1
|
Li Y, Chen K, Chen B, Zeng R, He Y, Wang C, Zhong M, Liu X, Chen X, Xiao L, Zhou H. Increased coexpression of PD-L1 and IDO1 is associated with poor overall survival in patients with NK/T-cell lymphoma. Leukemia 2024; 38:1553-1563. [PMID: 38783159 DOI: 10.1038/s41375-024-02266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Immunotherapy with programmed cell death 1 ligand 1 (PD-L1) blockade was effective in patients with NK/T-cell lymphoma. In addition to PD-L1, indoleamine 2,3-dioxygenase-1 (IDO1) is one of the most promising immunotherapeutic targets. High proportions of PD-L1 and IDO1 proteins were observed by immunohistochemistry (IHC) from 230 newly diagnosed patients with NK/T lymphoma with tissue samples from three cancer centers and were associated with poor overall survival (OS) in patients with NK/T lymphoma. Importantly, the coexpression of PD-L1 and IDO1 was related to poor OS and short restricted mean survival time in patients with NK/T lymphoma and was an independent prognostic factor in the training cohorts, and which was also validated in 58 NK/T lymphoma patients (GSE90597). Moreover, a nomogram model constructed with PD-L1 and IDO1 expression together with age could provide concise and precise predictions of OS rates and median survival time. The high-risk group in the nomogram model had a positive correlation with CD4 + T-cell infiltration in the validation cohort, as did the immunosuppressive factor level. Therefore, high PD-L1 and IDO1 expression was associated with poor OS in patients with NK/T lymphoma. PD-L1 and IDO1 might be potential targets for future immune checkpoint blockade (ICB) therapy for NK/T lymphoma.
Collapse
Affiliation(s)
- Yajun Li
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Kailin Chen
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Bihua Chen
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ruolan Zeng
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yizi He
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Caiqin Wang
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoyan Chen
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China.
| | - Hui Zhou
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, China.
| |
Collapse
|
2
|
Chang CY, Chang SC, Wei YF, Tseng YT, Chou CH, Chen YY, Chen CY, Ye YL. Exploring the evolution of T cell function and diversity across different stages of non-small cell lung cancer. Am J Cancer Res 2024; 14:1243-1257. [PMID: 38590421 PMCID: PMC10998748 DOI: 10.62347/aryh6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
The immune system plays a key role in detecting and fighting cancerous tumors. T cells are a crucial component in both natural and therapeutic cancer immunoediting responses, but it is unclear if they are the primary agents of these processes. In this study, patients with lung lesions detected by CT scan were selected, and their peripheral blood samples were analyzed for T cell population and serum cytokines/chemokines. T cell subtypes (CD3, CD4, CD8, CD27, CD28, CD45, CD45RA, CD57, CCR7, and PD1) and serum cytokines/chemokines (IL-2, IL-6, IL-10, IFN-γ, TGF-β, TNFα, CXCL1, CXCL9, and CXCL12) were measured by flow cytometry and analysis before surgical resection or other cancer treatments. The frequency of T cell subpopulations in patients with lung cancer (n = 111) corresponded to those seen in patients with T cell exhaustion. As lung cancer progressed, the proportion of effector memory T cells decreased, while the proportion of naive T cells, PD-1, CD57+, CD28+CD27+, CD45RA+, and CD3+CD4+CCR7 increased. Circulating CD8+PD1+ T cells were positively correlated with intra-tumoral PD-L1 expression. Concurrently, serum levels of IL-2, TGF-β, and CXCL9 decreased, while IL-6, IL-10, IFN-γ, and CXCL12 increased during the progression of lung cancer. In conclusion, T cell dysfunction is associated with cancer progression, particularly in advanced-stage lung cancer, and cancer immunoediting will provide early-stage cancer detection and further therapeutic strategies.
Collapse
Affiliation(s)
- Cheng-Yu Chang
- Division of Chest Medicine, Department of Internal Medicine, Far Eastern Memorial HospitalNew Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and ManagementNew Taipei, Taiwan
| | - Shih-Chieh Chang
- Division of Chest Medicine, Department of Internal Medicine, National Yang-Ming Chiao Tung University HospitalYilan City, Yilan County, Taiwan
| | - Yu-Feng Wei
- School of Medicine for International Students, College of Medicine, I-Shou UniversityKaohsiung, Taiwan
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou UniversityKaohsiung, Taiwan
| | - Yu-Ting Tseng
- Department of Surgery, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Chien-Hong Chou
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan UniversityTaipei City, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa UniversityHuwei City, Yunlin County, Taiwan
| |
Collapse
|
3
|
Boyne C, Coote A, Synowsky S, Naden A, Shirran S, Powis SJ. Characterising the HLA-I immunopeptidome of plasma-derived extracellular vesicles in patients with melanoma. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e146. [PMID: 38939414 PMCID: PMC11080910 DOI: 10.1002/jex2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) frequently express human leukocyte antigen class I (HLA-I) molecules. The immunopeptidomes presented on EV HLA-I are being mapped to provide key information on both specific cancer-related peptides, and for larger immunopeptidomic signatures associated with disease. Utilizing HLA-I immunoisolation and mass spectrometry, we characterised the HLA-I immunopeptidome of EVs derived from the melanoma cancer cell line, ESTDAB-026, and the plasma of 12 patients diagnosed with advanced stage melanoma, alongside 11 healthy controls. The EV HLA-I immunopeptidome derived from melanoma cells features T cell epitopes with known immunogenicity and peptides derived from known tumour associated antigens (TAAs). Both T cell epitopes with known immunogenicity and peptides derived from known TAAs were also identifiable in the melanoma patient samples. Patient stratification into two distinct groups with varying immunological profiles was also observed. The data obtained in this study suggests for the first time that the HLA-I immunopeptidome of EVs derived from blood may aid in the detection of important diagnostic or prognostic biomarkers and also provide new immunotherapy targets.
Collapse
Affiliation(s)
- Caitlin Boyne
- School of MedicineUniversity of St AndrewsFifeScotland
| | - Abigail Coote
- School of MedicineUniversity of St AndrewsFifeScotland
| | - Silvia Synowsky
- School of BiologyUniversity of St AndrewsFifeScotland
- Biological Sciences Research ComplexUniversity of St AndrewsFifeScotland
| | - Aaron Naden
- School of ChemistryUniversity of St AndrewsFifeScotland
| | - Sally Shirran
- School of BiologyUniversity of St AndrewsFifeScotland
- Biological Sciences Research ComplexUniversity of St AndrewsFifeScotland
| | - Simon J. Powis
- School of MedicineUniversity of St AndrewsFifeScotland
- Biological Sciences Research ComplexUniversity of St AndrewsFifeScotland
| |
Collapse
|
4
|
You X, Koop K, Weigert A. Heterogeneity of tertiary lymphoid structures in cancer. Front Immunol 2023; 14:1286850. [PMID: 38111571 PMCID: PMC10725932 DOI: 10.3389/fimmu.2023.1286850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The success of immunotherapy approaches, such as immune checkpoint blockade and cellular immunotherapy with genetically modified lymphocytes, has firmly embedded the immune system in the roadmap for combating cancer. Unfortunately, the majority of cancer patients do not yet benefit from these therapeutic approaches, even when the prognostic relevance of the immune response in their tumor entity has been demonstrated. Therefore, there is a justified need to explore new strategies for inducing anti-tumor immunity. The recent connection between the formation of ectopic lymphoid aggregates at tumor sites and patient prognosis, along with an effective anti-tumor response, suggests that manipulating the occurrence of these tertiary lymphoid structures (TLS) may play a critical role in activating the immune system against a growing tumor. However, mechanisms governing TLS formation and a clear understanding of their substantial heterogeneity are still lacking. Here, we briefly summarize the current state of knowledge regarding the mechanisms driving TLS development, outline the impact of TLS heterogeneity on clinical outcomes in cancer patients, and discuss appropriate systems for modeling TLS heterogeneity that may help identify new strategies for inducing protective TLS formation in cancer patients.
