1
|
Dai W, Wen M, Kalso E, Palada V. Circadian disruption upon painful peripheral nerve injury in mice: Temporal effects on transcriptome in pain-regulating sensory tissues. Neurobiol Dis 2025; 211:106934. [PMID: 40324566 DOI: 10.1016/j.nbd.2025.106934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Neuropathic pain (NP) resulting from nerve damage shows diurnal fluctuation of intensity in patients, indicating circadian regulation. However, mechanisms linking NP and circadian regulation remain unclear. This study aimed to investigate time-dependent transcriptomic changes during a 24-hour period using a spared nerve injury (SNI) mouse model of NP. METHODS Pain-related behaviours were assessed at baseline and on days 7, 14, and 21 after SNI and control sham surgeries in C57BL/6JRJ mice. Spinal cord (SC) and periaqueductal gray (PAG) were collected 4-hourly over 24 h upon completion of behavioural testing. RESULTS RNA sequencing revealed 111 up- and 21 downregulated differentially expressed genes (DEGs) in the SC, and 35 up- and 33 downregulated DEGs in the PAG, across all six time points. The large majority of DEGs, 245 in the SC and 191 in the PAG, are involved in regulation of immunity. Among the top expressed genes, five DEGs in the SC, Atf3, Anxa10, Gpr151, Cxcl10, Sprr1a, and two DEGs in the PAG, Igf2 and Wnt6, were previously reported to regulate pain. Circadian analysis using CircaCompare identified 383 SC transcripts and 261 PAG transcripts with altered rhythmicity. Variability of gene expression during circadian day was increased in the SC and decreased in the PAG from the SNI mice. CONCLUSION These findings suggest that NP disrupts the circadian expression of rhythmic transcripts in the SC and PAG, potentially revealing new targets for chronotherapy of NP.
Collapse
Affiliation(s)
- Wenjing Dai
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manqing Wen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland; Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, Finland
| | - Vinko Palada
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Liner AG, van Gogh M, Roblek M, Heikenwalder M, Borsig L. Non-redundant roles of the CCR1 and CCR2 chemokine axes in monocyte recruitment during lung metastasis. Neoplasia 2025; 59:101089. [PMID: 39566333 PMCID: PMC11617888 DOI: 10.1016/j.neo.2024.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Monocytes and monocyte-derived macrophages facilitate cancer progression and metastasis. Inflammatory monocytes expressing CCR2 are actively recruited to metastatic lungs, where they promote tumor cell extravasation, metastatic outgrowth, and an immunosuppressive environment. The role of CCR1 in this process has remained unclear. We used Ccr1- and Ccr2-deficient mice and two different tumor cells lines, MC38 and LLC1 with and without Ccl2-deficiency in vitro and in vivo. The recruitment of both Ccr1- and Ccr2-deficient monocytes towards the Ccl2 chemokine was significantly impaired, while no substantial recruitment was observed towards Ccl5 in vitro. MC38 and LLC1 Ccl2-deficient tumor cells showed reduced lung metastasis in both Ccr1- and Ccr2-deficient mice when compared to wild-type mice. We detected reduced numbers of macrophages and myeloid cells in both chemokine receptor-deficient mice. Lung metastasis in both Ccr1- and Ccr2-deficient mice could be rescued to the same levels as in wild-type mice by an adoptive transfer of Ccr2-deficient but not Ccr1-deficient monocytic cells. Accumulation of Ccr1-deficient monocytes in the lungs was severely impaired upon intravenous monocyte injection, indicating the importance of this axis in cell recruitment. Moreover, the efficient recruitment of adoptive transferred Ccr2-deficient monocytes to the lungs and the restoration of lung metastasis suggests an involvement of an additional, Ccr2-independent chemokine pathway. This data defines the non-redundant functions of the Ccr1- and Ccr2-chemokine axes in monocyte recruitment and macrophage presence during lung metastasis. While Ccr2 is essential for the release of monocytes from the bone marrow, Ccr1 is primarily responsible for monocyte presence at metastatic sites.
Collapse
Affiliation(s)
| | - Merel van Gogh
- Institute of Physiology, University of Zurich, Switzerland
| | - Marko Roblek
- Institute of Physiology, University of Zurich, Switzerland
| | - Matthias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, University of Tuebingen, Otfried-Müller-Straße 37, 72076, Tübingen, Germany
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Switzerland; Comprehensive Cancer Center Zurich.
| |
Collapse
|
3
|
Roychowdhury D, Chatterjee RP, Gayen S, Das S, Chatterjee A, Bagchi S, Pal M, Ghosal R, Paul A, Batabyal S. Oral Granulomatous Disorders: A Diagnostic Insight. Cureus 2024; 16:e65742. [PMID: 39211635 PMCID: PMC11360674 DOI: 10.7759/cureus.65742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Granulomatous inflammation represents a unique pattern of chronic inflammation observed in a restricted form of infectious and certain non-infectious diseases. The formation of granulomas typically involves immune responses. Granulomatous disorders encompass a broad spectrum of conditions that share the common histological feature of granuloma formation. Their involvement in the oral soft and hard tissues is quite infrequent; however, their manifestation can pose a diagnostic challenge due to the diverse range of potential causes and the relatively non-specific appearance of the individual lesions. The ultimate outcome of a complex entails the formation of a granuloma, resulting from the interplay among an invading pathogen or antigen, chemical substance, medication, or other irritant, persistent presence of antigens in the bloodstream, activation of macrophages, initiation of Th1 cell response, B-cell overactivity, presence of circulating immune complexes, and a wide range of biological signaling molecules, ultimately leading to the development of fibrosis attributed to the actions of transforming and platelet-derived growth factor. This article emphasizes the clinicopathological diagnostic criteria of oral granulomatous disorders as a guide for treatment and management.
Collapse
Affiliation(s)
- Durba Roychowdhury
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Rudra Prasad Chatterjee
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Swagata Gayen
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Sanjeet Das
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Arunit Chatterjee
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Sudeshna Bagchi
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Mousumi Pal
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Rhitam Ghosal
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Anwesha Paul
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| | - Shreya Batabyal
- Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences & Research, Kolkata, IND
| |
Collapse
|
4
|
Li H, Huang S, Geng C, Wu Y, Shi M, Wang M. Comprehensive analysis reveals hub genes associated with immune cell infiltration in allergic rhinitis. World J Otorhinolaryngol Head Neck Surg 2023; 9:340-351. [PMID: 38059138 PMCID: PMC10696276 DOI: 10.1002/wjo2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 02/25/2023] Open
Abstract
Objectives Allergic rhinitis (AR) refers to a form of respiratory inflammation that mainly affects the sinonasal mucosa. The purpose of this study was to explore the level of immune cell infiltration and the pathogenesis of AR. Methods We performed a comprehensive analysis of two gene expression profiles (GSE50223 and GSE50101, a total of 30 patients with AR and 31 healthy controls). CIBERSORT was used to evaluate the immune cell infiltration levels. Weighted gene coexpression network analysis was applied to explore potential genes or gene modules related to immune status, and enrichment analyses including gene ontology, Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, and gene set variation analysis, were performed to analyze the potential mechanisms in AR. A protein-protein interaction network was constructed to investigate the hub genes, and consensus clustering was conducted to identify the molecular subtypes of AR. Results Compared to the healthy controls, patients with AR had high abundance levels and proportions of CD4+ memory-activated T cells. One hundred and eight immune-related differentially expressed genes were identified. Enrichment analysis suggested that AR was mainly related to leukocyte cell-cell adhesion, cytokine-cytokine receptor interaction, T-cell activation, and T-cell receptor signaling pathway. Ten hub genes, including TYROBP, CSF1R, TLR8, FCER1G, SPI1, ITGAM, CYBB, FCGR2A, CCR1, and HCK, which were related to immune response, might be crucial to the pathogenesis of AR. Three molecular subtypes with significantly different immune statuses were identified. Conclusion This study improves our understanding of the molecular mechanisms in AR via comprehensive strategies and provides potential diagnostic biomarkers and therapeutic targets of AR.
Collapse
Affiliation(s)
- Hui Li
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
- Department of RhinologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shi‐En Huang
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| | - Cong‐Li Geng
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| | - Yu‐Xiao Wu
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| | - Mu‐Han Shi
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| | - Min Wang
- Department of OtorhinolaryngologyPeking University People's HospitalBeijingChina
| |
Collapse
|
5
|
Elbaz-Hayoun S, Rinsky B, Hagbi-Levi S, Grunin M, Chowers I. CCR1 mediates Müller cell activation and photoreceptor cell death in macular and retinal degeneration. eLife 2023; 12:e81208. [PMID: 37903056 PMCID: PMC10615370 DOI: 10.7554/elife.81208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Mononuclear cells are involved in the pathogenesis of retinal diseases, including age-related macular degeneration (AMD). Here, we examined the mechanisms that underlie macrophage-driven retinal cell death. Monocytes were extracted from patients with AMD and differentiated into macrophages (hMdɸs), which were characterized based on proteomics, gene expression, and ex vivo and in vivo properties. Using bioinformatics, we identified the signaling pathway involved in macrophage-driven retinal cell death, and we assessed the therapeutic potential of targeting this pathway. We found that M2a hMdɸs were associated with retinal cell death in retinal explants and following adoptive transfer in a photic injury model. Moreover, M2a hMdɸs express several CCRI (C-C chemokine receptor type 1) ligands. Importantly, CCR1 was upregulated in Müller cells in models of retinal injury and aging, and CCR1 expression was correlated with retinal damage. Lastly, inhibiting CCR1 reduced photic-induced retinal damage, photoreceptor cell apoptosis, and retinal inflammation. These data suggest that hMdɸs, CCR1, and Müller cells work together to drive retinal and macular degeneration, suggesting that CCR1 may serve as a target for treating these sight-threatening conditions.
Collapse
Affiliation(s)
- Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
6
|
Dempsey MP, Conrady CD. The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023; 11:2074. [PMID: 37630634 PMCID: PMC10460047 DOI: 10.3390/microorganisms11082074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. In the following manuscript, we will review ocular immunology and the pathogenesis of herpesviruses and Pseudomonas aeruginosa infections of the cornea and posterior segment. We will highlight areas of future research and what is currently known to promote bench-to-bedside discoveries to improve clinical outcomes of these debilitating ocular diseases.
