1
|
Cresswell O, Blankenship K, Kaplan BLF. Development of an in vitro peptide-stimulated T cell assay to evaluate immune effects by cannabinoid compounds. Int Immunopharmacol 2024; 129:111654. [PMID: 38335658 PMCID: PMC10903979 DOI: 10.1016/j.intimp.2024.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Previous studies demonstrated that cannabinoids exhibit immunosuppressive effects in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). To ask questions about treatment timing and investigate mechanisms for immune suppression by the plant-derived cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), an in vitro peptide stimulation of naive splenocytes (SPLC) was developed to mimic T cell activation in EAE. The peptide was derived from the myelin oligodendrocyte glycoprotein (MOG) protein, which is one component of the myelin sheath. MOG peptide is typically used with an immune adjuvant to trigger MOG-reactive T cells that attack MOG-containing tissues, causing demyelination and clinical disease in EAE. To develop the in vitro model, naïve SPLC were stimulated with MOG peptide on day 0 and restimulated on day 4. Cytokine analyses revealed that CBD and THC suppressed MOG peptide-stimulated cytokine production. Flow cytometric analysis showed that intracellular cytokines could be detected in CD4+ and CD8+ T cells. To determine if intracellular calcium was altered in the cultures, cells were stimulated for 4 days to assess the state of the cells at the time of MOG peptide restimulation. Both cannabinoid-treated cultures had a smaller population of the calcium-positive population as compared to vehicle-treated cells. These results demonstrate the establishment of an in vitro model that can be used to mimic MOG-reactive T cell stimulation in vivo.
Collapse
Affiliation(s)
- Olivia Cresswell
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States
| | - Karis Blankenship
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, United States.
| |
Collapse
|
2
|
Richard AC, Ma CY, Marioni JC, Griffiths GM. Cytotoxic T lymphocytes require transcription for infiltration but not target cell lysis. EMBO Rep 2023; 24:e57653. [PMID: 37860838 PMCID: PMC10626425 DOI: 10.15252/embr.202357653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Effector cytotoxic T lymphocytes (CTLs) are critical for ridding the body of infected or cancerous cells. CTL T cell receptor (TCR) ligation not only drives the delivery and release of cytolytic granules but also initiates a new wave of transcription. In order to address whether TCR-induced transcriptomic changes impact the ability of CTLs to kill, we asked which genes are expressed immediately after CTLs encounter targets and how CTL responses change when inhibiting transcription. Our data demonstrate that while expression of cytokines/chemokines and transcriptional machinery depend on transcription, cytotoxic protein expression and cytolytic activity are relatively robust to transcription blockade, with CTLs lysing nearby target cells for several hours after actinomycin D treatment. Monitoring CTL movement among target cells after inhibiting transcription demonstrates an infiltration defect that is not rectified by provision of exogenous cytokine/chemokine gradients, indicating a cell-intrinsic transcriptional requirement for infiltration. Together, our results reveal differential molecular control of CTL functions, separating recruitment and infiltration from cytolysis.
Collapse
Affiliation(s)
- Arianne C Richard
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Present address:
Immunology ProgrammeThe Babraham InstituteCambridgeUK
| | - Claire Y Ma
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - John C Marioni
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | | |
Collapse
|
3
|
Tumor necrosis factor-α and matrix metalloproteinase-9 cooperatively exacerbate neurovascular degeneration in the neonatal rat retina. Cell Tissue Res 2022; 390:173-187. [PMID: 35895162 DOI: 10.1007/s00441-022-03670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Matrix metalloproteinases (MMPs) and tumor necrosis factor (TNF)-α contribute to the pathogenesis of several ocular diseases. Previous studies have shown that MMP-9 activation plays an important role in capillary degeneration in injured retinas. In this study, we aimed to determine the roles of TNF-α in capillary degeneration and MMP-9 activation in the injured retina. In rats, retinal injury was induced by intravitreal injection of N-methyl-D-aspartic acid (NMDA, 200 nmol) at postnatal day 7. We examined (1) the effects of blocking MMP-9 and TNF-α signaling pathway on capillary degeneration, (2) changes in protein levels and distribution of MMP-9 and TNF-α, and (3) the interaction between MMP-9 and TNF-α in regulating the expression level of each protein in retinas of NMDA-injected eyes. Intravitreal injection of GM6001, an MMP inhibitor, or TNF-α neutralizing antibody (anti-TNF-α Ab) attenuated capillary degeneration in retinas of NMDA-injected eyes. Protein levels of TNF-α increased 2 h after NMDA injection, whereas those of MMP-9 increased 4 h after the injection. Anti-TNF-α Ab suppressed activation of MMP-9 in retinas of NMDA-injected eyes, whereas GM6001 diminished the TNF-α protein expression. Incubation of recombinant TNF-α with supernatants of homogenized retina increased protein levels and activity of MMP-9. These results suggest that TNF-α and MMP-9 collaboratively increase their expression levels in the retina following neurodegeneration, thus leading to retinal capillary degeneration. The cooperative interaction between MMP-9 and TNF-α could be involved in the exacerbation of retinal neurovascular degeneration.
Collapse
|
4
|
Kim W, Kim HJ, Trinh NT, Yeon HR, Kim JH, Choi IA, Kim HA, Jung JY, Lee KE. Association between nuclear factor of activated T cells C2 polymorphisms and treatment response in rheumatoid arthritis patients receiving tumor necrosis factor-alpha inhibitors. Pharmacogenet Genomics 2022; 32:10-15. [PMID: 34320607 DOI: 10.1097/fpc.0000000000000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Nuclear factor of activated T cells C2 (NFATC2) is known as a member of the transcription family and enhances tumor necrosis factor-alpha (TNF-α) synthesis in human T cells at the gene transcription level. Although NFATC2 has a potential role in rheumatoid arthritis (RA) progression and treatment, no study has investigated the association between NFATC2 gene polymorphisms and response status in RA patients receiving TNF-α inhibitors. This study aimed to examine the effects of polymorphisms in NFATC2, a TNF-α transcription factor, on response to TNF-α inhibitors. METHODS This prospective observational study was performed in two centers. Seven single nucleotide polymorphisms (SNPs) were investigated. Good responders were defined as patients with disease activity score (DAS)28 ≤3.2 after 6 months of treatment. Logistic regression analyses were used to investigate the association between genetic polymorphisms and response to the treatment. To test the model's goodness of fit, a Hosmer-Lemeshow test was performed. RESULTS This study included 98 patients, among whom 46 showed favorable responses to the treatment. Patients with hypertension revealed an approximately three-fold lower response to TNF-α inhibitors compared to those without hypertension (23.5 vs. 76.5%; P = 0.049). After adjusting for covariates, C allele carriers of NFATC2 rs3787186 exhibited approximately three-fold lower rates of treatment response compared to those with TT genotype (P = 0.037). The Hosmer-Lemeshow test showed that the fitness of the multivariable analysis model was satisfactory (χ2 = 9.745; 8 degrees of freedom; P = 0.283). CONCLUSION This study suggested an association between the C allele of rs3787186 and treatment response in RA patients receiving TNF-α inhibitors.
