1
|
Pathak S, Hogan T, Rane S, Huang Y, Sinclair C, Barry S, Carnevalli L, Yates A, Seddon B. A linear ontogeny accounts for the development of naive, memory and tumour-infiltrating regulatory T cells in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602914. [PMID: 39071363 PMCID: PMC11275882 DOI: 10.1101/2024.07.10.602914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Foxp3 + Regulatory T cells (Treg) are a subset of CD4 + T cells that play critical functions in maintaining tolerance to self antigens and suppressing autoimmunity, regulating immune responses to pathogens and have a role in the pathophysiology of anti-tumoural immunity. Treg ontogeny is complex since they are generated following recognition of self antigens in the thymus during normal T cell development (thymic Treg), but are also induced from mature conventional T cells when activated by foreign antigen with appropriate additional cues (inducible Treg). How these distinct ontogenic pathways contribute to the maintenance and function of the mature Treg compartment in health and disease remains unclear. Here, we use a combination of fate mapping approaches in mice to map the ontogeny of Treg subsets throughout life and estimate rates of production, loss and self-renewal. We find that naive and effector/memory (EM) Treg subsets exhibit distinct dynamics but are both continuously replenished by de novo generation throughout life. Using an inducible Foxp3-dependent Cre fate reporter system, we show that naive Treg and not conventional T cells, are the predominant precursors of EM Treg in adults. Tonic development of new EM Treg is not influenced by foreign antigens from commensals, rather suggesting a role for self recognition. To investigate the ontogeny of Treg development in malignant disease, we used the same fate reporter systems to characterise the Treg infiltrate of three different model tumours. In all three cases, we found that Treg derived from pre-existing, EM Treg. Together, these results reveal a predominantly linear pathway of Treg development from thymic origin to EM Treg associated with pathophysiology of malignant disease, that is driven by self antigen recognition throughout.
Collapse
|
2
|
Abstract
Regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (Foxp3) play a requisite role in the maintenance of immunological homeostasis and prevention of peripheral self-tolerance breakdown. Although Foxp3 by itself is neither necessary nor sufficient to specify many aspects of the Treg cell phenotype, its sustained expression in Treg cells is indispensable for their phenotypic stability, metabolic fitness, and regulatory function. In this review, we summarize recent advances in Treg cell biology, with a particular emphasis on the role of Foxp3 as a transcriptional modulator and metabolic gatekeeper essential to an effective immune regulatory response. We discuss these findings in the context of human inborn errors of immune dysregulation, with a focus on FOXP3 mutations, leading to Treg cell deficiency. We also highlight emerging concepts of therapeutic Treg cell reprogramming to restore tolerance in the settings of immune dysregulatory disorders.
Collapse
|
3
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
4
|
Askenasy N. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res 2016; 64:36-43. [PMID: 26482052 DOI: 10.1007/s12026-015-8725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.
Collapse
|
5
|
Hamdoon MNT, Fattouh M, El-Din AN, Elnady HM. The potential role of cell surface complement regulators and circulating CD4+ CD25+ T-cells in the development of autoimmune myasthenia gravis. Electron Physician 2016; 8:1718-26. [PMID: 26955441 PMCID: PMC4768919 DOI: 10.19082/1718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/13/2015] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION CD4+CD25+ regulatory T-lymphocytes (T-regs) and regulators of complement activity (RCA) involving CD55 and CD59 play an important role in the prevention of autoimmune diseases. However, their role in the pathogenesis of human autoimmune myasthenia gravis (MG) remains unclear. This study aimed to determine the frequency of peripheral blood T-regs and CD4+ T-helper (T-helper) cells and the red blood cells (RBCs) level of expression of CD55 and CD59 in MG patients. METHODS Fourteen patients with MG in neurology outpatient clinics of Sohag University Hospital and Sohag General Hospital from March 2014 to December 2014, and 10 age-matched healthy controls participated in this case-control study. We did flowcytometric assessments of the percentage of peripheral T-regs and T-helper cells and the level of expression of CD55 and CD59 on RBCs in the peripheral blood of patients and controls. RESULTS There was a statistically significant decrease in the percentage of peripheral blood T-regs and T-regs/T-helper cell ratio in the MG patients group. Moreover, the level of expression of CD55, CD59, and dual expression of CD55/CD59 on RBCs were statistically significantly lower in MG patients than those of healthy controls. However, regression analysis indicated that there was no significant correlation between all the measured parameters and disease duration or staging. CONCLUSION Functional defects in the T-regs and RCA may play a role in the pathogenesis of autoimmune MG and their functional modulation may represent an alternative therapeutic strategy for MG treatment.
Collapse
Affiliation(s)
| | - Mona Fattouh
- Department of Microbiology and Immunology, Sohag University Hospital, Sohag, Egypt
| | - Asmaa Nasr El-Din
- Department of Microbiology and Immunology, Sohag University Hospital, Sohag, Egypt
| | | |
Collapse
|
6
|
Crookshank JA, Patrick C, Wang GS, Noel JA, Scott FW. Gut immune deficits in LEW.1AR1-iddm rats partially overcome by feeding a diabetes-protective diet. Immunology 2015; 145:417-28. [PMID: 25711680 DOI: 10.1111/imm.12457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/27/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022] Open
Abstract
The gut immune system and its modification by diet have been implicated in the pathogenesis of type 1 diabetes (T1D). Therefore, we investigated gut immune status in non-diabetes-prone LEW.1AR1 and diabetes-prone LEW.1AR1-iddm rats and evaluated the effect of a low antigen, hydrolysed casein (HC)-based diet on gut immunity and T1D. Rats were weaned onto a cereal-based or HC-based diet and monitored for T1D. Strain and dietary effects on immune homeostasis were assessed in non-diabetic rats (50-60 days old) and rats with recent-onset diabetes using flow cytometry and immunohistochemistry. Immune gene expression was analysed in mesenteric lymph nodes (MLN) and jejunum using quantitative RT-PCR and PCR arrays. T1D was prevented in LEW.1AR1-iddm rats by feeding an HC diet. Diabetic LEW.1AR1-iddm rats had fewer lymphoid tissue T cells compared with LEW.1AR1 rats. The percentage of CD4(+) Foxp3(+) regulatory T (Treg) cells was decreased in pancreatic lymph nodes (PLN) of diabetic rats. The jejunum of 50-day LEW.1AR1-iddm rats contained fewer CD3(+) T cells, CD163(+) M2 macrophages and Foxp3(+) Treg cells. Ifng expression was increased in MLN and Foxp3 expression was decreased in the jejunum of LEW.1AR1-iddm rats; Ifng/Il4 was decreased in jejunum of LEW.1AR1-iddm rats fed HC. PCR arrays revealed decreased expression of M2-associated macrophage factors in 50-day LEW.1AR1-iddm rats. Wheat peptides stimulated T-cell proliferation and activation in MLN and PLN cells from diabetic LEW.1AR1-iddm rats. LEW.1AR1-iddm rats displayed gut immune cell deficits and decreased immunoregulatory capacity, which were partially corrected in animals fed a low antigen, protective HC diet consistent with other models of T1D.
Collapse
Affiliation(s)
| | - Christopher Patrick
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - J Ariana Noel
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Fraser W Scott
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Marshall D, Sinclair C, Tung S, Seddon B. Differential requirement for IL-2 and IL-15 during bifurcated development of thymic regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5525-33. [PMID: 25348623 DOI: 10.4049/jimmunol.1402144] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The developmental pathways of regulatory T cells (T(reg)) generation in the thymus are not fully understood. In this study, we reconstituted thymic development of Zap70-deficient thymocytes with a tetracycline-inducible Zap70 transgene to allow temporal dissection of T(reg) development. We find that T(reg) develop with distinctive kinetics, first appearing by day 4 among CD4 single-positive (SP) thymocytes. Accepted models of CD25(+)Foxp3(+) T(reg) selection suggest development via CD25(+)Foxp3(-) CD4 SP precursors. In contrast, our kinetic analysis revealed the presence of abundant CD25(-)Foxp3(+) cells that are highly efficient at maturing to CD25(+)Foxp3(+) cells in response to IL-2. CD25(-)Foxp3(+) cells more closely resembled mature T(reg) both with respect to kinetics of development and avidity for self-peptide MHC. These population also exhibited distinct requirements for cytokines during their development. CD25(-)Foxp3(+) cells were IL-15 dependent, whereas generation of CD25(+)Foxp3(+) specifically required IL-2. Finally, we found that IL-2 and IL-15 arose from distinct sources in vivo. IL-15 was of stromal origin, whereas IL-2 was of exclusively from hemopoetic cells that depended on intact CD4 lineage development but not either Ag-experienced or NKT cells.
