tolerance checkpoints are relaxed. Finally, we consider whether polyreactivity is subject to the same level of restriction in GC responses, especially if polyreactivity is linked to an increase in foreign protection, as occurs in certain broadly neutralizing antibodies. Overall, the outcomes for GC B cells that bind self-antigen can range from redemption, transient relaxation in self-tolerance or restriction of the antibody response to the foreign pathogen.
Collapse
Affiliation(s)
- Clara Young
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Clara Young, ; Deborah L. Burnett,
| | - Angelica W. Y. Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Deborah L. Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Clara Young, ; Deborah L. Burnett,
| |
Collapse
|
7
|
Gordon RA, Giannouli C, Raparia C, Bastacky SI, Marinov A, Hawse W, Cattley R, Tilstra JS, Campbell AM, Nickerson KM, Davidson A, Shlomchik MJ. Rubicon promotes rather than restricts murine lupus and is not required for LC3-associated phagocytosis. JCI Insight 2022; 7:155537. [PMID: 35192551 PMCID: PMC9057630 DOI: 10.1172/jci.insight.155537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 01/03/2023] Open
Abstract
NADPH oxidase deficiency exacerbates lupus in murine models and patients, but the mechanisms remain unknown. It is hypothesized that NADPH oxidase suppresses autoimmunity by facilitating dead cell clearance via LC3-associated phagocytosis (LAP). The absence of LAP reportedly causes an autoinflammatory syndrome in aged, nonautoimmune mice. Prior work implicated cytochrome b-245, β polypeptide (CYBB), a component of the NADPH oxidase complex, and the RUN and cysteine-rich domain-containing Beclin 1-interacting protein (RUBICON) as requisite for LAP. To test the hypothesis that NADPH oxidase deficiency exacerbates lupus via a defect in LAP, we deleted Rubicon in the B6.Sle1.Yaa and MRL.Faslpr lupus mouse models. Under this hypothesis, RUBICON deficiency should phenocopy NADPH oxidase deficiency, as both work in the same pathway. However, we observed the opposite - RUBICON deficiency resulted in reduced mortality, renal disease, and autoantibody titers to RNA-associated autoantigens. Given that our data contradict the published role for LAP in autoimmunity, we assessed whether CYBB and RUBICON are requisite for LAP. We found that LAP is not dependent on either of these 2 pathways. To our knowledge, our data reveal RUBICON as a novel regulator of SLE, possibly by a B cell-intrinsic mechanism, but do not support a role for LAP in lupus.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christina Giannouli
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Jeremy S. Tilstra
- Department of Immunology and,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven Connecticut, USA
| | | | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | |
Collapse
|
8
|
Rekvig OP. The Anti-DNA Antibodies: Their Specificities for Unique DNA Structures and Their Unresolved Clinical Impact-A System Criticism and a Hypothesis. Front Immunol 2022; 12:808008. [PMID: 35087528 PMCID: PMC8786728 DOI: 10.3389/fimmu.2021.808008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical and analytical approaches based on our imperfect definition of the term “The anti-dsDNA antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique classification criterium and pathogenic factor. In a wider sense, antibodies to unique transcriptionally active or silent DNA structures and chromatin components may have individual and profound nephritogenic impact although not considered yet – not in theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated here. In this analysis, our state-of-the-art conception of these antibodies is probed and found too deficient with respect to their origin, structural DNA specificities and clinical/pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The discoveries have left us with a DNA helix that presents distinct structures expressing unique operations of DNA. All structures are proven immunogenic! Unique autoimmune antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA, cruciform DNA, or individual components of chromatin. In light of the massive scientific interest in anti-DNA antibodies over decades, it is an unexpected observation that the spectrum of DNA structures has been known for decades without being implemented in clinical immunology. This leads consequently to a critical analysis of historical and contemporary evidence-based data and of ignored and one-dimensional contexts and hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the impact of DNA and chromatin immunity/autoimmunity are considered and discussed in context of the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Section of Autoimmunity, Fürst Medical Laboratory, Oslo, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Quach TD, Huang W, Sahu R, Diadhiou CM, Raparia C, Johnson R, Leung TM, Malkiel S, Ricketts PG, Gallucci S, Tükel Ç, Jacob CO, Lesser ML, Zou YR, Davidson A. Context dependent induction of autoimmunity by TNF signaling deficiency. JCI Insight 2022; 7:149094. [PMID: 35104241 PMCID: PMC8983147 DOI: 10.1172/jci.insight.149094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
TNF inhibitors are widely used to treat inflammatory diseases; however, 30%–50% of treated patients develop new autoantibodies, and 0.5%–1% develop secondary autoimmune diseases, including lupus. TNF is required for formation of germinal centers (GCs), the site where high-affinity autoantibodies are often made. We found that TNF deficiency in Sle1 mice induced TH17 T cells and enhanced the production of germline encoded, T-dependent IgG anti-cardiolipin antibodies but did not induce GC formation or precipitate clinical disease. We then asked whether a second hit could restore GC formation or induce pathogenic autoimmunity in TNF-deficient mice. By using a range of immune stimuli, we found that somatically mutated autoantibodies and clinical disease can arise in the setting of TNF deficiency via extrafollicular pathways or via atypical GC-like pathways. This breach of tolerance may be due to defects in regulatory signals that modulate the negative selection of pathogenic autoreactive B cells.
Collapse
Affiliation(s)
- Tam D Quach
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Weiqing Huang
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Ranjit Sahu
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Catherine Mm Diadhiou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Roshawn Johnson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Tung Ming Leung
- Biostatistics Unit, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Susan Malkiel
- Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Peta-Gay Ricketts
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, United States of America
| | - Çagla Tükel
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, United States of America
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, United States of America
| | - Martin L Lesser
- Biostatistics Unit, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Yong-Rui Zou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| |
Collapse
|
10
|
Cavazzoni CB, Bozza VB, Lucas TC, Conde L, Maia B, Mesin L, Schiepers A, Ersching J, Neris RL, Conde JN, Coelho DR, Lima TM, Alvim RG, Castilho LR, de Paula Neto HA, Mohana-Borges R, Assunção-Miranda I, Nobrega A, Victora GD, Vale AM. The immunodominant antibody response to Zika virus NS1 protein is characterized by cross-reactivity to self. J Exp Med 2021; 218:e20210580. [PMID: 34292314 PMCID: PMC8302445 DOI: 10.1084/jem.20210580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Besides antigen-specific responses to viral antigens, humoral immune response in virus infection can generate polyreactive and autoreactive antibodies. Dengue and Zika virus infections have been linked to antibody-mediated autoimmune disorders, including Guillain-Barré syndrome. A unique feature of flaviviruses is the secretion of nonstructural protein 1 (NS1) by infected cells. NS1 is highly immunogenic, and antibodies targeting NS1 can have both protective and pathogenic roles. In the present study, we investigated the humoral immune response to Zika virus NS1 and found NS1 to be an immunodominant viral antigen associated with the presence of autoreactive antibodies. Through single B cell cultures, we coupled binding assays and BCR sequencing, confirming the immunodominance of NS1. We demonstrate the presence of self-reactive clones in germinal centers after both infection and immunization, some of which present cross-reactivity with NS1. Sequence analysis of anti-NS1 B cell clones showed sequence features associated with pathogenic autoreactive antibodies. Our findings demonstrate NS1 immunodominance at the cellular level as well as a potential role for NS1 in ZIKV-associated autoimmune manifestations.