Collapse
Affiliation(s)
- Woorim Kim
- College of Pharmacy, Chungbuk National University, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si
| | - Hyun Jeong Kim
- College of Pharmacy, Chungbuk National University, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si
| | - Nga Thi Trinh
- College of Pharmacy, Chungbuk National University, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si
| | - Ha Rim Yeon
- College of Pharmacy, Chungbuk National University, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju-si
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Worldcup-ro, Yeongtong-gu, Suwon
| | - In Ah Choi
- Division of Rheumatology, Department of Internal Medicine, Chungbuk National University Hospital, 1sunhwan-ro, Seowon-gu, Cheongju
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Republic of Korea
| | - Kyung Eun Lee
- Department of Rheumatology, Ajou University School of Medicine, Worldcup-ro, Yeongtong-gu, Suwon, Republic of Korea
| |
Collapse
|
5
|
Lin CC, Law BF, Hettick JM. MicroRNA-mediated calcineurin signaling activation induces CCL2, CCL3, CCL5, IL8, and chemotactic activities in 4,4'-methylene diphenyl diisocyanate exposed macrophages. Xenobiotica 2021; 51:1436-1452. [PMID: 34775880 DOI: 10.1080/00498254.2021.2005851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Occupational exposure to 4,4'-methylene diphenyl diisocyanate (MDI), the most widely used monomeric diisocyanate, is one of the leading causes of occupational asthma (OA). Previously, we identified microRNA (miR)-206-3p/miR-381-3p-mediated PPP3CA/calcineurin signalling regulated iNOS transcription in macrophages and bronchoalveolar lavage cells (BALCs) after acute MDI exposure; however, whether PPP3CA/calcineurin signalling participates in regulation of other asthma-associated mediators secreted by macrophages/BALCs after MDI exposure is unknown.Several asthma-associated, macrophage-secreted mediator mRNAs from MDI exposed murine BALCs and MDI-glutathione (GSH) conjugate treated differentiated THP-1 macrophages were analysed using RT-qPCR.Endogenous IL1B, TNF, CCL2, CCL3, CCL5, and TGFB1 were upregulated in MDI or MDI-GSH conjugate exposed BALCs and macrophages, respectively. Calcineurin inhibitor tacrolimus (FK506) attenuated the MDI-GSH conjugate-mediated induction of CCL2, CCL3, CCL5, and CXCL8/IL8 but not others. Transfection of either miR-inhibitor-206-3p or miR-inhibitor-381-3p in macrophages induced chemokine CCL2, CCL3, CCL5, and CXCL8 transcription, whereas FK506 attenuated the miR-inhibitor-206-3p or miR-inhibitor-381-3p-mediated effects. Finally, MDI-GSH conjugate treated macrophages showed increased chemotactic ability to various immune cells, which may be attenuated by FK506.In conclusion, these results indicate that MDI exposure to macrophages/BALCs may recruit immune cells into the airway via induction of chemokines by miR-206-3p and miR-381-3p-mediated calcineurin signalling activation.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Brandon F Law
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Justin M Hettick
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
6
|
Ye M, Wang C, Zhu J, Chen M, Wang S, Li M, Lu Y, Xiao P, Zhou M, Li X, Zhou R. An NF-κB-responsive long noncoding RNA, PINT, regulates TNF-α gene transcription by scaffolding p65 and EZH2. FASEB J 2021; 35:e21667. [PMID: 34405442 DOI: 10.1096/fj.202002263r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are central regulators of the inflammatory response and play an important role in inflammatory diseases. PINT has been reported to be involved in embryonic development and tumorigenesis. However, the potential functions of PINT in the innate immune system are largely unknown. Here, we revealed the transcriptional regulation of inflammatory genes by PINT, whose expression is primarily dependent on the NF-κB signaling pathway in human and mouse macrophage and intestinal epithelial cell lines. Functionally, PINT selectively regulates the expression of TNF-α in basal and LPS-stimulated cells. Mechanistically, PINT acts as a modular scaffold of p65 and EZH2 to coordinate their localization and specify their binding to the target genes. Further, a high expression level of PINT was detected in intestinal mucosal tissues from patients with ulcerative colitis (UC). Together, these findings demonstrate that PINT acts as an activator of inflammatory responses, highlighting the importance of this lncRNA as a potential therapeutic target in infectious diseases and inflammatory diseases.
Collapse
Affiliation(s)
- Mengling Ye
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, P. R. China.,Department of Research, Tumor Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Cheng Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Jie Zhu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Shuhong Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Mingxuan Li
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Yajing Lu
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Pingping Xiao
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Mengsi Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiaoqing Li
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Basic Medical Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
7
|
Jasenosky LD, Nambu A, Tsytsykova AV, Ranjbar S, Haridas V, Kruidenier L, Tough DF, Goldfeld AE. Identification of a Distal Locus Enhancer Element That Controls Cell Type-Specific TNF and LTA Gene Expression in Human T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2479-2488. [PMID: 32978279 DOI: 10.4049/jimmunol.1901311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
The human TNF/LT locus genes TNF, LTA, and LTB are expressed in a cell type-specific manner. In this study, we show that a highly conserved NFAT binding site within the distal noncoding element hHS-8 coordinately controls TNF and LTA gene expression in human T cells. Upon activation of primary human CD4+ T cells, hHS-8 and the TNF and LTA promoters display increased H3K27 acetylation and nuclease sensitivity and coordinate induction of TNF, LTA, and hHS-8 enhancer RNA transcription occurs. Functional analyses using CRISPR/dead(d)Cas9 targeting of the hHS-8-NFAT site in the human T cell line CEM demonstrate significant reduction of TNF and LTA mRNA synthesis and of RNA polymerase II recruitment to their promoters. These studies elucidate how a distal element regulates the inducible cell type-specific gene expression program of the human TNF/LT locus and provide an approach for modulation of TNF and LTA transcription in human disease using CRISPR/dCas9.
Collapse
Affiliation(s)
- Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Aya Nambu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Alla V Tsytsykova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Program in Hematology, Boston Children's Hospital, Boston, MA 02115
| | - Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Viraga Haridas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | | | - David F Tough
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage SG1 2NY, United Kingdom
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115;
| |
Collapse
|
8
|
Targeting the NFAT:AP-1 transcriptional complex on DNA with a small-molecule inhibitor. Proc Natl Acad Sci U S A 2019; 116:9959-9968. [PMID: 31019078 DOI: 10.1073/pnas.1820604116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcription factor nuclear factor of activated T cells (NFAT) has a key role in both T cell activation and tolerance and has emerged as an important target of immune modulation. NFAT directs the effector arm of the immune response in the presence of activator protein-1 (AP-1), and T cell anergy/exhaustion in the absence of AP-1. Envisioning a strategy for selective modulation of the immune response, we designed a FRET-based high-throughput screen to identify compounds that disrupt the NFAT:AP-1:DNA complex. We screened ∼202,000 small organic compounds and identified 337 candidate inhibitors. We focus here on one compound, N-(3-acetamidophenyl)-2-[5-(1H-benzimidazol-2-yl)pyridin-2-yl]sulfanylacetamide (Compound 10), which disrupts the NFAT:AP-1 interaction at the composite antigen-receptor response element-2 site without affecting the binding of NFAT or AP-1 alone to DNA. Compound 10 binds to DNA in a sequence-selective manner and inhibits the transcription of the Il2 gene and several other cyclosporin A-sensitive cytokine genes important for the effector immune response. This study provides proof-of-concept that small molecules can inhibit the assembly of specific DNA-protein complexes, and opens a potential new approach to treat human diseases where known transcription factors are deregulated.
Collapse
|
9
|
Glenn JD, Liu C, Whartenby KA. Frontline Science: Induction of experimental autoimmune encephalomyelitis mobilizes Th17-promoting myeloid derived suppressor cells to the lung. J Leukoc Biol 2019; 105:829-841. [PMID: 30762897 DOI: 10.1002/jlb.4hi0818-335r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 11/09/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a diverse group of cells that are recognized for their remarkable suppressive effects on pro-inflammatory T cells. The pleiotropic nature of these cells, however, has been demonstrated by their differential effects on immune responses in different settings. Our and others' work has demonstrated suppressive effects of these cells. We previously demonstrated that these cells were mobilized to the lungs during experimental autoimmune encephalomyelitis (EAE), which is a murine model of multiple sclerosis, and potently inhibited CD8+ T cell responses against influenza infection. Interestingly, they appeared to have a lesser effect on CD4+ T cells, and in fact, others have demonstrated that spleen-derived MDSCs could actually promote Th17 differentiation. We sought to determine the role of lung-derived MDSCs on EAE pathogenesis, as excursion through the lungs by pathologic CNS-Ag targeted T cells was shown to be critical for EAE induction. Our results indicate a robust accumulation of granulocytic MDSCs in the lungs of mice during EAE, which could promote Th17 polarization, and which coincided with the trafficking of autoimmune-targeted T cells through the lungs. These studies underscore the pleiotropic effect of MDSCs on T cells and their potential pro-inflammatory phenotypes in neuro-inflammatory disease. Understanding both the intrinsic multifunctional nature of these cells and the ability to influence organ-specific targets such as the CNS from remote organs such as lungs will help to elucidate both mechanisms of disease and possible new therapeutic approaches.
Collapse
Affiliation(s)
- Justin D Glenn
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katharine A Whartenby
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Ali A, Biswas A, Pal M. HSF1 mediated TNF‐α production during proteotoxic stress response pioneers proinflammatory signal in human cells. FASEB J 2018; 33:2621-2635. [DOI: 10.1096/fj.201801482r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Asif Ali
- Division of Molecular MedicineBose InstituteKolkataIndia
| | | | - Mahadeb Pal
- Division of Molecular MedicineBose InstituteKolkataIndia
| |
Collapse
|
11
|
Becker C, Barbulescu K, Wirtz S, Meyer zum Büschenfelde KH, Pettersson S, Neurath MF. Constitutive and inducible in vivo protein-DNA interactions at the tumor necrosis factor-alpha promoter in primary human T lymphocytes. Gene Expr 2018; 8:115-27. [PMID: 10551799 PMCID: PMC6157389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a key cytokine of lymphocytes with major regulatory functions in immunomodulation, chronic inflammation, and septic shock. However, only limited information on TNF promoter regulation in vivo in primary lymphocytes is available. To determine and compare protein-DNA interactions at the native TNF locus in primary lymphocytes, we analyzed the human TNF-alpha promoter by ligation-mediated polymerase chain reaction (LM-PCR) techniques. Accordingly, primary CD4+ T lymphocytes from peripheral blood were cultured in the presence of various stimuli and analyzed by LM-PCR. Inducible in vivo protein-DNA interactions at the TNF promoter were detected between -120 and -70 bp of the human TNF promoter relative to the transcriptional start site. This area includes binding sites for transcription factors such as ETS-1, NFAT, ATF-2/c-jun, SP-1/Egr-1, and NF-kappaB. In contrast, no protein-DNA interactions were observed at various binding sites with reported regulatory function in tumor cell lines such as the k2 element, the NFAT site at -160, the AP1 site at -50, and the SP1 site at -65. Additional mutagenesis and transfection studies demonstrated that NF-kappaB and CREB/AP-1 are important regulators of inducible TNF promoter activity in primary human T lymphocytes. These results provide novel insights into the complex regulation of TNF gene transcription in primary T lymphocytes in vivo by constitutive and inducible protein-DNA interactions that appear to be at least partially different compared to previously characterized tumor cell lines.