Collapse
Affiliation(s)
- Michael P. Dempsey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Xu JL. Wilms Tumor 1-Associated Protein Expression Is Linked to a T-Cell-Inflamed Phenotype in Pancreatic Cancer. Dig Dis Sci 2023; 68:831-840. [PMID: 35859262 DOI: 10.1007/s10620-022-07620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/06/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND The molecular driving forces of anti-tumor immunity in pancreatic ductal adenocarcinoma (PDAC) remain unclear, which causing great difficulty in identifying an appropriate treatment strategy. AIMS This study aims to explore the associations between expression of Wilms tumor 1-associated protein (WTAP) and effector T-cell infiltration in PDAC. METHODS In this study, we explored the association between WTAP expression and infiltration level of CD8+ T cells in PDAC. 178 PDAC samples were selected from The Cancer Genome Atlas (TCGA) database. The associations between diverse immune-cell infiltration, Tumor Mutation Burden (TMB), immune checkpoints, and WTAP expression were performed via R software. Transcriptional hallmarks of anti-tumor immunity and known T-cell-inflamed signature of PDAC were both selected to explore the relevance to WTAP expression. Potential immune checkpoint blockade (ICB) response to different WTAP expression was predicted with tumor immune dysfunction and exclusion (TIDE) algorithm. RESULTS WTAP was closely linked to CD8+ T-cell infiltration (r ≥ 0.5, P value < 0.05) and did not show notable association with TMB in PDAC. WTAP positively linked to T-cell-inflamed gene expression profiles (GEP) (IL2RB, IL2RA, ZAP70, ITK, CD3E, CD38, CD27, CD276, CD8A, CMKLR1, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, NKG7, and STAT1), cytolytic activity (GZMA and PRF1), various immune checkpoints (IDO1, CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2) and 4-chemokine signature (CCL4, CCL5, CXCL9, and CXCL10). Besides, increased expression of WTAP was related to a higher TIDE score. CONCLUSIONS WTAP marks PDAC tumors with an active anti-tumor phenotype and might help the identification of PDAC patients who might benefit from immunotherapies.
Collapse
Affiliation(s)
- Ji-Li Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Yu D, Zhang S, Ma C, Huang S, Xu L, Liang J, Li H, Fan Q, Liu G, Zhai Z. CCL3 in the bone marrow microenvironment causes bone loss and bone marrow adiposity in aged mice. JCI Insight 2023; 8:159107. [PMID: 36378535 PMCID: PMC9870077 DOI: 10.1172/jci.insight.159107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The central physiological role of the bone marrow renders bone marrow stromal cells (BMSCs) particularly sensitive to aging. With bone aging, BMSCs acquire a differentiation potential bias in favor of adipogenesis over osteogenesis, and the underlying molecular mechanisms remain unclear. Herein, we investigated the factors underlying age-related changes in the bone marrow and their roles in BMSCs' differentiation. Antibody array revealed that CC chemokine ligand 3 (CCL3) accumulation occurred in the serum of naturally aged mice along with bone aging phenotypes, including bone loss, bone marrow adiposity, and imbalanced BMSC differentiation. In vivo Ccl3 deletion could rescue these phenotypes in aged mice. CCL3 improved the adipogenic differentiation potential of BMSCs, with a positive feedback loop between CCL3 and C/EBPα. CCL3 activated C/EBPα expression via STAT3, while C/EBPα activated CCL3 expression through direct promoter binding, facilitated by DNA hypomethylation. Moreover, CCL3 inhibited BMSCs' osteogenic differentiation potential by blocking β-catenin activity mediated by ERK-activated Dickkopf-related protein 1 upregulation. Blocking CCL3 in vivo via neutralizing antibodies ameliorated trabecular bone loss and bone marrow adiposity in aged mice. This study provides insights regarding age-related bone loss and bone marrow adiposity pathogenesis and lays a foundation for the identification of new targets for senile osteoporosis treatment.
Collapse
Affiliation(s)
- Degang Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Ma
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University; Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University; and Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, China
| | - Sen Huang
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University; Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University; and Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, China
| | - Long Xu
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University; Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University; and Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, China
| | - Jun Liang
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University; Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University; and Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, China
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangwang Liu
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University; Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University; and Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Neuroimmune Responses in a New Experimental Animal Model of Cerebral Aspergillosis. mBio 2022; 13:e0225422. [PMID: 36040029 PMCID: PMC9600342 DOI: 10.1128/mbio.02254-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure of immunosuppressed individuals to the opportunistic fungal pathogen Aspergillus fumigatus may result in invasive pulmonary aspergillosis (IPA), which can lead to the development of cerebral aspergillosis (CA), a highly lethal infection localized in the central nervous system (CNS). There are no experimental models of CA that effectively mimic human disease, resulting in a considerable knowledge gap regarding mechanisms of neurological pathogenicity and neuroimmune responses during infection. In this report, immunosuppressed mice (via acute, high-dose corticosteroid administration) challenged with A. fumigatus resting conidia intranasally, followed a day later by a 70-fold lower inoculum of pre-swollen conidia intravenously (IN + IV + steroid), demonstrated increased weight loss, signs of severe clinical disease, increased fungal burden in the brain, and significant reduction in survival compared to immunosuppressed mice challenged intranasally only (IN + steroid) or non-immunosuppressed mice challenged both intranasally and intravenously (IN + IV). The IN + IV + steroid group demonstrated significant decreases in monocytes, eosinophils, dendritic cells (DCs), and invasive natural killer T (iNKT) cells, but not neutrophils or γδ T cells, in the brain compared to the IN + IV group. Likewise, the IN + IV + steroid group had significantly lower levels of interleukin (IL)-1β, IL-6, IL-17A, CC motif chemokine ligand 3 (CCL3), CXC chemokine ligand 10 (CXCL10), and vascular endothelial growth factor (VEGF) in the brain compared to the IN + IV group. IN + IV + steroid was superior to both IN + IV + chemotherapy (cytarabine + daunorubicin) and IN + IV + neutropenia for the development of CA. In conclusion, we have developed a well-defined, physiologically relevant model of disseminated CA in corticosteroid-induced immunosuppressed mice with a primary pulmonary infection. This model will serve to advance understanding of disease mechanisms, identify immunopathogenic processes, and help define the protective neuroinflammatory response to CA. IMPORTANCE Invasive fungal infections (IFIs) result in significant mortality in immunosuppressed individuals. Of these, invasive pulmonary aspergillosis (IPA), caused by the opportunistic mold Aspergillus fumigatus, is the most lethal. Lethality in IPA is due to two main factors: destruction of the lung leading to compromised pulmonary function, and dissemination of the organism to extrapulmonary organs. Of these, the CNS is the most common site of dissemination. However, very little is known regarding the pathogenesis of or immune response during cerebral aspergillosis, which is directly due to the lack of an animal model that incorporates immunosuppression, lung infection, and consistent dissemination to the CNS/brain. In this report, we have developed a new experimental animal model of CA which includes the above parameters and characterized the neuroimmune response. We further compared this disseminated CA model to two additional immunosuppressive strategies. Overall, this model of disseminated CA following IPA in an immunosuppressed host provides a novel platform for studying the efficacy of antifungal drugs and immunotherapies for improving disease outcomes.
Collapse
|
10
|
Urbán-Solano A, Flores-Gonzalez J, Cruz-Lagunas A, Pérez-Rubio G, Buendia-Roldan I, Ramón-Luing LA, Chavez-Galan L. High levels of PF4, VEGF-A, and classical monocytes correlate with the platelets count and inflammation during active tuberculosis. Front Immunol 2022; 13:1016472. [PMID: 36325331 PMCID: PMC9618821 DOI: 10.3389/fimmu.2022.1016472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Platelets play a major role in coagulation and hemostasis; evidence supports the hypothesis that they also contribute to immunological processes. Increased platelet counts have been associated with poor prognosis in tuberculosis (TB). Platelet–monocyte aggregates have been reported in patients with TB, but it is still unclear if only one monocyte subpopulation is correlated to the platelet count; moreover, the platelet–monocyte axis has not been studied during latent tuberculosis (LTB). In this study, mononuclear cells and plasma were obtained from patients diagnosed with active drug-sensitive TB (DS-TB, n = 10) and LTB (n = 10); cytokines and growth factors levels associated to platelets were evaluated, and correlations with monocyte subpopulations were performed to identify a relationship between them, as well as an association with the degree of lung damage. Our data showed that, compared to LTB, DS-TB patients had an increased frequency of platelets, monocytes, and neutrophils. Although DS-TB patients showed no significant difference in the frequency of classical and non-classical monocytes, the classical monocytes had increased CD14 intensity of expression and frequency of TLR-2+. Furthermore, the plasma levels of angiogenic factors such as vascular endothelial growth factor (VEGF-A), platelet-derived growth factor (PDGF-BB), and platelet factor-4 (PF4), and pro-inflammatory cytokines like interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and interferon-γ-inducible protein 10 (IP-10) were increased in DS-TB patients. In addition, PF-4 and VEGF-A correlated positively with the frequency of classical monocytes and the platelet count. Using a principal component analysis, we identified four groups of DS-TB patients according to their levels of pro-inflammatory cytokines, angiogenic factors, and degree of lung damage. This study establishes that there is a correlation between VEGF-A and PF4 with platelets and classical monocytes during active TB, suggesting that those cell subpopulations are the major contributors of these molecules, and together, they control the severity of lung damage by amplification of the inflammatory environment.
Collapse
Affiliation(s)
- Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Leslie Chavez-Galan, ;
| |
Collapse
|
11
|
Krefl D, Bergmann S. Cross-GWAS coherence test at the gene and pathway level. PLoS Comput Biol 2022; 18:e1010517. [PMID: 36156592 PMCID: PMC9536597 DOI: 10.1371/journal.pcbi.1010517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/06/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Proximal genetic variants are frequently correlated, implying that the corresponding effect sizes detected by genome-wide association studies (GWAS) are also not independent. Methods already exist to account for this when aggregating effects from a single GWAS across genes or pathways. Here we present a rigorous yet fast method for detecting genes with coherent association signals for two traits, facilitating cross-GWAS analyses. To this end, we devised a new significance test for the covariance of datapoints not drawn independently but with a known inter-sample covariance structure. We show that the distribution of its test statistic is a linear combination of χ2 distributions with positive and negative coefficients. The corresponding cumulative distribution function can be efficiently calculated with Davies’ algorithm at high precision. We apply this general framework to test for dependence between SNP-wise effect sizes of two GWAS at the gene level. We extend this test to detect also gene-wise causal links. We demonstrate the utility of our method by uncovering potential shared genetic links between the severity of COVID-19 and (1) being prescribed class M05B medication (drugs affecting bone structure and mineralization), (2) rheumatoid arthritis, (3) vitamin D (25OHD), and (4) serum calcium concentrations. Our method detects a potential role played by chemokine receptor genes linked to TH1 versus TH2 immune response, a gene related to integrin beta-1 cell surface expression, and other genes potentially impacting the severity of COVID-19. Our approach will be useful for similar analyses involving datapoints with known auto-correlation structures.