Collapse
Affiliation(s)
- Cecilia B. Cavazzoni
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Vicente B.T. Bozza
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tostes C.V. Lucas
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Maia
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Romulo L.S. Neris
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas N. Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego R. Coelho
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tulio M. Lima
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata G.F. Alvim
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leda R. Castilho
- Programa de Engenharia Química, Laboratório de Engenharia de Cultivos Celulares, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor A. de Paula Neto
- Laboratório de Alvos Moleculares, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Nobrega
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Andre M. Vale
- Laboratório de Biologia de Linfócitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
A Germline-Encoded Structural Arginine Trap Underlies the Anti-DNA Reactivity of a Murine V Gene Segment. Int J Mol Sci 2021; 22:ijms22094541. [PMID: 33926148 PMCID: PMC8123574 DOI: 10.3390/ijms22094541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Autoimmunity may have its origins of early repertoire selection in developmental B cells. Such a primary repertoire is probably shaped by selecting B cells that can efficiently perform productive signaling, stimulated by self-antigens in the bone marrow, such as DNA. In support of that idea, we previously found a V segment from VH10 family that can form antibodies that bind to DNA independent of CDR3 usage. In this paper we designed four antibody fragments in a novel single-chain pre-BCR (scpre-BCR) format containing germinal V gene segments from families known to bind DNA (VH10) or not (VH4) connected to a murine surrogate light chain (SLC), lacking the highly charged unique region (UR), by a hydrophilic peptide linker. We also tested the influence of CDR2 on DNA reactivity by shuffling the CDR2 loop. The scpre-BCRs were expressed in bacteria. VH10 bearing scpre-BCR could bind DNA, while scpre-BCR carrying the VH4 segment did not. The CDR2 loop shuffling hampered VH10 reactivity while displaying a gain-of-function in the nonbinding VH4 germline. We modeled the binding sites demonstrating the conservation of a positivity charged pocket in the VH10 CDR2 as the possible cross-reactive structural element. We presented evidence of DNA reactivity hardwired in a V gene, suggesting a structural mechanism for innate autoreactivity. Therefore, while autoreactivity to DNA can lead to autoimmunity, efficiently signaling for B cell development is likely a trade-off mechanism leading to the selection of potentially autoreactive repertoires.
Collapse
|
12
|
Bigas A, Zanoni I, Hepworth MR, Eisenbarth SC, Masters SL, Kipnis J, Vinuesa CG, Good-Jacobson KL, Tangye SG, Yamazaki S, Hivroz C, Tait Wojno E, Shulman Z, Colonna M. JEM career launchpad. J Exp Med 2021; 218:e20202509. [PMID: 33464291 PMCID: PMC7814352 DOI: 10.1084/jem.20202509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
JEM has been a launching pad for scientific careers since its inception. Here is a collection of testimonials attesting to the diversity of the scientific community it serves.
Collapse
|
13
|
Wong R, Belk JA, Govero J, Uhrlaub JL, Reinartz D, Zhao H, Errico JM, D'Souza L, Ripperger TJ, Nikolich-Zugich J, Shlomchik MJ, Satpathy AT, Fremont DH, Diamond MS, Bhattacharya D. Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity 2020; 53:1078-1094.e7. [PMID: 33010224 DOI: 10.1016/j.immuni.2020.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Memory B cells (MBCs) can respond to heterologous antigens either by molding new specificities through secondary germinal centers (GCs) or by selecting preexisting clones without further affinity maturation. To distinguish these mechanisms in flavivirus infections and immunizations, we studied recall responses to envelope protein domain III (DIII). Conditional deletion of activation-induced cytidine deaminase (AID) between heterologous challenges of West Nile, Japanese encephalitis, Zika, and dengue viruses did not affect recall responses. DIII-specific MBCs were contained mostly within the plasma-cell-biased CD80+ subset, and few GCs arose following heterologous boosters, demonstrating that recall responses are confined by preexisting clonal diversity. Measurement of monoclonal antibody (mAb) binding affinity to DIII proteins, timed AID deletion, single-cell RNA sequencing, and lineage tracing experiments point to selection of relatively low-affinity MBCs as a mechanism to promote diversity. Engineering immunogens to avoid this MBC diversity may facilitate flavivirus-type-specific vaccines with minimized potential for infection enhancement.
Collapse
Affiliation(s)
- Rachel Wong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Dakota Reinartz
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John M Errico
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lucas D'Souza
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Tyler J Ripperger
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
14
|
Jani PK, Kubagawa H, Melchers F. A rheostat sets B-cell receptor repertoire selection to distinguish self from non-self. Curr Opin Immunol 2020; 67:42-49. [PMID: 32916645 DOI: 10.1016/j.coi.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
In bone marrow VDJ-recombination continuously generates original repertoires of immature B cells expressing IgM-B cell receptor (BcR), in which each cell recognizes the wide variety of self and non-self antigens with an individually different spectrum of avidities. High avidity self-reactive B cells try to edit their BcRs by secondary or multiple VL-rearrangements to JL-rearrangements. If they do not manage to change their self reactivity, they are deleted by apoptosis. Low avidity self-reactive B cells are anergized, while B cells with no avidity to self are ignored. A rheostat crosslinking antigen-binding BcRs, self antigen complexed with pentameric IgM and Fcμ-receptor monitors high, low or no binding. PI3K and PTEN are the effectors of this self antigen-sensing device. In mature B cells this rheostat continues to function in the activation of resting B cells by foreign antigens which crosslink BcR, antigen and pentameric IgM with Fcμ-receptors.
Collapse
Affiliation(s)
- Peter K Jani
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
15
|
Conditional antibody expression to avoid central B cell deletion in humanized HIV-1 vaccine mouse models. Proc Natl Acad Sci U S A 2020; 117:7929-7940. [PMID: 32209668 DOI: 10.1073/pnas.1921996117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 vaccine development aims to elicit broadly neutralizing antibodies (bnAbs) against diverse viral strains. In some HIV-1-infected individuals, bnAbs evolved from precursor antibodies through affinity maturation. To induce bnAbs, a vaccine must mediate a similar antibody maturation process. One way to test a vaccine is to immunize mouse models that express human bnAb precursors and assess whether the vaccine can convert precursor antibodies into bnAbs. A major problem with such mouse models is that bnAb expression often hinders B cell development. Such developmental blocks may be attributed to the unusual properties of bnAb variable regions, such as poly-reactivity and long antigen-binding loops, which are usually under negative selection during primary B cell development. To address this problem, we devised a method to circumvent such B cell developmental blocks by expressing bnAbs conditionally in mature B cells. We validated this method by expressing the unmutated common ancestor (UCA) of the human VRC26 bnAb in transgenic mice. Constitutive expression of the VRC26UCA led to developmental arrest of B cell progenitors in bone marrow; poly-reactivity of the VRC26UCA and poor pairing of the VRC26UCA heavy chain with the mouse surrogate light chain may contribute to this phenotype. The conditional expression strategy bypassed the impediment to VRC26UCA B cell development, enabling the expression of VRC26UCA in mature B cells. This approach should be generally applicable for expressing other bnAbs that are under negative selection during B cell development.
Collapse
|
16
|
Nündel K, Mande P, Moses SL, Busto P, Cullen JL, Schmidt MR, Shlomchik MJ, Woodland RT, Marshak-Rothstein A. Cross-Reactive Antigen Expressed by B6 Splenocytes Drives Receptor Editing and Marginal Zone Differentiation of IgG2a-Reactive AM14 Vκ8 B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2055-2062. [PMID: 31534009 PMCID: PMC7078032 DOI: 10.4049/jimmunol.1900499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/20/2019] [Indexed: 11/19/2022]
Abstract
The AM14 BCR, derived from an autoimmune MRL/lpr mouse, binds autologous IgG2aa/j with low affinity, and as a result, AM14 B cells only proliferate in response to IgG2a immune complexes that incorporate DNA, RNA, or nucleic acid-binding proteins that serve as autoadjuvants. As such, AM14 B cells have served as a useful model for demonstrating the importance of BCR/TLR coengagement in the activation of autoreactive B cells. We now show that the same receptor recognizes an additional murine-encoded Ag, expressed by B6 splenocytes, with sufficient avidity to induce a TLR-independent proliferative response of BALB/c AM14 Vκ8 B cells both in vivo and in vitro. Moreover, detection of this cross-reactive Ag by B6 AM14 Vκ8 B cells promotes an anergic phenotype as reflected by suboptimal responses to BCR cross-linking and the absence of mature B cells in the bone marrow. The B6 Ag further impacts B cell development as shown by a dramatically expanded marginal zone compartment and extensive receptor editing in B6 AM14 Vκ8 mice but not BALB/c AM14 Vκ8 mice. Despite their anergic phenotypes, B6 AM14 Vκ8 B cells can respond robustly to autoantigen/autoadjuvant immune complexes and could therefore participate in both autoimmune responses and host defense.