Collapse
Affiliation(s)
- C Becker
- Laboratory of Immunology, I. Medical Clinic, University of Mainz, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, Sandoval-Hernández MA, Possani LD, Rosenstein Y. K v1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4 + effector memory T cell response to TCR stimulation. Cell Commun Signal 2018; 16:45. [PMID: 30107837 PMCID: PMC6092819 DOI: 10.1186/s12964-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. METHODS We combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin. RESULTS The peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery. CONCLUSIONS The Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Erika Isabel Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Monserrat Alba Sandoval-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
13
|
Tafalla C, Granja AG. Novel Insights on the Regulation of B Cell Functionality by Members of the Tumor Necrosis Factor Superfamily in Jawed Fish. Front Immunol 2018; 9:1285. [PMID: 29930556 PMCID: PMC6001812 DOI: 10.3389/fimmu.2018.01285] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Most ligands and receptors from the tumor necrosis factor (TNF) superfamily play very important roles in the immune system. In particular, many of these molecules are essential in the regulation of B cell biology and B cell-mediated immune responses. Hence, in mammals, it is known that many TNF family members play a key role on B cell development, maturation, homeostasis, activation, and differentiation, also influencing the ability of B cells to present antigens or act as regulators of immune responses. Evolutionarily, jawed fish (including cartilaginous and bony fish) constitute the first animal group in which an adaptive immune response based on B cells and immunoglobulins is present. However, until recently, not much was known about the expression of TNF ligands and receptors in these species. The sequences of many members of the TNF superfamily have been recently identified in different species of jawed fish, thus allowing posterior analysis on the role that these ligands and receptors have on B cell functionality. In this review, we summarize the current knowledge on the impact that the TNF family members have in different aspects of B cell functionality in fish, also providing an in depth comparison with functional aspects of TNF members in mammals, that will permit a further understanding of how B cell functionality is regulated in these distant animal groups.
Collapse
Affiliation(s)
| | - Aitor G Granja
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| |
Collapse
|
14
|
Iuliano M, Mangino G, Chiantore MV, Zangrillo MS, Accardi R, Tommasino M, Fiorucci G, Romeo G. Human Papillomavirus E6 and E7 oncoproteins affect the cell microenvironment by classical secretion and extracellular vesicles delivery of inflammatory mediators. Cytokine 2018; 106:182-189. [PMID: 29137858 DOI: 10.1016/j.cyto.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The connection between chronic inflammation and risk of cancer has been supported by several studies. The development of cancer might be a process driven by the presence of a specific combination of inflammatory mediators, including cytokines, chemokines and enzymes, in the tumor microenvironment. Virus-induced tumors, like HPV-induced Squamous Cell Carcinomas, represent a paradigmatic example of the interplay between inflammation, as integral part of the innate antiviral response, and malignant transformation. Here, the role of inflammatory microenvironment in the HPV-induced carcinogenesis is addressed, with a specific focus on the involvement of the immune molecules as well as their delivery through the microvesicle cargo possibly correlated to the different HPV genotype. The expression of the inflammatory mediators in HPV positive cells has been analyzed in primary human foreskin keratinocytes and keratinocytes transduced by E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 genotypes. HPV E6 and E7 proteins can modulate the expression of immune mediators in HPV-infected cells and can affect the levels of immune molecules, mainly chemokines, in the extracellular milieu. HPV-16 E6 and E7 oncoproteins have been silenced to confirm the specificity of the modulation of the inflammatory microenvironment. Our results suggest that the expression of HPV oncoproteins allows the modification of the tumor milieu through the synthesis and release of specific pro-inflammatory cytokines and chemokines, affecting the efficacy of the immune response. The microenvironment can also be conditioned by an altered mRNA cargo delivered by extracellular vesicles, thereby efficiently affecting the surrounding cells with possible implication for tumorigenesis and tumor diagnosis.
Collapse
Affiliation(s)
- Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy
| | - Maria Simona Zangrillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Rosita Accardi
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Gianna Fiorucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy; Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Via Palestro 32, 00185 Rome, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy; Department of Infectious Diseases, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
15
|
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016; 7:e2199. [PMID: 27100893 PMCID: PMC4855676 DOI: 10.1038/cddis.2016.97] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.
Collapse
|
16
|
Jia Z, Xu C, Shen J, Xia T, Yang J, He Y. The natural compound celastrol inhibits necroptosis and alleviates ulcerative colitis in mice. Int Immunopharmacol 2015; 29:552-559. [PMID: 26454701 DOI: 10.1016/j.intimp.2015.09.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease. Necroptosis plays an important role in the pathogenesis of UC. Celastrol, a triterpene from the root bark of the Chinese medicinal plant Tripterygium wilfordii, has been reported to have anti-oxidant and anti-inflammatory activities in colitis. It is not known, however, how celastrol exerts its beneficial effects. The aim of this study is to investigate the effects and possible mechanism of celastrol in UC. Colitis was induced in mice by administration of 5% dextran sulfate sodium (DSS) in drinking water for 4days. Celastrol was administered intraperitoneally (1mg/kg) for 7days after colitis was induced. Our results showed that celastrol treatment ameliorated the severity of colitis, decreased the level of interleukin (IL)-1β, IL-6 and myeloperoxidase (MPO) and upregulated the level of E-cadherin in colitis mice. Moreover, the TUNEL staining and cleaved caspase-3 immunohistochemistry staining proved decreased necrotic cell death after celastrol treatment. On the mechanism, decreased level of necroptosis factors RIP3 and MLKL, and increased level of active caspase-8 were detected after celastrol treatment. Taken together, our results demonstrated that celastrol exerted beneficial effects in colitis treatment via suppressing the RIP3/MLKL necroptosis pathway.
Collapse
Affiliation(s)
- Zhenyu Jia
- Department of Gastroenterology and Digestive Diseases, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou 215006, China
| | - Chunfang Xu
- Department of Gastroenterology and Digestive Diseases, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou 215006, China
| | - Jiaqing Shen
- Department of Gastroenterology and Digestive Diseases, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou 215006, China
| | - Tingting Xia
- Department of Gastroenterology and Digestive Diseases, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou 215006, China
| | - Jianfeng Yang
- Ministry of Education Engineering Center of Hematological Disease, Soochow University, 199 Renai Rd, Suzhou 215006, China
| | - Yang He
- Ministry of Health Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou 215006, China.
| |
Collapse
|
17
|
Chow NA, Jasenosky LD, Goldfeld AE. A distal locus element mediates IFN-γ priming of lipopolysaccharide-stimulated TNF gene expression. Cell Rep 2014; 9:1718-1728. [PMID: 25482561 PMCID: PMC4268019 DOI: 10.1016/j.celrep.2014.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 10/16/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022] Open
Abstract
Interferon γ (IFN-γ) priming sensitizes monocytes and macrophages to lipopolysaccharide (LPS) stimulation, resulting in augmented expression of a set of genes including TNF. Here, we demonstrate that IFN-γ priming of LPS-stimulated TNF transcription requires a distal TNF/LT locus element 8 kb upstream of the TNF transcription start site (hHS-8). IFN-γ stimulation leads to increased DNase I accessibility of hHS-8 and its recruitment of interferon regulatory factor 1 (IRF1), and subsequent LPS stimulation enhances H3K27 acetylation and induces enhancer RNA synthesis at hHS-8. Ablation of IRF1 or targeting the hHS-8 IRF1 binding site in vivo with Cas9 linked to the KRAB repressive domain abolishes IFN-γ priming, but does not affect LPS induction of the gene. Thus, IFN-γ poises a distal enhancer in the TNF/LT locus by chromatin remodeling and IRF1 recruitment, which then drives enhanced TNF gene expression in response to a secondary toll-like receptor (TLR) stimulus.