Collapse
Affiliation(s)
- Daniel Krefl
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (DK); (SB)
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Dept. of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail: (DK); (SB)
| |
Collapse
|
12
|
Medina-Ruiz L, Bartolini R, Wilson GJ, Dyer DP, Vidler F, Hughes CE, Schuette F, Love S, Pingen M, Hayes AJ, Fu J, Stewart AF, Graham GJ. Analysis of combinatorial chemokine receptor expression dynamics using multi-receptor reporter mice. eLife 2022; 11:72418. [PMID: 35699420 PMCID: PMC9236609 DOI: 10.7554/elife.72418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Inflammatory chemokines and their receptors are central to the development of inflammatory/immune pathologies. The apparent complexity of this system, coupled with lack of appropriate in vivo models, has limited our understanding of how chemokines orchestrate inflammatory responses and has hampered attempts at targeting this system in inflammatory disease. Novel approaches are therefore needed to provide crucial biological, and therapeutic, insights into the chemokine-chemokine receptor family. Here, we report the generation of transgenic multi-chemokine receptor reporter mice in which spectrally distinct fluorescent reporters mark expression of CCRs 1, 2, 3, and 5, key receptors for myeloid cell recruitment in inflammation. Analysis of these animals has allowed us to define, for the first time, individual and combinatorial receptor expression patterns on myeloid cells in resting and inflamed conditions. Our results demonstrate that chemokine receptor expression is highly specific, and more selective than previously anticipated.
Collapse
Affiliation(s)
- Laura Medina-Ruiz
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian J Wilson
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Douglas P Dyer
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francesca Vidler
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Catherine E Hughes
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fabian Schuette
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Samantha Love
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Marieke Pingen
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alan James Hayes
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jun Fu
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shandong, China
| | - Adrian Francis Stewart
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute for Cell Biology and Genetics, Dresden, Germany
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Kraemer L, McKay DM, Russo RC, Fujiwara RT. Chemokines and chemokine receptors: insights from human disease and experimental models of helminthiasis. Cytokine Growth Factor Rev 2022; 66:38-52. [DOI: 10.1016/j.cytogfr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2022]
|
14
|
Aulakh GK, Maltare S, Singh B. Lack of CD34 delays bacterial endotoxin-induced lung inflammation. Respir Res 2021; 22:69. [PMID: 33632209 PMCID: PMC7908703 DOI: 10.1186/s12931-021-01667-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
Background CD34, a pan-selectin binding protein when glycosylated, has been shown to be involved in leukocyte migration to the site of inflammation. However, only one report is available on the expression and role of CD34 in neutrophil recruitment during acute lung inflammation. Methods We proceeded to study the role of CD34 in lung neutrophil migration using mouse model of endotoxin induced acute lung inflammation and studied over multiple time points, in generic CD34 knock-out (KO) strain. Results While there was no difference in BAL total or differential leukocyte counts, lung MPO content was lower in LPS exposed KO compared to WT group at 3 h time-point (p = 0.0308). The MPO levels in CD34 KO mice begin to rise at 9 h (p = 0.0021), as opposed to an early 3 h rise in WT mice (p = 0.0001), indicating that KO mice display delays in lung neutrophil recruitment kinetics. KO mice do not loose endotoxin induced lung vascular barrier properties as suggested by lower BAL total protein at 3 h (p = 0.0452) and 24 h (p = 0.0113) time-points. Several pro-inflammatory cytokines and chemokines (TNF-α, IL-1β, KC, MIP-1α, IL-6, IL-10 and IL-12 p70 sub-unit; p < 0.05) had higher levels in WT compared to KO group, at 3 h. Lung immunofluorescence in healthy WT mice reveals CD34 expression in the bronchiolar epithelium, in addition to alveolar septa. Conclusion Thus, given CD34′s pan-selectin affinity, and expression in the bronchiolar epithelium as well as alveolar septa, our study points towards a role of CD34 in lung neutrophil recruitment but not alveolar migration, cytokine expression and lung inflammation.
Collapse
Affiliation(s)
- Gurpreet K Aulakh
- Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Sushmita Maltare
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Baljit Singh
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Zhang Z, Wang J, Chen O. Identification of biomarkers and pathogenesis in severe asthma by coexpression network analysis. BMC Med Genomics 2021; 14:51. [PMID: 33602227 PMCID: PMC7893911 DOI: 10.1186/s12920-021-00892-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe asthma is a heterogeneous inflammatory disease. The increase in precise immunotherapy for severe asthmatics requires a greater understanding of molecular mechanisms and biomarkers. In this study, we aimed to identify the underlying mechanisms and hub genes that determine asthma severity. METHODS Differentially expressed genes (DEGs) were identified based on bronchial epithelial brushings from mild and severe asthmatics. Then, weighted gene coexpression network analysis (WGCNA) was used to identify gene networks and the module most significantly associated with asthma severity. Furthermore, hub gene screening and functional enrichment analysis were performed. Replication with another dataset was conducted to validate the hub genes. RESULTS DEGs from 14 mild and 11 severe asthmatics were subjected to WGCNA. Six modules associated with asthma severity were identified. Three modules were positively correlated (P < 0.001) with asthma severity and contained genes that were upregulated in severe asthmatics. Functional enrichment analysis showed that genes in the most significant module were mainly enriched in neutrophil activation and degranulation, and cytokine receptor interaction. Hub genes included CXCR1, CXCR2, CCR1, CCR7, TLR2, FPR1, FCGR3B, FCGR2A, ITGAM, and PLEK; CXCR1, CXCR2, and TLR2 were significantly related to asthma severity in the validation dataset. The combination of ten hub genes exhibited a moderate ability to distinguish between severe and mild-moderate asthmatics. CONCLUSION Our results identified biomarkers and characterized potential pathogenesis of severe asthma, providing insight into treatment targets and prognostic markers.
Collapse
Affiliation(s)
- Zeyi Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, #44 West Wenhua Road, Jinan, 250012 China
| | - Jingjing Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, #44 West Wenhua Road, Jinan, 250012 China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, #44 West Wenhua Road, Jinan, 250012 China
| |
Collapse
|
16
|
Zhou X, Yuan Q, Zhang C, Dai Z, Du C, Wang H, Li X, Yang S, Zhao A. Inhibition of Japanese encephalitis virus proliferation by long non-coding RNA SUSAJ1 in PK-15 cells. Virol J 2021; 18:29. [PMID: 33509198 PMCID: PMC7841041 DOI: 10.1186/s12985-021-01492-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Japanese encephalitis virus is a mosquito-borne neurotropic flavivirus that causes acute viral encephalitis in humans. Pigs are crucial amplifier host of JEV. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs) play important roles in virus infection. METHODS JEV proliferation was evaluated after overexpression or knockdown of lncRNA-SUSAJ1 using western blotting and reverse-transcription polymerase chain reaction (RT-PCR). C-C chemokine receptor type 1 (CCR1) was found to regulate the expression of lncRNA-SUSAJ1 by inhibitors screen. The expression of lncRNA-SUSAJ1 was detected using RT-PCR after overexpression or knockdown of transcription factor SP1. In addition, the enrichments of transcription factor SP1 on the promoter of lncRNA-SUSAJ1 were analyzed by chromatin immunoprecipitation. RESULTS In this study, we demonstrated that swine lncRNA-SUSAJ1 could suppress JEV proliferation in PK-15 cells. We also found that CCR1 inhibited the expression of lncRNA-SUSAJ1 via the transcription factor SP1. In addition, knockdown of CCR1 could upregulated the expression of SP1 and lncRNA-SUSAJ1, resulting in resistance to JEV proliferation. CONCLUSIONS These findings illustrate the importance of lncRNAs in virus proliferation, and reveal how this virus regulates lncRNAs in host cells to promote its proliferation.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Qiongyu Yuan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Chen Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Zhenglie Dai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Chengtao Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China.
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China.
| |
Collapse
|
17
|
Song J, Frieler RA, Whitesall SE, Chung Y, Vigil TM, Muir LA, Ma J, Brombacher F, Goonewardena SN, Lumeng CN, Goldstein DR, Mortensen RM. Myeloid interleukin-4 receptor α is essential in postmyocardial infarction healing by regulating inflammation and fibrotic remodeling. Am J Physiol Heart Circ Physiol 2021; 320:H323-H337. [PMID: 33164548 PMCID: PMC7847075 DOI: 10.1152/ajpheart.00251.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Interleukin-4 receptor α (IL4Rα) signaling plays an important role in cardiac remodeling during myocardial infarction (MI). However, the target cell type(s) of IL4Rα signaling during this remodeling remains unclear. Here, we investigated the contribution of endogenous myeloid-specific IL4Rα signaling in cardiac remodeling post-MI. We established a murine myeloid-specific IL4Rα knockout (MyIL4RαKO) model with LysM promoter-driven Cre recombination. Macrophages from MyIL4RαKO mice showed significant downregulation of alternatively activated macrophage markers but an upregulation of classical activated macrophage markers both in vitro and in vivo, indicating the successful inactivation of IL4Rα signaling in macrophages. To examine the role of myeloid IL4Rα during MI, we subjected MyIL4RαKO and littermate floxed control (FC) mice to MI. We found that cardiac function was significantly impaired as a result of myeloid-specific IL4Rα deficiency. This deficiency resulted in a dysregulated inflammatory response consisting of decreased production of anti-inflammatory cytokines. Myeloid IL4Rα deficiency also led to reduced collagen 1 deposition and an imbalance of matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs), with upregulated MMPs and downregulated TIMPs, which resulted in insufficient fibrotic remodeling. In conclusion, this study identifies that myeloid-specific IL4Rα signaling regulates inflammation and fibrotic remodeling during MI. Therefore, myeloid-specific activation of IL4Rα signaling could offer protective benefits after MI.NEW & NOTEWORTHY This study showed, for the first time, the role of endogenous IL4Rα signaling in myeloid cells during cardiac remodeling and the underlying mechanisms. We identified myeloid cells are the critical target cell types of IL4Rα signaling during cardiac remodeling post-MI. Deficiency of myeloid IL4Rα signaling causes deteriorated cardiac function post-MI, due to dysregulated inflammation and insufficient fibrotic remodeling. This study sheds light on the potential of activating myeloid-specific IL4Rα signaling to modify remodeling post-MI. This brings hope to patients with MI and diminishes side effects by cell type-specific instead of whole body treatment.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Ryan A Frieler
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Steven E Whitesall
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yutein Chung
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas M Vigil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lindsey A Muir
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Jun Ma
- Department of Thoracic Surgery, Shanxi Province People's Hospital, Taiyuan, People's Republic of China
| | - Frank Brombacher
- International Center for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Daniel R Goldstein
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Richard M Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Taruya A, Furuta M, Mukaida N, Kondo T. Prevention of CaCl 2-induced aortic inflammation and subsequent aneurysm formation by the CCL3-CCR5 axis. Nat Commun 2020; 11:5994. [PMID: 33239616 PMCID: PMC7688638 DOI: 10.1038/s41467-020-19763-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
Inflammatory mediators such as cytokines and chemokines are crucially involved in the development of abdominal aortic aneurysm (AAA). Here we report that CaCl2 application into abdominal aorta induces AAA with intra-aortic infiltration of macrophages as well as enhanced expression of chemokine (C-C motif) ligand 3 (CCL3) and MMP-9. Moreover, infiltrating macrophages express C-C chemokine receptor 5 (CCR5, a specific receptor for CCL3) and MMP-9. Both Ccl3-/- mice and Ccr5-/- but not Ccr1-/- mice exhibit exaggerated CaCl2-inducced AAA with augmented macrophage infiltration and MMP-9 expression. Similar observations are also obtained on an angiotensin II-induced AAA model. Immunoneutralization of CCL3 mimics the phenotypes observed in CaCl2-treated Ccl3-/- mice. On the contrary, CCL3 treatment attenuates CaCl2-induced AAA in both wild-type and Ccl3-/- mice. Consistently, we find that the CCL3-CCR5 axis suppresses PMA-induced enhancement of MMP-9 expression in macrophages. Thus, CCL3 can be effective to prevent the development of CaCl2-induced AAA by suppressing MMP-9 expression.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Anti-Inflammatory Agents/metabolism
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/immunology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Calcium Chloride/toxicity
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Disease Models, Animal
- Humans
- Inflammation Mediators/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Knockout
- Receptors, CCR1/genetics
- Receptors, CCR1/metabolism
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machi Furuta
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
19
|
Eberlein J, Davenport B, Nguyen TT, Victorino F, Jhun K, van der Heide V, Kuleshov M, Ma'ayan A, Kedl R, Homann D. Chemokine Signatures of Pathogen-Specific T Cells I: Effector T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2169-2187. [PMID: 32948687 DOI: 10.4049/jimmunol.2000253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
The choreography of complex immune responses, including the priming, differentiation, and modulation of specific effector T cell populations generated in the immediate wake of an acute pathogen challenge, is in part controlled by chemokines, a large family of mostly secreted molecules involved in chemotaxis and other patho/physiological processes. T cells are both responsive to various chemokine cues and a relevant source for certain chemokines themselves; yet, the actual range, regulation, and role of effector T cell-derived chemokines remains incompletely understood. In this study, using different in vivo mouse models of viral and bacterial infection as well as protective vaccination, we have defined the entire spectrum of chemokines produced by pathogen-specific CD8+ and CD4+T effector cells and delineated several unique properties pertaining to the temporospatial organization of chemokine expression patterns, synthesis and secretion kinetics, and cooperative regulation. Collectively, our results position the "T cell chemokine response" as a notably prominent, largely invariant, yet distinctive force at the forefront of pathogen-specific effector T cell activities and establish novel practical and conceptual approaches that may serve as a foundation for future investigations into the role of T cell-produced chemokines in infectious and other diseases.