Collapse
Affiliation(s)
- Kerstin Nündel
- Dept. of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Purvi Mande
- Dept. of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Stephanie L. Moses
- Dept. of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Patricia Busto
- Dept. of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Jaime L. Cullen
- Dept. of Immunobiology, Yale School of Medicine, New Haven, CT 06510
| | - Madelyn R. Schmidt
- Dept. of Microbiology and Physiological Systems, University of Massachusetts School of Medicine, Worcester, MA 01605
| | | | - Robert T. Woodland
- Dept. of Microbiology and Physiological Systems, University of Massachusetts School of Medicine, Worcester, MA 01605
| | - Ann Marshak-Rothstein
- Dept. of Medicine, University of Massachusetts School of Medicine, Worcester, MA 01605
| |
Collapse
|
17
|
Faderl M, Klein F, Wirz OF, Heiler S, Albertí-Servera L, Engdahl C, Andersson J, Rolink A. Two Distinct Pathways in Mice Generate Antinuclear Antigen-Reactive B Cell Repertoires. Front Immunol 2018; 9:16. [PMID: 29403498 PMCID: PMC5786517 DOI: 10.3389/fimmu.2018.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022] Open
Abstract
The escape of anti-self B cells from tolerance mechanisms like clonal deletion, receptor editing, and anergy results in the production of autoantibodies, which is a hallmark of many autoimmune disorders. In this study, we demonstrate that both germline sequences and somatic mutations contribute to autospecificity of B cell clones. For this issue, we investigated the development of antinuclear autoantibodies (ANAs) and their repertoire in two different mouse models. First, in aging mice that were shown to gain several autoimmune features over time including ANAs. Second, in mice undergoing a chronic graft-versus-host disease (GVHD), thereby developing systemic lupus erythematosus-like symptoms. Detailed repertoire analysis revealed that somatic hypermutations (SHM) were present in all Vh and practically all Vl regions of ANAs generated in these two models. The ANA B cell repertoire in aging mice was restricted, dominated by clonally related Vh1-26/Vk4-74 antibodies. In the collection of GVHD-derived ANAs, the repertoire was less restricted, but the usage of the Vh1-26/Vk4-74 combination was still apparent. Germline conversion showed that the SHM in the 4-74 light chain are deterministic for autoreactivity. Detailed analysis revealed that antinuclear reactivity of these antibodies could be induced by a single amino acid substitution in the CDR1 of the Vk4-74. In both aging B6 and young GVHD mice, conversion of the somatic mutations in the Vh and Vl regions of non Vh1-26/Vk4-74 using antibodies showed that B cells with a germline-encoded V gene could also contribute to the ANA-reactive B cell repertoire. These findings indicate that two distinct pathways generate ANA-producing B cells in both model systems. In one pathway, they are generated by Vh1-26/Vk4-74 expressing B cells in the course of immune responses to an antigen that is neither a nuclear antigen nor any other self-antigen. In the other pathway, ANA-producing B cells are derived from progenitors in the bone marrow that express B cell receptors (BCRs), which bind to nuclear antigens and that escape tolerance induction, possibly as a result of crosslinking of their BCRs by multivalent determinants of nuclear antigens.
Collapse
Affiliation(s)
- Martin Faderl
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Klein
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Oliver F Wirz
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stefan Heiler
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Llucia Albertí-Servera
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Corinne Engdahl
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan Andersson
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Liao H, Yu Y, Li S, Yue Y, Tao C, Su K, Zhang Z. Circulating Plasmablasts from Chronically Human Immunodeficiency Virus-Infected Individuals Predominantly Produce Polyreactive/Autoreactive Antibodies. Front Immunol 2017; 8:1691. [PMID: 29270169 PMCID: PMC5723652 DOI: 10.3389/fimmu.2017.01691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/16/2017] [Indexed: 02/05/2023] Open
Abstract
Understanding the B-cell response during chronic human immunodeficiency virus (HIV) infection is essential for eliciting broad and potent neutralizing antibodies (Abs). In this study, we analyzed the plasmablast repertoire of chronically HIV-infected individuals in combination with antiretroviral therapy (ART). Among the obtained 72 recombinant monoclonal antibodies (mAbs), 27.8% weakly bound to HIV gp140 and were non-neutralizing. Remarkably, 56.9% were polyreactive and 55.6% were autoreactive. The prominent feature of being polyreactive/autoreactive is not limited to anti-gp140 Abs. Furthermore, these polyreactive/autoreactive Abs displayed striking cross-reactivity with DWEYS in the N-methyl-d-aspartate receptor (NMDAR), and this binding induced SH-SY5Y cell apoptosis. We also found higher frequencies of VH4-34 utilization and VH replacement in the plasmablast repertoire of chronically HIV-infected individuals, which may contribute to the generation of poly/autoreactive Abs. Taken together, these data demonstrate that circulating plasmablasts in chronically HIV-infected individuals experienced with ART predominantly produce poly/autoreactive Abs with minimal anti-HIV neutralizing capacity and potential cross-reactivity with autoantigens. This may represent another dysfunction of B cells during chronic HIV infection.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Song Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Qilu Hospital of Shandong University, Jinan, China
| | - Yinshi Yue
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States.,Eppley Research Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zhixin Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Ministry of Education Key Laboratory of Birth Defects, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Phenotyping of autoreactive B cells with labeled nucleosomes in 56R transgenic mice. Sci Rep 2017; 7:13232. [PMID: 29038433 PMCID: PMC5643551 DOI: 10.1038/s41598-017-13422-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023] Open
Abstract
The phenotypic characterization of self-reactive B cells producing autoantibodies is one of the challenges to get further insight in the physiopathology of autoimmune diseases. We took advantage of our previously developed flow cytometry method, using labeled nucleosomes, prominent autoantigens in systemic lupus erythematosus, to analyze the phenotype of self-reactive B cells in the anti-DNA B6.56R mouse model. We showed that splenic anti-nucleosome B cells express mostly kappa light chains and harbor a marginal zone phenotype. Moreover, these autoreactive B cells fail to acquire a germinal center phenotype and are less abundant in the transitional T3 compartment. In conclusion, the direct detection of autoreactive B cells helped determine their phenotypic characteristics and provided a more direct insight into the B cell tolerance process in B6.56R mice. This method constitutes an interesting new tool to study the mechanisms of B cell tolerance breakdown in B6.56R mice crossed with autoimmune prone models.
Collapse
|
20
|
Longo NS, Rogosch T, Zemlin M, Zouali M, Lipsky PE. Mechanisms That Shape Human Antibody Repertoire Development in Mice Transgenic for Human Ig H and L Chain Loci. THE JOURNAL OF IMMUNOLOGY 2017; 198:3963-3977. [PMID: 28438896 DOI: 10.4049/jimmunol.1700133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/17/2017] [Indexed: 02/03/2023]
Abstract
To determine the impact of the milieu on the development of the human B cell repertoire, we carried out a comprehensive analysis of productive and nonproductive Ig gene rearrangements from transgenic mice engineered to express single copies of the unrearranged human H chain and L chain Ig gene loci. By examining the nonproductive repertoire as an indication of the immediate product of the rearrangement machinery without an impact of selection, we discovered that the distribution of human rearrangements arising in the mouse was generally comparable to that seen in humans. However, differences between the distribution of nonproductive and productive rearrangements that reflect the impact of selection suggested species-specific selection played a role in shaping the respective repertoires. Although expression of some VH genes was similar in mouse and human (IGHV3-23, IGHV3-30, and IGHV4-59), other genes behaved differently (IGHV3-33, IGHV3-48, IGHV4-31, IGHV4-34, and IGHV1-18). Gene selection differences were also noted in L chains. Notably, nonproductive human VH rearrangements in the transgenic mice expressed shorter CDRH3 with less N addition. Even the CDRH3s in the productive rearrangements were shorter in length than those of the normal human productive repertoire. Amino acids in the CDRH3s in both species showed positive selection of tyrosines and glycines, and negative selection of leucines. The data indicate that the environment in which B cells develop can affect the expressed Ig repertoire by exerting influences on the distribution of expressed VH and VL genes and by influencing the amino acid composition of the Ag binding site.