Collapse
Affiliation(s)
- Daniel Marshall
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, NW7 1AA, United Kingdom
| | - Charles Sinclair
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, NW7 1AA, United Kingdom
| | - Sim Tung
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, NW7 1AA, United Kingdom
| | - Benedict Seddon
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London, NW7 1AA, United Kingdom
| |
Collapse
|
8
|
Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E, Foti M, Berrih-Aknin S. Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: roles of IL-17 and TNF-α. J Autoimmun 2014; 52:53-63. [PMID: 24405842 DOI: 10.1016/j.jaut.2013.12.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease in which the thymus frequently presents follicular hyperplasia and signs of inflammation and T cells display a defect in suppressive regulation. Defects in a suppressive assay can indicate either the defective function of Treg cells or the resistance of Tconv cells to suppression by Treg cells. The aim of this study was to determine which cells were responsible for this defect and to address the mechanisms involved. We first performed cross-experiment studies using purified thymic Treg cells and Tconv cells from controls (CTRL) and MG patients. We confirmed that MG Treg cells were defective in suppressing CTRL Tconv proliferation, and we demonstrated for the first time that MG Tconv cells were resistant to Treg cell suppression. The activation of MG Tconv cells triggered a lower upregulation of FoxP3 and a higher upregulation of CD4 and CD25 than CTRL cells. To investigate the factors that could explain these differences, we analyzed the transcriptomes of purified thymic Treg and Tconv cells from MG patients in comparison to CTRL cells. Many of the pathways revealed by this analysis are involved in other autoimmune diseases, and T cells from MG patients exhibit a Th1/Th17/Tfh signature. An increase in IL-17-related genes was only observed in Treg cells, while increases in IFN-γ, IL-21, and TNF-α were observed in both Treg and Tconv cells. These results were confirmed by PCR studies. In addition, the role of TNF-α in the defect in Tconv cells from MG patients was further confirmed by functional studies. Altogether, our results indicate that the immunoregulatory defects observed in MG patients are caused by both Treg cell and Tconv cell impairment and involve several pro-inflammatory cytokines, with TNF-α playing a key role in this process. The chronic inflammation present in the thymus of MG patients could provide an explanation for the escape of thymic T cells from regulation in the MG thymus.
Collapse
Affiliation(s)
- Angeline Gradolatto
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France.
| | - Dani Nazzal
- Pasteur Institute, 25-28 Rue du Docteur Roux, 75015 Paris, France.
| | - Frédérique Truffault
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France.
| | - Jacky Bismuth
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France.
| | - Elie Fadel
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Hopital Marie Lannelongue, Le Plessis-Robinson, France.
| | - Maria Foti
- Genopolis Consortium, University of Milano-Bicocca, Piazza della Scienza, 4, Building U4, 20126 Milan, Italy.
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of Myology, Paris, France.
| |
Collapse
|
9
|
Lopes-Carvalho T, Coutinho A. Old dogs and new tricks: defective peripheral regulatory T cell generation in aged mice. Eur J Immunol 2013; 43:2534-7. [PMID: 24122754 DOI: 10.1002/eji.201344029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 08/26/2013] [Accepted: 09/12/2013] [Indexed: 01/21/2023]
Abstract
Tolerance is a developmentally acquired property of the vertebrate immune system, in part ensured by regulatory CD4⁺ lymphocytes (Treg cells) expressing the Foxp3 transcription factor. Recent work has shown that thymic emigrants are the preferential source of peripherally generated Treg cells. A new report in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 2598-2604] describes a cell autonomous defect in Foxp3 induction in aged CD4⁺ cells in mice. Immune homeostasis becomes progressively less robust as ontogeny gives way to aging, and a key feature of senescence is thymic involution and the impaired T-cell turnover that follows. In this Commentary, we discuss the implications of these recent findings for our understanding of the induction of tolerance to peripheral antigens in aging.
Collapse
|
10
|
Expansion of CD4(+) CD25(+) and CD25(-) T-Bet, GATA-3, Foxp3 and RORγt cells in allergic inflammation, local lung distribution and chemokine gene expression. PLoS One 2011; 6:e19889. [PMID: 21625544 PMCID: PMC3098248 DOI: 10.1371/journal.pone.0019889] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 04/19/2011] [Indexed: 02/08/2023] Open
Abstract
Allergic asthma is associated with airway eosinophilia, which is regulated by different T-effector cells. T cells express transcription factors T-bet, GATA-3, RORγt and Foxp3, representing Th1, Th2, Th17 and Treg cells respectively. No study has directly determined the relative presence of each of these T cell subsets concomitantly in a model of allergic airway inflammation. In this study we determined the degree of expansion of these T cell subsets, in the lungs of allergen challenged mice. Cell proliferation was determined by incorporation of 5-bromo-2'-deoxyuridine (BrdU) together with 7-aminoactnomycin (7-AAD). The immunohistochemical localisation of T cells in the lung microenvironments was also quantified. Local expression of cytokines, chemokines and receptor genes was measured using real-time RT-PCR array analysis in tissue sections isolated by laser microdissection and pressure catapulting technology. Allergen exposure increased the numbers of T-bet(+), GATA-3(+), RORγt(+) and Foxp3(+) cells in CD4(+)CD25(+) and CD4(+)CD25(-) T cells, with the greatest expansion of GATA-3(+) cells. The majority of CD4(+)CD25(+) T-bet(+), GATA-3(+), RORγt(+) and Foxp3(+) cells had incorporated BrdU and underwent proliferation during allergen exposure. Allergen exposure led to the accumulation of T-bet(+), GATA-3(+) and Foxp3(+) cells in peribronchial and alveolar tissue, GATA-3(+) and Foxp3(+) cells in perivascular tissue, and RORγt(+) cells in alveolar tissue. A total of 28 cytokines, chemokines and receptor genes were altered more than 3 fold upon allergen exposure, with expression of half of the genes claimed in all three microenvironments. Our study shows that allergen exposure affects all T effector cells in lung, with a dominant of Th2 cells, but with different local cell distribution, probably due to a distinguished local inflammatory milieu.
Collapse
|
11
|
Martin-Blondel G, Delobel P, Blancher A, Massip P, Marchou B, Liblau RS, Mars LT. Pathogenesis of the immune reconstitution inflammatory syndrome affecting the central nervous system in patients infected with HIV. Brain 2011; 134:928-46. [DOI: 10.1093/brain/awq365] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
Zipris D. Toll-like receptors and type 1 diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:585-610. [PMID: 20217515 DOI: 10.1007/978-90-481-3271-3_25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results in the progressive loss of insulin producing cells. Studies performed in humans with T1D and animal models of the disease over the past two decades have suggested a key role for the adaptive immune system in disease mechanisms. The role of the innate immune system in triggering T1D was shown only recently. Research in this area was greatly facilitated by the discovery of toll-like receptors (TLRs) that were found to be a key component of the innate immune system that detect microbial infections and initiate antimicrobial host defense responses. New data indicate that in some situations, the innate immune system is associated with mechanisms triggering autoimmune diabetes. In fact, studies preformed in the BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rat models of T1D demonstrate that virus infection leads to islet destruction via mechanisms that may involve TLR9-induced innate immune system activation. Data from these studies also show that TLR upregulation can synergize with virus infection to dramatically increase disease penetrance. Reports from murine models of T1D implicate both MyD88-dependent and MyD88-independent pathways in the course of disease. The new knowledge about the role of innate immune pathways in triggering islet destruction could lead to the discovery of new molecules that may be targeted for disease prevention.
Collapse
Affiliation(s)
- Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
The role of dendritic cells and regulatory T cells in the regulation of allergic asthma. Pharmacol Ther 2009; 125:1-10. [PMID: 19686776 DOI: 10.1016/j.pharmthera.2009.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 01/01/2023]
Abstract
Airways hyperresponsiveness (AHR) is one of the major clinical features of allergic airways disease including allergic asthma, however the immunological mechanisms leading to the induction and regulation of this disorder are not fully understood. In this review we will summarise the evidence of a number of studies, principally in murine models of AHR, suggesting a central role for respiratory tract dendritic cells (RTDC) in the induction of AHR through the generation of lung-homing, allergen-specific effector T cells. We will also summarise the evidence supporting a role for regulatory T cells in the attenuation of AHR and will propose that, as a counterpoint to their capacity to induce AHR, RTDC may also play a role in the attenuation of AHR through the generation of regulatory T cells (T(reg)). A better understanding of the relationship between the physiological and immunological responses to allergen-induced AHR attenuation, and particularly the role of RTDC and T(reg) in this process, will be essential for the development of new treatments and therapies.