Collapse
Affiliation(s)
- Xin You
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
| | - Kristina Koop
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
5
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
6
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
7
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
8
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
10
|
Nakamura K, Okuyama R. Changes in the Immune Cell Repertoire for the Treatment of Malignant Melanoma. Int J Mol Sci 2022; 23:12991. [PMID: 36361781 PMCID: PMC9658693 DOI: 10.3390/ijms232112991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 10/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been used for the treatment of various types of cancers, including malignant melanoma. Mechanistic exploration of tumor immune responses is essential to improve the therapeutic efficacy of ICIs. Since tumor immune responses are based on antigen-specific immune responses, investigators have focused on T cell receptors (TCRs) and have analyzed changes in the TCR repertoire. The proliferation of T cell clones against tumor antigens is detected in patients who respond to treatment with ICIs. The proliferation of these T cell clones is observed within tumors as well as in the peripheral blood. Clonal proliferation has been detected not only in CD8-positive T cells but also in CD4-positive T cells, resident memory T cells, and B cells. Moreover, changes in the repertoire at an early stage of treatment seem to be useful for predicting the therapeutic efficacy of ICIs. Further analyses of the repertoire of immune cells are desirable to improve and predict the therapeutic efficacy of ICIs.
Collapse
Affiliation(s)
- Kenta Nakamura
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | |
Collapse
|
11
|
Levi ST, Copeland AR, Nah S, Crystal JS, Ivey GD, Lalani A, Jafferji M, White BS, Parikh NB, Leko V, Krishna S, Lowery F, Prickett TD, Gartner JJ, Jia L, Li YF, Sachs A, Sindiri S, Robinson W, Gasmi B, Yang JC, Goff SL, Rosenberg SA, Robbins PF. Neoantigen Identification and Response to Adoptive Cell Transfer in Anti-PD-1 Naïve and Experienced Patients with Metastatic Melanoma. Clin Cancer Res 2022; 28:3042-3052. [PMID: 35247926 PMCID: PMC9288495 DOI: 10.1158/1078-0432.ccr-21-4499] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE Immune checkpoint blockade (ICB) agents and adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TIL) are prominent immunotherapies used for the treatment of advanced melanoma. Both therapies rely on activation of lymphocytes that target shared tumor antigens or neoantigens. Recent analysis of patients with metastatic melanoma who underwent treatment with TIL ACT at the NCI demonstrated decreased responses in patients previously treated with anti-PD-1 agents. We aimed to find a basis for the difference in response rates between anti-PD-1 naïve and experienced patients. PATIENTS AND METHODS We examined the tumor mutational burden (TMB) of resected tumors and the repertoire of neoantigens targeted by autologous TIL in a cohort of 112 anti-PD-1 naïve and 69 anti-PD-1 experienced patients. RESULTS Anti-PD-1 naïve patients were found to possess tumors with higher TMBs (352.0 vs. 213.5, P = 0.005) and received TIL reactive with more neoantigens (2 vs. 1, P = 0.003) compared with anti-PD-1 experienced patients. Among patients treated with TIL ACT, TMB and number of neoantigens identified were higher in ACT responders than ACT nonresponders in both anti-PD-1 naïve and experienced patients. Among patients with comparable TMBs and predicted neoantigen loads, treatment products administered to anti-PD-1 naïve patients were more likely to contain T cells reactive against neoantigens than treatment products for anti-PD-1 experienced patients (2.5 vs. 1, P = 0.02). CONCLUSIONS These results indicate that decreases in TMB and targeted neoantigens partially account for the difference in response to ACT and that additional factors likely influence responses in these patients. See related commentary by Blass and Ott, p. 2980.
Collapse
Affiliation(s)
- Shoshana T. Levi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R. Copeland
- Department of Surgery, University of California, Los Angeles Health, Los Angeles, CA 90095, USA
| | - Shirley Nah
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica S. Crystal
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gabriel D. Ivey
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | - Mohammad Jafferji
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bradley S. White
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neilesh B. Parikh
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vid Leko
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sri Krishna
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank Lowery
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Todd D. Prickett
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jared J. Gartner
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Jia
- Information Resources and Services Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong F. Li
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abraham Sachs
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sivasish Sindiri
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Welles Robinson
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Billel Gasmi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C. Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie L. Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A. Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul F. Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Corresponding author: Paul F. Robbins, 10 Center Drive, 3-5744, Bethesda, MD 20892, Phone: 301-402-2069,
| |
Collapse
|
12
|
Bonté PE, Arribas YA, Merlotti A, Carrascal M, Zhang JV, Zueva E, Binder ZA, Alanio C, Goudot C, Amigorena S. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep 2022; 39:110916. [PMID: 35675780 DOI: 10.1016/j.celrep.2022.110916] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 11/03/2022] Open
Abstract
We analyze transposable elements (TEs) in glioblastoma (GBM) patients using a proteogenomic pipeline that combines single-cell transcriptomics, bulk RNA sequencing (RNA-seq) samples from tumors and healthy-tissue cohorts, and immunopeptidomic samples. We thus identify 370 human leukocyte antigen (HLA)-I-bound peptides encoded by TEs differentially expressed in GBM. Some of the peptides are encoded by repeat sequences from intact open reading frames (ORFs) present in up to several hundred TEs from recent long interspersed nuclear element (LINE)-1, long terminal repeat (LTR), and SVA subfamilies. Other HLA-I-bound peptides are encoded by single copies of TEs from old subfamilies that are expressed recurrently in GBM tumors and not expressed, or very infrequently and at low levels, in healthy tissues (including brain). These peptide-coding, GBM-specific, highly recurrent TEs represent potential tumor-specific targets for cancer immunotherapies.
Collapse
Affiliation(s)
- Pierre-Emmanuel Bonté
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Yago A Arribas
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Antonela Merlotti
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Roselló 161, 6a planta, 08036 Barcelona, Spain
| | - Jiasi Vicky Zhang
- GBM Translational Center of Excellence, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elina Zueva
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Zev A Binder
- GBM Translational Center of Excellence, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cécile Alanio
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France; Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Christel Goudot
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| | - Sebastian Amigorena
- Institut Curie, PSL University, INSERM U932, Immunity and Cancer, 75005 Paris, France.
| |
Collapse
|
13
|
Ben Khelil M, Aeberli L, Perchaud M, Genolet R, Abdeljaoued S, Borg C, Binda D, Harari A, Jandus C, Muller G, Loyon R. A new workflow combining magnetic cell separation and impedance-based cell dispensing for gentle, simple and reliable cloning of specific CD8+ T cells. SLAS Technol 2022; 27:130-134. [DOI: 10.1016/j.slast.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Koelle DM, Dong L, Jing L, Laing KJ, Zhu J, Jin L, Selke S, Wald A, Varon D, Huang ML, Johnston C, Corey L, Posavad CM. HSV-2-Specific Human Female Reproductive Tract Tissue Resident Memory T Cells Recognize Diverse HSV Antigens. Front Immunol 2022; 13:867962. [PMID: 35432373 PMCID: PMC9009524 DOI: 10.3389/fimmu.2022.867962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023] Open
Abstract
Antigen-specific TRM persist and protect against skin or female reproductive tract (FRT) HSV infection. As the pathogenesis of HSV differs between humans and model organisms, we focus on humans with well-characterized recurrent genital HSV-2 infection. Human CD8+ TRM persisting at sites of healed human HSV-2 lesions have an activated phenotype but it is unclear if TRM can be cultivated in vitro. We recovered HSV-specific TRM from genital skin and ectocervix biopsies, obtained after recovery from recurrent genital HSV-2, using ex vivo activation by viral antigen. Up to several percent of local T cells were HSV-reactive ex vivo. CD4 and CD8 T cell lines were up to 50% HSV-2-specific after sorting-based enrichment. CD8 TRM displayed HLA-restricted reactivity to specific HSV-2 peptides with high functional avidities. Reactivity to defined peptides persisted locally over several month and was quite subject-specific. CD4 TRM derived from biopsies, and from an extended set of cervical cytobrush specimens, also recognized diverse HSV-2 antigens and peptides. Overall we found that HSV-2-specific TRM are abundant in the FRT between episodes of recurrent genital herpes and maintain competency for expansion. Mucosal sites are accessible for clinical monitoring during immune interventions such as therapeutic vaccination.
Collapse
Affiliation(s)
- David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Jin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Dana Varon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christine M. Posavad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
15
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
16
|
Lu P, Hill HA, Navsaria LJ, Wang ML. CAR-T and other adoptive cell therapies for B cell malignancies. JOURNAL OF THE NATIONAL CANCER CENTER 2021; 1:88-96. [PMID: 39036373 PMCID: PMC11256724 DOI: 10.1016/j.jncc.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
B cell malignancies pose challenges due to therapeutic resistance and repeated relapse. Advances in adoptive cellular therapies including chimeric antigen receptor (CAR)-T cells have the potential to transform the treatment landscape in hematological and solid tumor cancers. Improvements in constructs of CAR-T have improved specificity in targeting malignant cells. Multiple clinical trials have demonstrated the efficacy of CAR-T and other cellular treatments. In spite of advances in cellular therapies, hurdles in managing toxicities and lingering resistance remain. This review aims to summarize current innovations in adoptive cellular therapies and introduces future paths of discovery that will enhance these therapies in the era of precision oncology.