Collapse
Affiliation(s)
- Nancy S Longo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tobias Rogosch
- Pediatric Immunology and Allergology, Department of Pediatrics, Philipps-University Marburg, D-35033 Marburg, Germany
| | - Michael Zemlin
- Klinik für Kinder-und Jugendmedizin, Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg, D-35033 Marburg, Germany.,Department of General Pediatrics and Neonatology, Saarland University Medical School, D-66421 Homburg, Germany
| | - Moncef Zouali
- INSERM & Université Paris Diderot, Sorbonne Paris Cité Centre Viggo Petersen, Hôpital Lariboisière, 75475 Paris, France; and
| | | |
Collapse
|
21
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
22
|
Sindhava VJ, Oropallo MA, Moody K, Naradikian M, Higdon LE, Zhou L, Myles A, Green N, Nündel K, Stohl W, Schmidt AM, Cao W, Dorta-Estremera S, Kambayashi T, Marshak-Rothstein A, Cancro MP. A TLR9-dependent checkpoint governs B cell responses to DNA-containing antigens. J Clin Invest 2017; 127:1651-1663. [PMID: 28346226 DOI: 10.1172/jci89931] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/26/2017] [Indexed: 01/07/2023] Open
Abstract
Mature B cell pools retain a substantial proportion of polyreactive and self-reactive clonotypes, suggesting that activation checkpoints exist to reduce the initiation of autoreactive B cell responses. Here, we have described a relationship among the B cell receptor (BCR), TLR9, and cytokine signals that regulate B cell responses to DNA-containing antigens. In both mouse and human B cells, BCR ligands that deliver a TLR9 agonist induce an initial proliferative burst that is followed by apoptotic death. The latter mechanism involves p38-dependent G1 cell-cycle arrest and subsequent intrinsic mitochondrial apoptosis and is shared by all preimmune murine B cell subsets and CD27- human B cells. Survival or costimulatory signals rescue B cells from this fate, but the outcome varies depending on the signals involved. B lymphocyte stimulator (BLyS) engenders survival and antibody secretion, whereas CD40 costimulation with IL-21 or IFN-γ promotes a T-bet+ B cell phenotype. Finally, in vivo immunization studies revealed that when protein antigens are conjugated with DNA, the humoral immune response is blunted and acquires features associated with T-bet+ B cell differentiation. We propose that this mechanism integrating BCR, TLR9, and cytokine signals provides a peripheral checkpoint for DNA-containing antigens that, if circumvented by survival and differentiative cues, yields B cells with the autoimmune-associated T-bet+ phenotype.
Collapse
|
23
|
Li S, Liu W, Li Y, Zhao S, Liu C, Hu M, Yue W, Liu Y, Wang Y, Yang R, Xiang R, Liu F. Contribution of secondary Igkappa rearrangement to primary immunoglobulin repertoire diversification. Mol Immunol 2016; 78:193-206. [PMID: 27665270 DOI: 10.1016/j.molimm.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
Abs reactive to DNA and DNA/histone complexes are a distinguished characteristic of primary immunoglobulin repertoires in autoimmune B6.MRL-Faslpr and MRL/MpJ-Faslpr mice. These mice are defective in Fas receptor, which is critical for the apoptosis of autoreactive B cells by an extrinsic pathway. In the present study, we explored the possibility that bone marrow small pre-B and immature B cells from adult B6.MRL-Faslpr mice and MRL/MpJ-Faslpr mice respectively, which contain autoreactive B-cell antigen receptors (BCR) and manifest autoimmune syndromes, exhibit enhanced receptor editing patterns. Indeed, FASlpr pre B and immature B cells were shown to possess more ongoing replacements of non-productive (nP) than productive (P) primary VκJκ rearrangements. Significantly, the P vs nP ratios of these replaced primary rearrangements were 1:2, thus indicating that κ light-chain production appears not to inhibit secondary rearrangements. In addition, we identified multiple atypical rearrangements, such as Vκ cRS (cryptic recombination signals) cleavages. These results suggest that the onset of light chain secondary rearrangements persists similarly as a non-selected mode and independent of BCR autoreactivity during certain developmental windows of bone marrow B cells in lupus-prone mice and control, and leads us to propose the function of secondary, de novo Igκ rearrangements to increase BCR diversity.
Collapse
Affiliation(s)
- Shufang Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Liu
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, China
| | - Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Can Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Mengyun Hu
- Collage of Life Science, Nankai University, Tianjin, 300071, China
| | - Wei Yue
- Department of Neurology, Huanhu Hospital, Tianjin 300060, China
| | - Yanhua Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
24
|
The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation. Int J Mol Sci 2015; 17:ijms17010003. [PMID: 26703587 PMCID: PMC4730250 DOI: 10.3390/ijms17010003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.
Collapse
|
25
|
Naradikian MS, Hao Y, Cancro MP. Age-associated B cells: key mediators of both protective and autoreactive humoral responses. Immunol Rev 2015; 269:118-29. [DOI: 10.1111/imr.12380] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Martin S. Naradikian
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| | - Yi Hao
- Department of Microbiology; Tongji Medical College; Huazhong University of Science and Technology, Wuhan, China
| | - Michael P. Cancro
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine at the University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
26
|
Walter JE, Rosen LB, Csomos K, Rosenberg JM, Mathew D, Keszei M, Ujhazi B, Chen K, Lee YN, Tirosh I, Dobbs K, Al-Herz W, Cowan MJ, Puck J, Bleesing JJ, Grimley MS, Malech H, De Ravin SS, Gennery AR, Abraham RS, Joshi AY, Boyce TG, Butte MJ, Nadeau KC, Balboni I, Sullivan KE, Akhter J, Adeli M, El-Feky RA, El-Ghoneimy DH, Dbaibo G, Wakim R, Azzari C, Palma P, Cancrini C, Capuder K, Condino-Neto A, Costa-Carvalho BT, Oliveira JB, Roifman C, Buchbinder D, Kumanovics A, Franco JL, Niehues T, Schuetz C, Kuijpers T, Yee C, Chou J, Masaad MJ, Geha R, Uzel G, Gelman R, Holland SM, Recher M, Utz PJ, Browne SK, Notarangelo LD. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest 2015; 125:4135-48. [PMID: 26457731 DOI: 10.1172/jci80477] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Patients with mutations of the recombination-activating genes (RAG) present with diverse clinical phenotypes, including severe combined immune deficiency (SCID), autoimmunity, and inflammation. However, the incidence and extent of immune dysregulation in RAG-dependent immunodeficiency have not been studied in detail. Here, we have demonstrated that patients with hypomorphic RAG mutations, especially those with delayed-onset combined immune deficiency and granulomatous/autoimmune manifestations (CID-G/AI), produce a broad spectrum of autoantibodies. Neutralizing anti-IFN-α or anti-IFN-ω antibodies were present at detectable levels in patients with CID-G/AI who had a history of severe viral infections. As this autoantibody profile is not observed in a wide range of other primary immunodeficiencies, we hypothesized that recurrent or chronic viral infections may precipitate or aggravate immune dysregulation in RAG-deficient hosts. We repeatedly challenged Rag1S723C/S723C mice, which serve as a model of leaky SCID, with agonists of the virus-recognizing receptors TLR3/MDA5, TLR7/-8, and TLR9 and found that this treatment elicits autoantibody production. Altogether, our data demonstrate that immune dysregulation is an integral aspect of RAG-associated immunodeficiency and indicate that environmental triggers may modulate the phenotypic expression of autoimmune manifestations.