Collapse
|
14
|
Stumbles PA. To be or not to be: CD25 expression by regulatory CD4+ T cells in the prevention of allergic inflammation. Clin Exp Allergy 2009; 39:1294-6. [PMID: 19638037 DOI: 10.1111/j.1365-2222.2009.03328.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Yang CH, Tian L, Ling GS, Trendell-Smith NJ, Ma L, Lo CK, Stott DI, Liew FY, Huang FP. Immunological mechanisms and clinical implications of regulatory T cell deficiency in a systemic autoimmune disorder: roles of IL-2 versus IL-15. Eur J Immunol 2008; 38:1664-76. [PMID: 18465774 DOI: 10.1002/eji.200838190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulatory T cell deficiency is evident in patients with lupus, but the casual [corrected] relationship and underlying mechanism leading to Treg deficiency are unclear. We analyzed the Treg profile, induction and functions of Treg in a lupus mouse model. A characteristic age-dependent biphasic change of Treg frequency was observed in the MRL/lpr mice, which developed a spontaneous lupus-like disease. After an early increase, Treg frequency in the peripheral lymphoid organs rapidly declined with age. Functionally, Treg from both young and old MRL/lpr mice were fully competent in suppressing the wild-type MRL/+ T effector cell (Teff) responses. Adoptive transfer of MRL/+ Treg markedly suppressed clinical disease in the MRL/lpr mice. We demonstrated that the reduced Treg frequency was a result of insufficient peripheral Treg expansion due to defective MRL/lpr Teff in IL-2 production, and the associated defects in dendritic cells, which could be fully restored by exogenous IL-2. In the absence of IL-2, MRL/lpr Teff but not MRL/lpr Treg were highly responsive to IL-15 and could expand rapidly due to enhanced IL-15R expression and IL-15 synthesis. These findings thus provide a clear causal relationship and immunological mechanism underlying Treg deficiency and systemic autoimmunity.
Collapse
Affiliation(s)
- Cui-Hong Yang
- Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hall BM, Robinson CM, Plain KM, Verma ND, Carter N, Boyd RA, Tran GT, Hodgkinson SJ. Studies on naïve CD4+CD25+T cells inhibition of naïve CD4+CD25−T cells in mixed lymphocyte cultures. Transpl Immunol 2008; 18:291-301. [DOI: 10.1016/j.trim.2007.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/24/2007] [Accepted: 09/12/2007] [Indexed: 11/28/2022]
|
17
|
Izcue A, Powrie F. Special regulatory T-cell review: Regulatory T cells and the intestinal tract--patrolling the frontier. Immunology 2008; 123:6-10. [PMID: 18154611 PMCID: PMC2433286 DOI: 10.1111/j.1365-2567.2007.02778.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tolerance to self and harmless antigens is one of the central features of the immune system, and it is obtained through a combination of multiple mechanisms. Discriminating between pathogens and non-pathogenic antigens is especially important in the intestine, which constitutes the main contact surface between the body and the outside environment. Recently, the role of Foxp3+ regulatory T cells (Treg) in the establishment and maintenance of tolerance has been the focus of numerous studies. In this review, we briefly discuss the historical background leading to the identification of Foxp3+ Treg and give an overview of their role in controlling systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Ana Izcue
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
18
|
Brenner M, Laragione T, Yarlett NC, Gulko PS. Genetic regulation of T regulatory, CD4, and CD8 cell numbers by the arthritis severity loci Cia5a, Cia5d, and the MHC/Cia1 in the rat. Mol Med 2007. [PMID: 17673937 DOI: 10.2119/2007-00003.brenner] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cells have a central role in the pathogenesis of autoimmune arthritis, and several abnormalities in T cell homeostasis have been described in rheumatoid arthritis (RA). We hypothesized that T cell phenotypes, including frequencies of different subsets of T regulatory (Treg) cells and in vitro functional responses could be genetically determined. Furthermore, we considered that the genetic contribution would be accounted for by one of the arthritis regulatory quantitative trait loci (QTL), thus providing novel clues to gene mode of action. T cells were isolated from thymus, peripheral blood, and spleen from DA (arthritis-susceptible) and ACI and F344 (arthritis-resistant) strains and from F344.DA(Cia1), DA.F344(Cia5a), and DA.F344(Cia5d) rats congenic for arthritis QTL. T cell subpopulations differed significantly between DA, F344, and ACI. DA rats had an increased frequency of CD4(+) cells, and a reduction in CD8(+) and CD4(+)CD45RC(|o) Treg cells, compared with F344. The differences in CD4/CD8 and CD4(+)CD45RC(|o) Treg cells were accounted for by Cia5a. DA rats also had a reduced frequency of CD8(+)CD45RC(|o) CD25(+) Treg cells compared with F344, and that difference was explained by Cia5d. DA rats also had a significantly lower frequency of CD4(+)CD25(+) and CD8(+)CD25(+) thymocytes, and of peripheral blood CD8(+)CD45RC(|o) Treg cells, compared with F344 rats, and that difference was accounted for by the MHC. This is the first identification of arthritis severity QTL regulating numbers of CD4(+)CD45RC(|o) (Cia5a) and CD8(+)CD45RC(|o) CD25(+) (Cia5d) Treg cells. The MHC effect on CD8(+) Treg cells and CD25(+) thymocytes raises a novel potential explanation for its association with arthritis.
Collapse
Affiliation(s)
- Max Brenner
- Laboratory of Experimental Rheumatology, The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | |
Collapse
|
19
|
Brenner M, Laragione T, Yarlett NC, Gulko PS. Genetic regulation of T regulatory, CD4, and CD8 cell numbers by the arthritis severity loci Cia5a, Cia5d, and the MHC/Cia1 in the rat. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:277-87. [PMID: 17673937 PMCID: PMC1936230 DOI: 10.2119/2007–00003.brenner] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/07/2007] [Indexed: 11/06/2022]
Abstract
T cells have a central role in the pathogenesis of autoimmune arthritis, and several abnormalities in T cell homeostasis have been described in rheumatoid arthritis (RA). We hypothesized that T cell phenotypes, including frequencies of different subsets of T regulatory (Treg) cells and in vitro functional responses could be genetically determined. Furthermore, we considered that the genetic contribution would be accounted for by one of the arthritis regulatory quantitative trait loci (QTL), thus providing novel clues to gene mode of action. T cells were isolated from thymus, peripheral blood, and spleen from DA (arthritis-susceptible) and ACI and F344 (arthritis-resistant) strains and from F344.DA(Cia1), DA.F344(Cia5a), and DA.F344(Cia5d) rats congenic for arthritis QTL. T cell subpopulations differed significantly between DA, F344, and ACI. DA rats had an increased frequency of CD4(+) cells, and a reduction in CD8(+) and CD4(+)CD45RC(|o) Treg cells, compared with F344. The differences in CD4/CD8 and CD4(+)CD45RC(|o) Treg cells were accounted for by Cia5a. DA rats also had a reduced frequency of CD8(+)CD45RC(|o) CD25(+) Treg cells compared with F344, and that difference was explained by Cia5d. DA rats also had a significantly lower frequency of CD4(+)CD25(+) and CD8(+)CD25(+) thymocytes, and of peripheral blood CD8(+)CD45RC(|o) Treg cells, compared with F344 rats, and that difference was accounted for by the MHC. This is the first identification of arthritis severity QTL regulating numbers of CD4(+)CD45RC(|o) (Cia5a) and CD8(+)CD45RC(|o) CD25(+) (Cia5d) Treg cells. The MHC effect on CD8(+) Treg cells and CD25(+) thymocytes raises a novel potential explanation for its association with arthritis.
Collapse
Affiliation(s)
- Max Brenner
- Laboratory of Experimental Rheumatology, The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
- North Shore-LIJ Graduate School of Molecular Medicine, Manhasset, New York, USA
| | - Teresina Laragione
- Laboratory of Experimental Rheumatology, The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Nuriza C Yarlett
- Laboratory of Experimental Rheumatology, The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Pércio S Gulko
- Laboratory of Experimental Rheumatology, The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
- New York University School of Medicine, New York, New York, USA
- Division of Rheumatology, North Shore University Hospital, Manhasset, New York, USA
- Address correspondence and reprint requests to Pércio S Gulko, Laboratory of Experimental Rheumatology, The Robert S Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, 350 Community Drive, Room 139, Manhasset, NY, 11030. Phone: (516) 562-1275; Fax: (516) 562-1153; E-mail:
| |
Collapse
|
20
|
Savino W, Villa-Verde DMS, Mendes-da-Cruz DA, Silva-Monteiro E, Perez AR, Aoki MDP, Bottasso O, Guiñazú N, Silva-Barbosa SD, Gea S. Cytokines and cell adhesion receptors in the regulation of immunity to Trypanosoma cruzi. Cytokine Growth Factor Rev 2007; 18:107-24. [PMID: 17339126 DOI: 10.1016/j.cytogfr.2007.01.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pathophysiology of Chagas' disease is not completely defined, although innate and adaptative immune responses are crucial. In acute infection some parasite antigens can activate macrophages, and this may result in pro-inflammatory cytokine production, nitric oxide synthesis, and consequent control of parasitemia and mortality. Cell-mediated immunity in Trypanosoma cruzi infection is also modulated by cytokines, but in addition to parasite-specific responses, autoimmunity can be also triggered. Importantly, cytokines may also play a role in the cell-mediated immunity of infected subjects. Finally, leukocyte influx towards target tissues is regulated by cytokines, chemokines, and extracellular matrix components which may represent potential therapeutic targets in infected patients. Here we will discuss recent findings on the role of cytokines, chemokines and extracellular matrix components in the regulation of innate and adaptive immunity during T. cruzi infection.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory of Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Ave. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vykhovanets EV, Resnick MI, MacLennan GT, Gupta S. Experimental rodent models of prostatitis: limitations and potential. Prostate Cancer Prostatic Dis 2007; 10:15-29. [PMID: 17199136 DOI: 10.1038/sj.pcan.4500930] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prostatitis is a polyetiological inflammation of the prostate gland in men characterized by pelvic pain, irritative voiding symptoms, and sexual dysfunction. Histologically prostatitis is characterized by poly- and mononuclear cell infiltrates (neutrophils, lymphocytes, macrophages and plasma cells) in the stromal connective tissue around the acini or ducts. Prostatitis is an important worldwide health problem in men. The pathogenesis and diagnostic criteria for the condition are obscure, with the result that the development of management programs for this condition has been hindered. Animal model(s) might be useful in elucidating mechanisms involved in the molecular pathogenesis of chronic nonbacterial prostatitis and chronic pelvic pain syndrome. Given that prostatitis might have a multifactorial etiology, several animal models with unique features may prove helpful. This review examines a number of experimental rodent models of prostatitis and evaluates their advantages and limitations.