Collapse
Affiliation(s)
| | - Holly A. Hill
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, USA
| | - Lucy J. Navsaria
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, USA
| | - Michael L. Wang
- Department of Lymphoma and Myeloma, the University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
17
|
Woller N, Engelskircher SA, Wirth T, Wedemeyer H. Prospects and Challenges for T Cell-Based Therapies of HCC. Cells 2021; 10:cells10071651. [PMID: 34209393 PMCID: PMC8304292 DOI: 10.3390/cells10071651] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
The scope of therapeutic options for the treatment of hepatocellular carcinoma (HCC) has recently been expanded by immunotherapeutic regimens. T cell-based therapies, especially in combination with other treatments have achieved far better outcomes compared to conventional treatments alone. However, there is an emerging body of evidence that eliciting T cell responses in immunotherapeutic approaches is insufficient for favorable outcomes. Immune responses in HCC are frequently attenuated in the tumor microenvironment (TME) or may even support tumor progress. Hence, therapies with immune checkpoint inhibitors or adoptive cell therapies appear to necessitate additional modification of the TME to unlock their full potential. In this review, we focus on immunotherapeutic strategies, underlying molecular mechanisms of CD8 T cell immunity, and causes of treatment failure in HCC of viral and non-viral origin. Furthermore, we provide an overview of TME features in underlying etiologies of HCC patients that mediate therapy resistance to checkpoint inhibition and discuss strategies from the literature concerning current approaches to these challenges.
Collapse
Affiliation(s)
- Norman Woller
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Sophie Anna Engelskircher
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Wirth
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Heiner Wedemeyer
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Pasetto A, Lu YC. Single-Cell TCR and Transcriptome Analysis: An Indispensable Tool for Studying T-Cell Biology and Cancer Immunotherapy. Front Immunol 2021; 12:689091. [PMID: 34163487 PMCID: PMC8215674 DOI: 10.3389/fimmu.2021.689091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
T cells have been known to be the driving force for immune response and cancer immunotherapy. Recent advances on single-cell sequencing techniques have empowered scientists to discover new biology at the single-cell level. Here, we review the single-cell techniques used for T-cell studies, including T-cell receptor (TCR) and transcriptome analysis. In addition, we summarize the approaches used for the identification of T-cell neoantigens, an important aspect for T-cell mediated cancer immunotherapy. More importantly, we discuss the applications of single-cell techniques for T-cell studies, including T-cell development and differentiation, as well as the role of T cells in autoimmunity, infectious disease and cancer immunotherapy. Taken together, this powerful tool not only can validate previous observation by conventional approaches, but also can pave the way for new discovery, such as previous unidentified T-cell subpopulations that potentially responsible for clinical outcomes in patients with autoimmunity or cancer.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA FUTURA, Karolinska Institutet, Stockholm, Sweden
| | - Yong-Chen Lu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
19
|
Martin AD, Wang X, Sandberg ML, Negri KR, Wu ML, Toledo Warshaviak D, Gabrelow GB, McElvain ME, Lee B, Daris ME, Xu H, Kamb A. Re-examination of MAGE-A3 as a T-cell Therapeutic Target. J Immunother 2021; 44:95-105. [PMID: 33284140 PMCID: PMC7946352 DOI: 10.1097/cji.0000000000000348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
In 2013, an innovative MAGE-A3-directed cancer therapeutic of great potential value was terminated in the clinic because of neurotoxicity. The safety problems were hypothesized to originate from off-target T-cell receptor activity against a closely related MAGE-A12 peptide. A combination of published and new data led us to test this hypothesis with current technology. Our results call into question MAGE-A12 as the source of the neurotoxicity. Rather, the data imply that an alternative related peptide from EPS8L2 may be responsible. Given the qualities of MAGE-A3 as an onco-testis antigen widely expressed in tumors and largely absent from normal adult tissues, these findings suggest that MAGE-A3 may deserve further consideration as a cancer target. As a step in this direction, the authors isolated 2 MAGE-A3 peptide-major histocompatibility complex-directed chimeric antigen receptors, 1 targeting the same peptide as the clinical T-cell receptor. Both chimeric antigen receptors have improved selectivity over the EPS8L2 peptide that represents a significant risk for MAGE-A3-targeted therapeutics, showing that there may be other options for MAGE-A3 cell therapy.
Collapse
|
20
|
Allahverdy A, Rahbar S, Mirzaei HR, Ajami M, Namdar A, Habibi S, Hadjati J, Jafari AH. Extracting Mutual Interaction Rules Using Fuzzy Structured Agent-based Model of Tumor-Immune System Interactions. J Biomed Phys Eng 2021; 11:61-72. [PMID: 33564641 PMCID: PMC7859377 DOI: 10.31661/jbpe.v0i0.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022]
Abstract
Background: There are many studies to investigate the effects of each interacting component of tumor-immune system interactions. In all these studies, the distinct effect of each component was investigated. As the interaction of tumor-immune system has feedback and is complex, the alternation of each component may affect other components indirectly. Objective: Because of the complexities of tumor-immune system interactions, it is important to determine the mutual behavior of such components. We need a careful observation to extract these mutual interactions. Achieving these observations using experiments is costly and time-consuming. Material and Methods: In this experimental and based on mathematical modeling study, to achieve these observations, we presented a fuzzy structured agent-based model of tumor-immune system interactions. In this study, we consider the confronting of the effector cells of the adaptive immune system in the presence of the cytokines of interleukin-2 (IL-2) and transforming growth factor-beta (TGF-β) as a fuzzy structured model. Using the experimental data of murine models of B16F10 cell line of melanoma cancer cells, we optimized the parameters of the model. Results: Using the output of this model, we determined the rules which could occur. As we optimized the parameters of the model using escape state of the tumor and then the rules which we obtained, are the rules of tumor escape. Conclusion: The results showed that using fuzzy structured agent-based model, we are able to show different output of the tumor-immune system interactions, which are caused by the stochastic behavior of each cell. But different output of the model just follow the predetermined behavior, and using this behavior, we can achieve the rules of interactions.
Collapse
Affiliation(s)
- A Allahverdy
- PhD Candidate, Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhD Candidate, Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - S Rahbar
- PhD Candidate, Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhD Candidate, Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| | - H R Mirzaei
- PhD Candidate, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Ajami
- PhD Candidate, Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - A Namdar
- PhD, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Habibi
- MSc, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - J Hadjati
- PhD, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A H Jafari
- PhD, Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhD, Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Gong P, Wang Y, Zhang P, Yang Z, Deng W, Sun Z, Yang M, Li X, Ma G, Deng G, Dong S, Cai L, Jiang W. Immunocyte Membrane-Coated Nanoparticles for Cancer Immunotherapy. Cancers (Basel) 2020; 13:E77. [PMID: 33396603 PMCID: PMC7794746 DOI: 10.3390/cancers13010077] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the advances in surface bioconjugation of synthetic nanoparticles for targeted drug delivery, simple biological functionalization is still insufficient to replicate complex intercellular interactions naturally. Therefore, these foreign nanoparticles are inevitably exposed to the immune system, which results in phagocytosis by the reticuloendothelial system and thus, loss of their biological significance. Immunocyte membranes play a key role in intercellular interactions, and can protect foreign nanomaterials as a natural barrier. Therefore, biomimetic nanotechnology based on cell membranes has developed rapidly in recent years. This paper summarizes the development of immunocyte membrane-coated nanoparticles in the immunotherapy of tumors. We will introduce several immunocyte membrane-coated nanocarriers and review the challenges to their large-scale preparation and application.
Collapse
Affiliation(s)
- Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Yifan Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Weiye Deng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Zhihong Sun
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
- Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Mingming Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Xuefeng Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Guanjun Deng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Shiyan Dong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.Z.); (Z.S.); (G.M.); (G.D.); (L.C.)