Collapse
|
27
|
Bonami RH, Thomas JW. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:4730-41. [PMID: 26432895 DOI: 10.4049/jimmunol.1500438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or whether this process is dysregulated in related autoimmunity. To resolve these issues, we developed an editing-competent model in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a nonautoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, because selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab')2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy.
Collapse
Affiliation(s)
- Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and
| | - James W Thomas
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232; and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville TN 37232
| |
Collapse
|
28
|
Sajadi MM, Farshidpour M, Brown EP, Ouyang X, Seaman MS, Pazgier M, Ackerman ME, Robinson H, Tomaras G, Parsons MS, Charurat M, DeVico AL, Redfield RR, Lewis GK. λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies. J Infect Dis 2015; 213:156-64. [PMID: 26347575 DOI: 10.1093/infdis/jiv448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/01/2015] [Indexed: 11/14/2022] Open
Abstract
The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response.
Collapse
Affiliation(s)
- Mohammad M Sajadi
- Institute of Human Virology, University of Maryland School of Medicine Department of Medicine, Baltimore VA Medical Center, Maryland
| | - Maham Farshidpour
- Institute of Human Virology, University of Maryland School of Medicine
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Xin Ouyang
- Institute of Human Virology, University of Maryland School of Medicine
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Marzena Pazgier
- Institute of Human Virology, University of Maryland School of Medicine
| | | | | | - Georgia Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Matthew S Parsons
- Department of Microbiology and Immunology, University of Melbourne, Australia
| | | | - Anthony L DeVico
- Institute of Human Virology, University of Maryland School of Medicine
| | - Robert R Redfield
- Institute of Human Virology, University of Maryland School of Medicine
| | - George K Lewis
- Institute of Human Virology, University of Maryland School of Medicine
| |
Collapse
|
29
|
Woods M, Zou YR, Davidson A. Defects in Germinal Center Selection in SLE. Front Immunol 2015; 6:425. [PMID: 26322049 PMCID: PMC4536402 DOI: 10.3389/fimmu.2015.00425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023] Open
Abstract
Germinal centers (GCs) are the primary site at which clonal expansion and affinity maturation of B cells occur. B cells encounter antigen and receive T cell help in the GC light zone (LZ) and then migrate to the dark zone where they proliferate and undergo somatic mutation before cycling back to the LZ for further rounds of selection. Tolerance to autoantigens is frequently lost de novo as GC B cells undergo class switching and somatic mutation. This loss of tolerance is regulated by a variety of mechanisms including cell death, failure to compete for T cell help, and failure to differentiate into effector cells. Systemic lupus erythematosus (SLE) is characterized by loss of tolerance to nucleic acid antigens. While defects in tolerance occur in the naïve repertoire of SLE patients, pathogenic autoantibodies also arise in the GC by somatic mutation from non-autoreactive precursors. Several B cell defects contribute to the loss of GC tolerance in SLE, including polymorphisms of genes encoded by the Sle1 locus, excess TLR7 signaling, defects in FcRIIB expression, or defects of B cell apoptosis. Extrinsic soluble factors, such as Type-1 IFN and B cell-activating factor, or an increased number of T follicular helper cells in the GC also alter B cell-negative selection. Finally, defects in clearance of apoptotic debris within the GC result in BCR-mediated internalization of nucleic acid containing material and stimulation of autoantibody production by endosomal TLR-driven mechanisms.
Collapse
Affiliation(s)
- Megan Woods
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| | - Yong-Rui Zou
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| |
Collapse
|
30
|
Williams JM, Bonami RH, Hulbert C, Thomas JW. Reversing Tolerance in Isotype Switch-Competent Anti-Insulin B Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:853-64. [PMID: 26109644 PMCID: PMC4506889 DOI: 10.4049/jimmunol.1403114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/30/2015] [Indexed: 12/22/2022]
Abstract
Autoreactive B lymphocytes that escape central tolerance and mature in the periphery are a liability for developing autoimmunity. IgG insulin autoantibodies that predict type 1 diabetes and complicate insulin therapies indicate that mechanisms for tolerance to insulin are flawed. To examine peripheral tolerance in anti-insulin B cells, we generated C57BL/6 mice that harbor anti-insulin VDJH-125 site directed to the native IgH locus (VH125(SD)). Class switch-competent anti-insulin B cells fail to produce IgG Abs following T cell-dependent immunization of VH125(SD) mice with heterologous insulin, and they exhibit markedly impaired proliferation to anti-CD40 plus insulin in vitro. In contrast, costimulation with LPS plus insulin drives robust anti-insulin B cell proliferation. Furthermore, VH125(SD) mice produce both IgM and IgG2a anti-insulin Abs following immunization with insulin conjugated to type 1 T cell-independent Brucella abortus ring test Ag (BRT). Anti-insulin B cells undergo clonal expansion in vivo and emerge as IgM(+) and IgM(-) GL7(+)Fas(+) germinal center (GC) B cells following immunization with insulin-BRT, but not BRT alone. Analysis of Igκ genes in VH125(SD) mice immunized with insulin-BRT reveals that anti-insulin Vκ from the preimmune repertoire is selected into GCs. These data demonstrate that class switch-competent anti-insulin B cells remain functionally silent in T cell-dependent immune responses, yet these B cells are vulnerable to reversal of anergy following combined BCR/TLR engagement that promotes Ag-specific GC responses and Ab production. Environmental factors that lead to infection and inflammation could play a critical yet underappreciated role in driving loss of tolerance and promoting autoimmune disease.
Collapse
Affiliation(s)
- Jonathan M Williams
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232; and Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Chrys Hulbert
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - James W Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232; and Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
31
|
Fraser LD, Zhao Y, Lutalo PMK, D'Cruz DP, Cason J, Silva JS, Dunn‐Walters DK, Nayar S, Cope AP, Spencer J. Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus. Eur J Immunol 2015; 45:2409-19. [PMID: 26036683 PMCID: PMC5102633 DOI: 10.1002/eji.201545599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/23/2015] [Accepted: 05/29/2015] [Indexed: 11/23/2022]
Abstract
The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa-deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE.
Collapse
Affiliation(s)
- Louise D. Fraser
- Programme in Infection and ImmunobiologyKing's College LondonLondonUK
| | - Yuan Zhao
- Programme in Infection and ImmunobiologyKing's College LondonLondonUK
| | | | - David P. D'Cruz
- Louise Coote Lupus Unit Guy's and St Thomas’ NHS TrustLondonUK
| | - John Cason
- Programme in Infection and ImmunobiologyKing's College LondonLondonUK
| | - Joselli S. Silva
- Programme in Infection and ImmunobiologyKing's College LondonLondonUK
| | | | - Saba Nayar
- Programme in Infection and ImmunobiologyKing's College LondonLondonUK
| | - Andrew P. Cope
- Academic Department of RheumatologyKing's College LondonLondonUK
| | - Jo Spencer
- Programme in Infection and ImmunobiologyKing's College LondonLondonUK
| |
Collapse
|
32
|
Xing Y, Ji Q, Lin Y, Fu M, Gao J, Zhang P, Hu X, Feng L, Liu Y, Han H, Li W. Positive selection of natural poly-reactive B cells in the periphery occurs independent of heavy chain allelic inclusion. PLoS One 2015; 10:e0125747. [PMID: 25993514 PMCID: PMC4437983 DOI: 10.1371/journal.pone.0125747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/25/2015] [Indexed: 11/28/2022] Open
Abstract
Natural autoreactive B cells are important mediators of autoimmune diseases. Receptor editing is known to play an important role in both central and peripheral B cell tolerance. However, the role of allelic inclusion in the development of natural autoreactive B cells is not clear. Previously, we generated μ chain (TgVH3B4I) and μ/κ chains (TgVH/L3B4) transgenic mice using transgene derived from the 3B4 hybridoma, which produce poly-reactive natural autoantibodies. In this study, we demonstrate that a considerable population of B cells edited their B cells receptors (BCRs) via light chain or heavy chain allelic inclusion during their development in TgVH3B4I mice. Additionally, allelic inclusion occurred more frequently in the periphery and promoted the differentiation of B cells into marginal zone or B-1a cells in TgVH3B4I mice. B cells from TgVH/L3B4 mice expressing the intact transgenic 3B4 BCR without receptor editing secreted poly-reactive 3B4 antibody. Interestingly, however, B cell that underwent allelic inclusion in TgVH3B4I mice also produced poly-reactive autoantibodies in vivo and in vitro. Our findings suggest that receptor editing plays a minor role in the positive selection of B cells expressing natural poly-reactive BCRs, which can be positively selected through heavy chain allelic inclusion to retain their poly-reactivity in the periphery.