Collapse
Affiliation(s)
- Nancy A Chow
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Dahiya S, Liu Y, Nonnemacher MR, Dampier W, Wigdahl B. CCAAT enhancer binding protein and nuclear factor of activated T cells regulate HIV-1 LTR via a novel conserved downstream site in cells of the monocyte-macrophage lineage. PLoS One 2014; 9:e88116. [PMID: 24551078 PMCID: PMC3925103 DOI: 10.1371/journal.pone.0088116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022] Open
Abstract
Transcriptional control of the human immunodeficiency virus type 1 (HIV-1) promoter, the long terminal repeat (LTR), is achieved by interactions with cis-acting elements present both upstream and downstream of the start site. In silico transcription factor binding analysis of the HIV-1 subtype B LTR sequences revealed a potential downstream CCAAT enhancer binding protein (C/EBP) binding site. This binding site (+158 to+172), designated DS3, was found to be conserved in 67% of 3,858 unique subtype B LTR sequences analyzed in terms of nucleotide sequence as well as physical location in the LTR. DS3 was found to be well represented in other subtypes as well. Interestingly, DS3 overlaps with a previously identified region that bind members of the nuclear factor of activated T cells (NFAT) family of proteins. NFATc2 exhibited a higher relative affinity for DS3 as compared with members of the C/EBP family (C/EBP α and β). DS3 was able to compete efficiently with the low-affinity upstream C/EBP binding site I with respect to C/EBP binding, suggesting utilization of both NFAT and C/EBP. Moreover, cyclosporine A treatment, which has been shown to prevent dephosphorylation and nuclear translocation of NFAT isoforms, resulted in enhanced C/EBPα binding. The interactions at DS3 were also validated in an integrated HIV-1 LTR in chronically infected U1 cells. A binding knockout of DS3 demonstrated reduced HIV-1 LTR-directed transcription under both basal and interleukin-6-stimulated conditions only in cells of the monocyte-macrophage lineage cells and not in cells of T-cell origin. Thus, the events at DS3 positively regulate the HIV-1 promoter in cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yujie Liu
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Will Dampier
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Brian Wigdahl
- Department of Microbiology and Immunology, and Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Shebzukhov YV, Horn K, Brazhnik KI, Drutskaya MS, Kuchmiy AA, Kuprash DV, Nedospasov SA. Dynamic changes in chromatin conformation at the TNF transcription start site in T helper lymphocyte subsets. Eur J Immunol 2013; 44:251-64. [PMID: 24009130 DOI: 10.1002/eji.201243297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 07/23/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor (TNF) is one of the key primary response genes in the immune system that can be activated by a variety of stimuli. Previous analysis of chromatin accessibility to DNaseI demonstrated open chromatin conformation of the TNF proximal promoter in T cells. Here, using chromatin probing with restriction enzyme EcoNI and micrococcal nuclease we show that in contrast to the proximal promoter, the TNF transcription start site remains in a closed chromatin configuration in primary T helper (Th) cells, but acquires an open state after activation or polarization under Th1 and Th17 conditions. We further demonstrate that transcription factor c-Jun plays a pivotal role in the maintenance of open chromatin conformation at the transcription start site of the TNF gene.
Collapse
Affiliation(s)
- Yury V Shebzukhov
- German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
21
|
The transcription factor NFAT1 induces apoptosis through cooperation with Ras/Raf/MEK/ERK pathway and upregulation of TNF-α expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2016-28. [DOI: 10.1016/j.bbamcr.2013.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/20/2013] [Accepted: 04/02/2013] [Indexed: 12/26/2022]
|
22
|
Via LE, Tsytsykova AV, Rajsbaum R, Falvo JV, Goldfeld AE. The transcription factor NFATp plays a key role in susceptibility to TB in mice. PLoS One 2012; 7:e41427. [PMID: 22844476 PMCID: PMC3402414 DOI: 10.1371/journal.pone.0041427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 06/27/2012] [Indexed: 01/10/2023] Open
Abstract
In T cells, the transcription factor nuclear factor of activated T cells p (NFATp) is a key regulator of the cytokine genes tumor necrosis factor (TNF) and interferon-γ (IFN-γ). Here, we show that NFATp-deficient (NFATp(-/-)) mice have a dramatic and highly significant increase in mortality after Mycobacterium tuberculosis (MTb) infection as compared to mortality of control animals after MTb infection. Animals deficient in NFATp have significantly impaired levels of TNF and IFN-γ transcription and protein expression in naïve or total CD4(+) T cells, but display wild-type levels of TNF mRNA or protein from MTb-stimulated dendritic cells (DC). The rapid mortality and disease severity observed in MTb-infected NFATp(-/-) mice is associated with dysregulated production of TNF and IFN-γ in the lungs, as well as with increased levels of TNF, in their serum. Furthermore, global blocking of TNF production by injection of a TNF neutralizaing agent at 6 weeks, but not 12 weeks, post-MTb-infection further decreased the survival rate of both wild-type and NFATp(-/-) mice, indicating an early role for TNF derived from cells from the monocyte lineage in containment of infection. These results thus demonstrate that NFATp plays a critical role in immune containment of TB disease in vivo, through the NFATp-dependent expression of TNF and IFN-γ in T cells.
Collapse
Affiliation(s)
- Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alla V. Tsytsykova
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ricardo Rajsbaum
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James V. Falvo
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anne E. Goldfeld
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chang TT, Walther I, Li CF, Boonyaratanakornkit J, Galleri G, Meloni MA, Pippia P, Cogoli A, Hughes-Fulford M. The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol 2012; 92:1133-45. [PMID: 22750545 DOI: 10.1189/jlb.0312157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study tested the hypothesis that transcription of immediate early genes is inhibited in T cells activated in μg. Immunosuppression during spaceflight is a major barrier to safe, long-term human space habitation and travel. The goals of these experiments were to prove that μg was the cause of impaired T cell activation during spaceflight, as well as understand the mechanisms controlling early T cell activation. T cells from four human donors were stimulated with Con A and anti-CD28 on board the ISS. An on-board centrifuge was used to generate a 1g simultaneous control to isolate the effects of μg from other variables of spaceflight. Microarray expression analysis after 1.5 h of activation demonstrated that μg- and 1g-activated T cells had distinct patterns of global gene expression and identified 47 genes that were significantly, differentially down-regulated in μg. Importantly, several key immediate early genes were inhibited in μg. In particular, transactivation of Rel/NF-κB, CREB, and SRF gene targets were down-regulated. Expression of cREL gene targets were significantly inhibited, and transcription of cREL itself was reduced significantly in μg and upon anti-CD3/anti-CD28 stimulation in simulated μg. Analysis of gene connectivity indicated that the TNF pathway is a major early downstream effector pathway inhibited in μg and may lead to ineffective proinflammatory host defenses against infectious pathogens during spaceflight. Results from these experiments indicate that μg was the causative factor for impaired T cell activation during spaceflight by inhibiting transactivation of key immediate early genes.
Collapse
Affiliation(s)
- Tammy T Chang
- Department of Surgery, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ferreri NR, Hao S, Pedraza PL, Escalante B, Vio CP. Eicosanoids and tumor necrosis factor-alpha in the kidney. Prostaglandins Other Lipid Mediat 2011; 98:101-6. [PMID: 22101002 DOI: 10.1016/j.prostaglandins.2011.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 12/14/2022]
Abstract
The thick ascending limb of Henle's loop (TAL) is capable of metabolizing arachidonic acid (AA) by cytochrome P450 (CYP450) and cyclooxygenase (COX) pathways and has been identified as a nephron segment that contributes to salt-sensitive hypertension. Previous studies demonstrated a prominent role for CYP450-dependent metabolism of AA to products that inhibited ion transport pathways in the TAL. However, COX-2 is constitutively expressed along all segments of the TAL and is increased in response to diverse stimuli. The ability of Tamm-Horsfall glycoprotein, a selective marker of cortical TAL (cTAL) and medullary (mTAL), to bind TNF and localize it to this nephron segment prompted studies to determine the capacity of mTAL cells to produce TNF and determine its effects on mTAL function. The colocalization of calcium-sensing receptor (CaR) and COX-2 in the TAL supports the notion that activation of CaR induces TNF-dependent COX-2 expression and PGE₂ synthesis in mTAL cells. Additional studies showed that TNF produced by mTAL cells inhibits ⁸⁶Rb uptake, an in vitro correlate of natriuresis, in an autocrine- and COX-2-dependent manner. The molecular mechanism for these effects likely includes inhibition of Na⁺-K⁺-2Cl⁻ cotransporter (NKCC2) expression and trafficking.
Collapse
Affiliation(s)
- Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
25
|
Biglione S, Tsytsykova AV, Goldfeld AE. Monocyte-specific accessibility of a matrix attachment region in the tumor necrosis factor locus. J Biol Chem 2011; 286:44126-44133. [PMID: 22027829 PMCID: PMC3243562 DOI: 10.1074/jbc.m111.272476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of TNF gene expression is cell type- and stimulus-specific. We have previously identified highly conserved noncoding regulatory elements within DNase I-hypersensitive sites (HSS) located 9 kb upstream (HSS-9) and 3 kb downstream (HSS+3) of the TNF gene, which play an important role in the transcriptional regulation of TNF in T cells. They act as enhancers and interact with the TNF promoter and with each other, generating a higher order chromatin structure. Here, we report a novel monocyte-specific AT-rich DNase I-hypersensitive element located 7 kb upstream of the TNF gene (HSS-7), which serves as a matrix attachment region in monocytes. We show that HSS-7 associates with topoisomerase IIα (Top2) in vivo and that induction of endogenous TNF mRNA expression is suppressed by etoposide, a Top2 inhibitor. Moreover, Top2 binds to and cleaves HSS-7 in in vitro analysis. Thus, HSS-7, which is selectively accessible in monocytes, can tether the TNF locus to the nuclear matrix via matrix attachment region formation, potentially promoting TNF gene expression by acting as a Top2 substrate.