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75235, USA; (Y.W.); (Z.Y.); (W.D.); (M.Y.); (X.L.); (S.D.)
| |
Collapse
|
22
|
Hübbe ML, Jæhger DE, Andresen TL, Andersen MH. Leveraging Endogenous Dendritic Cells to Enhance the Therapeutic Efficacy of Adoptive T-Cell Therapy and Checkpoint Blockade. Front Immunol 2020; 11:578349. [PMID: 33101304 PMCID: PMC7546347 DOI: 10.3389/fimmu.2020.578349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023] Open
Abstract
Adoptive cell therapy (ACT), based on treatment with autologous tumor infiltrating lymphocyte (TIL)-derived or genetically modified chimeric antigen receptor (CAR) T cells, has become a potentially curative therapy for subgroups of patients with melanoma and hematological malignancies. To further improve response rates, and to broaden the applicability of ACT to more types of solid malignancies, it is necessary to explore and define strategies that can be used as adjuvant treatments to ACT. Stimulation of endogenous dendritic cells (DCs) alongside ACT can be used to promote epitope spreading and thereby decrease the risk of tumor escape due to target antigen downregulation, which is a common cause of disease relapse in initially responsive ACT treated patients. Addition of checkpoint blockade to ACT and DC stimulation might further enhance response rates by counteracting an eventual inactivation of infused and endogenously primed tumor-reactive T cells. This review will outline and discuss therapeutic strategies that can be utilized to engage endogenous DCs alongside ACT and checkpoint blockade, to strengthen the anti-tumor immune response.
Collapse
Affiliation(s)
- Mie Linder Hübbe
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Ditte Elisabeth Jæhger
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| |
Collapse
|
23
|
Stryhn A, Kongsgaard M, Rasmussen M, Harndahl MN, Østerbye T, Bassi MR, Thybo S, Gabriel M, Hansen MB, Nielsen M, Christensen JP, Randrup Thomsen A, Buus S. A Systematic, Unbiased Mapping of CD8 + and CD4 + T Cell Epitopes in Yellow Fever Vaccinees. Front Immunol 2020; 11:1836. [PMID: 32983097 PMCID: PMC7489334 DOI: 10.3389/fimmu.2020.01836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Examining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e., immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of (1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, (2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, (3) generation of peptide-HLA tetramers to identify T cell epitopes, and (4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g., SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.
Collapse
Affiliation(s)
- Anette Stryhn
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kongsgaard
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Rasmussen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Nors Harndahl
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Østerbye
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rosaria Bassi
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Thybo
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Morten Bagge Hansen
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Nielsen
- Department of Health Technology, The Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Jan Pravsgaard Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soren Buus
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Chen X, Zang Y, Li D, Guo J, Wang Y, Lin Y, Wei Z. IDO, TDO, and AHR overexpression is associated with poor outcome in diffuse large B-cell lymphoma patients in the rituximab era. Medicine (Baltimore) 2020; 99:e19883. [PMID: 32481253 PMCID: PMC7249864 DOI: 10.1097/md.0000000000019883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although Indoleamine 2,3-dioxygenase (IDO), tryptophan-2,3-dioxygenase (TDO), and aryl hydrocarbon receptor (AHR) are involved in cancer immune escape, their prognostic impact on diffuse large B-cell lymphoma (DLBCL) is unknown.To examine the prognostic impact of IDO, TDO, and AHR on patients with DLBCL.This was a retrospective study on treatment-naïve patients with newly diagnosed DLBCL at the Henan Province People's Hospital between 01/2012 and 06/2015. Patients with inflammatory reactive lymph nodes were included as controls. All cases were reviewed by 2 pathologists. IDO, TDO, and AHR positivity was determined through immunochemistry. Survival was examined using the Kaplan-Meier method and multivariable Cox analyses.The positive expression of TDO (50.0% vs 16.7%, P = .005) and AHR (60.0% vs 8.3%, P < .001) were higher in DLBCL than in inflammatory control. The overall survival of IDO, TDO, and AHR positive expression in DLBCL patients was 34.6, 26.7, and 32.2 months, respectively, which is significantly shorter than that of the corresponding negative patients (49.0 months, P = .04; 58.2 months, P < .001; 58.0 months, P < .001; respectively). The multivariable analysis showed that TDO expression and Ann-Arbor stage were independently associated with PFS (TDO: HR = 8.347, 95%CI: 2.992-23.289, P < .001; stage: HR = 2.729, 95%CI: 1.571-4.739, P < .001) and OS (TDO: HR = 9.953, 95%CI: 3.228-30.686, P < .001; stage: HR = 2.681, 95%CI: 1.524-4.719, P = .001) in DLBCL patients.Overexpression of IDO, TDO, and AHR is associated with poor survival of patients with DLBCL and could be involved in the immune escape of cancer cells. Further studies are necessary to determine whether these proteins can be targeted by treatment regimens.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Immunological/therapeutic use
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Female
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Male
- Middle Aged
- Prognosis
- Receptors, Aryl Hydrocarbon/biosynthesis
- Receptors, Aryl Hydrocarbon/physiology
- Retrospective Studies
- Rituximab/therapeutic use
- Survival Rate
- Treatment Outcome
- Tryptophan Oxygenase/biosynthesis
- Tryptophan Oxygenase/physiology
- Young Adult
Collapse
Affiliation(s)
| | | | - Dujuan Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University
| | | | - Yacai Wang
- Department of Clinical Hematology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Yuqi Lin
- Department of Clinical Hematology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Zhenghong Wei
- Department of Clinical Hematology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
25
|
Saeed M, Schooten E, van Brakel M, K. Cole D, ten Hagen TLM, Debets R. T Cells Expressing a TCR-Like Antibody Selected Against the Heteroclitic Variant of a Shared MAGE-A Epitope Do Not Recognise the Cognate Epitope. Cancers (Basel) 2020; 12:cancers12051255. [PMID: 32429338 PMCID: PMC7281252 DOI: 10.3390/cancers12051255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antibodies-recognising peptides bound to the major histocompatibility complex (pMHC) represent potentially valuable and promising targets for chimeric antigen receptor (CAR) T cells to treat patients with cancer. Here, a human phage-Fab library has been selected using HLA-A2 complexed with a heteroclitic peptide variant from an epitope shared among multiple melanoma-associated antigens (MAGEs). DNA restriction analyses and phage ELISAs confirmed selection of unique antibody clones that specifically bind to HLA-A2 complexes or HLA-A2-positive target cells loaded with native or heteroclitic peptide. Antibodies selected against heteroclitic peptide, in contrast to native peptide, demonstrated significantly lower to even negligible binding towards native peptide or tumour cells that naturally expressed peptides. The binding to native peptide was not rescued by phage panning with antigen-positive tumour cells. Importantly, when antibodies directed against heteroclitic peptides were engineered into CARs and expressed by T cells, binding to native peptides and tumour cells was minimal to absent. In short, TCR-like antibodies, when isolated from a human Fab phage library using heteroclitic peptide, fail to recognise its native peptide. We therefore argue that peptide modifications to improve antibody selections should be performed with caution as resulting antibodies, either used directly or as CARs, may lose activity towards endogenously presented tumour epitopes.
Collapse
Affiliation(s)
- Mesha Saeed
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, 3000 CA Rotterdam, The Netherlands;
| | - Erik Schooten
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands; (E.S.); (M.v.B.); (R.D.)
| | - Mandy van Brakel
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands; (E.S.); (M.v.B.); (R.D.)
| | - David K. Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK;
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, 3000 CA Rotterdam, The Netherlands;
- Correspondence:
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands; (E.S.); (M.v.B.); (R.D.)
| |
Collapse
|
26
|
Garcia V, Bonhoeffer S, Fu F. Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination. J Theor Biol 2020; 492:110185. [PMID: 32035826 PMCID: PMC7079339 DOI: 10.1016/j.jtbi.2020.110185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
The presence of an immunological barrier in cancer- immune system interaction (CISI) is consistent with the bistability patterns in that system. In CISI models, bistability patterns are consistent with immunosuppressive effects dominating immunoproliferative effects. Bistability could be harnessed to devise effective combination immunotherapy approaches.
Cancer immunotherapies rely on how interactions between cancer and immune system cells are constituted. The more essential to the emergence of the dynamical behavior of cancer growth these interactions are, the more effectively they may be used as mechanisms for interventions. Mathematical modeling can help unearth such connections, and help explain how they shape the dynamics of cancer growth. Here, we explored whether there exist simple, consistent properties of cancer-immune system interaction (CISI) models that might be harnessed to devise effective immunotherapy approaches. We did this for a family of three related models of increasing complexity. To this end, we developed a base model of CISI, which captures some essential features of the more complex models built on it. We find that the base model and its derivates can plausibly reproduce biological behavior that is consistent with the notion of an immunological barrier. This behavior is also in accord with situations in which the suppressive effects exerted by cancer cells on immune cells dominate their proliferative effects. Under these circumstances, the model family may display a pattern of bistability, where two distinct, stable states (a cancer-free, and a full-grown cancer state) are possible. Increasing the effectiveness of immune-caused cancer cell killing may remove the basis for bistability, and abruptly tip the dynamics of the system into a cancer-free state. Additionally, in combination with the administration of immune effector cells, modifications in cancer cell killing may be harnessed for immunotherapy without the need for resolving the bistability. We use these ideas to test immunotherapeutic interventions in silico in a stochastic version of the base model. This bistability-reliant approach to cancer interventions might offer advantages over those that comprise gradual declines in cancer cell numbers.