Collapse
Affiliation(s)
- E V Vykhovanets
- Department of Urology, Case Western Reserve University & University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
22
|
You S, Thieblemont N, Alyanakian MA, Bach JF, Chatenoud L. Transforming growth factor-beta and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol Rev 2006; 212:185-202. [PMID: 16903915 DOI: 10.1111/j.0105-2896.2006.00410.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is now well-established that CD4+ regulatory T cells are instrumental in controlling immune responses both to self-antigens and to non-self-antigens. However, the precise modalities involved in their differentiation and survival, their mode of action and their antigen specificity are only partially understood. We have been particularly interested in the study of regulatory T cells controlling autoimmune insulin-dependent diabetes. Here, we provide evidence to support the phenotypic and functional diversity of regulatory T cells mediating transferable 'active' or 'dominant' peripheral tolerance in the non-obese diabetic mouse model (NOD). They include natural and adaptive regulatory T cells that are operational both in unmanipulated NOD mice and in animals undergoing treatments aimed at inducing/restoring tolerance to self-beta-cell antigens. At least in our hands, the differential cytokine-dependency appears as a major distinctive feature of regulatory T cells subsets. Among immunoregulatory cytokines, transforming growth factor-beta(TGF-beta) appeared to play a key role. Herein we discuss these results and the working hypothesis they evoke in the context of the present literature, where the role of TGF-beta-dependent T-cell-mediated immunoregulation is still debated.
Collapse
Affiliation(s)
- Sylvaine You
- Université René Descartes Paris 5, Institut National de la Santé et de la Recherche Médicale U580 and Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Vykhovanets EV, Resnick MI, Marengo SR. Intraprostatic Lymphocyte Profiles in Aged Wistar Rats With Estradiol Induced Prostate Inflammation. J Urol 2006; 175:1534-40. [PMID: 16516042 DOI: 10.1016/s0022-5347(05)00652-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE We report LS phenotypes in aged Wistar rats (Charles Rivers, Wilmington, Massachusetts) with EPI. MATERIALS AND METHODS EPI was induced in 36 to 40-week-old male rats by castration with subcutaneous injections of 17beta-estradiol (0.25 mg/kg daily) plus dihydrotestosterone propionate (2.5 mg/kg daily) in sesame oil for 30 days. Controls were sham castrated, aged rats that were injected with sesame oil. Prostate, spleen and blood LSs in aged and young (10 to 12-week-old) rats were identified by flow cytometry in a cluster of differentiation system. RESULTS All prostates in 6, 17beta-estradiol plus dihydrotestosterone propionate treated rats and in 3 of 7 controls (43%) showed inflammation foci. All studied LSs in Aged-SPIs and Aged-EPIs were similar. Blood LSs in Aged-SPIs, Aged-EPIs, Aged-NPIs and Youngs showed no differences. Levels of lymphocytes bearing the natural killer marker were decreased, and levels of total T and CD4(+) T cells were increased in prostates with age. Intraprostatic and splenic levels of CD4(+) natural killer T cells were down-regulated significantly in Aged-SPIs and Aged-EPIs compared to those in Aged-NPIs and Youngs. Levels of CD45RC(+)CD4(+)alphabetaTCR(+) T cells were decreased 2-fold in the spleen and up-regulated 2-fold in the prostate of Aged-SPIs and Aged-EPIs compared to those in Aged-NPIs and Youngs. CONCLUSIONS Similar LS features in Aged-SPIs and Aged-EPIs may indicate that the EPI model is appropriate for studies of the immune aspects of prostate inflammation. Imbalance between suppressive CD4(+) natural killer T cells and autoreactive CD45RC(+)CD4(+)alphabetaTCR(+) T cells in Aged-SPIs and Aged-EPIs may suggest their role in prostate inflammation in this model.
Collapse
Affiliation(s)
- Eugene V Vykhovanets
- Jim and Eilleen Dicke Research Laboratory, Department of Urology, School of Medicine, Case Western Reserve University-University Hospitals of Cleveland, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
24
|
Cernea S, Herold KC. Drug Insight: new immunomodulatory therapies in type 1 diabetes. ACTA ACUST UNITED AC 2006; 2:89-98. [PMID: 16932263 DOI: 10.1038/ncpendmet0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/28/2005] [Indexed: 01/12/2023]
Abstract
Animal models and human studies have provided strong evidence that the immune response that causes type 1A diabetes is initiated against a limited array of antigens but acquires breadth and depth until beta-cell mass has been critically compromised. Two recent trials confirmed the ability to identify relatives at risk for development of diabetes, but were unsuccessful in preventing disease. Treatment of at-risk individuals with oral insulin, which is postulated to be an antigen in the disease, did however show efficacy in a subgroup of these subjects, suggesting that antigen-specific prevention approaches might be successful in the right group of subjects at the right time. Earlier trials showed that the natural progression of disease can be altered with conventional immune suppression but these approaches have been supplanted by tolerance-induction strategies. Anti-CD3 monoclonal antibodies have shown efficacy in preventing the loss of insulin production over the first 2 years of disease without chronic immune suppression. The mechanisms are novel, and appear to involve induction of immune regulation by the monoclonal antibody. Ultimately, preservation and even improvement in beta-cell mass is the goal of therapy. The means needed to achieve this will depend on the timing and mechanisms of the immune intervention and might require combinations of agents.
Collapse
|
25
|
Parish N, Cooke A. Characterisation of CD8 monoclonal antibody-induced protection from diabetes in NOD mice. Autoimmunity 2006; 38:597-604. [PMID: 16390812 DOI: 10.1080/08916930500438241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
NOD mice can be protected from transferred diabetes for long periods by short-term treatment with CD8 mabs. This protection has previously been shown to be thymus-dependent as thymectomised mice do not show the long-term protection observed in intact mice. In this study we show that the thymus is required only during antibody treatment as its removal thereafter does not affect protection. Recent thymic emigrants (RTEs) are not necessary for long-term tolerance induction and irradiation plays no part as anti-CD8 treatment cannot protect NOD.scid recipients from diabetes development. IL-10 is also shown to play an important role in the anti-CD8 induced protection in intact mice as it is reversed by IL-10R blockade.
Collapse
Affiliation(s)
- Nicole Parish
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
26
|
Liotta F, Cosmi L, Romagnani P, Maggi E, Romagnani S, Annunziato F. Functional features of human CD25+ regulatory thymocytes. Microbes Infect 2005; 7:1017-22. [PMID: 15914064 DOI: 10.1016/j.micinf.2005.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 03/25/2005] [Indexed: 01/19/2023]
Abstract
Two families of Treg cells have been described and named "naturally occurring" and "adaptive" regulatory T cells. The naturally occurring Treg cells arise in the thymus, where they achieve their complete functional maturation, whereas the adaptive Treg cells derive from the thymus too, but achieve their functional maturation in the periphery. This review discusses the phenotype and the functional features of the human naturally occurring CD25+ regulatory thymocytes.
Collapse
Affiliation(s)
- Francesco Liotta
- Center for Research, Transfer, High Education MCIDNENT, University of Florence, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Poussier P, Ning T, Murphy T, Dabrowski D, Ramanathan S. Impaired Post-Thymic Development of Regulatory CD4+25+ T Cells Contributes to Diabetes Pathogenesis in BB Rats. THE JOURNAL OF IMMUNOLOGY 2005; 174:4081-9. [DOI: 10.4049/jimmunol.174.7.4081] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Zipris D, Lien E, Xie JX, Greiner DL, Mordes JP, Rossini AA. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. THE JOURNAL OF IMMUNOLOGY 2005; 174:131-42. [PMID: 15611235 DOI: 10.4049/jimmunol.174.1.131] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Virus infection is hypothesized to be an important environmental "trigger" of type 1 diabetes in humans. We used the BBDR rat model to investigate the relationship between viral infection and autoimmune diabetes. BBDR rats are diabetes-free in viral Ab-free housing, but the disease develops in approximately 30% of BBDR rats infected with Kilham rat virus (KRV) through a process that does not involve infection of pancreatic beta cells. Pretreatment with polyinosinic-polycytidylic (poly(I:C)), a ligand of TLR3, acts synergistically to induce diabetes in 100% of KRV-infected rats. The mechanisms by which KRV induces diabetes and TLR3 ligation facilitates this process are not clear. In this study, we demonstrate that activation of the innate immune system plays a crucial role in diabetes induction. We report that multiple TLR agonists synergize with KRV infection to induce diabetes in BBDR rats, as do heat-killed Escherichia coli or Staphylococcus aureus (natural TLR agonists). KRV infection increases serum IL-12 p40 in a strain-specific manner, and increases IL-12 p40, IFN-gamma-inducible protein-10, and IFN-gamma mRNA transcript levels, particularly in the pancreatic lymph nodes of BBDR rats. Infection with vaccinia virus or H-1 parvovirus induced less stimulation of the innate immune system and failed to induce diabetes in BBDR rats. Our results suggest that the degree to which the innate immune system is activated by TLRs is important for expression of virus-induced diabetes in genetically susceptible hosts.