Collapse
Affiliation(s)
- Sebastian Biglione
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Alla V Tsytsykova
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
26
|
Bushell KN, Leeman SE, Gillespie E, Gower AC, Reed KL, Stucchi AF, Becker JM, Amar S. LITAF mediation of increased TNF-α secretion from inflamed colonic lamina propria macrophages. PLoS One 2011; 6:e25849. [PMID: 21984950 PMCID: PMC3184169 DOI: 10.1371/journal.pone.0025849] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/12/2011] [Indexed: 11/20/2022] Open
Abstract
Dysregulation of TNF-α in lamina propria macrophages (LPM) is a feature of inflammatory bowel diseases (IBD). LPS-Induced-TNF-Alpha-Factor (LITAF) is a transcription factor that mediates TNF-α expression. To determine whether LITAF participates in the mediation of TNF-α expression in acutely inflamed colonic tissues, we first established the TNBS-induced colonic inflammation model in C57BL/6 mice. LPM were harvested from non-inflamed and inflamed colonic tissue and inflammatory parameters TNF-α and LITAF mRNA and protein levels were measured ex-vivo. LPM from TNBS-treated mice secreted significantly more TNF-α at basal state and in response to LPS than LPM from untreated mice (p<0.05). LITAF mRNA and protein levels were elevated in LPM from TNBS compared with untreated animals and LPS further increased LITAF protein levels in LPM from inflamed tissue (P<0.05). To further confirm the role of LITAF in acutely inflamed colonic tissues, TNBS-induced colonic inflammation was produced in LITAF macrophage specific knockout mice (LITAF mac -/- mice) and compared to wild type (WT) C57BL/6. Twenty four hours following TNBS administration, colonic tissue from LITAF mac -/- mice had less MPO activity and reduced colonic TNF-α mRNA then WT C57BL/6 mice (p<0.05). LPM harvested from LITAF mac -/- secreted significantly less TNF-α in response to LPS than wild type (WT) C57BL/6 (p<0.05). This study provides evidence that LITAF contributes to the regulation of TNF-α in LPM harvested following acute inflammation or LPS treatment paving the way for future work focusing on LITAF inhibitors in the treatment of TNF-α-mediated inflammatory conditions.
Collapse
Affiliation(s)
- Kristen N. Bushell
- Boston University School of Medicine Department of Pharmacology and Experimental Therapeutics, Boston, Massachusetts, United States of America
| | - Susan E. Leeman
- Boston University School of Medicine Department of Pharmacology and Experimental Therapeutics, Boston, Massachusetts, United States of America
| | - Earl Gillespie
- Boston University School of Medicine Department of Pharmacology and Experimental Therapeutics, Boston, Massachusetts, United States of America
| | - Adam C. Gower
- Boston University Medical Center Department of Surgery, Boston, Massachusetts, United States of America
| | - Karen L. Reed
- Boston University Medical Center Department of Surgery, Boston, Massachusetts, United States of America
| | - Arthur F. Stucchi
- Boston University Medical Center Department of Surgery, Boston, Massachusetts, United States of America
| | - James M. Becker
- Boston University Medical Center Department of Surgery, Boston, Massachusetts, United States of America
| | - Salomon Amar
- Boston University Goldman School of Dental Medicine, Center for Anti-Inflammatory Therapeutics, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Falvo JV, Tsytsykova AV, Goldfeld AE. Transcriptional control of the TNF gene. ACTA ACUST UNITED AC 2010; 11:27-60. [PMID: 20173386 DOI: 10.1159/000289196] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytokine TNF is a critical mediator of immune and inflammatory responses. The TNF gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving the recruitment of distinct sets of transcription factors to a compact and modular promoter region. In this review, we describe our current understanding of the mechanisms through which TNF transcription is specifically activated by a variety of extracellular stimuli in multiple cell types, including T cells, B cells, macrophages, mast cells, dendritic cells, and fibroblasts. We discuss the role of nuclear factor of activated T cells and other transcription factors and coactivators in enhanceosome formation, as well as the contradictory evidence for a role for nuclear factor kappaB as a classical activator of the TNF gene. We describe the impact of evolutionarily conserved cis-regulatory DNA motifs in the TNF locus upon TNF gene transcription, in contrast to the neutral effect of single nucleotide polymorphisms. We also assess the regulatory role of chromatin organization, epigenetic modifications, and long-range chromosomal interactions at the TNF locus.
Collapse
Affiliation(s)
- James V Falvo
- Immune Disease Institute and Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
28
|
Ding Y, Huang Y, Song N, Gao X, Yuan S, Wang X, Cai H, Fu Y, Luo Y. NFAT1 mediates placental growth factor-induced myelomonocytic cell recruitment via the induction of TNF-alpha. THE JOURNAL OF IMMUNOLOGY 2010; 184:2593-601. [PMID: 20097868 DOI: 10.4049/jimmunol.0902378] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recruitment of bone marrow-derived myelomonocytic cells plays a fundamental role in tumor angiogenesis and metastasis. Placental growth factor (PlGF) is a potent cytokine that can attract myelomonocytic cells to the tumor. However, the underlying mechanism remains obscure. In this study, we demonstrate that tumor-derived PlGF activates NFAT1 via vascular endothelial growth factor receptor 1 in both murine and human myelomonocytic cells. Activation of NFAT1 is crucial for PlGF-induced myelomonocytic cell recruitment as shown by the in vitro transwell migration assay, transendothelial migration assay, and PlGF-overexpressing tumor models in mice, respectively. TNF-alpha is upregulated by PlGF in myelomonocytic cells in an NFAT1-dependent manner, which in turn contributes to PlGF-induced myelomonocytic cell recruitment. Blockade of TNF-alpha expression by RNA interference or neutralization of secreted TNF-alpha with its Ab attenuates PlGF-induced myelomonocytic cell migration and transendothelial migration. Furthermore, the inhibitory effect of NFAT1 RNA interference on PlGF function is rescued by exogenously added TNF-alpha. Taken together, we demonstrate that NFAT1 mediates PlGF-induced myelomonocytic cell recruitment via the induction of TNF-alpha. Our present studies discover a novel role of the NFAT1-TNF-alpha pathway in tumor inflammation, which may provide potential targets to diversify current cancer therapy.
Collapse
Affiliation(s)
- Yanping Ding
- National Engineering Laboratory for Antitumor Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics, and Cancer Biology Laboratory, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gray SB, Howard TD, Langefeld CD, Hawkins GA, Diallo AF, Wagner JD. Comparative analyses of single-nucleotide polymorphisms in the TNF promoter region provide further validation for the vervet monkey model of obesity. Comp Med 2009; 59:580-588. [PMID: 20034434 PMCID: PMC2798838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/29/2009] [Accepted: 10/04/2009] [Indexed: 05/28/2023]
Abstract
Tumor necrosis factor is a cytokine that plays critical roles in inflammation, the innate immune response, and a variety of other physiologic and pathophysiologic processes. In addition, TNF has recently been shown to mediate an intersection of chronic, low-grade inflammation and concurrent metabolic dysregulation associated with obesity and its comorbidities. As part of an ongoing initiative to further characterize vervet monkeys originating from St Kitts as an animal model of obesity and inflammation, we sequenced and genotyped the human ortholog vervet TNF gene and approximately 1 kb of the flanking 3' and 5' regions from 265 monkeys in a closed, pedigreed colony. This process revealed a total of 11 single-nucleotide polymorphisms (SNPs) and a single 4-bp insertion-deletion, with minor allele frequencies of 0.08 to 0.39. Many of these polymorphisms were in strong or complete linkage disequilibrium with each other, and all but 1 were contained within a single haplotype block, comprising 5 haplotypes with frequencies of 0.075 to 0.298. Using sequences from humans, chimpanzees, vervets, baboons, and rhesus macaques, phylogenetic shadowing of the TNF promoter region revealed that vervet SNPs, like the SNPs in related species, were clustered nonrandomly and nonuniformly around conserved transcription factor binding sites. These data, combined with previously defined heritable phenotypes, permit future association analyses in this nonhuman primate model and have great potential to help dissect the genetic and nongenetic contributions to complex diseases like obesity. More broadly, the sequence data and comparative analyses reported herein facilitates study of the evolution of regulatory sequences of inflammatory and immune-related genes.