Collapse
Affiliation(s)
- Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bennett Davenport
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom T Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Jhun
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maxim Kuleshov
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
20
|
Wiatr M, Figueiredo R, Stump-Guthier C, Winter P, Ishikawa H, Adams O, Schwerk C, Schroten H, Rudolph H, Tenenbaum T. Polar Infection of Echovirus-30 Causes Differential Barrier Affection and Gene Regulation at the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2020; 21:E6268. [PMID: 32872518 PMCID: PMC7503638 DOI: 10.3390/ijms21176268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Echovirus-30 (E-30) is responsible for the extensive global outbreaks of meningitis in children. To gain access to the central nervous system, E-30 first has to cross the epithelial blood-cerebrospinal fluid barrier. Several meningitis causing bacteria preferentially infect human choroid plexus papilloma (HIBCPP) cells in a polar fashion from the basolateral cell side. Here, we investigated the polar infection of HIBCPP cells with E-30. Both apical and basolateral infections caused a significant decrease in the transepithelial electrical resistance of HIBCPP cells. However, to reach the same impact on the barrier properties, the multiplicity of infection of the apical side had to be higher than that of the basolateral infection. Furthermore, the number of infected cells at respective time-points after basolateral infection was significantly higher compared to apical infection. Cytotoxic effects of E-30 on HIBCPP cells during basolateral infection were observed following prolonged infection and appeared more drastically compared to the apical infection. Gene expression profiles determined by massive analysis of cDNA ends revealed distinct regulation of specific genes depending on the side of HIBCPP cells' infection. Altogether, our data highlights the polar effects of E-30 infection in a human in vitro model of the blood-cerebrospinal fluid barrier leading to central nervous system inflammation.
Collapse
Affiliation(s)
- Marie Wiatr
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Ricardo Figueiredo
- GenXpro GmbH, 60438 Frankfurt am Main, Germany; (R.F.); (P.W.)
- Johann Wolfgang Goethe University Frankfurt, 60438 Frankfurt Am Main, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Peter Winter
- GenXpro GmbH, 60438 Frankfurt am Main, Germany; (R.F.); (P.W.)
| | - Hiroshi Ishikawa
- Department of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-0005, Japan;
| | - Ortwin Adams
- Institute for Virology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| |
Collapse
|
21
|
Capucetti A, Albano F, Bonecchi R. Multiple Roles for Chemokines in Neutrophil Biology. Front Immunol 2020; 11:1259. [PMID: 32733442 PMCID: PMC7363767 DOI: 10.3389/fimmu.2020.01259] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Chemokines are recognized as the most critical mediators for selective neutrophil recruitment during inflammatory conditions. Furthermore, they are considered fundamental regulators of neutrophil mobilization from the bone marrow (BM) to the bloodstream and for their homing back at the end of their life for apoptosis and clearance. However, chemokines are also important mediators of neutrophil effector functions including oxidative burst, degranulation, neutrophil extracellular trap (NET)osis, and production of inflammatory mediators. Neutrophils have been historically considered as a homogeneous population. In recent years, several maturation stages and subsets with different phenotypic profiles and effector functions were described both in physiological and pathological conditions such as infections, autoimmunity, and cancer. The aim of this review is to give an overview of the current evidence regarding the role of chemokines and chemokine receptors in neutrophil biology, including their possible role in neutrophil maturation, differentiation, and in defining emerging neutrophil subsets.
Collapse
Affiliation(s)
- Arianna Capucetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Francesca Albano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
22
|
Gutiérrez-Reyna DY, Cedillo-Baños A, Kempis-Calanis LA, Ramírez-Pliego O, Bargier L, Puthier D, Abad-Flores JD, Thomas-Chollier M, Thieffry D, Medina-Rivera A, Spicuglia S, Santana MA. IL-12 Signaling Contributes to the Reprogramming of Neonatal CD8 + T Cells. Front Immunol 2020; 11:1089. [PMID: 32582178 PMCID: PMC7292210 DOI: 10.3389/fimmu.2020.01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/05/2020] [Indexed: 01/26/2023] Open
Abstract
Neonates are highly susceptible to intracellular pathogens, leading to high morbidity and mortality rates. CD8+ T lymphocytes are responsible for the elimination of infected cells. Understanding the response of these cells to normal and high stimulatory conditions is important to propose better treatments and vaccine formulations for neonates. We have previously shown that human neonatal CD8+ T cells overexpress innate inflammatory genes and have a low expression of cytotoxic and cell signaling genes. To investigate the activation potential of these cells, we evaluated the transcriptome of human neonatal and adult naïve CD8+ T cells after TCR/CD28 signals ± IL-12. We found that in neonatal cells, IL-12 signals contribute to the adult-like expression of genes associated with cell-signaling, T-cell cytokines, metabolism, and cell division. Additionally, IL-12 signals contributed to the downregulation of the neutrophil signature transcription factor CEBPE and other immaturity related genes. To validate the transcriptome results, we evaluated the expression of a series of genes by RT-qPCR and the promoter methylation status on independent samples. We found that in agreement with the transcriptome, IL-12 signals contributed to the chromatin closure of neutrophil-like genes and the opening of cytotoxicity genes, suggesting that IL-12 signals contribute to the epigenetic reprogramming of neonatal lymphocytes. Furthermore, high expression of some inflammatory genes was observed in naïve and stimulated neonatal cells, in agreement with the high inflammatory profile of neonates to infections. Altogether our results point to an important contribution of IL-12 signals to the reprogramming of the neonatal CD8+ T cells.
Collapse
Affiliation(s)
- Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alejandra Cedillo-Baños
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Oscar Ramírez-Pliego
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lisa Bargier
- Aix-Marseille University, TAGC, INSERM UMR1090, Marseille, France
| | - Denis Puthier
- Aix-Marseille University, TAGC, INSERM UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Jose D Abad-Flores
- Aix-Marseille University, TAGC, INSERM UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de Mexico, Juriquilla, Mexico
| | - Salvatore Spicuglia
- Aix-Marseille University, TAGC, INSERM UMR1090, Marseille, France.,Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Maria A Santana
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
23
|
Kiyasu Y, Kawada K, Hirai H, Ogawa R, Hanada K, Masui H, Nishikawa G, Yamamoto T, Mizuno R, Itatani Y, Kai M, Taketo MM, Sakai Y. Disruption of CCR1-mediated myeloid cell accumulation suppresses colorectal cancer progression in mice. Cancer Lett 2020; 487:53-62. [PMID: 32473241 DOI: 10.1016/j.canlet.2020.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022]
Abstract
Tumor-stromal interaction is implicated in tumor progression. Although CCR1 expression in myeloid cells could be associated with pro-tumor activity, it remains elusive whether disruption of CCR1-mediated myeloid cell accumulation can suppress tumor progression. Here, we investigated the role of CCR1 depletion in myeloid cells in two syngeneic colorectal cancer mouse models: MC38, a transplanted tumor model and CMT93, a liver metastasis model. Both cells induced tumor accumulation of CCR1+ myeloid cells that express MMP2, MMP9, iNOS, and VEGF. Lack of the Ccr1 gene in host mice dramatically reduced MC38 tumor growth as well as CMT93 liver metastasis. To delineate the contribution of CCR1+ myeloid cells, we performed bone marrow (BM) transfer experiments in which sub-lethally irradiated wild-type mice were reconstituted with BM from either wild-type or Ccr1-/- mice. Mice reconstituted with Ccr1-/- BM exhibited marked suppression of MC38 tumor growth and CMT93 liver metastasis, compared with control mice. Consistent with these results, administration of a neutralizing anti-CCR1 monoclonal antibody, KM5908, significantly suppressed MC38 tumor growth and CMT93 liver metastases. Our findings highlight the importance of the application of CCR1 blockade as a therapeutic strategy.