Collapse
Affiliation(s)
- Danny Zipris
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
29
|
Balandina A, Lécart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 2005; 105:735-41. [PMID: 15454488 PMCID: PMC1847365 DOI: 10.1182/blood-2003-11-3900] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Thymus-derived CD4(+)CD25+ regulatory T (Treg) cells are essential for the maintenance of immunologic self-tolerance. Despite their critical role in the active suppression of experimental autoimmune disorders, little is known about their involvement in human autoimmune diseases. Myasthenia gravis (MG) is a CD4+ T cell-dependent autoimmune disease and the thymus is assumed to be the initiation site. To identify possible defects in the Treg cells in MG, we analyzed CD4(+)CD25+ cells in thymi from patients with MG compared to those from healthy subjects. We found a normal CD4(+)CD25+ number but a severe functional defect in their regulatory activity together with a decreased expression of the transcription factor, Foxp3, which is essential for T-cell regulatory function. The phenotypic analysis of CD4(+)CD25+ thymocytes revealed an increased number of activated effector cells with strong Fas expression in patients with MG. However, whatever their level of Fas, CD4(+)CD25+ thymocytes from patients with MG remained unable to suppress the proliferation of responding cells, indicating that the impaired Treg cell function is not due to contamination by activated effector T cells. These data are the first to demonstrate a severe functional impairment of thymic Treg cells in MG, which could contribute to the onset of this autoimmune disease.
Collapse
Affiliation(s)
- Anna Balandina
- Laboratoire de Physiologie Thymique, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8078, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | | | | | | | | |
Collapse
|
30
|
Mengel J, Fávaro P, Meyer A, Motta V, de Alencar R, Postól E, Cardillo F. Potentiation of immunological tolerance induction in adult mice by co-administration of pooled normal IgG and oral tolerogens: a potential therapeutic approach for autoimmune diseases. Med Hypotheses 2005; 64:978-85. [PMID: 15780495 DOI: 10.1016/j.mehy.2004.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
Oral tolerance can be defined as the inability of an adult animal to produce specific antibodies or cellular immune responses upon conventional immunization, after oral antigenic administration. Recently, the oral administration of antigens has gained renewed interest because of the possibility of inducing tolerance in nonimmunized adult animals and, consequently, opening up the theoretical possibility of preventing or treating diseases caused by malfunction of the immune system. This strategy has been proven to be useful in the prevention of allergic and autoimmune diseases in rodents, as well as in the amelioration of certain autoimmune diseases in humans. Although there is experimental and clinical evidence for the usefulness of oral tolerance in medical practice, the mechanisms responsible for this phenomenon are still poorly understood, and the results obtained are not always satisfactory. Herein, we show that the thymus is required for the induction and maintenance of oral tolerance, providing evidence that it is not a pure form of clonal deletion-based peripheral tolerance. Oral tolerance could therefore depend on the formation and release to the periphery of regulatory T cells, such as gammadelta or alphabeta T cells, by the thymus. This finding may have profound implications for the treatment of autoimmune diseases, since most of them are associated with thymic hypofunction. On the other hand, due to so far unknown mechanisms, the intraperitoneal co-administration of normal IgG to mice orally treated with tolerogen leads to a sustained and intense immunological tolerance, both in euthymic and thymectomized mice, including those of the lupus erythematosus-prone NZB x NZW lineage. This approach for inducing and maintaining tolerance in thymus-deficient conditions is discussed and put forth herein as a new evidence-based proposition for the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- José Mengel
- Department of Immunology, Institute for Biomedical Sciences IV, University of São Paulo, Av. Prof. Lineu Prestes 1730, CEP 05508-900, São Paulo.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zöller M, McElwee KJ, Vitacolonna M, Hoffmann R. Apoptosis resistance in peripheral blood lymphocytes of alopecia areata patients. J Autoimmun 2004; 23:241-56. [PMID: 15501395 DOI: 10.1016/j.jaut.2004.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 07/29/2004] [Accepted: 08/03/2004] [Indexed: 01/31/2023]
Abstract
Alopecia areata (AA) is a putative, cell-mediated autoimmune disease of anagen stage hair follicles. Inter- and intra-follicular lymphocytic infiltrates are associated with alopecia that may progress from an initially patchy presentation to extensive, even universal, hair loss. We previously noted in a mouse model of AA that regulatory T cells (Treg) are absent from draining lymph nodes and that expression of CD44v7 is transiently upregulated. Both features might explain autoreactive T cell persistence. Here we explored whether similar changes are seen in AA patients' peripheral blood mononuclear cells (PBMC). There was no clear evidence for a reduction in Treg as a possible means to support sustained T cell activation. However, progressive AA patients' PBMC displayed increased resistance towards apoptosis, which was accompanied by a decrease in CD95L+ and an increase in CD44v7+ cells. Notably, an expanded population of CD4+CD25+CD154+ T cells in progressive AA patients' PBMC was apoptosis resistant and expressed CD44v7. Thus, survival of activated T cells in progressive AA patients' PBMC is apparently sustained by downregulation of CD95L and upregulation of CD44v7 which is known to be associated with anti-apoptotic gene expression.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
32
|
Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. ACTA ACUST UNITED AC 2004; 199:1467-77. [PMID: 15184500 PMCID: PMC2211787 DOI: 10.1084/jem.20040180] [Citation(s) in RCA: 551] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the nonobese diabetic (NOD) mouse model of type 1 diabetes, the immune system recognizes many autoantigens expressed in pancreatic islet β cells. To silence autoimmunity, we used dendritic cells (DCs) from NOD mice to expand CD25+ CD4+ suppressor T cells from BDC2.5 mice, which are specific for a single islet autoantigen. The expanded T cells were more suppressive in vitro than their freshly isolated counterparts, indicating that DCs from autoimmune mice can increase the number and function of antigen-specific, CD25+ CD4+ regulatory T cells. Importantly, only 5,000 expanded CD25+ CD4+ BDC2.5 T cells could block autoimmunity caused by diabetogenic T cells in NOD mice, whereas 105 polyclonal, CD25+ CD4+ T cells from NOD mice were inactive. When islets were examined in treated mice, insulitis development was blocked at early (3 wk) but not later (11 wk) time points. The expanded CD25+ CD4+ BDC2.5 T cells were effective even if administered 14 d after the diabetogenic T cells. Our data indicate that DCs can generate CD25+ CD4+ T cells that suppress autoimmune disease in vivo. This might be harnessed as a new avenue for immunotherapy, especially because CD25+ CD4+ regulatory cells responsive to a single autoantigen can inhibit diabetes mediated by reactivity to multiple antigens.
Collapse
Affiliation(s)
- Kristin V Tarbell
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
33
|
Lerman MA, Larkin J, Cozzo C, Jordan MS, Caton AJ. CD4+ CD25+ Regulatory T Cell Repertoire Formation in Response to Varying Expression of a neo-Self-Antigen. THE JOURNAL OF IMMUNOLOGY 2004; 173:236-44. [PMID: 15210780 DOI: 10.4049/jimmunol.173.1.236] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA. In another lineage, however, S1-specific thymocytes are subjected to more extensive deletion and far fewer S1-specific CD4+ CD25+ regulatory T cells accumulate in the periphery. We show that radioresistant stromal cells can direct both deletion and CD4+ CD25+ regulatory T cell selection of S1-specific thymocytes. Interestingly, even though their numbers can vary, the S1-specific CD4+ CD25+ regulatory T cells in all cases coexist with clonally related CD4+ CD25- T cells that lack regulatory function. These findings show that the formation of the CD4+ CD25+ regulatory T cell repertoire is sensitive to variations in the expression of self-peptides.