Collapse
Affiliation(s)
- Victor Garcia
- Institute of Applied Simulation, Zurich University of Applied Sciences, Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland; ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland; Institute for Social and Preventive Medicine, University of Bern, Finkenhubelweg 11, 3012 Bern, Switzerland; Department of Biology, Stanford University, 371 Serra Mall, Stanford CA 94305, USA.
| | | | - Feng Fu
- Department of Mathematics, Dartmouth College, 27 N. Main Street, 6188 Kemeny Hall, Hanover, NH 03755-3551, USA; ETH Zurich, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
27
|
Lynam S, Lugade AA, Odunsi K. Immunotherapy for Gynecologic Cancer: Current Applications and Future Directions. Clin Obstet Gynecol 2020; 63:48-63. [PMID: 31833846 PMCID: PMC7298668 DOI: 10.1097/grf.0000000000000513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of the immune system in the development of cancer has been a subject of ongoing clinical investigation in recent years. Emerging data demonstrate that tumorigenesis resulting in ovarian, uterine, and cervical cancers is a consequence of impaired host immune responses to cancerous cells. Leveraging the immune system through the use of immune checkpoint inhibitors, therapeutic vaccine therapy, and adoptive cell transfer presents a profound opportunity to revolutionize cancer treatment. This review will encompass the role of the immune system in development of gynecologic cancers and highlight recent data regarding immunotherapy applications in ovarian, uterine, and cervical cancers.
Collapse
Affiliation(s)
| | - Amit A Lugade
- Center for Immunotherapy Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology
- Center for Immunotherapy Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
28
|
Grimaldi A, Cammarata I, Martire C, Focaccetti C, Piconese S, Buccilli M, Mancone C, Buzzacchino F, Berrios JRG, D'Alessandris N, Tomao S, Giangaspero F, Paroli M, Caccavale R, Spinelli GP, Girelli G, Peruzzi G, Nisticò P, Spada S, Panetta M, Letizia Cecere F, Visca P, Facciolo F, Longo F, Barnaba V. Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens. Commun Biol 2020; 3:85. [PMID: 32099064 PMCID: PMC7042341 DOI: 10.1038/s42003-020-0811-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Here, we developed an unbiased, functional target-discovery platform to identify immunogenic proteins from primary non-small cell lung cancer (NSCLC) cells that had been induced to apoptosis by cisplatin (CDDP) treatment in vitro, as compared with their live counterparts. Among the multitude of proteins identified, some of them were represented as fragmented proteins in apoptotic tumor cells, and acted as non-mutated neoantigens (NM-neoAgs). Indeed, only the fragmented proteins elicited effective multi-specific CD4+ and CD8+ T cell responses, upon a chemotherapy protocol including CDDP. Importantly, these responses further increased upon anti-PD-1 therapy, and correlated with patients' survival and decreased PD-1 expression. Cross-presentation assays showed that NM-neoAgs were unveiled in apoptotic tumor cells as the result of caspase-dependent proteolytic activity of cellular proteins. Our study demonstrates that apoptotic tumor cells generate a repertoire of immunogenic NM-neoAgs that could be potentially used for developing effective T cell-based immunotherapy across multiple cancer patients.
Collapse
MESH Headings
- Aged
- Antigen Presentation/drug effects
- Antigen Presentation/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/isolation & purification
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Case-Control Studies
- Cell Line, Tumor
- Cisplatin/administration & dosage
- Cisplatin/pharmacology
- Combined Modality Therapy
- Drug Screening Assays, Antitumor/methods
- Female
- Humans
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Middle Aged
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- Alessio Grimaldi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Carmela Martire
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Chiara Focaccetti
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Marta Buccilli
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Carmine Mancone
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy
| | - Federica Buzzacchino
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Julio Rodrigo Giron Berrios
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Nicoletta D'Alessandris
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Marino Paroli
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma - Polo Pontino, 04100, Latina, Italy
| | - Rosalba Caccavale
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma - Polo Pontino, 04100, Latina, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Universitaria, ASL Latina (distretto Aprilia), Sapienza Università di Roma, Via Giustiniano snc, 04011, Aprilia, Latina, Italy
| | - Gabriella Girelli
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Paolo Visca
- Unit of Pathology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Flavia Longo
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Oncologia Medica, Università di Roma, 00161, Rome, Italy
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy.
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy.
- Istituto Pasteur - Fondazione Cenci Bolognetti, 00185, Rome, Italy.
| |
Collapse
|
29
|
Sally Ahmad S, Abir Adel S, Nadia Ahmad Abd EM, Mahmoud Abd EAH, Nermine M, Medhat H. Evaluation of breast cancer regarding molecular and immunochemical markers. INTERNATIONAL JOURNAL OF IMMUNOTHERAPY AND CANCER RESEARCH 2020; 6:001-009. [DOI: 10.17352/2455-8591.000021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
30
|
Tan Z, Chiu MS, Yan CW, Wong YC, Huang H, Man K, Chen Z. Antimesothelioma Immunotherapy by CTLA-4 Blockade Depends on Active PD1-Based TWIST1 Vaccination. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:302-317. [PMID: 32195318 PMCID: PMC7068049 DOI: 10.1016/j.omto.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Checkpoint immunotherapy is a major breakthrough for cancer treatment, yet its efficacy is often limited against many types of malignancies, including malignant mesothelioma. Considering that the immunotherapeutic efficacy depends on immunosurveillance, we sought to develop an active immunization method to break immune tolerance to tumor self-antigen. Here, we demonstrated that TWIST1, the basic helix-loop-helix transcription factor, was associated with human mesothelioma tumorigenesis and required for the invasion and metastasis of mesothelioma in the immune-competent murine AB1 model. When conventional TWIST1 vaccines were not effective in vivo, programmed cell death protein 1 (PD1)-based vaccination provided prophylactic control by inducing long-lasting TWIST1-specific T cell responses against both subcutaneous and metastatic mesothelioma lethal challenges. Furthermore, while CTLA-4 blockade alone did not show any immunotherapeutic efficacy against established mesothelioma, its combination with PD1-based vaccination resulted in 60% complete remission. Mechanistically, these functional T cells recognized a novel highly conserved immunodominant TWIST1 epitope, exhibited cytotoxic activity and long-term memory, and led to durable tumor regression and survival benefit against established AB1 mesothelioma and 4T1 breast cancer. We concluded that PD1-based vaccination controls mesothelioma by breaking immune tolerance to the tumor self-antigen TWIST1. Our results warrant clinical development of the PD1-based vaccination to enhance immunotherapy against a wide range of TWIST1-expressing tumors.
Collapse
Affiliation(s)
- Zhiwu Tan
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Mei Sum Chiu
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Wing Yan
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yik Chun Wong
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Haode Huang
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.,State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
31
|
Łasińska I, Kolenda T, Teresiak A, Lamperska KM, Galus Ł, Mackiewicz J. Immunotherapy in Patients with Recurrent and Metastatic Squamous Cell Carcinoma of the Head and Neck. Anticancer Agents Med Chem 2019; 19:290-303. [PMID: 30198439 DOI: 10.2174/1871520618666180910092356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/09/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the most common malignant cancer occurring in the head and neck area, approximately 90% of the cases. Even in the cases of primary radical treatment (surgical, concomitant chemoradiotherapy or radiotherapy alone), subsequent local recurrence or distant metastases are often observed. In patients with recurrent disease who are unable to receive radical treatment, the results of palliative chemotherapy are not satisfactory. In this review, we summarized the standard treatment options, current development of new drugs and future perspectives in the treatment of patients with recurrent locally advanced and/or metastatic HNSCC. METHODS PubMed databases with words 'head and neck cancer treatment', 'immunotherapy in head and neck cancer treatment' were searched and yielded 186512 and 2249 papers respectively. We selected the most cited articles and reports presenting new immunotherapy agents and drug combinations in HNSCC. RESULTS Recently, two new agents been approved in the treatment of recurrent locally advanced and/or metastatic HNSCC. These are immune-checkpoint inhibitors targeting PD1 (nivolumab and pembrolizumab) which are the most active drugs in the second line treatment of advanced HNSCC. Still, the first line 'golden standard' is the chemotherapy regimen (cisplatin, 5-fluorouracyl) combined with cetuximab. Many phase 3 studies are currently ongoing, evaluating the efficacy of combinational treatment-anti-CTLA4 with anti-PD1 or anti-PDL1. Very encouraging results have been shown in early phase studies evaluating the combination of immunecheckpoint inhibitors with tumor microenvironment immunosuppressive inhibitors. CONCLUSION Despite the huge progress in the systemic treatment of patients with recurrent locally advanced and/or metastatic HNSCC, the disease at this stage remains incurable. Undoubtedly, further research in the field of biomarkers for effective immunotherapy is needed in order to select a group of patients whose will benefit from this therapy, as the treatment is still ineffective in most patients.