Collapse
Affiliation(s)
- Yoshiyuki Kiyasu
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Kawada
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Hideyo Hirai
- Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Ryotaro Ogawa
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Keita Hanada
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hideyuki Masui
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Gen Nishikawa
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takamasa Yamamoto
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Rei Mizuno
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshiro Itatani
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masayuki Kai
- Oncology Research Laboratories, Oncology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida, Tokyo, 194-8533, Japan
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiharu Sakai
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
24
|
Mackel JJ, Garth JM, Blackburn JP, Jones M, Steele C. 12/15-Lipoxygenase Deficiency Impairs Neutrophil Granulopoiesis and Lung Proinflammatory Responses to Aspergillus fumigatus. THE JOURNAL OF IMMUNOLOGY 2020; 204:1849-1858. [PMID: 32102903 PMCID: PMC8771824 DOI: 10.4049/jimmunol.1900808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Development of invasive aspergillosis correlates with impairments in innate immunity. We and others have recently shown that arachidonic acid metabolism pathways, specifically the cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) pathways, participate in the induction of protective innate immune responses during invasive aspergillosis. Based on the high degree of cooperation and interconnection within the eicosanoid network, we hypothesized that 12/15-LOX is also active during invasive aspergillosis. We report in this study that mice deficient in the gene encoding 12/15-LOX (Alox15) are profoundly susceptible to invasive aspergillosis. Decreased survival correlated with increased fungal burden and evidence of increased lung damage. These defects were associated with very early (6 and 12 h) 12/15-LOX-dependent inflammatory cytokine (IL-1α, IL-1β, and TNF-α) and chemokine (CCL3 and CCL4) production. Neutrophil levels in the lung were blunted in the absence of 12/15-LOX, although neutrophil antifungal activity was intact. However, lower neutrophil levels in the lungs of Alox15−/− mice were not a result of impaired recruitment or survival; rather, Alox15−/− mice demonstrated impaired neutrophil granulopoiesis in the bone marrow intrinsically and after fungal exposure. Employing a lower inoculum to allow for better survival allowed the identification of 12/15-LOX-dependent induction of IL-17A and IL-22. Impaired IL-17A and IL-22 production correlated with reduced invariant NKT cell numbers as well as lower IL-23 levels. Together, these data indicate that 12/15-LOX is a critical player in induction of the earliest aspects of the innate immune response to Aspergillus fumigatus.
Collapse
Affiliation(s)
- Joseph J Mackel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jonathan P Blackburn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112
| |
Collapse
|
25
|
Sayeed HM, Lee ES, Byun HO, Sohn S. The role of CCR1 and therapeutic effects of anti-CCL3 antibody in herpes simplex virus-induced Behçet's disease mouse model. Immunology 2019; 158:206-218. [PMID: 31393598 PMCID: PMC6797864 DOI: 10.1111/imm.13102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Behçet's disease (BD) is a chronic systemic inflammatory disease with unclear etiopathogenesis. Although gene variants of CC chemokine receptor type 1 (CCR1) have been reported, the protein expression of CCR1 in patients with BD remains unclear. The objective of this study was to analyze the frequencies of CCR1+ cells in a herpes simplex virus‐induced mouse model of BD. The frequencies of CCR1+ cells on the surface and in the cytoplasm of peripheral blood mononuclear cells and lymph nodes were analyzed by flow cytometry. The CCR1+ cells were significantly down‐regulated in BD mice compared with the normal control and symptom‐free control mice. Colchicine and pentoxifylline treatment improved the symptoms of BD and increased the frequencies of CCR1+ cells in BD mice. Treatment with chemokine CC motif ligand 3 (CCL3), a ligand of CCR1, caused BD symptoms to deteriorate in 10 of 16 BD mice (62·5%) via down‐regulation of CCR1+ cells. Anti‐CCL3 antibody treatment ameliorated BD symptoms in 10 of 20 mice (50%) and significantly decreased the disease severity score compared with CCL3‐treated BD mice (P = 0·01) via up‐regulation of CCR1+ cell frequencies. In patients with BD, plasma levels of CCL3 in an active state were significantly higher than in healthy control individuals (P = 0·02). These results show that the up‐regulation of CCR1+ cells was related to the control of systemic inflammation of BD in mouse models.
Collapse
Affiliation(s)
- Hasan M Sayeed
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Ok Byun
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Seonghyang Sohn
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
26
|
Richmond JM, Strassner JP, Essien KI, Harris JE. T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev 2019; 289:186-204. [PMID: 30977191 PMCID: PMC6553463 DOI: 10.1111/imr.12762] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Autoimmune skin diseases are complex processes in which autoreactive cells must navigate through the skin tissue to find their targets. Regulatory T cells in the skin help to mitigate autoimmune inflammation and may in fact be responsible for the patchy nature of these conditions. In this review, we will discuss chemokines that are important for global recruitment of T cell populations to the skin during disease, as well as signals that fine-tune their localization and function. We will describe prototypical disease responses and chemokine families that mediate these responses. Lastly, we will include an overview of chemokine-targeting drugs that have been tested as new treatment strategies for autoimmune skin diseases.
Collapse
Affiliation(s)
- Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - James P Strassner
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - Kingsley I Essien
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - John E Harris
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| |
Collapse
|
27
|
Liang Q, Tang C, Tang M, Zhang Q, Gao Y, Ge Z. TRIM47 is up-regulated in colorectal cancer, promoting ubiquitination and degradation of SMAD4. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:159. [PMID: 30979374 PMCID: PMC6461818 DOI: 10.1186/s13046-019-1143-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Background Tripartite motif 47 (TRIM47), a member of the TRIM family proteins, plays a key role in many types of cancers including colorectal cancer (CRC). We found that levels of TRIM47 mRNA and protein were increased significantly in colorectal tumors compared with nontumor tissues and the increased levels were associated with advanced tumor stage and poor outcome. Methods We used quantitative polymerase chain reaction and western blot to measure levels of TRIM47 mRNA and protein in human colorectal cancer and paired normal tissues. TRIM47 was knocked down and overexpressed in colorectal cancer cells, and the effects on cell proliferation, migration and growth of xenograft tumors in nude mice were assessed. The signaling pathways were examined by western blot and immunoprecipitation assays. Results TRIM47 promoted CRC proliferation and metastasis in vitro and in vivo as an oncogene. Mechanistically, TRIM47 interacted physically with SMAD4, increasing its ubiquitination and degradation. Loss of SMAD4 leaded to up-regulation of CCL15 expression and caused growth and invasion in human CRC cells through the CCL15-CCR1 signaling. Moreover, TRIM47 overexpression played a role in CRC chemoresistance in response to 5-FU therapy. Conclusions Our study demonstrated a functional role of the TRIM47-SMAD4-CCL15 axis in CRC progression and suggested a potential target for CRC therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1143-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Chaotao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Mingyu Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qingwei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Yunjie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Zhizheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
28
|
Dyer DP, Medina-Ruiz L, Bartolini R, Schuette F, Hughes CE, Pallas K, Vidler F, Macleod MKL, Kelly CJ, Lee KM, Hansell CAH, Graham GJ. Chemokine Receptor Redundancy and Specificity Are Context Dependent. Immunity 2019; 50:378-389.e5. [PMID: 30784579 PMCID: PMC6382461 DOI: 10.1016/j.immuni.2019.01.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Abstract
Currently, we lack an understanding of the individual and combinatorial roles for chemokine receptors in the inflammatory process. We report studies on mice with a compound deletion of Ccr1, Ccr2, Ccr3, and Ccr5, which together control monocytic and eosinophilic recruitment to resting and inflamed sites. Analysis of resting tissues from these mice, and mice deficient in each individual receptor, provides clear evidence for redundant use of these receptors in establishing tissue-resident monocytic cell populations. In contrast, analysis of cellular recruitment to inflamed sites provides evidence of specificity of receptor use for distinct leukocyte subtypes and no indication of comprehensive redundancy. We find no evidence of involvement of any of these receptors in the recruitment of neutrophils or lymphocytes to resting or acutely inflamed tissues. Our data shed important light on combinatorial inflammatory chemokine receptor function and highlight Ccr2 as the primary driver of myelomonocytic cell recruitment in acutely inflamed contexts.
Collapse
MESH Headings
- Animals
- Chemokines/immunology
- Chemokines/metabolism
- Eosinophils/immunology
- Eosinophils/metabolism
- Gene Expression Profiling/methods
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/immunology
- Monocytes/metabolism
- Neutrophils/immunology
- Neutrophils/metabolism
- Receptors, CCR/genetics
- Receptors, CCR/immunology
- Receptors, CCR/metabolism
- Receptors, CCR1/immunology
- Receptors, CCR1/metabolism
- Receptors, CCR2/immunology
- Receptors, CCR2/metabolism
- Receptors, CCR3/immunology
- Receptors, CCR3/metabolism
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
Collapse
Affiliation(s)
- Douglas P Dyer
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Laura Medina-Ruiz
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Fabian Schuette
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Catherine E Hughes
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Kenneth Pallas
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Francesca Vidler
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Megan K L Macleod
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Christopher J Kelly
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Kit Ming Lee
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Christopher A H Hansell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Gerard J Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| |
Collapse
|
29
|
Marischen L, Englert A, Schmitt AL, Einsele H, Loeffler J. Human NK cells adapt their immune response towards increasing multiplicities of infection of Aspergillus fumigatus. BMC Immunol 2018; 19:39. [PMID: 30563459 PMCID: PMC6299526 DOI: 10.1186/s12865-018-0276-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The saprophytic fungus Aspergillus fumigatus reproduces by generation of conidia, which are spread by airflow throughout nature. Since humans are inhaling certain amounts of spores every day, the (innate) immune system is constantly challenged. Even though macrophages and neutrophils carry the main burden, also NK cells are regarded to contribute to the antifungal immune response. While NK cells reveal a low frequency, expression and release of immunomodulatory molecules seem to be a natural way of their involvement. RESULTS In this study we show, that NK cells secrete chemokines such as CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES early on after stimulation with Aspergillus fumigatus and, in addition, adjust the concentration of chemokines released to the multiplicity of infection of Aspergillus fumigatus. CONCLUSIONS These results further corroborate the relevance of NK cells within the antifungal immune response, which is regarded to be more and more important in the development and outcome of invasive aspergillosis in immunocompromised patients after hematopoietic stem cell transplantation. Additionally, the correlation between the multiplicity of infection and the expression and release of chemokines shown here may be useful in further studies for the quantification and/or surveillance of the NK cell involvement in antifungal immune responses.