Collapse
|
34
|
Huang YM, Pirskanen R, Giscombe R, Link H, Lefvert AK. Circulating CD4+CD25+ and CD4+CD25+ T cells in myasthenia gravis and in relation to thymectomy. Scand J Immunol 2004; 59:408-14. [PMID: 15049785 DOI: 10.1111/j.0300-9475.2004.01410.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies in experimental animal models of human autoimmune diseases have revealed that CD4(+)CD25(+) T regulatory (Tr) cells are of thymic origin and have potentials in preventing auto-aggressive immunity. Myasthenia gravis (MG) is the best-characterized autoimmune disease. Changes in the thymus are found in a majority of patients with MG. Thymectomy has beneficial effects on the disease severity and course in a substantial proportion of MG patients. But the occurrence and characteristics of Tr cells have not yet been defined in MG. We determined the frequencies and properties of circulating CD4(+)CD25(+) versus CD4(+)CD25(-) cells in MG patients and healthy controls (HCs), with special focus on the effect of thymectomy on CD4(+)CD25(+) cells. CD4(+)CD25(high) cells comprise only about 2% of blood lymphocytes in both MG patients and HCs. Frequencies of CD4(+)CD25(high) cells were similar in MG patients irrespective of treatment with thymectomy. CD4(+)CD25(+) cells in both MG patients and HCs are mainly memory T cells and are activated to a greater extent than CD4(+)CD25(-) cells, as reflected by high levels of CD45RO and human leucocyte antigen (HLA)-DR-positive cells. In both MG patients and HCs, CD4(+)CD25(+) cells also contained a high proportion of CD95-expressing cells as possible evidence of apoptosis-proneness. Upon stimulation with anti-CD3/CD28 monoclonal antibodies, CD4(+)CD25(+) cells responded more vigorously than CD4(+)CD25(-) cells in MG, irrespective of treatment with thymectomy, as well as in HCs. Although CD4(+)CD25(-) cells are mainly naïve T cells, in non-thymectomized MG patients, they are activated to a greater extent as reflected by higher expression of HLA-DR and CD95 on the surface compared to HCs. The data thus show that there is no deficiency of CD4(+)CD25(+) cells in MG, nor is the proportion of CD4(+)CD25(+) cells influenced by thymectomy.
Collapse
Affiliation(s)
- Y-M Huang
- Immunological Research Unit, Department of Medicine, Centre for Molecular Medicine (CMM), Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 2004; 81:331-71. [PMID: 14711059 DOI: 10.1016/s0065-2776(03)81008-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Naturally acquired immunological self-tolerance is not entirely accounted for by clonal deletion, anergy, and ignorance. It is now well established that the T cell-repertoire of healthy individuals harbors self-reactive lymphocytes with a potential to cause autoimmune disease and these lymphocytes are under dominant control by a unique subpopulation of CD4+ T cells now called regulatory T cells. Efforts to delineate these Treg cells naturally present in normal individuals have revealed that they are enriched in the CD25+ CD4+ population. The identification of the CD25 molecule as a useful marker for naturally arising CD4+ regulatory T cells has made it possible to investigate many key aspects of their immunobiology, including their antigen specificities and the cellular/molecular pathways involved in their development and their mechanisms of action. Furthermore, reduction or dysfunction of the CD25+ CD4+ regulatory T cell population can be responsible for certain autoimmune diseases in humans.
Collapse
Affiliation(s)
- Shohei Hori
- Laboratory of Immunopathology, Research Center for Allergy and Immunology, The Institute for Physical and Chemical Research (RIKEN), Yokohama 230-0045, Japan
| | | | | |
Collapse
|
36
|
Anderson AC, Kuchroo VK. Expression of self-antigen in the thymus: a little goes a long way. ACTA ACUST UNITED AC 2004; 198:1627-9. [PMID: 14657216 PMCID: PMC2194139 DOI: 10.1084/jem.20031803] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ana C Anderson
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Anastasi E, Campese AF, Bellavia D, Bulotta A, Balestri A, Pascucci M, Checquolo S, Gradini R, Lendahl U, Frati L, Gulino A, Di Mario U, Screpanti I. Expression of Activated Notch3 in Transgenic Mice Enhances Generation of T Regulatory Cells and Protects against Experimental Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2003; 171:4504-11. [PMID: 14568923 DOI: 10.4049/jimmunol.171.9.4504] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymic-derived dysregulated tolerance has been suggested to occur in type 1 diabetes via impaired generation of CD4(+)CD25(+) T regulatory cells, leading to autoimmune beta cell destruction. In this study, we demonstrate that Notch3 expression is a characteristic feature of CD4(+)CD25(+) cells. Furthermore, streptozotocin-induced autoimmune diabetes fails to develop in transgenic mice carrying the constitutively active intracellular domain of Notch3 in thymocytes and T cells. The failure to develop the disease is associated with an increase of CD4(+)CD25(+) T regulatory cells, accumulating in lymphoid organs, in pancreas infiltrates and paralleled by increased expression of IL-4 and IL-10. Accordingly, CD4(+) T cells from Notch3-transgenic mice inhibit the development of hyperglycemia and insulitis when injected into streptozotocin-treated wild-type mice and display in vitro suppressive activity. These observations, therefore, suggest that Notch3-mediated events regulate the expansion and function of T regulatory cells, leading to protection from experimental autoimmune diabetes and identify the Notch pathway as a potential target for therapeutic intervention in type 1 diabetes.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/prevention & control
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Drug Administration Schedule
- Gene Expression Regulation/immunology
- Injections, Intraperitoneal
- Interleukin-10/biosynthesis
- Interleukin-10/genetics
- Interleukin-4/biosynthesis
- Interleukin-4/genetics
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Male
- Mice
- Mice, Transgenic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/biosynthesis
- Receptor, Notch3
- Receptor, Notch4
- Receptors, Cell Surface
- Receptors, Interleukin-2/biosynthesis
- Receptors, Notch
- Streptozocin/administration & dosage
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Emanuela Anastasi
- Department of Clinical Sciences, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Down JD, White-Scharf ME. Reprogramming immune responses: enabling cellular therapies and regenerative medicine. Stem Cells 2003; 21:21-32. [PMID: 12529548 DOI: 10.1634/stemcells.21-1-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent advances in cellular therapies have led to the emergence of a multidisciplinary scientific approach to developing therapeutics for a wide variety of diseases and genetic disorders. Although most cell-based therapies currently consist of heterogeneous cell populations, it is anticipated that the standard of care will eventually be well-characterized stem cell lines that can be modified to meet the individual needs of the patient. Many challenges have to be overcome, however, before such "designer cells" can become a clinical reality. One of the major hurdles will be to prevent immune rejection of the therapeutic cells. A patient's immune system may react to genetically modified or allogeneic cells as foreign, leading to their destruction. We propose that specific reprogramming of the immune system to accept cellular therapies can be accomplished by establishing hematopoietic chimerism. Successful engraftment of hematopoietic stem cells (HSCs), which have the same origin as those cells intended for therapeutic use, should lead to a re-education of the immune system so that the donor cells are recognized as self and will not be rejected. Developing safe, nontoxic protocols for reprogramming the immune system is critical to the success of this approach. Two major requirements exist for achieving stable HSC engraftment: (A) depletion or displacement of host stem cells, and (B) adequate immune suppression. Available data indicate that an agent such as busulfan is effective in depleting stem cells and that immune suppression can be accomplished with monoclonal antibodies that specifically target immune-reactive cells in the periphery.