Collapse
Affiliation(s)
- Ying Xing
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Endocrinology and Metabolism Disease, Xijing Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Qiuhe Ji
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jixin Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Zhang
- Department of Otolaryngology Head and Neck surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingbin Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Lei Feng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Yufeng Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Boneparth A, Huang W, Bethunaickan R, Woods M, Sahu R, Arora S, Akerman M, Lesser M, Davidson A. TLR7 influences germinal center selection in murine SLE. PLoS One 2015; 10:e0119925. [PMID: 25794167 PMCID: PMC4368537 DOI: 10.1371/journal.pone.0119925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/17/2015] [Indexed: 12/05/2022] Open
Abstract
TLR7 enhances germinal center maturation and migration of B cells to the dark zone where proliferation and somatic hypermutation occur. Our goal was to determine how Tlr7 dose influences selection of the autoreactive B cell repertoire in NZW/BXSB. Yaa mice bearing the site-directed heavy chain transgene 3H9 that encodes for the TLR7 regulated anti-CL response. To create a physiologic setting in which autoreactive B cells compete for survival with non-autoreactive B cells, we generated bone marrow chimeras in which disease onset occurred with similar kinetics and the transferred 3H9+ female non-Yaa, male Yaa or male TLR7-/Yaa cells could be easily identified by positivity for GFP. Deletion of 3H9 B cells occurred in the bone marrow and the remaining 3H9 follicular B cells manifested a decrease in surface IgM. Although there were differences in the naïve repertoire between the chimeras it was not possible to distinguish a clear pattern of selection against lupus related autoreactivity in TLR7-/Yaa or female chimeras. By contrast, preferential expansion of 3H9+ B cells occurred in the germinal centers of male Yaa chimeras. In addition, although all chimeras preferentially selected 3H9/Vκ5 encoded B cells into the germinal center and plasma cell compartments, 3H9 male Yaa chimeras had a more diverse repertoire and positively selected the 3H9/Vκ5-48/Jκ4 pair that confers high affinity anti-cardiolipin activity. We were unable to demonstrate a consistent effect of Tlr7 dose or Yaa on somatic mutations. Our data show that TLR7 excess influences the selection, expansion and diversification of B cells in the germinal center, independent of other genes in the Yaa locus.
Collapse
Affiliation(s)
- Alexis Boneparth
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Weiqing Huang
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Ramalingam Bethunaickan
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Megan Woods
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Ranjit Sahu
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Shitij Arora
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Meredith Akerman
- Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Martin Lesser
- Biostatistics Unit, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, 11030, United States of America
- * E-mail:
| |
Collapse
|
34
|
Granato A, Chen Y, Wesemann DR. Primary immunoglobulin repertoire development: time and space matter. Curr Opin Immunol 2015; 33:126-31. [PMID: 25797714 DOI: 10.1016/j.coi.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/07/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The primary immunoglobulin repertoire develops via opposing forces of expanding diversification balanced by contracting selection mechanisms. The resulting shape is essential for host health and immune fitness. While the molecular mechanisms of Ig diversification have largely been defined, selection forces shaping emerging Ig repertoires are poorly understood. During lifetime, human and mouse early B cell development occurs at distinct locations-beginning in fetal liver before transferring to bone marrow and spleen by the end of gestation. During an early life window of time, the murine gut lamina propria harbors developing immature B cells in proximity to intestinal contents such as commensal microbes and dietary antigens. Location and timing of early B cell development may thus endow neighboring antigens with primary repertoire-shaping capabilities.
Collapse
Affiliation(s)
- Alessandra Granato
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yuezhou Chen
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Silva-Sanchez A, Liu CR, Vale AM, Khass M, Kapoor P, Elgavish A, Ivanov II, Ippolito GC, Schelonka RL, Schoeb TR, Burrows PD, Schroeder HW. Violation of an evolutionarily conserved immunoglobulin diversity gene sequence preference promotes production of dsDNA-specific IgG antibodies. PLoS One 2015; 10:e0118171. [PMID: 25706374 PMCID: PMC4338297 DOI: 10.1371/journal.pone.0118171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/08/2015] [Indexed: 11/24/2022] Open
Abstract
Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3), which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH) gene segment sequence content by reading frame (RF) is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1), which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies.
Collapse
Affiliation(s)
- Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cun Ren Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andre M. Vale
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Program in Immunobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mohamed Khass
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Genetic Engineering Division, National Research Center of Egypt, Ad Doqi, Egypt
| | - Pratibha Kapoor
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ada Elgavish
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ivaylo I. Ivanov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gregory C. Ippolito
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robert L. Schelonka
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Trenton R. Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter D. Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Harry W. Schroeder
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
36
|
Detanico T, Guo W, Wysocki LJ. Predominant role for activation-induced cytidine deaminase in generating IgG anti-nucleosomal antibodies of murine SLE. J Autoimmun 2015; 58:67-77. [PMID: 25634361 DOI: 10.1016/j.jaut.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
Serum IgG anti-nuclear antibodies (ANA) directed to complexes of DNA and histones are a hallmark of systemic lupus erythematosus (SLE) and reflect a failure in lymphocyte self-tolerance. A prior study utilizing spontaneously autoimmune B6.Nba2 mice deficient in terminal deoxynucleotidyl transferase (TdT) and with heterozygous deficiencies in Jh and Igk loci underscored the importance of somatic hypermutation (SHM) as a major generator of SLE-associated ANA. This interpretation had to be qualified because of severely limited opportunities for receptor editing and restricted VHCDR3 diversity. Therefore, we performed the converse study using mice that carried functional Tdt genes and wild type Jh and Igk loci but that could not undergo SHM. Analyses of ANA and ANA-producing hybridomas from B6.Nba2 Aicda(-/-) mice revealed that few animals produced high titers of the prototypical ANA directed to complexes of histones and DNA, that this response was delayed and that those cells that did produce such antibody exhibited limited clonal expansion, unusual Jk use and only infrequent dual receptor expression. This, together with the additional finding of an intrinsic propensity for SHM to generate Arg codons selectively in CDRs, reinforce the view that most IgG autoimmune clones producing prototypical anti-nucleosome antibodies in wild type mice are created by SHM.
Collapse
Affiliation(s)
- Thiago Detanico
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | - Wenzhong Guo
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | - Lawrence J Wysocki
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA.
| |
Collapse
|
37
|
|
38
|
Pelanda R. Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity? Curr Opin Immunol 2014; 27:53-9. [PMID: 24549093 DOI: 10.1016/j.coi.2014.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Receptor editing, a major mechanism of B cell tolerance, can also lead to allelic inclusion at the immunoglobulin light chain loci and the development of B cells that coexpress two different immunoglobulin light chains and, therefore, two antibody specificities. Most allelically included B cells express two κ chains, although rare dual-λ cells are also observed. Moreover, these cells typically coexpress an autoreactive and a nonautoreactive antibody. Thus, allelically included B cells could operate like 'Trojan horses': expression and function of the nonautoreactive antigen receptors might promote their maturation, activation, and terminal differentiation into effector cells that also express and secrete autoantibodies. Indeed, dual-κ B cells are greatly expanded into effector B cell subsets in some autoimmune mice, thus indicating they might play an important role in disease.