Collapse
Affiliation(s)
- Lothar Marischen
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Anne Englert
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
30
|
Abstract
Cancer immunotherapy approaches have emerged as novel treatment regimens against cancer. A particularly interesting avenue is the concept of in situ vaccination, where immunostimulatory agents are introduced into an identified tumor to overcome local immunosuppression and, if successful, mount systemic antitumor immunity. We had previously shown that nanoparticles from cowpea mosaic virus (CPMV) are highly potent in inducing long-lasting antitumor immunity when used as an in situ vaccine in various tumor mouse models. Here we asked whether the nanoparticles from tobacco mosaic virus (TMV) could also be applied as an in situ vaccine and, if so, whether efficacy or mechanism of immune-activation would be affected by the nanoparticle size (300 × 18 nm native TMV vs 50 × 18 nm short TMV nanorods), shape (nanorods vs spherical TMV, termed SNP), or state of assembly (assembled TMV rod vs free coat protein, CP). Our studies indicate that CPMV, but less so TMV, elicits potent antitumor immunity after intratumoral treatment of dermal melanoma (B16F10 using C57BL/6 mice). TMV and TMVshort slowed tumor growth and increased survival time, however, at significantly lower potency compared to that of CPMV. There were no apparent differences between TMV, TMVshort, or the SNP indicating that the aspect ratio does not necessarily play a role in plant viral in situ vaccines. The free CPs did not elicit an antitumor response or immunostimulation, which may indicate that a multivalent assembly is required to trigger an innate immune recognition and activation. Differential potency of CPMV vs TMV can be explained with differences in immune-activation: data indicate that CPMV stimulates an antitumor response through recruitment of monocytes into the tumor microenvironment (TME), establishing signaling through the IFN-γ pathway, which also leads to recruitment of tumor-infiltrated neutrophils (TINs) and natural killer (NK) cells. Furthermore, the priming of the innate immune system also mounts an adaptive response with CD4+ and CD8+ T cell recruitment and establishment of effector memory cells. While the TMV treatment also lead to the recruitment of innate immune cells as well as T cells (although to a lesser degree), key differences were noted in cyto/chemokine profiling with TMV inducing a potent immune response early on characterized by strong pro-inflammatory cytokines, primarily IL-6. Together, data indicate that some plant viral nanotechnology platforms are more suitable for application as in situ vaccines than others; understanding the intricate differences and underlying mechanism of immune-activation may set the stage for clinical development of these technologies.
Collapse
Affiliation(s)
| | - Chao Wang
- Department of Biomedical Engineering
| | - Steven Fiering
- Department of Microbiology and Immunology
- Norris Cotton Cancer Center, Dartmouth University, Lebanon, New Hampshire 03756, United States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering
- Department of Radiology
- Department of Materials Science and Engineering
- Macromolecular Science and Engineering
- Division of General Medical Sciences-Oncology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
31
|
Latli B, Hrapchak M, Cheveliakov M, Reeves JT, Marsini M, Busacca CA, Senanayake CH. Potent and selective CC chemokine receptor 1 antagonists labeled with carbon-13, carbon-14, and tritium. J Labelled Comp Radiopharm 2018; 61:764-772. [PMID: 29766547 DOI: 10.1002/jlcr.3635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022]
Abstract
1-(4-Fluorophenyl)-1H-pyrazolo[3,4-c]pyridine-4-carboxylic acid (2-methanesulfonyl-pyridin-4-ylmethyl)-amide (1) and its analogs (2) and (3) are potent CCR1 antagonists intended for the treatment of rheumatoid arthritis. The detailed syntheses of these 3 compounds labeled with carbon-13 as well as the preparation of (1) and (2) labeled with carbon-14, and (1) labeled with tritium, are described.
Collapse
Affiliation(s)
- Bachir Latli
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Matt Hrapchak
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Maxim Cheveliakov
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Jonathan T Reeves
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Maurice Marsini
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Carl A Busacca
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Chris H Senanayake
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| |
Collapse
|
32
|
Lopes N, Charaix J, Cédile O, Sergé A, Irla M. Lymphotoxin α fine-tunes T cell clonal deletion by regulating thymic entry of antigen-presenting cells. Nat Commun 2018; 9:1262. [PMID: 29593265 PMCID: PMC5872006 DOI: 10.1038/s41467-018-03619-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
Medullary thymic epithelial cells (mTEC) purge the T cell repertoire of autoreactive thymocytes. Although dendritic cells (DC) reinforce this process by transporting innocuous peripheral self-antigens, the mechanisms that control their thymic entry remain unclear. Here we show that mTEC-CD4+ thymocyte crosstalk regulates the thymus homing of SHPS-1+ conventional DCs (cDC), plasmacytoid DCs (pDC) and macrophages. This homing process is controlled by lymphotoxin α (LTα), which negatively regulates CCL2, CCL8 and CCL12 chemokines in mTECs. Consequently, Ltα-deficient mice have increased expression of these chemokines that correlates with augmented classical NF-κB subunits and increased thymic recruitment of cDCs, pDCs and macrophages. This enhanced migration depends mainly on the chemokine receptor CCR2, and increases thymic clonal deletion. Altogether, this study identifies a fine-tuning mechanism of T cell repertoire selection and paves the way for therapeutic interventions to treat autoimmune disorders.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Jonathan Charaix
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Oriane Cédile
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, 5000, Odense C, Denmark
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105, 13273 cedex 09, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France.
| |
Collapse
|
33
|
Rodrigues Oliveira JL, Teixeira MM, Lambertucci JR, Antunes CMF, Carneiro M, Negrão-Corrêa D. Plasma levels of innate immune mediators are associated with liver fibrosis in low parasite burden Schistosoma mansoni-infected individuals. Scand J Immunol 2018; 87. [PMID: 29363152 DOI: 10.1111/sji.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/15/2018] [Indexed: 12/01/2022]
Abstract
In the murine model, it was demonstrated that pro-inflammatory cytokines and chemokines are essential to the formation and modulation of Schistosoma-induced granulomatous inflammation. However, the relationship of these immune mediators and disease severity is hard to be established in naturally infected individuals. The current study evaluates the association between plasma concentrations of MIF, sTNF-R1, CCL3, CCL7 and CCL24 and schistosomiasis morbidity in Schistosoma mansoni-infected patients with a low parasite burden. For this propose, 97 S. mansoni-infected individuals were subjected to abdominal ultrasound analysis and clinical examination. Among them, 88 had plasma concentration of immune mediators estimated by ELISA assay. Multivariate linear regression models were used to evaluate the relationship between the plasma concentration of immune mediators and the variables investigated. Although most individuals presented low parasite burden, over 30% of them showed signs of fibrosis defined by ultrasound measurements and 2 patients had a severe form of schistosomiasis. No association between parasite burden and the plasma levels of chemokine/cytokines or disease severity was observed. There was a positive association between plasma concentration of CCL4, sTNF-R1, CCL3 and MIF with gall bladder thickness and/or with portal vein thickness that are liver fibrosis markers. In contrast, no association was found between CCL7 plasma concentrations with any of the schistosomiasis morbidity parameters evaluated. The data showed that CCL24, sTNFR1, MIF and CCL3 can be detected in plasma of S. mansoni-infected individuals and their concentration would be used as prognostic makers of Schistosoma-induced liver fibrosis, even in individuals with low parasite burden.
Collapse
Affiliation(s)
- J L Rodrigues Oliveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - J R Lambertucci
- Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - C M F Antunes
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - M Carneiro
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D Negrão-Corrêa
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Sax MJ, Gasch C, Athota VR, Freeman R, Rasighaemi P, Westcott DE, Day CJ, Nikolic I, Elsworth B, Wei M, Rogers K, Swarbrick A, Mittal V, Pouliot N, Mellick AS. Cancer cell CCL5 mediates bone marrow independent angiogenesis in breast cancer. Oncotarget 2018; 7:85437-85449. [PMID: 27863423 PMCID: PMC5356747 DOI: 10.18632/oncotarget.13387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
It has recently been suggested that the chemokine receptor (CCR5) is required for bone marrow (BM) derived endothelial progenitor cell (EPC) mediated angiogenesis. Here we show that suppression of either cancer cell produced CCL5, or host CCR5 leads to distinctive vascular and tumor growth defects in breast cancer. Surprisingly, CCR5 restoration in the BM alone was not sufficient to rescue the wild type phenotype, suggesting that impaired tumor growth associated with inhibiting CCL5/CCR5 is not due to defects in EPC biology. Instead, to promote angiogenesis cancer cell CCL5 may signal directly to endothelium in the tumor-stroma. In support of this hypothesis, we have also shown: (i) that endothelial cell CCR5 levels increases in response to tumor-conditioned media; (ii) that the amount of CCR5+ tumor vasculature correlates with invasive grade; and (iii) that inhibition of CCL5/CCR5 signaling impairs endothelial cell migration, associated with a decrease in activation of mTOR/AKT pathway members. Finally, we show that treatment with CCR5 antagonist results in less vasculature, impaired tumor growth, reduced metastases and improved survival. Taken as a whole, this work demonstrates that directly inhibiting CCR5 expressing vasculature constitutes a novel strategy for inhibiting angiogenesis and blocking metastatic progression in breast cancer.
Collapse
Affiliation(s)
- Michael John Sax
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Christin Gasch
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Vineel Rag Athota
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Ruth Freeman
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Parisa Rasighaemi
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | - Iva Nikolic
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Benjamin Elsworth
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Ming Wei
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kelly Rogers
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute for Medical Research, Parkville Victoria, Australia
| | - Alexander Swarbrick
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Vivek Mittal
- Cardiothoracic Surgery and Neuberger Berman Lung Cancer Centre, Weill Cornell Medical College, New York, NY, USA
| | - Normand Pouliot
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Albert Sleiman Mellick
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.,Faculty of Medicine, University of New South Wales, NSW, Australia.,School of Medicine, Western Sydney University, Campbelltown NSW, Australia.,Translational Oncology Unit, Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
| |
Collapse
|
35
|
Eosinophil-derived CCL-6 impairs hematopoietic stem cell homeostasis. Cell Res 2018; 28:323-335. [PMID: 29327730 PMCID: PMC5835778 DOI: 10.1038/cr.2018.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Eosinophils (Eos) have been long considered as end-stage effector cells in the hierarchical hematopoietic system. Numerous lines of evidence have suggested that Eos are multifunctional leukocytes with respect to the initiation, propagation and regulation of various inflammatory or immune reactions, especially in allergic diseases. Recent studies have shown that Eos are also required for maintenance of bone marrow plasma cells and differentiation of B cells. However, it remains unclear whether Eos contributes to regulation of hematopoietic stem cell (HSC) homeostasis. Here, we demonstrate that Eos disrupt HSC homeostasis by impairing HSC quiescence and reconstitution ability in wild-type mice following ovalbumin (OVA) challenge and even by causing bone marrow HSC failure and exhaustion in Cd3δ-Il-5 transgenic mice. The impaired maintenance and function of HSCs were associated with Eos-induced redox imbalance (increased oxidative phosphorylation and decreased anti-oxidants levels). More importantly, using mass spectrometry, we determined that CCL-6 is expressed at a high level under eosinophilia. We demonstrate that CCL-6 is Eos-derived and responsible for the impaired HSC homeostasis. Interestingly, blockage of CCL-6 with a specific neutralizing antibody, restored the reconstitution ability of HSCs while exacerbating eosinophilia airway inflammation in OVA-challenged mice. Thus, our study reveals an unexpected function of Eos/CCL-6 in HSC homeostasis.