Collapse
Affiliation(s)
- Stanton B Gray
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Ranjbar S, Boshoff HI, Mulder A, Siddiqi N, Rubin EJ, Goldfeld AE. HIV-1 replication is differentially regulated by distinct clinical strains of Mycobacterium tuberculosis. PLoS One 2009; 4:e6116. [PMID: 19568431 PMCID: PMC2699470 DOI: 10.1371/journal.pone.0006116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/02/2009] [Indexed: 12/03/2022] Open
Abstract
Background Tuberculosis (TB) is the largest cause of death in human immunodeficiency virus type 1 (HIV-1) infection, having claimed an estimated one third to one half of the 30 million AIDS deaths that have occurred worldwide. Different strains of Mycobacterium tuberculosis (MTb), the causative agent of TB, are known to modify the host immune response in a strain-specific manner. However, a MTb strain-specific impact upon the regulation of HIV-1 replication has not previously been established. Methology/Principal Findings We isolated normal human peripheral blood mononuclear cells (PBMC) and co-infected them with HIV-1 and with either the well characterized CDC1551 or HN878 MTb clinical isolate. We show that HIV-1 co-infection with the CDC1551 MTb strain results in higher levels of virus replication relative to co-infection with the HN878 MTb strain ex vivo. Furthermore, we show that the distinct pattern of CDC1551 or HN878 induced HIV-1 replication is associated with significantly increased levels of TNF and IL-6, and of the transcription and nuclear translocation of the p65 subunit of the transcription factor NF-κB, by CDC1551 relative to HN878. Conclusions/Significance These results provide a precedent for TB strain-specific effects upon HIV-1 replication and thus for TB strain-specific pathogenesis in the outcome of HIV-1/TB co-infection. MTb strain-specific factors and mechanisms involved in the regulation of HIV-1 during co-infection will be of importance in understanding the basic pathogenesis of HIV-1/TB co-infection.
Collapse
Affiliation(s)
- Shahin Ranjbar
- Immune Disease Institute, Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SR); (AEG)
| | - Helena I. Boshoff
- The Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Amara Mulder
- Immune Disease Institute, Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Noman Siddiqi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Anne E. Goldfeld
- Immune Disease Institute, Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SR); (AEG)
| |
Collapse
|
31
|
Presentation of familial Mediterranean fever in a heterozygous MEFV mutation triggered by immunosuppressive therapy for myelodysplastic syndrome. Int J Hematol 2009; 90:91-93. [PMID: 19466506 DOI: 10.1007/s12185-009-0336-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 02/18/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
Abstract
Familial Mediterranean fever (FMF) is a recessively inherited disease characterized by recurrent episodes of systemic inflammation. The cause of this disease is the mutations affecting both the alleles of MEFV gene. We describe here a case in a heterozygous MEFV mutation complicated with myelodysplastic syndrome (MDS). Clinical symptoms and the effectiveness of colchicines in this patient are typical for FMF. The first attack of FMF in this patient was observed during immunosuppressive therapy for MDS. This case suggests the possibility that certain immunosuppressants may trigger FMF attack in asymptomatic cases carrying MEFV heterozygous mutation.
Collapse
|
32
|
Suppression of acute lung inflammation by intracellular peptide delivery of a nuclear import inhibitor. Mol Ther 2009; 17:796-802. [PMID: 19259070 DOI: 10.1038/mt.2009.18] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Acute lung inflammation is a potentially life-threatening complication of infections due to community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), a worldwide emerging pathogen, which causes necrotizing pneumonia and acute respiratory distress syndrome (ARDS). MRSA virulence factors encompass immunotoxins termed superantigens that contribute to lung inflammation. In this study, we demonstrate that staphylococcal enterotoxin B (SEB)-induced lung inflammation is attenuated by a cell-penetrating peptide nuclear import inhibitor of nuclear factor (NF)-kappaB and other stress-responsive transcription factors (SRTFs). This inhibitor suppressed production of a wide spectrum of cytokines and chemokines induced by direct SEB airway exposure. Consequently, trafficking of neutrophils, monocytes/macrophages, and lymphocytes to the bronchoalveolar space was significantly reduced while vascular injury, manifested by increased permeability and protein leakage, was attenuated. Moreover, induction of systemic proinflammatory cytokines and chemokines in response to direct SEB airway exposure was reduced. Thus, intracellular delivery of a nuclear import inhibitory peptide suppresses respiratory and systemic expression of key mediators of lung inflammation evoked by SEB.
Collapse
|
33
|
|
34
|
Abstract
The transcription factor NFATp integrates multiple signal transduction pathways through coordinate binding with basic-region leucine zipper (bZIP) proteins and other transcription factors. The NFATp monomer, even in the absence of its activation domains, recruits bZIP proteins to canonical NFAT-bZIP composite DNA elements. By contrast, the NFATp dimer and its bZIP partner bind noncooperatively to the NFAT-bZIP element of the tumor necrosis factor (TNF) gene promoter. This observation raises the possibility that the function of the activation domains of NFATp is dimer-specific. Here, we determine the consensus DNA binding site of the NFATp dimer, describe monomer- and dimer-specific NFATp-DNA contact patterns, and demonstrate that NFATp dimerization and dimer-specific activation subdomains are required for transcriptional activation from the TNF NFAT-bZIP element. We also show that these NFATp subdomains interact with the coactivator CBP (CREB-binding protein), which is required for NFATp-dependent TNF gene transcription. Thus, the context-specific function of the activation domains of NFAT can be potentiated by DNA-directed dimerization.
Collapse
|
35
|
Vila-del Sol V, Punzón C, Fresno M. IFN-γ-Induced TNF-α Expression Is Regulated by Interferon Regulatory Factors 1 and 8 in Mouse Macrophages. THE JOURNAL OF IMMUNOLOGY 2008; 181:4461-70. [DOI: 10.4049/jimmunol.181.7.4461] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Bates DL, Barthel KKB, Wu Y, Kalhor R, Stroud JC, Giffin MJ, Chen L. Crystal structure of NFAT bound to the HIV-1 LTR tandem kappaB enhancer element. Structure 2008; 16:684-94. [PMID: 18462673 DOI: 10.1016/j.str.2008.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
The host factor, nuclear factor of activated T-cells (NFAT), regulates the transcription and replication of HIV-1. Here, we have determined the crystal structure of the DNA binding domain of NFAT bound to the HIV-1 long terminal repeat (LTR) tandem kappaB enhancer element at 3.05 A resolution. NFAT binds as a dimer to the upstream kappaB site (Core II), but as a monomer to the 3' end of the downstream kappaB site (Core I). The DNA shows a significant bend near the 5' end of Core I, where a lysine residue from NFAT bound to the 3' end of Core II inserts into the minor groove and seems to cause DNA bases to flip out. Consistent with this structural feature, the 5' end of Core I become hypersensitive to dimethylsulfate in the in vivo footprinting upon transcriptional activation of the HIV-1 LTR. Our studies provide a basis for further investigating the functional mechanisms of NFAT in HIV-1 transcription and replication.
Collapse
Affiliation(s)
- Darren L Bates
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Kaminuma O, Kitamura F, Kitamura N, Hiroi T, Miyoshi H, Miyawaki A, Miyatake S. Differential contribution of NFATc2 and NFATc1 to TNF-alpha gene expression in T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:319-26. [PMID: 18097033 DOI: 10.4049/jimmunol.180.1.319] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The NFAT family transcription factors play crucial roles in immunological and other biological events; however, the functional differences among NFAT members have not been fully elucidated. This study investigated the relative contribution of NFATc2 and NFATc1 to the transactivation of cytokine genes in T cells. Ectopic expression of NFATc2 but not NFATc1, especially its short isoform, enhanced TNF-alpha synthesis in human T cells at the gene transcription level, whereas both NFATs augmented IL-2 expression. In addition, a reduction of the shortest NFATc1 isoform using RNA interference technology failed to suppress TNF-alpha expression. The promoter/enhancer activity of the NFAT-binding site in the TNF-alpha gene was up-regulated by NFATc2 but not by NFATc1, whereas both NFATs associated similarly with this region. A study of mRNA expression using NFATc2/NFATc1 chimeric molecules revealed that the enhancing activity of NFAT on the TNF-alpha gene was lost by truncation of its C-terminal transactivation domain. In addition, this domain derived from NFATc2 behaved as a dominant negative against the NFAT site in TNF-alpha promoter-dependent transcriptional activity in T cells. We conclude that the C-terminal transactivation domain in NFAT is crucial for TNF-alpha gene expression in human T cells.
Collapse
Affiliation(s)
- Osamu Kaminuma
- Cytokine Project, Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
KUGA K, NISHIFUJI K, IWASAKI T. Cyclosporine A Inhibits Transcription of Cytokine Genes and Decreases The Frequencies of IL-2 Producing Cells in Feline Mononuclear Cells. J Vet Med Sci 2008; 70:1011-6. [DOI: 10.1292/jvms.70.1011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kazufumi KUGA
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Koji NISHIFUJI
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Sciences, Institute of Symbiotic Science and Technology, Graduate School, Tokyo University of Agriculture and Technology
| | - Toshiroh IWASAKI
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology
- Laboratory of Veterinary Internal Medicine, Division of Animal Life Sciences, Institute of Symbiotic Science and Technology, Graduate School, Tokyo University of Agriculture and Technology
| |
Collapse
|
39
|
Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers. Proc Natl Acad Sci U S A 2007; 104:16850-5. [PMID: 17940009 DOI: 10.1073/pnas.0708210104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Here we provide a mechanism for specific, efficient transcription of the TNF gene and, potentially, other genes residing within multigene loci. We identify and characterize highly conserved noncoding elements flanking the TNF gene, which undergo activation-dependent intrachromosomal interactions. These elements, hypersensitive site (HSS)-9 and HSS+3 (9 kb upstream and 3 kb downstream of the TNF gene, respectively), contain DNase I hypersensitive sites in naive, T helper 1, and T helper 2 primary T cells. Both HSS-9 and HSS+3 inducibly associate with acetylated histones, indicative of chromatin remodeling, bind the transcription factor nuclear factor of activated T cells (NFAT)p in vitro and in vivo, and function as enhancers of NFAT-dependent transactivation mediated by the TNF promoter. Using the chromosome conformation capture assay, we demonstrate that upon T cell activation intrachromosomal looping occurs in the TNF locus. HSS-9 and HSS+3 each associate with the TNF promoter and with each other, circularizing the TNF gene and bringing NFAT-containing nucleoprotein complexes into close proximity. TNF gene regulation thus reveals a mode of intrachromosomal interaction that combines a looped gene topology with interactions between enhancers and a gene promoter.