Collapse
Affiliation(s)
- Izabela Łasińska
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, University of Medical Sciences, Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Chair of Medical Biotechnology, University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Łukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, University of Medical Sciences, Poznan, Poland.,Department of Chemotherapy, Greater Poland Cancer Centre, Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Heliodor Swiecicki Clinical Hospital, University of Medical Sciences, Poznan, Poland.,Department of Biology and Environmental Studies, University of Medical Sciences, Poznan, Poland.,Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
32
|
Bermudez MV, Papa S. Setting the scene - a future 'epidemic' of immune-related adverse events in association with checkpoint inhibitor therapy. Rheumatology (Oxford) 2019; 58:vii1-vii6. [PMID: 31816083 PMCID: PMC6900909 DOI: 10.1093/rheumatology/kez402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer immune therapy with checkpoint inhibitors (CPIs) has changed the landscape of treatment for a growing number of indications. These drugs are associated with a specific mechanism of action that has profound implications for both immunology and inflammatory disease. This article looks to set the scene covering the history of CPI therapy to date and outlining the likely future developments.
Collapse
Affiliation(s)
- Maria V Bermudez
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Sophie Papa
- Division of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Vianna P, Mendes MF, Bragatte MA, Ferreira PS, Salzano FM, Bonamino MH, Vieira GF. pMHC Structural Comparisons as a Pivotal Element to Detect and Validate T-Cell Targets for Vaccine Development and Immunotherapy-A New Methodological Proposal. Cells 2019; 8:E1488. [PMID: 31766602 PMCID: PMC6952977 DOI: 10.3390/cells8121488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/02/2022] Open
Abstract
The search for epitopes that will effectively trigger an immune response remains the "El Dorado" for immunologists. The development of promising immunotherapeutic approaches requires the appropriate targets to elicit a proper immune response. Considering the high degree of HLA/TCR diversity, as well as the heterogeneity of viral and tumor proteins, this number will invariably be higher than ideal to test. It is known that the recognition of a peptide-MHC (pMHC) by the T-cell receptor is performed entirely in a structural fashion, where the atomic interactions of both structures, pMHC and TCR, dictate the fate of the process. However, epitopes with a similar composition of amino acids can produce dissimilar surfaces. Conversely, sequences with no conspicuous similarities can exhibit similar TCR interaction surfaces. In the last decade, our group developed a database and in silico structural methods to extract molecular fingerprints that trigger T-cell immune responses, mainly referring to physicochemical similarities, which could explain the immunogenic differences presented by different pMHC-I complexes. Here, we propose an immunoinformatic approach that considers a structural level of information, combined with an experimental technology that simulates the presentation of epitopes for a T cell, to improve vaccine production and immunotherapy efficacy.
Collapse
Affiliation(s)
- Priscila Vianna
- Laboratory of Human Teratogenesis and Population Medical Genetics, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil;
| | - Marcus F.A. Mendes
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
| | - Marcelo A. Bragatte
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
| | - Priscila S. Ferreira
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil; (P.S.F.); (M.H.B.)
| | - Francisco M. Salzano
- Laboratory of Molecular Evolution, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil;
| | - Martin H. Bonamino
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil; (P.S.F.); (M.H.B.)
- Vice Presidency of Research and Biological Collections, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Gustavo F. Vieira
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
- Laboratory of Health Bioinformatics, Post Graduate Program in Health and Human Development, La Salle University, Canoas 91.501-970, Brazil
| |
Collapse
|
34
|
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD, Wang W. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther 2019; 4:35. [PMID: 31637014 PMCID: PMC6799837 DOI: 10.1038/s41392-019-0070-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Wei-Lin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Jie Sun
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Zhejiang, China
- Institute of Hematology, Zhejiang University & Laboratory of Stem cell and Immunotherapy Engineering, 310058 Zhejing, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
- CARsgen Therapeutics, 200032 Shanghai, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Biotherapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| |
Collapse
|
35
|
Yan Y, Leontovich AA, Gerdes MJ, Desai K, Dong J, Sood A, Santamaria-Pang A, Mansfield AS, Chadwick C, Zhang R, Nevala WK, Flotte TJ, Ginty F, Markovic SN. Understanding heterogeneous tumor microenvironment in metastatic melanoma. PLoS One 2019; 14:e0216485. [PMID: 31166985 PMCID: PMC6550385 DOI: 10.1371/journal.pone.0216485] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/22/2019] [Indexed: 01/05/2023] Open
Abstract
A systemic analysis of the tumor-immune interactions within the heterogeneous tumor microenvironment is of particular importance for understanding the antitumor immune response. We used multiplexed immunofluorescence to elucidate cellular spatial interactions and T-cell infiltrations in metastatic melanoma tumor microenvironment. We developed two novel computational approaches that enable infiltration clustering and single cell analysis-cell aggregate algorithm and cell neighborhood analysis algorithm-to reveal and to compare the spatial distribution of various immune cells relative to tumor cell in sub-anatomic tumor microenvironment areas. We showed that the heterogeneous tumor human leukocyte antigen-1 expressions differently affect the magnitude of cytotoxic T-cell infiltration and the distributions of CD20+ B cells and CD4+FOXP3+ regulatory T cells within and outside of T-cell infiltrated tumor areas. In a cohort of 166 stage III melanoma samples, high tumor human leukocyte antigen-1 expression is required but not sufficient for high T-cell infiltration, with significantly improved overall survival. Our results demonstrate that tumor cells with heterogeneous properties are associated with differential but predictable distributions of immune cells within heterogeneous tumor microenvironment with various biological features and impacts on clinical outcomes. It establishes tools necessary for systematic analysis of the tumor microenvironment, allowing the elucidation of the "homogeneous patterns" within the heterogeneous tumor microenvironment.
Collapse
Affiliation(s)
- Yiyi Yan
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexey A. Leontovich
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Gerdes
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Keyur Desai
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Jinhong Dong
- Clinical Immunology and Immunotherapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anup Sood
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Alberto Santamaria-Pang
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Aaron S. Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chrystal Chadwick
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Rong Zhang
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Wendy K. Nevala
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Thomas J. Flotte
- Division of Anatomic Pathology and Division of Dermatopathology and Cutaneous Immunopathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Fiona Ginty
- Diagnostics, Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, United States of America
| | - Svetomir N. Markovic
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
36
|
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38:146. [PMID: 30953535 PMCID: PMC6449928 DOI: 10.1186/s13046-019-1154-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Gaëlle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| |
Collapse
|
37
|
Joglekar AV, Leonard MT, Jeppson JD, Swift M, Li G, Wong S, Peng S, Zaretsky JM, Heath JR, Ribas A, Bethune MT, Baltimore D. T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nat Methods 2019; 16:191-198. [PMID: 30700902 PMCID: PMC6755906 DOI: 10.1038/s41592-018-0304-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/07/2018] [Indexed: 01/22/2023]
Abstract
CD8+ T cells recognize and eliminate tumors in an antigen-specific manner. Despite progress in characterizing the antitumor T cell repertoire and function, identifying their target antigens remains a challenge. Here, we describe the use of chimeric receptors called Signaling and Antigen-presenting Bifunctional Receptors (SABRs) in a novel cell-based platform for T Cell Receptor (TCR) antigen discovery. SABRs present an extracellular peptide-MHC complex and induce intracellular signaling via a TCR-like signal upon binding with a cognate TCR. We devised a strategy for antigen discovery using SABR libraries to screen thousands of antigenic epitopes. We validated this platform by identifying the targets recognized by public TCRs of known specificities. Moreover, we extended this approach for personalized neoantigen discovery. The antigen discovery platform reported here will provide a scalable and versatile way to develop novel targets for immunotherapy.