Collapse
Affiliation(s)
- Julian D Down
- BioTransplant Incorporated, Charlestown, Massachusetts, USA
| | | |
Collapse
|
39
|
Akbar AN, Taams LS, Salmon M, Vukmanovic-Stejic M. The peripheral generation of CD4+ CD25+ regulatory T cells. Immunology 2003; 109:319-25. [PMID: 12807474 PMCID: PMC1782989 DOI: 10.1046/j.1365-2567.2003.01678.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 03/28/2003] [Indexed: 01/24/2023] Open
Affiliation(s)
- Arne N Akbar
- Department of Immunology and Molecular Pathology, Windeyer Institute for Medical Sciences, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
40
|
Grundström S, Cederbom L, Sundstedt A, Scheipers P, Ivars F. Superantigen-induced regulatory T cells display different suppressive functions in the presence or absence of natural CD4+CD25+ regulatory T cells in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5008-17. [PMID: 12734345 DOI: 10.4049/jimmunol.170.10.5008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Repeated exposures to both microbial and innocuous Ags in vivo have been reported to both eliminate and tolerize T cells after their initial activation and expansion. The remaining tolerant T cells have been shown to suppress the response of naive T cells in vitro. This feature is reminiscent of natural CD4(+)CD25(+) regulatory T cells. However, it is not known whether the regulatory function of in vivo-tolerized T cells is similar to the function of natural CD4(+)CD25(+) regulatory T cells. In this study, we demonstrate that CD4(+)CD25(+) as well as CD4(+)CD25(-) T cells isolated from mice treated with superantigen three consecutive times to induce tolerance were functionally comparable to natural CD4(+)CD25(+) regulatory T cells, albeit more potent. The different subpopulations of in vivo-tolerized CD4(+) T cells efficiently down-modulated costimulatory molecules on dendritic cells, and their suppressive functions were strictly cell contact dependent. Importantly, we demonstrate that conventional CD4(+)CD25(-) T cells could also be induced to acquire regulatory functions by the same regimen in the absence of natural regulatory T cells in vivo, but that such regulatory cells were functionally different.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD
- Antigens, Differentiation/biosynthesis
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen
- Cell Communication/genetics
- Cell Communication/immunology
- Cells, Cultured
- Clonal Anergy/genetics
- Clonal Anergy/immunology
- Clonal Deletion/genetics
- Clonal Deletion/immunology
- Cytokines/physiology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Dose-Response Relationship, Immunologic
- Down-Regulation/genetics
- Down-Regulation/immunology
- Drug Administration Schedule
- Enterotoxins/administration & dosage
- Enterotoxins/pharmacology
- Female
- Genes, T-Cell Receptor beta/immunology
- Immunity, Innate/genetics
- Immunoconjugates
- Injections, Intravenous
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/metabolism
- Leukocyte Common Antigens/biosynthesis
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Receptors, Interleukin-2/biosynthesis
- Staphylococcus aureus/immunology
- Superantigens/administration & dosage
- Superantigens/pharmacology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/physiology
Collapse
|
41
|
Zipris D, Hillebrands JL, Welsh RM, Rozing J, Xie JX, Mordes JP, Greiner DL, Rossini AA. Infections that induce autoimmune diabetes in BBDR rats modulate CD4+CD25+ T cell populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3592-602. [PMID: 12646622 DOI: 10.4049/jimmunol.170.7.3592] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Viruses are believed to contribute to the pathogenesis of autoimmune type 1A diabetes in humans. This pathogenic process can be modeled in the BBDR rat, which develops pancreatic insulitis and type 1A-like diabetes after infection with Kilham's rat virus (RV). The mechanism is unknown, but does not involve infection of the pancreatic islets. We first documented that RV infection of BBDR rats induces diabetes, whereas infection with its close homologue H-1 does not. Both viruses induced similar humoral and cellular immune responses in the host, but only RV also caused a decrease in splenic CD4(+)CD25(+) T cells in both BBDR rats and normal WF rats. Surprisingly, RV infection increased CD4(+)CD25(+) T cells in pancreatic lymph nodes of BBDR but not WF rats. This increase appeared to be due to the accumulation of nonproliferating CD4(+)CD25(+) T cells. The results imply that the reduction in splenic CD4(+)CD25(+) cells observed in RV-infected animals is virus specific, whereas the increase in pancreatic lymph node CD4(+)CD25(+) cells is both virus and rat strain specific. The data suggest that RV but not H-1 infection alters T cell regulation in BBDR rats and permits the expression of autoimmune diabetes. More generally, the results suggest a mechanism that could link an underlying genetic predisposition to environmental perturbation and transform a "regulated predisposition" into autoimmune diabetes, namely, failure to maintain regulatory CD4(+)CD25(+) T cell function.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Bromodeoxyuridine/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cell Division/immunology
- Cells, Cultured
- Coculture Techniques
- Concanavalin A/pharmacology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/virology
- Epitopes, T-Lymphocyte/biosynthesis
- Female
- Genetic Predisposition to Disease
- Immunity, Cellular
- Interferon-gamma/biosynthesis
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymph Nodes/virology
- Lymphocyte Count
- Lymphocytosis/immunology
- Lymphocytosis/virology
- Male
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreas/virology
- Parvoviridae Infections/genetics
- Parvoviridae Infections/immunology
- Parvoviridae Infections/pathology
- Parvoviridae Infections/virology
- Parvovirus/immunology
- Poly I-C/pharmacology
- Rats
- Rats, Inbred BB
- Rats, Inbred WF
- Receptors, Interleukin-2/biosynthesis
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Spleen/virology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Danny Zipris
- Program in Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hudrisier D, Feau S, Bonnet V, Romagnoli P, Van Meerwijk JPM. In vivo maintenance of T-lymphocyte unresponsiveness induced by thymic medullary epithelium requires antigen presentation by radioresistant cells. Immunology 2003; 108:24-31. [PMID: 12519299 PMCID: PMC1782865 DOI: 10.1046/j.1365-2567.2003.01546.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The T-cell repertoire developing in the thymus is rid of autospecific cells by the process of thymic negative selection. Recognition of major histocompatibility complex (MHC)/self-peptide complexes expressed by thymic antigen-presenting cells (APC) of bone marrow origin leads to induction of apoptotic death of autospecific thymocytes. Induction of tolerance to self-antigens not presented by thymic APC is mediated by medullary thymic epithelial cells (mTEC) which express a very wide range of proteins, e.g. inducible and tissue-specific proteins. The main type of tolerance induced by mTEC is non-deletional and the issue of how it is maintained outside the thymus is therefore of crucial interest. We have previously shown that the non-T-cell receptor (TCR) -transgenic T-cell repertoire developing in conditions in which tolerance to self-MHC/peptide ligands is exclusively induced by mTEC is tolerant to syngeneic targets in vivo but lyses such targets in vitro. Here we report that this non-deletional in vivo self-tolerance is not due to active tolerance assured by known naturally occurring regulatory or immune-modulating T lymphocytes. Importantly, we show that in vivo maintenance of this therefore probably anergic state requires continued interaction of autospecific T cells with self-MHC/peptide ligands expressed by radioresistant cells while APC are incapable of maintaining the tolerant state. Therefore, maintenance of non-deletional T-lymphocyte tolerance to the wide range of self-antigens expressed by mTEC depends on continued interaction with radioresistant cells that very probably express a much more limited repertoire of antigens. Our data may therefore have important consequences for tolerance to tissue-specific and inducible self-antigens.
Collapse
Affiliation(s)
- Denis Hudrisier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Centre de Physiopathologie de Toulouse-Purpan, Institut Claude de Preval, Toulouse, France
| | | | | | | | | |
Collapse
|
43
|
Cong Y, Weaver CT, Lazenby A, Elson CO. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6112-9. [PMID: 12444113 DOI: 10.4049/jimmunol.169.11.6112] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We showed previously that cecal bacterial Ag (CBA)-specific CD4(+) T cells induce colitis when transferred into SCID mice. The purpose of this study was to generate and characterize CBA-specific regulatory T cells in C3H/HeJBir (Bir) mice. CD4(+) T cells were stimulated with CBA-pulsed APC in the presence of IL-10 every 10-14 days. After four or more cycles, these T cells produced high levels of IL-10, low levels of IL-4 and IFN-gamma, and no IL-2, consistent with the phenotype of T regulatory-1 (Tr1) cells. Bir Tr1 cells proliferated poorly, but their proliferation was dependent on CD28-B7 interactions and was MHC class II-restricted. Transfer of Bir Tr1 cells into SCID mice did not result in colitis, and cotransfer of Bir Tr1 T cells with pathogenic Bir CD4(+) Th1 cells prevented colitis. Bir Tr1 cells inhibited proliferation and IFN-gamma production of a CBA-specific Th1 cell line in vitro. Such inhibition was partly due to IL-10 and TGFbeta1, but cognate interactions with either APCs or Th1 cells were also involved. Normal intestinal lamina propria CD4(+) T cells had Tr1-like activity when stimulated with CBA-pulsed APCs. We conclude that CD4(+) T cells with the properties of Tr1 cells are present in the intestinal lamina propria and hypothesize that these cells maintain intestinal immune homeostasis to the enteric flora.
Collapse
Affiliation(s)
- Yingzi Cong
- Division of Gastroenterology and Hepatology, University of Alabama, Birmingham 35294, USA
| | | | | | | |
Collapse
|
44
|
Hori S, Haury M, Lafaille JJ, Demengeot J, Coutinho A. Peripheral expansion of thymus-derived regulatory cells in anti-myelin basic protein T cell receptor transgenic mice. Eur J Immunol 2002; 32:3729-35. [PMID: 12516567 DOI: 10.1002/1521-4141(200212)32:12<3729::aid-immu3729>3.0.co;2-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CD4+ regulatory T cells (Treg) play an indispensable role in tolerance to peripheral antigens, but the origin of the Treg pool in the adult remains unclear. Thus, while thymic commitment of Treg has been demonstrated, evidence also exists for the peripheral recruitment of naïve tissue-specific T cells into Treg functions. Anti-myelin basic protein TCR transgenic mice spontaneously develop autoimmune encephalomyelitis when "monoclonal", but are protected by adoptive transfer of CD4+ cells from wild-type donors. We have now used this transfer system to investigate whether previously infused Treg can recruit transgenic T cells to regulatory functions. The results show that transgenic T cells from protected animals did not transfer tolerance to secondary recipients, and that elimination of donor Treg in protected recipients resulted in rapid onset of disease. In addition, Treg-containing T cell susbsets were highly enriched for proliferating cells in vivo, which was also the case for CD4+CD25+ T cells in normal animals. These observations thus exclude peripheral differentiation of Treg in this particular system, and indicate that expansion of thymically committed cells ensures the maintenance of the peripheral Treg pool in the adult.