Collapse
Affiliation(s)
- Roberta Pelanda
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206, USA.
| |
Collapse
|
39
|
Kalinina O, Wang Y, Sia K, Radic M, Cazenave PA, Weigert M. Light chain editors of anti-DNA receptors in human B cells. ACTA ACUST UNITED AC 2014; 211:357-64. [PMID: 24470445 PMCID: PMC3920568 DOI: 10.1084/jem.20122340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Receptor editing is a mechanism of self-tolerance used in newly generated B cells. The expressed heavy (H) or light (L) chain of an autoreactive receptor is replaced by upstream V genes which eliminate or modify autoreactivity. Editing of anti-DNA receptors has been characterized in anti-DNA transgenic mouse models including 3H9, 3H9/56R, and their revertant 3H9GL. Certain L chains, termed editors, rescue anti-DNA B cells by neutralizing or modifying DNA binding of the H chain. This editing mechanism acts on the natural H chain repertoire; endogenous H chains with anti-DNA features are expressed primarily in combination with editor L chains. We ask whether a similar set of L chains exists in the human repertoire, and if so, do they edit H chains with anti-DNA signatures? We compared the protein sequences of mouse editors to all human L chains and found several human L chains similar to mouse editors. These L chains diminish or veto anti-DNA binding when expressed with anti-DNA H chains. The human H chains expressed with these L chains also have relatively high arginine (Arg) content in the H chain complementarity determining region (H3), suggesting that receptor editing plays a role in establishing tolerance to DNA in humans.
Collapse
Affiliation(s)
- Olga Kalinina
- Gwen Knapp Center for Lupus and Immunology Research, Department of Pathology, University of Chicago, Chicago, IL 60637
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Giltiay NV, Lu Y, Cullen JL, Jørgensen TN, Shlomchik MJ, Li X. Spontaneous loss of tolerance of autoreactive B cells in Act1-deficient rheumatoid factor transgenic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2155-63. [PMID: 23904159 DOI: 10.4049/jimmunol.1300152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Self-reactive B cells in BALB/c AM14 transgenic (Tg) rheumatoid factor mice are not subject to central or peripheral tolerization. Instead, they remain at a stage of "clonal ignorance"; that is, they do not proliferate and differentiate into Ab-forming cells. However, the immunoregulatory mechanisms that prevent autoantibody production in these mice remain unclear. In this study, we show that crossing AM14 Tg mice to a mouse strain deficient in Act1, a molecule involved in the regulation of BAFF-R and CD40-signaling in B cells, results in spontaneous activation of AM14 Tg B cells and production of AM14-specific Abs. Three- to 5-mo-old AM14 Tg Act1(-/-) mice showed significant expansion of AM14 Tg B cells, including a 2- to 3-fold increase in the spleen and cervical lymph nodes compared with AM14 Tg Act1(+/+) mice. Furthermore, in the presence of endogenous self-Ag (IgH(a) congenic background), AM14 Tg Act1(-/-) B cells were spontaneously activated and differentiated into Ab-forming cells. In contrast with previous studies using AM14 Tg MLR.Fas(lpr) mice, we found that a significant number of AM14 Tg cells AM14 Tg Act1(-/-) mice displayed phenotypic characteristics of germinal center B cells. Anti-CD40L treatment significantly limited the expansion and activation of AM14 Tg Act1(-/-) B cells, suggesting that CD40L-mediated signals are required for the retention of these cells. Our results support the important role of Act1 in the regulation of self-reactive B cells and reveal how Act1 functions to prevent the production of autoantibodies.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
42
|
Antibodies that bind complex glycosaminoglycans accumulate in the Golgi. Proc Natl Acad Sci U S A 2013; 110:11958-63. [PMID: 23818632 DOI: 10.1073/pnas.1308620110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Light (L) chains that edit anti-DNA heavy (H) chains rescue B-cell development by suppressing DNA binding. However, exceptional editor L chains allow B cells to reach splenic compartments even though their B-cell receptors remain autoreactive. Such incompletely edited B cells express multireactive antibodies that accumulate in the Golgi and are released as insoluble, amyloid-like immune complexes. Here, we examine examples of incomplete editing from the analysis of variable to joining (VJ) gene junction of the variable (Vλx) editor L chain. When paired with the anti-DNA heavy chain, VH56R, the Vλx variants yield antibodies with differing specificities, including glycosaminoglycan reactivity. Our results implicate these specificities in the evasion of receptor editing through intracellular sequestration of IgM and the release of insoluble IgM complexes. Our findings can be extrapolated to human L chains and have implications for understanding a latent component of the Ig repertoire that could exert pathogenic and protective functions.
Collapse
|
43
|
Scherer HU, Burmester GR. Adaptive immunity in rheumatic diseases: bystander or pathogenic player? Best Pract Res Clin Rheumatol 2013; 25:785-800. [PMID: 22265261 DOI: 10.1016/j.berh.2011.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/14/2011] [Indexed: 12/24/2022]
Abstract
Rheumatic diseases comprise a wide spectrum of different conditions. Some are caused by disturbances of the adaptive immune system, while defects in innate immune responses have been identified for others. In between are a variety of multifactorial diseases for which the evidence for a causative involvement of the adaptive immune system is still controversial. In these cases, availability of novel drugs that target key players of the adaptive immune system have improved our understanding of the relevance of adaptive immunity to the disease process, but it has also generated unprecedented findings. Rheumatoid arthritis (RA) is a prototypic example of a disease in which the relative contribution of adaptive immunity to disease pathogenesis is incompletely understood. Although numerous markers have been identified that reflect an activated adaptive immune system, several caveats render interpretation of these findings difficult. For one, the very early immune responses initiating disease are likely to take place before an individual is identified as a patient, and are thus difficult to study in the human. Furthermore, increasing evidence points to pathogenetically distinct subgroups within the clinical diagnosis RA, offering the possibility that adaptive immune responses might be relevant to one subgroup but not the other. In addition, many indications for an adaptive immune system involvement are based on associations for which the underlying mechanism is often unknown. Finally, therapeutic interventions targeting the adaptive immune system have generated heterogeneous results. The present review addresses these issues by placing adaptive immune responses in the context of rheumatic diseases, and by reviewing the evidence for a contribution of adaptive immunity to RA.
Collapse
Affiliation(s)
- Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, RC Leiden, The Netherlands.
| | | |
Collapse
|
44
|
Abstract
A large antibody repertoire is generated in developing B cells in the bone marrow. Before these B cells achieve immunocompetence, those expressing autospecificities must be purged. To that end, B cells within the bone marrow and just following egress from the bone marrow are subject to tolerance induction. Once B cells achieve immunocompetence, the antibody repertoire can be further diversified by somatic hypermutation of immunoglobulin genes in B cells that have been activated by antigen and cognate T cell help and have undergone a germinal center (GC) response. This process also leads to the generation of autoreactive B cells which must be again purged to protect the host. Thus, B cells within the GC and just following egress from the GC are also subject to tolerance induction. Available data suggest that B cell intrinsic processes triggered by signaling through the B cell receptor activate tolerance mechanisms at both time points. Recent data suggest that GC and post-GC B cells are also subject to B cell extrinsic tolerance mechanisms mediated through soluble and membrane-bound factors derived from various T cell subsets.