Collapse
|
40
|
Kim BH, Lee JY, Seo JH, Lee HY, Ryu SY, Ahn BW, Lee CK, Hwang BY, Han SB, Kim Y. Artemisolide is a typical inhibitor of IκB kinase β targeting cysteine-179 residue and down-regulates NF-κB-dependent TNF-α expression in LPS-activated macrophages. Biochem Biophys Res Commun 2007; 361:593-8. [PMID: 17669364 DOI: 10.1016/j.bbrc.2007.07.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 07/10/2007] [Indexed: 11/18/2022]
Abstract
Nuclear factor (NF)-kappaB regulates a central common signaling for immunity and cell survival. Artemisolide (ATM) was previously isolated as a NF-kappaB inhibitor from a plant of Artemisia asiatica. However, molecular basis of ATM on NF-kappaB activation remains to be defined. Here, we demonstrate that ATM is a typical inhibitor of IkappaB kinase beta (IKKbeta), resulting in inhibition of lipopolysaccharide (LPS)-induced NF-kappaB activation in RAW 264.7 macrophages. ATM inhibited the kinase activity of highly purified IKKbeta and also LPS-induced IKK activity in the cells. Moreover, the effect of ATM on IKKbeta activity was completely abolished by substitution of Cys-179 residue of IKKbeta to Ala residue, indicating direct targeting site of ATM. ATM could inhibit IkappaBalpha phosphorylation in LPS-activated RAW 264.7 cells and subsequently prevent NF-kappaB activation. Further, we demonstrate that ATM down-regulates NF-kappaB-dependent TNF-alpha expression. Taken together, this study provides a pharmacological potential of ATM in NF-kappaB-dependent inflammatory disorders.
Collapse
Affiliation(s)
- Byung Hak Kim
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baena A, Mootnick AR, Falvo JV, Tsytsykova AV, Ligeiro F, Diop OM, Brieva C, Gagneux P, O'Brien SJ, Ryder OA, Goldfeld AE. Primate TNF promoters reveal markers of phylogeny and evolution of innate immunity. PLoS One 2007; 2:e621. [PMID: 17637837 PMCID: PMC1905939 DOI: 10.1371/journal.pone.0000621] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 11/18/2022] Open
Abstract
Background Tumor necrosis factor (TNF) is a critical cytokine in the immune response whose transcriptional activation is controlled by a proximal promoter region that is highly conserved in mammals and, in particular, primates. Specific single nucleotide polymorphisms (SNPs) upstream of the proximal human TNF promoter have been identified, which are markers of human ancestry. Methodology/Principal findings Using a comparative genomics approach we show that certain fixed genetic differences in the TNF promoter serve as markers of primate speciation. We also demonstrate that distinct alleles of most human TNF promoter SNPs are identical to fixed nucleotides in primate TNF promoters. Furthermore, we identify fixed genetic differences within the proximal TNF promoters of Asian apes that do not occur in African ape or human TNF promoters. Strikingly, protein-DNA binding assays and gene reporter assays comparing these Asian ape TNF promoters to African ape and human TNF promoters demonstrate that, unlike the fixed differences that we define that are associated with primate phylogeny, these Asian ape-specific fixed differences impair transcription factor binding at an Sp1 site and decrease TNF transcription induced by bacterial stimulation of macrophages. Conclusions/significance Here, we have presented the broadest interspecies comparison of a regulatory region of an innate immune response gene to date. We have characterized nucleotide positions in Asian ape TNF promoters that underlie functional changes in cell type- and stimulus-specific activation of the TNF gene. We have also identified ancestral TNF promoter nucleotide states in the primate lineage that correspond to human SNP alleles. These findings may reflect evolution of Asian and African apes under a distinct set of infectious disease pressures involving the innate immune response and TNF.
Collapse
Affiliation(s)
- Andres Baena
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan R. Mootnick
- Gibbon Conservation Center, Santa Clarita, California, United States of America
| | - James V. Falvo
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alla V. Tsytsykova
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Filipa Ligeiro
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ousmane M. Diop
- Laboratoire de Rétrovirologie, Institut Pasteur, Dakar, Senegal
| | - Claudia Brieva
- Unidad de Rescate y Rehabilitación de Animales Silvestres, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Pascal Gagneux
- Project for Explaining the Origin of Humans, Glycobiology Research and Training Center, Department of Medicine and Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Stephen J. O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Oliver A. Ryder
- Conservation and Research for Endangered Species, Zoological Society of San Diego, San Diego, California, United States of America
- Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Anne E. Goldfeld
- The CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Tsytsykova AV, Falvo JV, Schmidt-Supprian M, Courtois G, Thanos D, Goldfeld AE. Post-induction, Stimulus-specific Regulation of Tumor Necrosis Factor mRNA Expression. J Biol Chem 2007; 282:11629-38. [PMID: 17303559 DOI: 10.1074/jbc.m611418200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The tumor necrosis factor (TNF) gene is activated by multiple extracellular signals in a stimulus- and cell type-specific fashion. Based on the presence of kappaB-like DNA motifs in the region upstream of the TNF gene, some have proposed a direct role for NF-kappaB in lipopolysaccharide (LPS)-induced TNF gene transcription in cells of the monocyte/macrophage lineage. However, we have previously demonstrated a general and critical role for a minimal TNF promoter region bearing only one of the kappaB-like motifs, kappa3, which is bound by nuclear factor of activated T cell proteins in lymphocytes and fibroblasts in response to multiple stimuli and Ets proteins in LPS-stimulated macrophages. Here, in an effort to resolve these contrasting findings, we used a combination of site-directed mutagenesis of the TNF promoter, quantitative DNase I footprinting, and analysis of endogenous TNF mRNA production in response to multiple stimuli under conditions that inhibit NF-kappaB activation (using the proteasome inhibitor lactacystin and using cells lacking either functional NF-kappaB essential modulator, which is the IkappaB kinase regulatory subunit, or the Nemo gene itself). We find that TNF mRNA production in response to ionophore is NF-kappaB-independent, but inhibition of NF-kappaB activation attenuates virus- and LPS-induced TNF mRNA levels after initial induction. We conclude that induction of TNF gene transcription by virus or LPS does not depend upon NF-kappaB binding to the proximal promoter; rather, a stimulus-specific post-induction mechanism involving NF-kappaB, yet to be characterized, is involved in the maintenance of maximal TNF mRNA levels.
Collapse
Affiliation(s)
- Alla V Tsytsykova
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
Stevens L, Htut TM, White D, Li X, Hanidu A, Stearns C, Labadia ME, Li J, Brown M, Yang J. Involvement of GATA3 in protein kinase C theta-induced Th2 cytokine expression. Eur J Immunol 2007; 36:3305-14. [PMID: 17111354 DOI: 10.1002/eji.200636400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein kinase C theta (PKCtheta) is essential for T cell activation, as it is required for the activation of NF-kappaB and expression of IL-2. PKCtheta has also been shown to affect NFAT activation and Th2 differentiation. To better understand the role of PKCtheta in the regulation of T helper cells, we used PKCtheta-deficient DO11.10 transgenic T cells to study its role in vitro. DO11.10 Th1 cells deficient in PKCtheta produced significantly less TNF-alpha and IL-2. The expression of Th2 cytokines, including IL-4, IL-5, IL-10, IL-13 and IL-24 was significantly reduced in PKCtheta-deficient T cells. Moreover, the expression of the Th2 transcription factor, GATA3, was significantly reduced in PKCtheta-deficient T cells. Overexpression of GATA3 by retroviral infection in PKCtheta-deficient T cells resulted in increased expansion of IL-4-producing T cells and higher IL-4 production than that of wild type Th2 cells. IL-5, IL-10, IL-13 and IL-24 expressions were also rescued by GATA3 overexpression. Our observations suggest that PKCtheta regulates Th2 cytokine expression via GATA3.