Collapse
Affiliation(s)
- Shohei Hori
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
45
|
Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M. Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A 2002; 99:15620-5. [PMID: 12429857 PMCID: PMC137766 DOI: 10.1073/pnas.232565399] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of rats or mice to withstand the consequences of injury to myelinated axons in the CNS was previously shown to depend on the ability to manifest a T cell-mediated protective immune response, which is amenable to boosting by myelin-specific T cells. Here we show that this ability, assessed by retinal ganglion cell survival after optic nerve injury or locomotor activity after spinal cord contusion, is decreased if the animals were immunized as neonates with myelin proteins (resulting in their nonresponsiveness as adults to myelin proteins) or injected with naturally occurring regulatory CD4(+)CD25(+) T cells immediately after the injury, and is improved by elimination of these regulatory T cells. In nude BALBc mice replenished with a splenocyte population lacking CD4(+)CD25(+) regulatory T cells, significantly more neurons survived after optic nerve injury than in nude mice replenished with a complete splenocyte population or in matched wild-type controls. In contrast, neuronal survival in wild-type BALBc mice injected with CD4(+)CD25(+) regulatory T cells immediately after injury was significantly worse than in noninjected controls. These findings suggest that the ability to cope with the sequelae of a CNS insult is affected unfavorably by nonresponsiveness to myelin self-antigens and favorably by conditions allowing rapid expression of an autoimmune response. The regulatory T cells might represent an evolutionary compromise between the need to avoid autoimmune diseases and the need for autoimmunity on alert for the purpose of tissue maintenance.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
46
|
Almeida ARM, Legrand N, Papiernik M, Freitas AA. Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4850-60. [PMID: 12391195 DOI: 10.4049/jimmunol.169.9.4850] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We show that the lymphoid hyperplasia observed in IL-2Ralpha- and IL-2-deficient mice is due to the lack of a population of regulatory cells essential for CD4 T cell homeostasis. In chimeras reconstituted with bone marrow cells from IL-2Ralpha-deficient donors, restitution of a population of CD25(+)CD4(+) T cells prevents the chaotic accumulation of lymphoid cells, and rescues the mice from autoimmune disease and death. The reintroduction of IL-2-producing cells in IL-2-deficient chimeras establishes a population of CD25(+)CD4(+) T cells, and restores the peripheral lymphoid compartments to normal. The CD25(+)CD4(+) T cells regulated selectively the number of naive CD4(+) T cells transferred into T cell-deficient hosts. The CD25(+)CD4(+)/naive CD4 T cell ratio and the sequence of cell transfer determines the homeostatic plateau of CD4(+) T cells. Overall, our findings demonstrate that IL-2Ralpha is an absolute requirement for the development of the regulatory CD25(+)CD4(+) T cells that control peripheral CD4 T cell homeostasis, while IL-2 is required for establishing a sizeable population of these cells in the peripheral pools.
Collapse
Affiliation(s)
- Afonso R M Almeida
- Lymphocyte Population Biology, Unité de Recherche Associée Centre National de la Recherche Scientifique 1961, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
47
|
Ramanathan S, Bihoreau MT, Paterson AD, Marandi L, Gauguier D, Poussier P. Thymectomy and radiation-induced type 1 diabetes in nonlymphopenic BB rats. Diabetes 2002; 51:2975-81. [PMID: 12351436 DOI: 10.2337/diabetes.51.10.2975] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spontaneous type 1 diabetes in BB rats is dependent on the RT1(u) MHC haplotype and homozygosity for an allele at the Lyp locus, which is responsible for a peripheral T-lymphopenia. Genetic studies have shown that there are other, as yet unidentified, genetic loci contributing to diabetes susceptibility in this strain. BB rats carrying wild-type Lyp alleles are not lymphopenic and are resistant to spontaneous diabetes (DR). Here we show that thymectomy and exposure to one sublethal dose of gamma-irradiation (TX-R) at 4 weeks of age result in the rapid development of insulitis followed by diabetes in 100% of DR rats. Administration of CD4(+)45RC(-) T-cells from unmanipulated, syngeneic donors immediately after irradiation prevents the disease. Splenic T-cells from TX-R-induced diabetic animals adoptively transfer type 1 diabetes to T-deficient recipients. ACI, WF, WAG, BN, LEW, PVG, and PVG.RT1(u) strains are resistant to TX-R-induced insulitis/diabetes. Genetic analyses revealed linkage between regions on chromosomes 1, 3, 4, 6, 9, and 16, and TX-R-induced type 1 diabetes in a cohort of nonlymphopenic F(2) (Wistar Furth x BBDP) animals. This novel model of TX-R-induced diabetes in nonlymphopenic BB rats can be used to identify environmental and cellular factors that are responsible for the initiation of antipancreatic autoimmunity.
Collapse
Affiliation(s)
- Sheela Ramanathan
- Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Hori S, Haury M, Coutinho A, Demengeot J. Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc Natl Acad Sci U S A 2002; 99:8213-8. [PMID: 12034883 PMCID: PMC123047 DOI: 10.1073/pnas.122224799] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CD25(+)4(+) regulatory T cells (T(reg)) play an indispensable role in preventing autoimmunity. Little is known, however, about the antigen specificities required for their development and effector functions. Mice transgenic for an anti-myelin basic protein (MBP) T cell antigen receptor (TCR) spontaneously develop experimental autoimmune encephalomyelitis (EAE) when deficient for the RAG-1 gene (T/R(-)), whereas RAG-1-competent transgenic animals (T/R(+)) remain healthy, protected by CD4(+) T(reg)-expressing endogenous TCRs. We have now investigated the role and specificity of CD25(+)4(+) T(reg) in this system. The results show that T/R(+) animals contain MBP-specific suppressive CD25(+)4(+) cells, whereas T/R(-) do not. Adoptive transfer of CD25(+)4(+) cells from nontransgenic or T/R(+) donors into T/R(-) mice prevented the development of EAE. Surprisingly, transfer of nontransgenic CD25(+)4(+) cells purified from T/R(+) donors conferred only a limited protection, possibly because of their restricted repertoire diversity that we demonstrate here. Absence of transgenic CD25(+)4(+) cells in animals deficient for endogenous TCRalpha chains and analyses of endogenous TCR gene expression in subsets of CD4(+) cells from T/R(+) mice demonstrate that development of transgenic MBP-specific CD25(+)4(+) T(reg) depends on the coexpression of endogenous TCRalpha chains. Taken together, these results indicate that specificity to MBP is required for effector functions but is not sufficient for thymic selection/commitment of CD25(+)4(+) T(reg) preventing EAE.
Collapse
Affiliation(s)
- Shohei Hori
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
49
|
Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 2002; 20:101-23. [PMID: 11861599 DOI: 10.1146/annurev.immunol.20.081701.141316] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells that can respond to self-antigens are present in the peripheral immune repertoire of all healthy individuals. Recently we have found that unmanipulated SJL mice that are highly susceptible to EAE also maintain a very high frequency of T cells responding to an encephalitogenic epitope of a myelin antigen proteolipid protein (PLP) 139-151 in the peripheral repertoire. This is not due to lack of expression of myelin antigens in the thymus resulting in escape of PLP 139-151 reactive cells from central tolerance, but is due to expression of a splice variant of PLP named DM20, which lacks the residues 116-150. In spite of this high frequency, the PLP 139-151 reactive cells remain undifferentiated in the periphery and do not induce spontaneous EAE. In contrast, SJL TCR transgenic mice expressing a receptor derived from a pathogenic T cell clone do develop spontaneous disease. This may be because in normal mice, autoreactive cells are kept in check by an alternate PLP 139-151 reactive nonpathogenic repertoire, which maintains a balance that keeps them healthy. If this is the case, selective activation of one repertoire or the other may alter susceptibility to autoimmune disease. Since T cells are generally cross-reactive, besides responding to nonself-antigens, they also maintain significant responses to self-antigens. Based on the PLP 139-151 system, we propose a model in which activation with foreign antigens can result in the generation of pathogenic memory T cells that mediate autoimmunity. We also outline circumstances under which activation of self-reactive T cells with foreign antigens can generate selective tolerance and thus generate protective/regulatory memory against self while still maintaining significant responses against foreign antigens. This provides a mechanism by which the fidelity and specificity of the immune system against foreign antigens is improved without increasing the potential for developing an autoimmune disease.
Collapse
Affiliation(s)
- Vijay K Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Herein we describe the major signaling events that occur in T-cells upon T-cell receptor (TCR) engagement, and the mechanisms responsible for the induction of T-cell anergy that may ultimately lead to the development of immunospecific therapies in T-cell mediated autoimmune diseases. A new type of antigen presenting molecule (dimeric MHC class-II/peptide, DEF) endowed with antigen-specific immunomodulatory effects such as induction of Th2 polarization and T-cell anergy is also described as a potential antidiabetogenic agent. According to our preliminary results, the MHC II/peptide-based approach may provide rational grounds for further development of antigen-specific immunotherapeutic agents such as human-like MHC lI/peptide chimeras endowed with efficient down-regulatory effects in CD4 T-cell-mediated autoimmune diseases such as Type 1 diabetes, multiple sclerosis, primary biliary cirrhosis, and rheumatoid arthritis.
Collapse
Affiliation(s)
- T D Brumeanu
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|