Collapse
Affiliation(s)
- Alok V Joglekar
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Michael T Leonard
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - John D Jeppson
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Margaret Swift
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Guideng Li
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Stephanie Wong
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Songming Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jesse M Zaretsky
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.,Parker Institute for Cancer Immunotherapy (PICI), University of California, Los Angeles and California Institute of Technology, Pasadena, CA, USA
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Parker Institute for Cancer Immunotherapy (PICI), University of California, Los Angeles and California Institute of Technology, Pasadena, CA, USA.,Division of Hematology & Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael T Bethune
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Baltimore
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Parker Institute for Cancer Immunotherapy (PICI), University of California, Los Angeles and California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
38
|
Abstract
This chapter focuses on the discovery of the Major Histocompatibility Complex (MHC) in mice (H-2) and in humans (HLA), and on the role played by the International HLA Workshops in the analysis and characterization of this complex genetic system. The early days of Tumour Immunology and the importance of the definition of Tumour Associated Transplantation Antigens (TATA) are also discussed. Today we know that tumour cells can be killed by T lymphocytes by recognizing tumour antigenic peptides presented by MHC molecules and they can also escape this recognition by losing the expression of MHC molecules. This important phenomenon has been profoundly studied for many years both in my lab in Granada and in other laboratories. The results of this research have important implications for the new generation of cancer immunotherapy that boosts T cell responses. A historical perspective of major discoveries is presented in this chapter, with the names of the scientists that have made a significant contribution to the enormous progress made in the field of Tumour Immunology.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
39
|
Shao J, Xu Q, Su S, Wei J, Meng F, Chen F, Zhao Y, Du J, Zou Z, Qian X, Liu B. Artificial antigen-presenting cells are superior to dendritic cells at inducing antigen-specific cytotoxic T lymphocytes. Cell Immunol 2018; 334:78-86. [PMID: 30392890 DOI: 10.1016/j.cellimm.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 01/05/2023]
Abstract
Adoptive immunotherapy is a promising cancer treatment that entails infusion of immune cells manipulated to have antitumor specificity, in vitro. Antigen-specific cytotoxic T lymphocytes are the main executors of transformed cells during cancer immunotherapy. To induce antigen-specific cytotoxic T lymphocytes, we developed artificial antigen-presenting cells (aAPCs) by engineering K562 cells with electroporation to direct the stable expression of HLA-A∗0201, CD80, and 4-1BBL. Our findings demonstrate that after three stimulation cycles, the aAPCs promoted the induction of antigen-specific cytotoxic T lymphocytes with a less differentiated "young" phenotype, which enhanced immune responses with superior cytotoxicity. This novel, easy, and cost-effective approach to inducing antigen-specific cytotoxic T lymphocytes provides the possibility of improved cancer therapies.
Collapse
Affiliation(s)
- Jie Shao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Qiuping Xu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Shu Su
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Yang Zhao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China.
| |
Collapse
|
40
|
Chodon T, Lugade AA, Battaglia S, Odunsi K. Emerging Role and Future Directions of Immunotherapy in Advanced Ovarian Cancer. Hematol Oncol Clin North Am 2018; 32:1025-1039. [PMID: 30390758 DOI: 10.1016/j.hoc.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clinical progress in cancer immunotherapy has been slow; however, within the last 5 years, breakthrough successes have brought immunotherapy to the forefront in cancer therapy. Promising results have been observed in solid tumors and hematologic malignancies. Most treatment modalities have shown limited efficacy as monotherapy. The complex nature of cancer and the immunosuppressive microenvironment emphasizes the need to personalize immunotherapy by manipulating the patient's own immune system. For successful and long-lasting cure of cancer, a multimodal approach is essential, combining antitumor cell therapy with manipulation of multiple pathways in the tumor microenvironment to ameliorate tumor-induced immunosuppression.
Collapse
Affiliation(s)
- Thinle Chodon
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Amit A Lugade
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA; Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
41
|
Bezu L, Kepp O, Cerrato G, Pol J, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide-based vaccines in anticancer therapy. Oncoimmunology 2018; 7:e1511506. [PMID: 30524907 PMCID: PMC6279318 DOI: 10.1080/2162402x.2018.1511506] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen
Collapse
Affiliation(s)
- Lucillia Bezu
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Giulia Cerrato
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jonathan Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,INSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers,Paris, France.,U1138, INSERM, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
42
|
Melssen MM, Olson W, Wages NA, Capaldo BJ, Mauldin IS, Mahmutovic A, Hutchison C, Melief CJM, Bullock TN, Engelhard VH, Slingluff CL. Formation and phenotypic characterization of CD49a, CD49b and CD103 expressing CD8 T cell populations in human metastatic melanoma. Oncoimmunology 2018; 7:e1490855. [PMID: 30288359 DOI: 10.1080/2162402x.2018.1490855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022] Open
Abstract
Integrins α1β1 (CD49a), α2β1 (CD49b) and αEβ7 (CD103) mediate retention of lymphocytes in peripheral tissues, and their expression is upregulated on tumor infiltrating lymphocytes (TIL) compared to circulating lymphocytes. Little is known about what induces expression of these retention integrins (RI) nor whether RI define subsets in the tumor microenvironment (TME) with a specific phenotype. Human metastatic melanoma-derived CD8 TIL could be grouped into five subpopulations based on RI expression patterns: RIneg, CD49a+ only, CD49a+CD49b+, CD49a+CD103+, or positive for all three RI. A significantly larger fraction of the CD49a+ only subpopulation expressed multiple effector cytokines, whereas CD49a+CD103+ and CD49a+CD49b+ cells expressed IFNγ only. RIneg and CD49a+CD49b+CD103+ CD8 TIL subsets expressed significantly less effector cytokines overall. Interestingly, however, CD49a+CD49b+CD103+ CD8 expressed lowest CD127, and highest levels of perforin and exhaustion markers PD-1 and Tim3, suggesting selective exhaustion rather than conversion to memory. To gain insight into RI expression induction, normal donor PBMC were cultured with T cell receptor (TCR) stimulation and/or cytokines. TCR stimulation alone induced two RI+ cell populations: CD49a single positive and CD49a+CD49b+ cells. TNFα and IL-2 each were capable of inducing these populations. Addition of TGFβ to TCR stimulation generated two additional populations; CD49a+CD49bnegCD103+ and CD49a+CD49b+CD103+. Taken together, our findings identify opportunities to modulate RI expression in the TME by cytokine therapies and to generate subsets with a specific RI repertoire in the interest of augmenting immune therapies for cancer or for modulating other immune-related diseases such as autoimmune diseases.
Collapse
Affiliation(s)
- Marit M Melssen
- Department of Surgery, University of Virginia, Charlottesville, USA.,Beirne Carter Center of Immunology, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - Walter Olson
- Department of Surgery, University of Virginia, Charlottesville, USA
| | - Nolan A Wages
- Department of Public Health Sciences, University of Virginia, Charlottesville, USA
| | - Brian J Capaldo
- Flow Core Cytometry Facility, University of Virginia, Charlottesville, VA, USA
| | - Ileana S Mauldin
- Department of Surgery, University of Virginia, Charlottesville, USA
| | - Adela Mahmutovic
- Department of Surgery, University of Virginia, Charlottesville, USA
| | - Ciara Hutchison
- Department of Surgery, University of Virginia, Charlottesville, USA
| | | | - Timothy N Bullock
- Department of Pathology, University of Virginia, Charlottesville, USA
| | - Victor H Engelhard
- Beirne Carter Center of Immunology, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | | |
Collapse
|
43
|
Brentville VA, Atabani S, Cook K, Durrant LG. Novel tumour antigens and the development of optimal vaccine design. Ther Adv Vaccines Immunother 2018; 6:31-47. [PMID: 29998219 DOI: 10.1177/2515135518768769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
The interplay between tumours and the immune system has long been known to involve complex interactions between tumour cells, immune cells and the tumour microenvironment. The progress of checkpoint inhibitors in the clinic in the last decade has highlighted again the role of the immune system in the fight against cancer. Numerous efforts have been undertaken to develop ways of stimulating the cellular immune response to eradicate tumours. These interventions include the identification of appropriate tumour antigens as targets for therapy. In this review, we summarize progress in selection of target tumour antigen. Targeting self antigens has the problem of thymic deletion of high-affinity T-cell responses leaving a diminished repertoire of low-affinity T cells that fail to kill tumour cells. Thymic regulation appears to be less stringent for differentiation of cancer-testis antigens, as many tumour rejection antigens fall into this category. More recently, targeting neo-epitopes or post-translational modifications such as a phosphorylation or stress-induced citrullination has shown great promise in preclinical studies. Of particular interest is that the responses can be mediated by both CD4 and CD8 T cells. Previous vaccines have targeted CD8 T-cell responses but more recently, the central role of CD4 T cells in orchestrating inflammation within tumours and also differentiating into potent killer cells has been recognized. The design of vaccines to induce such immune responses is discussed herein. Liposomally encoded ribonucleic acid (RNA), targeted deoxyribonucleic acid (DNA) or long peptides linked to toll-like receptor (TLR) adjuvants are the most promising new vaccine approaches. These exciting new approaches suggest that the 'Holy Grail' of a simple nontoxic cancer vaccine may be on the horizon. A major hurdle in tumour therapy is also to overcome the suppressive tumour environment. We address current progress in combination therapies and suggest that these are likely to show the most promise for the future.