Collapse
|
36
|
Schaller TH, Batich KA, Suryadevara CM, Desai R, Sampson JH. Chemokines as adjuvants for immunotherapy: implications for immune activation with CCL3. Expert Rev Clin Immunol 2017; 13:1049-1060. [PMID: 28965431 DOI: 10.1080/1744666x.2017.1384313] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Immunotherapy embodies any approach that manipulates the immune system for therapeutic benefit. In this regard, various clinical trials have employed direct vaccination with patient-specific dendritic cells or adoptive T cell therapy to target highly aggressive tumors. Both modalities have demonstrated great specificity, an advantage that is unmatched by other treatment strategies. However, their full potential has yet to be realized. Areas covered: In this review, we provide an overview of chemokines in pathogen and anti-tumor immune responses and discuss further improving immunotherapies by arming particular chemokine axes. Expert commentary: The chemokine macrophage inflammatory protein-1 alpha (MIP-1α, CCL3) has emerged as a potent activator of both innate and adaptive responses. Specifically, CCL3 plays a critical role in recruiting distinct immune phenotypes to intratumoral sites, is a pivotal player in regulating lymph node homing of dendritic cell subsets, and induces antigen-specific T cell responses. The recent breadth of literature outlines the various interactions of CCL3 with these cellular subsets, which have now served as a basis for immunotherapeutic translation.
Collapse
Affiliation(s)
- Teilo H Schaller
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Kristen A Batich
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Carter M Suryadevara
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b Department of Pathology , Duke University Medical Center , Durham , NC , USA
| | - Rupen Desai
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA
| | - John H Sampson
- a Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA.,b Department of Pathology , Duke University Medical Center , Durham , NC , USA.,c Department of Radiation Oncology , Duke University Medical Center , Durham , NC , USA.,d Department of Immunology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
37
|
Saraiva JP, Oswald M, Biering A, Röll D, Assmann C, Klassert T, Blaess M, Czakai K, Claus R, Löffler J, Slevogt H, König R. Fungal biomarker discovery by integration of classifiers. BMC Genomics 2017; 18:601. [PMID: 28797245 PMCID: PMC5553868 DOI: 10.1186/s12864-017-4006-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 08/02/2017] [Indexed: 02/01/2023] Open
Abstract
Background The human immune system is responsible for protecting the host from infection. However, in immunocompromised individuals the risk of infection increases substantially with possible drastic consequences. In extreme, systemic infection can lead to sepsis which is responsible for innumerous deaths worldwide. Amongst its causes are infections by bacteria and fungi. To increase survival, it is mandatory to identify the type of infection rapidly. Discriminating between fungal and bacterial pathogens is key to determine if antifungals or antibiotics should be administered, respectively. For this, in situ experiments have been performed to determine regulation mechanisms of the human immune system to identify biomarkers. However, these studies led to heterogeneous results either due different laboratory settings, pathogen strains, cell types and tissues, as well as the time of sample extraction, to name a few. Methods To generate a gene signature capable of discriminating between fungal and bacterial infected samples, we employed Mixed Integer Linear Programming (MILP) based classifiers on several datasets comprised of the above mentioned pathogens. Results When combining the classifiers by a joint optimization we could increase the consistency of the biomarker gene list independently of the experimental setup. An increase in pairwise overlap (the number of genes that overlap in each cross-validation) of 43% was obtained by this approach when compared to that of single classifiers. The refined gene list was composed of 19 genes and ranked according to consistency in expression (up- or down-regulated) and most of them were linked either directly or indirectly to the ERK-MAPK signalling pathway, which has been shown to play a key role in the immune response to infection. Testing of the identified 12 genes on an unseen dataset yielded an average accuracy of 83%. Conclusions In conclusion, our method allowed the combination of independent classifiers and increased consistency and reliability of the generated gene signatures. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4006-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- João Pedro Saraiva
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Marcus Oswald
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Antje Biering
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Daniela Röll
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Cora Assmann
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Tilman Klassert
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Markus Blaess
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | | | - Ralf Claus
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | | | - Hortense Slevogt
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Rainer König
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany. .,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.
| |
Collapse
|
38
|
Cannabinoid Receptor 2 Modulates Neutrophil Recruitment in a Murine Model of Endotoxemia. Mediators Inflamm 2017; 2017:4315412. [PMID: 28852269 PMCID: PMC5567445 DOI: 10.1155/2017/4315412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/25/2022] Open
Abstract
The endocannabinoid system consists of endogenous lipid mediators and cannabinoid receptors (CB) 1 and 2. It has previously been demonstrated that activation of the leukocyte-expressed CB2 has anti-inflammatory effects in vivo. Here, we report its role under baseline conditions and in a model of low-dose endotoxemia by comparing CB2 knockout to littermate control mice. CB2-deficient mice displayed significantly more neutrophils and fewer monocytes in the bone marrow under steady state. In initial validation experiments, administration of 1 mg/kg LPS to male C57BL/6J mice was shown to transiently upregulate systemic proinflammatory mediators (peaked at 2 hours) and mobilise bone marrow neutrophils and monocytes into circulation. In CB2 knockout mice, the level of the metalloproteinase MMP-9 was significantly elevated by 2 hours and we also observed augmented recruitment of neutrophils to the spleen in addition to increased levels of Ccl2, Ccl3, Cxcl10, and Il6. Collectively, our data show that the absence of CB2 receptor increases the levels of innate immune cell populations in the bone marrow under steady state. Furthermore, during an acute systemic inflammatory insult, we observe a highly reproducible and site-specific increase in neutrophil recruitment and proinflammatory chemokine expression in the spleen of CB2 knockout mice.
Collapse
|
39
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
40
|
Shah KK, Pritt BS, Alexander MP. Histopathologic review of granulomatous inflammation. J Clin Tuberc Other Mycobact Dis 2017; 7:1-12. [PMID: 31723695 PMCID: PMC6850266 DOI: 10.1016/j.jctube.2017.02.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Granulomatous inflammation is a histologic pattern of tissue reaction which appears following cell injury. Granulomatous inflammation is caused by a variety of conditions including infection, autoimmune, toxic, allergic, drug, and neoplastic conditions. The tissue reaction pattern narrows the pathologic and clinical differential diagnosis and subsequent clinical management. Common reaction patterns include necrotizing granulomas, non necrotizing granulomas, suppurative granulomas, diffuse granulomatous inflammation, and foreign body giant cell reaction. Prototypical examples of necrotizing granulomas are seen with mycobacterial infections and non-necrotizing granulomas with sarcoidosis. However, broad differential diagnoses exist within each category. Using a pattern based algorithmic approach, identification of the etiology becomes apparent when taken with clinical context. The pulmonary system is one of the most commonly affected sites to encounter granulomatous inflammation. Infectious causes of granuloma are most prevalent with mycobacteria and dimorphic fungi leading the differential diagnoses. Unlike the lung, skin can be affected by several routes, including direct inoculation, endogenous sources, and hematogenous spread. This broad basis of involvement introduces a variety of infectious agents, which can present as necrotizing or non-necrotizing granulomatous inflammation. Non-infectious etiologies require a thorough clinicopathologic review to narrow the scope of the pathogenesis which include: foreign body reaction, autoimmune, neoplastic, and drug related etiologies. Granulomatous inflammation of the kidney, often referred to as granulomatous interstitial nephritis (GIN) is unlike organ systems such as the skin or lungs. The differential diagnosis of GIN is more frequently due to drugs and sarcoidosis as compared to infections (fungal and mycobacterial). Herein we discuss the pathogenesis and histologic patterns seen in a variety of organ systems and clinical conditions.
Collapse
Affiliation(s)
- Kabeer K. Shah
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
- Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, MN USA
| | - Bobbi S. Pritt
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Mariam P. Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
41
|
Miyabe Y, Miyabe C, Murooka TT, Kim EY, Newton GA, Kim ND, Haribabu B, Luscinskas FW, Mempel TR, Luster AD. Complement C5a Receptor is the Key Initiator of Neutrophil Adhesion Igniting Immune Complex-induced Arthritis. Sci Immunol 2017; 2. [PMID: 28529998 DOI: 10.1126/sciimmunol.aaj2195] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The deposition of immune complexes (IC) in tissues induces a "type III hypersensitivity" that results in tissue damage and underlies the pathogenesis of many autoimmune diseases. The neutrophil is the first immune cell recruited into sites of IC deposition and plays a critical role in shaping the overall tissue response. However, the mechanism by which IC initiate and propagate neutrophil infiltration into tissue is not known. Here, using intravital multiphoton joint imaging of IC-induced arthritis in live mice, we found that the complement C5a receptor (C5aR) was the key initiator of neutrophil adhesion on joint endothelium. C5a presented on joint endothelium induced β2 integrin-dependent neutrophil arrest, facilitating neutrophil spreading and transition to crawling, and subsequent leukotriene B4 receptor (BLT1)-mediated extravasation of the first neutrophils. The chemokine receptor CCR1 promoted neutrophil crawling on the joint endothelium while CXCR2 amplified late neutrophil recruitment and survival once in the joint. Thus, imaging arthritis has defined a new paradigm for type III hypersensitivity where C5a directly initiates neutrophil adhesion on the joint endothelium igniting inflammation.
Collapse
Affiliation(s)
- Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chie Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas T Murooka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward Y Kim
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gail A Newton
- Vascular Research Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy D Kim
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bodduluri Haribabu
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Francis W Luscinskas
- Vascular Research Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Kamata T, Jin H, Giblett S, Patel B, Patel F, Foster C, Pritchard C. The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours. EMBO Mol Med 2016; 7:1119-37. [PMID: 26183450 PMCID: PMC4568947 DOI: 10.15252/emmm.201404838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment is known to play an integral role in facilitating cancer progression at advanced stages, but its function in some pre-cancerous lesions remains elusive. We have used the V600EBRAF-driven mouse lung model that develop premalignant lesions to understand stroma–tumour interactions during pre-cancerous development. In this model, we have found that immature macrophage-lineage cells (IMCs) producing PDGFA, TGFβ and CC chemokines are recruited to the stroma of premalignant lung adenomas through CC chemokine receptor 1 (CCR1)-dependent mechanisms. Stromal IMCs promote proliferation and transcriptional alterations suggestive of epithelial–mesenchymal transition in isolated premalignant lung tumour cells ex vivo, and are required for the maintenance of early-stage lung tumours in vivo. Furthermore, we have found that IMC recruitment to the microenvironment is restrained by the cholesterol-binding protein, Niemann-Pick type C2 (NPC2). Studies on isolated cells ex vivo confirm that NPC2 is secreted from tumour cells and is taken up by IMCs wherein it suppresses secretion of the CCR1 ligand CC chemokine 6 (CCL6), at least in part by facilitating its lysosomal degradation. Together, these findings show that NPC2 secreted by premalignant lung tumours suppresses IMC recruitment to the microenvironment in a paracrine manner, thus identifying a novel target for the development of chemopreventive strategies in lung cancer.