Collapse
|
45
|
Abstract
CD40L, a member of the tumor necrosis factor (TNF) ligand family, is overexpressed in patients with systemic lupus erythematosus and in lupus mouse models. Previously, we demonstrated that B cells producing pathogenic anti-Sm/RNP antibodies are deleted in the splenic marginal zone (MZ), and that MZ deletion of these self-reactive B cells is reversed by excess CD40L, leading to autoantibody production. To address whether excess CD40L also perturbs clonal anergy, another self-tolerance mechanism of B cells whereby B cells are functionally inactivated and excluded from follicles in the peripheral lymphoid tissue, we crossed CD40L-transgenic mice with the anti-DNA H chain transgenic mouse line 3H9, in which Ig λ1+ anti-DNA B cells are anergized. However, the percentage and localization of Ig λ1+ B cells in CD40L/3H9 double transgenic mice were no different from those in 3H9 mice. This result indicates that excess CD40L does not perturb clonal anergy, including follicular exclusion. Thus, MZ deletion is distinct from clonal anergy, and is more liable to tolerance break.
Collapse
Affiliation(s)
- Mohammad Aslam
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yusuke Kishi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| |
Collapse
|
46
|
Andrews SF, Zhang Q, Lim S, Li L, Lee JH, Zheng NY, Huang M, Taylor WM, Farris AD, Ni D, Meng W, Luning Prak ET, Wilson PC. Global analysis of B cell selection using an immunoglobulin light chain-mediated model of autoreactivity. ACTA ACUST UNITED AC 2012; 210:125-42. [PMID: 23267014 PMCID: PMC3549719 DOI: 10.1084/jem.20120525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The nature of the immunoglobulin light chain affects peripheral B cell tolerance and autoreactivity. The important subtleties of B cell tolerance are best understood in a diverse immunoglobulin (Ig) repertoire context encoding a full spectrum of autoreactivity. To achieve this, we used mice expressing Igκ transgenes that confer varying degrees of autoreactivity within a diverse heavy chain (HC) repertoire. These transgenes, coupled with a biomarker to identify receptor-edited cells and combined with expression cloning of B cell receptors, allowed us to analyze tolerance throughout B cell development. We found that both the nature of the autoantigen and the Ig HC versus light chain (LC) contribution to autoreactivity dictate the developmental stage and mechanism of tolerance. Furthermore, although selection begins in the bone marrow, over one third of primary tolerance occurs in the periphery at the late transitional developmental stage. Notably, we demonstrate that the LC has profound effects on tolerance and can lead to exacerbated autoantibody production.
Collapse
Affiliation(s)
- Sarah F Andrews
- Section of Rheumatology, Department of Medicine, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The construction of a large library of single-chain Fv (scFv) antibody fragments involves a random assortment of heavy and light chains. Although useful for the production of recombinant antibodies, this method is not totally adapted to the study of the antibody repertoire formed in vivo during, for example, autoimmune diseases.We describe here, the use of the in-cell PCR together with Cre-recombination applied to human B cells to obtain in situ pairing of the variable (V) region genes of the immunoglobulin heavy (H) and light (L) chains. Our method is based on amplification and recombination of the VH and VL genes within CD19+ B cells isolated from human tissue. Nested primers were designed to amplify the known major human VH and VL gene families. After reverse transcription PCR and three rounds of PCR including recombination between VH and VL using the Cre-loxP system, the 800-bp band corresponding to scFv was cloned and human scFv fragments selected.This in-cell amplification, association, and scFv selection procedure is a potentially useful tool for the study of antibody repertoire and the VH/VL pairing that occurs during the diseases' process.
Collapse
|
48
|
Yu M, Chen Y, He Y, Podd A, Fu G, Wright JA, Kleiman E, Khan WN, Wen R, Wang D. Critical role of B cell lymphoma 10 in BAFF-regulated NF-κB activation and survival of anergic B cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5185-93. [PMID: 23087406 DOI: 10.4049/jimmunol.1102952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anergy is a key physiological mechanism for restraining self-reactive B cells. A marked portion of peripheral B cells are anergic B cells that largely depend on BAFF for survival. BAFF activates the canonical and noncanonical NF-κB pathways, both of which are required for B cell survival. In this study we report that deficiency of the adaptor protein B cell lymphoma 10 (Bcl10) impaired the ability of BAFF to support B cell survival in vitro, and it specifically increased apoptosis in anergic B cells in vivo, dramatically reducing anergic B cells in mice. Bcl10-dependent survival of self-reactive anergic B cells was confirmed in the Ig hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model of B cell anergy. Furthermore, we found that BAFF stimulation induced Bcl10 association with IκB kinase β, a key component of the canonical NF-κB pathway. Consistently, Bcl10-deficient B cells were impaired in BAFF-induced IκBα phosphorylation and formation of nuclear p50/c-Rel complexes. Bcl10-deficient B cells also displayed reduced expression of NF-κB2/p100, severely reducing BAFF-induced nuclear accumulation of noncanonical p52/RelB complexes. Consequently, Bcl10-deficient B cells failed to express Bcl-x(L), a BAFF-induced NF-κB target gene. Taken together, these data demonstrate that Bcl10 controls BAFF-induced canonical NF-κB activation directly and noncanonical NF-κB activation indirectly. The BAFF-R/Bcl10/NF-κB signaling axis plays a critical role in peripheral B cell tolerance by regulating the survival of self-reactive anergic B cells.
Collapse
Affiliation(s)
- Mei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Moisini I, Huang W, Bethunaickan R, Sahu R, Ricketts PG, Akerman M, Marion T, Lesser M, Davidson A. The Yaa locus and IFN-α fine-tune germinal center B cell selection in murine systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2012; 189:4305-12. [PMID: 23024275 DOI: 10.4049/jimmunol.1200745] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Male NZW/BXSB.Yaa (W/B) mice express two copies of TLR7 and develop pathogenic autoantibodies, whereas females with only one copy of TLR7 have attenuated disease. Our goal was to analyze the regulation of the autoantibody response in male and female W/B mice bearing the autoreactive site-directed H chain transgene 3H9. Serum anti-dsDNA Abs appeared in males at 12 wk, and most had high-titer IgG anti-dsDNA and anti-cardiolipin Abs and developed >300 mg/dl proteinuria by 8 mo. Females had only low-titer IgG anti-cardiolipin Abs, and none developed proteinuria by 1 y. Males had a smaller marginal zone than females with a repertoire that was distinct from the follicular repertoire, indicating that the loss of marginal zone B cells was not due to diversion to the follicular compartment. Vk5-43 and Vk5-48, which were rare in the naive repertoire, were markedly overrepresented in the germinal center repertoire of both males and females, but the VJ junctions differed between males and females with higher-affinity autoreactive B cells being selected into the germinal centers of males. Administration of IFN-α to females induced anti-cardiolipin and anti-DNA autoantibodies and proteinuria and was associated with a male pattern of junctional diversity in Vk5-43 and Vk5-48. Our studies are consistent with the hypothesis that presence of the Yaa locus, which includes an extra copy of Tlr7, or administration of exogenous IFN-α relaxes the stringency for selection in the germinal centers resulting in increased autoreactivity of the Ag-driven B cell repertoire.
Collapse
Affiliation(s)
- Ioana Moisini
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
García-Muñoz R, Roldan Galiacho V, Llorente L. Immunological aspects in chronic lymphocytic leukemia (CLL) development. Ann Hematol 2012; 91:981-96. [PMID: 22526361 PMCID: PMC3368117 DOI: 10.1007/s00277-012-1460-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/26/2012] [Indexed: 01/23/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens-including apoptotic bodies-in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/physiology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Gene Expression Profiling
- Humans
- Immune Tolerance/genetics
- Immune Tolerance/physiology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Models, Biological
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/physiology
- Somatic Hypermutation, Immunoglobulin/genetics
- Somatic Hypermutation, Immunoglobulin/physiology
Collapse
Affiliation(s)
- Ricardo García-Muñoz
- Hematology Department, Hospital San Pedro, c/Piqueras 98, Logroño, La Rioja, 26006, Spain.
| | | | | |
Collapse
|