Collapse
Affiliation(s)
| | - Suha Atabani
- Academic Department of Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Katherine Cook
- Academic Department of Clinical Oncology, University of Nottingham, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
44
|
Cook KW, Durrant LG, Brentville VA. Current Strategies to Enhance Anti-Tumour Immunity. Biomedicines 2018; 6:E37. [PMID: 29570634 PMCID: PMC6027499 DOI: 10.3390/biomedicines6020037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
The interaction of the immune system with cancer is complex, but new approaches are resulting in exciting therapeutic benefits. In order to enhance the immune response to cancer, immune therapies seek to either induce high avidity immune responses to tumour specific antigens or to convert the tumour to a more pro-inflammatory microenvironment. Strategies, including vaccination, oncolytic viruses, and adoptive cell transfer all seek to induce anti-tumour immunity. To overcome the suppressive tumour microenvironment checkpoint inhibitors and modulators of regulatory cell populations have been investigated. This review summarizes the recent advances in immune therapies and discusses the importance of combination therapies in the treatment of cancers.
Collapse
Affiliation(s)
- Katherine W Cook
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| | - Lindy G Durrant
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
- Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| | - Victoria A Brentville
- Scancell Limited, Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottinghamshire NG5 1PB, UK.
| |
Collapse
|
45
|
Ribatti D. The concept of immune surveillance against tumors. The first theories. Oncotarget 2018; 8:7175-7180. [PMID: 27764780 PMCID: PMC5351698 DOI: 10.18632/oncotarget.12739] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/10/2016] [Indexed: 01/05/2023] Open
Abstract
The immune system plays a major role in the surveillance against tumors. To avoid attack from the immune system, tumor cells develop different strategies to escape immune surveillance. Evidence of immune surveillance comes from both animal models and clinical observations. Mice with a wide variety of immunodeficiencies have a high rate of tumor incidence and are more susceptible to transplanted or chemical carcinogen-induced tumors. Immunosuppressed patients have a high incidence of tumors. However, many patients develop cancer even in the presence of an apparently normal immune system. This indicates that tumor cells are able to escape immune surveillance. The aim of this review article is to summarize the literature concerning the development of the theory of immune surveillance against tumors; to discuss the evidence for and against this theory, and to discuss the concept of immunoediting. Finally, the current approaches in anti-tumor immunotherapy will be analyzed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.,National Cancer Institute "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
46
|
Fang K, Dong G, Wang H, He S, Wu S, Wang W, Sheng C. Improving the Potency of Cancer Immunotherapy by Dual Targeting of IDO1 and DNA. ChemMedChem 2017; 13:30-36. [PMID: 29205945 DOI: 10.1002/cmdc.201700666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Indexed: 01/21/2023]
Abstract
Herein we report the first exploration of a dual-targeting drug design strategy to improve the efficacy of small-molecule cancer immunotherapy. New hybrids of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors and DNA alkylating nitrogen mustards that respectively target IDO1 and DNA were rationally designed. As the first-in-class examples of such molecules, they were found to exhibit significantly enhanced anticancer activity in vitro and in vivo with low toxicity. This proof-of-concept study has established a critical step toward the development of a novel and effective immunotherapy for the treatment of cancers.
Collapse
Affiliation(s)
- Kun Fang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China.,Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| | - Hongyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| | - Shipeng He
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| | - Wei Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| |
Collapse
|
47
|
Saini S, Rekers N, Hadrup S. Novel tools to assist neoepitope targeting in personalized cancer immunotherapy. Ann Oncol 2017; 28:xii3-xii10. [DOI: 10.1093/annonc/mdx544] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
48
|
Haglund F, Hallström BM, Nilsson IL, Höög A, Juhlin CC, Larsson C. Inflammatory infiltrates in parathyroid tumors. Eur J Endocrinol 2017; 177:445-453. [PMID: 28855268 PMCID: PMC5642267 DOI: 10.1530/eje-17-0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
CONTEXT Inflammatory infiltrates are sometimes present in solid tumors and may be coupled to clinical behavior or etiology. Infectious viruses contribute to tumorigenesis in a significant fraction of human neoplasias. OBJECTIVE Characterize inflammatory infiltrates and possible viral transcription in primary hyperparathyroidism. DESIGN From the period 2007 to 2016, a total of 55 parathyroid tumors (51 adenomas and 4 hyperplasias) with prominent inflammatory infiltrates were identified from more than 2000 parathyroid tumors in the pathology archives, and investigated by immunohistochemistry for CD4, CD8, CD20 and CD45 and scored as +0, +1 or +2. Clinicopathological data were compared to 142 parathyroid adenomas without histological evidence of inflammation. Transcriptome sequencing was performed for 13 parathyroid tumors (four inflammatory, 9 non-inflammatory) to identify potential viral transcripts. RESULTS Tumors had prominent germinal center-like nodular (+2) lymphocytic infiltrates consisting of T and B lymphocytes (31%) and/or diffuse (+1-2) infiltrates of predominantly CD8+ T lymphocytes (84%). In the majority of cases with adjacent normal parathyroid tissue, the normal rim was unaffected by the inflammatory infiltrates (96%). Presence of inflammatory infiltrates was associated with higher levels of serum-PTH (P = 0.007) and oxyphilic differentiation (P = 0.002). Co-existent autoimmune disease was observed in 27% of patients with inflammatory infiltrates, which in turn was associated with oxyphilic differentiation (P = 0.041). Additionally, prescription of anti-inflammatory drugs was associated with lower serum ionized calcium (P = 0.037). CONCLUSIONS No evidence of virus-like sequences in the parathyroid tumors could be found by transcriptome sequencing, suggesting that other factors may contribute to attract the immune system to the parathyroid tumor tissue.
Collapse
Affiliation(s)
- Felix Haglund
- Department of Oncology-PathologyKarolinska Institutet, Cancer Center Karolinska (CCK), Karolinska University Hospital, Stockholm, Sweden
- Correspondence should be addressed to F Haglund;
| | - Björn M Hallström
- Science for Life LaboratoryKTH-Royal Institute of Technology, Stockholm, Sweden
| | - Inga-Lena Nilsson
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Breast and Endocrine SurgeryKarolinska University Hospital, Stockholm, Sweden
| | - Anders Höög
- Department of Oncology-PathologyKarolinska Institutet, Cancer Center Karolinska (CCK), Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-PathologyKarolinska Institutet, Cancer Center Karolinska (CCK), Karolinska University Hospital, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-PathologyKarolinska Institutet, Cancer Center Karolinska (CCK), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Bethune MT, Joglekar AV. Personalized T cell-mediated cancer immunotherapy: progress and challenges. Curr Opin Biotechnol 2017; 48:142-152. [DOI: 10.1016/j.copbio.2017.03.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
|
50
|
Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 2017; 75:689-713. [PMID: 29032503 PMCID: PMC5769828 DOI: 10.1007/s00018-017-2686-7] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
The outstanding clinical success of immune checkpoint blockade has revived the interest in underlying mechanisms of the immune system that are capable of eliminating tumors even in advanced stages. In this scenario, CD4 and CD8 T cell responses are part of the cancer immune cycle and both populations significantly influence the clinical outcome. In general, the immune system has evolved several mechanisms to protect the host against cancer. Each of them has to be undermined or evaded during cancer development to enable tumor outgrowth. In this review, we give an overview of T lymphocyte-driven control of tumor growth and discuss the involved tumor-suppressive mechanisms of the immune system, such as senescence surveillance, cancer immunosurveillance, and cancer immunoediting with respect to recent clinical developments of immunotherapies. The main focus is on the currently existing knowledge about the CD4 and CD8 T lymphocyte interplay that mediates the control of tumor growth.
Collapse
Affiliation(s)
- Dmitrij Ostroumov
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Nora Fekete-Drimusz
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Michael Saborowski
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Florian Kühnel
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Norman Woller
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|