Collapse
Affiliation(s)
- Lisa Stevens
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Song L, Li J, Ye J, Yu G, Ding J, Zhang D, Ouyang W, Dong Z, Kim SO, Huang C. p85alpha acts as a novel signal transducer for mediation of cellular apoptotic response to UV radiation. Mol Cell Biol 2007; 27:2713-31. [PMID: 17242187 PMCID: PMC1899908 DOI: 10.1128/mcb.00657-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Apoptosis is an important cellular response to UV radiation (UVR), but the corresponding mechanisms remain largely unknown. Here we report that the p85alpha regulatory subunit of phosphatidylinositol 3-kinase (PI-3K) exerted a proapoptotic role in response to UVR through the induction of tumor necrosis factor alpha (TNF-alpha) gene expression. This special effect of p85alpha was unrelated to the PI-3K-dependent signaling pathway. Further evidence demonstrated that the inducible transcription factor NFAT3 was the major downstream target of p85alpha for the mediation of UVR-induced apoptosis and TNF-alpha gene transcription. p85alpha regulated UVR-induced NFAT3 activation by modulation of its nuclear translocation and DNA binding and the relevant transcriptional activities. Gel shift assays and site-directed mutagenesis allowed the identification of two regions in the TNF-alpha gene promoter that served as the NFAT3 recognition sequences. Chromatin immunoprecipitation assays further confirmed that the recruitment of NFAT3 to the endogenous TNF-alpha promoter was regulated by p85alpha upon UVR exposure. Finally, the knockdown of the NFAT3 level by its specific small interfering RNA decreased UVR-induced TNF-alpha gene transcription and cell apoptosis. The knockdown of endogenous p85alpha blocked NFAT activity and TNF-alpha gene transcription, as well as cell apoptosis. Thus, we demonstrated p85alpha-associated but PI-3K-independent cell death in response to UVR and identified a novel p85alpha/NFAT3/TNF-alpha signaling pathway for the mediation of cellular apoptotic responses under certain stress conditions such as UVR.
Collapse
Affiliation(s)
- Lun Song
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
KOBAYASHI T, MOMOI Y, IWASAKI T. Cyclosporine A Inhibits the mRNA Expressions of IL-2, IL-4 and IFN-.GAMMA., but not TNF-.ALPHA., in Canine Mononuclear Cells. J Vet Med Sci 2007; 69:887-92. [DOI: 10.1292/jvms.69.887] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tetsuro KOBAYASHI
- Department of Veterinary Internal Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Yasuyuki MOMOI
- Department of Veterinary Internal Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | - Toshiroh IWASAKI
- Department of Veterinary Internal Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology
| |
Collapse
|
46
|
Keller C, Hellsten Y, Steensberg A, Pedersen BK. Differential regulation of IL-6 and TNF-α via calcineurin in human skeletal muscle cells. Cytokine 2006; 36:141-7. [PMID: 17197194 DOI: 10.1016/j.cyto.2006.10.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 09/14/2006] [Accepted: 10/26/2006] [Indexed: 12/19/2022]
Abstract
Interleukin-6 increases in skeletal muscle during exercise, and evidence points to Ca2+ as an initiator of IL-6 production. However, the signalling pathway whereby this occurs is unknown. One candidate for Ca2+ -mediated IL-6 induction is calcineurin, an activator of NF-AT. Here we investigated whether skeletal myocytes produce IL-6 in a Ca2+/calcineurin-dependent manner, and whether TNF-alpha, an inducer of IL-6, is affected by these stimuli. Human skeletal muscle cell cultures were stimulated with ionomycin time-and dose-dependently to elevate intracellular Ca2+ levels, with or without addition of cyclosporin A (CSA); a calcineurin inhibitor. mRNA was extracted from myocytes and analysed for IL-6 and TNF-alpha gene expression. IL-6 mRNA increased time- and dose-dependently with ionomycin stimulation, an effect that was blunted by approximately 75% in the presence of CSA. In contrast, TNF-alpha gene expression was decreased by approximately 70% in response to ionomycin treatment, but increased in response to addition of CSA. These data demonstrate that IL-6 and TNF-alpha are regulated differentially in skeletal muscle cells in response to a Ca2+ stimulus. Blocking the calcineurin pathway resulted in inhibition of the IL-6 response to ionomycin, whereas TNF-alpha increased by addition of CSA, further indicating a differential regulation of IL-6 and TNF-alpha in human skeletal myocytes.
Collapse
Affiliation(s)
- Charlotte Keller
- Centre of Inflammation and Metabolism, Department of Infectious Diseases and the Copenhagen Muscle Research Centre, Faculty of Health Sciences, University Hospital of Copenhagen, Tagensvej 20, 2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
47
|
Ranjbar S, Rajsbaum R, Goldfeld AE. Transactivator of transcription from HIV type 1 subtype E selectively inhibits TNF gene expression via interference with chromatin remodeling of the TNF locus. THE JOURNAL OF IMMUNOLOGY 2006; 176:4182-90. [PMID: 16547255 DOI: 10.4049/jimmunol.176.7.4182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transactivator of transcription (Tat) protein is essential for efficient HIV type 1 (HIV-1) replication and is involved in the transcriptional regulation of the host immune response gene, TNF. In this study, we demonstrate that Tat proteins from representative HIV-1 subtype E isolates, but not from subtypes B or C, selectively inhibit TNF gene transcription and protein production in CD4(+) Jurkat T cells. Strikingly, we show that this repression is due to a tryptophan at residue 32 of Tat E and is secondary to interference with recruitment of the histone acetyltransferase P/CAF to the TNF promoter and with chromatin remodeling of the TNF locus. This study presents a novel mechanism by which HIV-1 manipulates a host immune response gene that is important in its own replication. Moreover, these results demonstrate a new mechanism by which the TNF gene is regulated via chromatin remodeling secondary to viral infection.
Collapse
Affiliation(s)
- Shahin Ranjbar
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Canellada A, Cano E, Sánchez-Ruiloba L, Zafra F, Redondo JM. Calcium-dependent expression of TNF-α in neural cells is mediated by the calcineurin/NFAT pathway. Mol Cell Neurosci 2006; 31:692-701. [PMID: 16458016 DOI: 10.1016/j.mcn.2005.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/27/2022] Open
Abstract
We report induction of TNF-alpha via the calcium/calcineurin/NFAT pathway in PC12 neural cells. In PC12, expression of TNF-alpha mRNA, protein and TNF-alpha gene promoter activity was induced by co-stimulation with phorbol ester and either calcium ionophore A23187 or the L-type Voltage Gated Calcium Channel agonist Bay K 8644. Pre-treatment with calcineurin inhibitors CsA or FK506 inhibited the dominant calcium-dependent component of this induction, limiting it to the level achieved with phorbol ester alone. Promoter activation by Bay was abolished by nifedipine, a specific inhibitor of L-type Voltage Gated Calcium Channels. Exogenous NFAT protein transactivated the TNF-alpha promoter, and the peptide VIVIT-a specific inhibitor of calcineurin/NFAT binding-blocked calcium-inducible transactivation of the TNF-alpha promoter. Given proposed functions of TNF-alpha in spatial learning, memory and the pathogenesis of neurodegenerative diseases, the data presented suggest an important role for calcineurin/NFAT signaling in these key neurological processes.
Collapse
Affiliation(s)
- Andrea Canellada
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CBM-CSIC), Universidad Autónoma de Madrid (UAM), Facultad de Ciencias, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
49
|
Granja AG, Nogal ML, Hurtado C, Del Aguila C, Carrascosa AL, Salas ML, Fresno M, Revilla Y. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway. THE JOURNAL OF IMMUNOLOGY 2006; 176:451-62. [PMID: 16365438 DOI: 10.4049/jimmunol.176.1.451] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
African swine fever virus (ASFV) is able to inhibit TNF-alpha-induced gene expression through the synthesis of A238L protein. This was shown by the use of deletion mutants lacking the A238L gene from the Vero cell-adapted Ba71V ASFV strain and from the virulent isolate E70. To further analyze the molecular mechanism by which the viral gene controls TNF-alpha, we have used Jurkat cells stably transfected with the viral gene to identify the TNF-alpha regulatory elements involved in the induction of the gene after stimulation with PMA and calcium ionophore. We have thus identified the cAMP-responsive element and kappa3 sites on the TNF-alpha promoter as the responsible of the gene activation, and demonstrate that A238L inhibits TNF-alpha expression through these DNA binding sites. This inhibition was partially reverted by overexpression of the transcriptional factors NF-AT, NF-kappaB, and c-Jun. Furthermore, we present evidence that A238L inhibits the activation of TNF-alpha by modulating NF-kappaB, NF-AT, and c-Jun trans activation through a mechanism that involves CREB binding protein/p300 function, because overexpression of these transcriptional coactivators recovers TNF-alpha promoter activity. In addition, we show that A238L is a nuclear protein that binds to the cyclic AMP-responsive element/kappa3 complex, thus displacing the CREB binding protein/p300 coactivators. Taken together, these results establish a novel mechanism in the control of TNF-alpha gene expression by a viral protein that could represent an efficient strategy used by ASFV to evade the innate immune response.
Collapse
Affiliation(s)
- Aitor G Granja
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abdullah HI, Pedraza PL, Hao S, Rodland KD, McGiff JC, Ferreri NR. NFAT regulates calcium-sensing receptor-mediated TNF production. Am J Physiol Renal Physiol 2005; 290:F1110-7. [PMID: 16380462 DOI: 10.1152/ajprenal.00223.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca(2+) (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca(2+) were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.
Collapse
|