Collapse
Affiliation(s)
- Tamihiro Kamata
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Hong Jin
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Susan Giblett
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Bipin Patel
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Falguni Patel
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Charles Foster
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Catrin Pritchard
- Department of Biochemistry, University of Leicester, Leicester, UK
| |
Collapse
|
43
|
Broxmeyer HE, Capitano M, Campbell TB, Hangoc G, Cooper S. Modulation of Hematopoietic Chemokine Effects In Vitro and In Vivo by DPP-4/CD26. Stem Cells Dev 2016; 25:575-85. [PMID: 26943017 DOI: 10.1089/scd.2016.0026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4)/CD26 truncates certain proteins, and this posttranslational modification can influence their activity. Truncated (T) colony-stimulating factors (CSFs) are decreased in potency for stimulating proliferation of hematopoietic progenitor cells (HPCs). T-CXCL12, a modified chemokine, is inactive as an HPC chemotactic, survival, and enhancing factor for replating or ex-vivo expansion of HPCs. Moreover, T-CSFs and T-CXCL12 specifically downmodulates the positively acting effects of their own full-length molecule. Other chemokines have DPP4 truncation sites. In the present study, we evaluated effects of DPP4 inhibition (by Diprotin A) or gene deletion of HPC on chemokine inhibition of multicytokine-stimulated HPC, and on chemokine-enhancing effects on single CSF-stimulated HPC proliferation, as well as effects of DPP4 treatment of a number of chemokines. Myelosuppressive effects of chemokines with, but not without, a DPP4 truncation site were greatly enhanced in inhibitory potency by pretreating target bone marrow (BM) cells with Diprotin A, or by assaying their activity on dpp4/cd26(-/-) BM cells. DPP4 treatment of myelosuppressive chemokines containing a DPP4 truncation site produced a nonmyelosuppressive molecule, but one which had the capacity to block suppression by that unmodified chemokine both in vitro and in vivo. Additionally, DPP4 treatment ablated the single cytokine-stimulated HPC-enhancing activity of CCL3/MIP-1α and CCL4/MIP-1β, and blocked the enhancing activity of each unmodified molecule, in vitro and in vivo. These results highlight the functional posttranslational modulating effects of DPP4 on chemokine activities, and information offering additional biological insight into chemokine regulation of hematopoiesis.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Maegan Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Timothy B Campbell
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Giao Hangoc
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
44
|
Kaye PM, Beattie L. Lessons from other diseases: granulomatous inflammation in leishmaniasis. Semin Immunopathol 2015; 38:249-60. [PMID: 26678994 PMCID: PMC4779128 DOI: 10.1007/s00281-015-0548-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022]
Abstract
The Leishmania granuloma shares some, though not all, properties with that formed following mycobacterial infection. As a simplified, noncaseating granuloma composed of relatively few and largely mononuclear cell populations, it provides a tractable model system to investigate intra-granuloma cellular dynamics, immune regulation, and antimicrobial resistance. Here, the occurrence of granulomatous pathology across the spectrum of leishmaniasis, in humans and animal reservoir hosts, is first described. However, this review focuses on the process of hepatic granuloma formation as studied in rodent models of visceral leishmaniasis, starting from the initial infection of Kupffer cells to the involution of the granuloma after pathogen clearance. It describes how the application of intravital imaging and the use of computational modeling have changed some of our thoughts on granuloma function, and illustrates how host-directed therapies have been used to manipulate granuloma form and function for therapeutic benefit. Where appropriate, lessons that may be equally applicable across the spectrum of granulomatous diseases are highlighted.
Collapse
Affiliation(s)
- Paul M Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK.
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland, Australia, 4006
| |
Collapse
|
45
|
Li Y, Wu J, Zhang P. CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion. Tumour Biol 2015; 37:4501-7. [PMID: 26501423 DOI: 10.1007/s13277-015-4287-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
The identification of new biomarkers for the early detection of hepatocellular carcinoma is critical in the development of tumor-targeted therapy, which is possibly advantageous on the prognosis of this disease. Results from our previous study indicated that CCL15 can be a specific proteomic biomarker of hepatocellular carcinoma, which plays an important role in tumorigenesis and tumor invasion. In this study, we found that CCL15 can induce hepatocellular carcinoma cell migration and invasion. Furthermore, CCR1, the receptor of CCL15, was demonstrated to play a critical role in metastatic hepatocellular carcinoma. CCR1 short hairpin RNA significantly inhibited CCL15-induced chemotaxis and invasion of HepG2 cells. Moreover, CCR1 knockdown significantly limited the activity and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. These findings suggest that CCR1 plays critical roles in hepatocellular carcinoma metastasis, which indicates that CCR1 may be a potential molecular target in hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Yueguo Li
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China.
- Key Laboratory of Cancer Prevention and Therapy, The National "863" Program of Clinical Research Laboratory, Tianjin, 300060, People's Republic of China.
| | - Jing Wu
- Department of Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, People's Republic of China
| | - Peng Zhang
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, The National "863" Program of Clinical Research Laboratory, Tianjin, 300060, People's Republic of China
| |
Collapse
|
46
|
Kitamura T, Pollard JW. Therapeutic potential of chemokine signal inhibition for metastatic breast cancer. Pharmacol Res 2015; 100:266-70. [PMID: 26275794 PMCID: PMC4617477 DOI: 10.1016/j.phrs.2015.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023]
Abstract
Metastatic breast cancer is incurable by current therapies including chemotherapy and immunotherapy. Accumulating evidence indicates that tumor-infiltrating macrophages promote establishment of the lethal metastatic foci and contribute to therapeutic resistance. Recent studies suggest that the accumulation of these macrophages is regulated by a chemokine network established in the tumor microenvironment. In this perspective paper, we elaborate on the chemokine signals that can attract monocytes/macrophages to the site of metastasis, and discuss whether inhibition of these chemokine signals can represent a new therapeutic strategy for metastatic breast cancer.
Collapse
Affiliation(s)
- Takanori Kitamura
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10543, USA.
| |
Collapse
|
47
|
The chemokines CCR1 and CCRL2 have a role in colorectal cancer liver metastasis. Tumour Biol 2015; 37:2461-71. [DOI: 10.1007/s13277-015-4089-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/13/2015] [Indexed: 12/13/2022] Open
|
48
|
Swamydas M, Break TJ, Lionakis MS. Mononuclear phagocyte-mediated antifungal immunity: the role of chemotactic receptors and ligands. Cell Mol Life Sci 2015; 72:2157-75. [PMID: 25715741 PMCID: PMC4430359 DOI: 10.1007/s00018-015-1858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4(+) T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| | - Timothy J. Break
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| |
Collapse
|
49
|
Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, Conejo-Garcia JR, Feldman M, Albelda SM, Singhal S. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 2014; 124:5466-80. [PMID: 25384214 DOI: 10.1172/jci77053] [Citation(s) in RCA: 502] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Infiltrating inflammatory cells are highly prevalent within the tumor microenvironment and mediate many processes associated with tumor progression; however, the contribution of specific populations remains unclear. For example, the nature and function of tumor-associated neutrophils (TANs) in the cancer microenvironment is largely unknown. The goal of this study was to provide a phenotypic and functional characterization of TANs in surgically resected lung cancer patients. We found that TANs constituted 5%-25% of cells isolated from the digested human lung tumors. Compared with blood neutrophils, TANs displayed an activated phenotype (CD62L(lo)CD54(hi)) with a distinct repertoire of chemokine receptors that included CCR5, CCR7, CXCR3, and CXCR4. TANs produced substantial quantities of the proinflammatory factors MCP-1, IL-8, MIP-1α, and IL-6, as well as the antiinflammatory IL-1R antagonist. Functionally, both TANs and neutrophils isolated from distant nonmalignant lung tissue were able to stimulate T cell proliferation and IFN-γ release. Cross-talk between TANs and activated T cells led to substantial upregulation of CD54, CD86, OX40L, and 4-1BBL costimulatory molecules on the neutrophil surface, which bolstered T cell proliferation in a positive-feedback loop. Together our results demonstrate that in the earliest stages of lung cancer, TANs are not immunosuppressive, but rather stimulate T cell responses.
Collapse
|
50
|
Hirai H, Fujishita T, Kurimoto K, Miyachi H, Kitano S, Inamoto S, Itatani Y, Saitou M, Maekawa T, Taketo MM. CCR1-mediated accumulation of myeloid cells in the liver microenvironment promoting mouse colon cancer metastasis. Clin Exp Metastasis 2014; 31:977-89. [PMID: 25326065 PMCID: PMC4256518 DOI: 10.1007/s10585-014-9684-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/03/2014] [Indexed: 12/23/2022]
Abstract
To understand colon cancer metastasis, we earlier analyzed a mouse model that developed liver metastasis of cancer cells disseminated from the spleen. We suggested that CCR1(+) bone marrow (BM)-derived cells are recruited to the microenvironment of disseminated colon cancer cells, and produce metalloproteinases MMP9 and MMP2, helping metastatic colonization. In the present study, we have examined these myeloid cells expressing CCR1 and/or MMPs in detail. To this end, we have established bacterial artificial chromosome (BAC)-based transgenic mouse lines in which membrane-targeted Venus fluorescent protein (mVenus) was expressed under the control of Ccr1 gene promoter. Then, myeloid cells obtained from the BM and liver metastatic foci were analyzed by the combination of flow cytometry and cytology/immunohistochemistry, in situ RNA hybridization, or quantitative RT-PCR. We have found four distinct types of myeloid cells recruited to the metastatic foci; neutrophils, eosinophils, monocytes and fibrocytes. These cell types exhibited distinct expression patterns for CCR1, MMP2 and MMP9. Namely, neutrophils found in the early phase of cancer cell dissemination expressed CCR1 exclusively and MMP9 preferentially, whereas fibrocytes accumulated in later phase expressed MMP2 exclusively. Either genetic inactivation of Ccr1 or antibody-mediated neutrophil depletion reduced subsequent recruitment of fibrocytes. The recruitment of CCR1(+) neutrophils in early phase of colon cancer dissemination appears to cause that of fibrocytes in late phase. These results implicate the key role of CCR1 in colon cancer metastasis in this mouse model, and explain why both MMP9 and MMP2 are essential as genetically demonstrated previously. The results also suggest relevant mechanisms in humans.
Collapse
Affiliation(s)
- Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Teruaki Fujishita
- Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
- Present Address: Division of Molecular Pathology, Aichi Cancer Center Research Institute, Nagoya, 464-8681 Japan
| | - Kazuki Kurimoto
- Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Susumu Inamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiro Itatani
- Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Present Address: Moores Cancer Center, UCSD, 3855 Health Sciences Drive, San Diego, CA 92093 USA
| | - Mitinori Saitou
- Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- JST, ERATO, Yoshida-Konoé-Cho, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M. Mark Taketo
- Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|